PC-2 Assembly Language

Article by Bruce Elliott

This is the first in a series of articles which will describe
the MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map and certain ROM calls which
are available. Please realize that much of what we are talk-
ing about refers to the overall capabilities of the MPU and
does not imply that all of these things can be done with
a PC-2. Some known precautions when working with the
PC-2 include:

¢ Po—This signal is not supplied to an external output

pin on the PC-2.

¢ TI—The Timer Interrupt service routine is not available

on the PC-2. If a Timer Interrupt occurs, an RTI is
im.nediately executed.

¢ NMI—The Non-Maskable Interrupt is not available to

the programmer on the PC-2.

* The MPU signals BRQ and BAK are not supplied to the

external output pins.

¢ Though MEOQ is available as an output from the MPU,

DMEO (from one of the support chips) performs a
similar function and should be used.

Please understand that the information provided in these
articles is the only information which is available. We will try to
clarify any ambiguities which occur in the articles, but can not
reply t questions outside the scope of these articles. Further,
published copies of TRS-80 Microcomputer News are the
only source of this information, and we will not be maintaining
back-issues.

BLOCK DIAGRAM

PC.3 MDCK (IAGRAM

OUTLINE OF THE 8-BIT CMOS MPU
The 8-bit MPU chip (LH5801) uses CMQOS static technol-

ogy. This gives the MPU the low power dissipation inherent to
CMOS technology. The MPU incorporates the LCD back-
plane signal generator, input port, external latch clock and
the timer.
The MPU features:
* 16 bit address bus
¢ 8 bit data bus
¢ 8 bit input port
e DMA and multiprocessor capabilities
¢ Contains a WAIT function for memory access contro
» LCD backplane control
¢ Clock frequency of 2.6 MHz.
a. Internal machine cycle of 1.3MHz.
b. Minimum instruction execution time of 1.3
microseconds.
In the PC-2, the MPU performs the following functions:
e Key input routine
e Acknowledges remaining program lines
® Interprets program execution statements
e Interprets cassette control statements
e Interprets printer control statements
¢ Interprets command statements
¢ Display processing routine
¢ Arithmetic routines
® Print routine
e Instructs /0 chip to perform serial communications,
sound buzzer, and control counter/timer

s0s.s01s F-Pn ni 01wt ua

S T T
o2 5] =

»

. 3
* — I o o
) C:—-—— T e A
P A m S A
" —— Susoly
Yy L [J" -
v O VONY
—— J e [A L
< LY 1
vee -8
vee —» P 3

3

e S
e — 2 T .
e 2 e

D07 Gan BRG RESET TO Aw WEn we1 80O 841

84 CHOS MPU Block Dregram

MPU SIGNALS

®D —Output disable signal, when this signal is active, the data bus is in the
output mode

®0OS—This clock signal is in phase with the internal basic clock and is
supplied to the outside system. 2MHz of the clock frequency 1s supphed
when a 4MHz crystal 's being used between XLO and XL 1. Since PC-2
uses a 2.6MHz chip, the clock frequency is 1.3MHz.

ADO-AD15--Address bus. The address bus is tri-state and goes into the
high impedance slate when a Bus Request. BRQ. s issued.

TRS-80 Microcnmputer News. March 1983 23

PH B PLB P Program Counter
| SHB I sL8 S: Stack Pointer
XH B XL 8 X Data Address
YH S8 YL 8 Y or
UH 8 uLe [}] General Purpose Register
A 8 A Accumulator
pjlojJO}lH]V]|ZI|IE]C T Status Register

C: Carry and Borrow (inter-bytes)

Interrupt Enable

z Zero Indication

v: Overllow

H: Carry (inter-digits)

™ 8 T™: Timer Counter
1 PU General Purpose
1 PV Flip-flops
1 DISP: LCD Display On/Off Control

MPU Internal Registers and Flin flops

BAK —The BAK outpul is synchronized wih the internal clock. When BAK
goes high, the Address Bus, Data Bus, MEO, ME 1, R/IW. and ®D all turn
to the high impedance state. Not used in PC-2

3IFO. BFI—BFQ is an output of the BF flip-flop and BFI 1s an input to the BF
fip-flop. The BF flip-iop is normally used for the memory backup
system. In the PC-2, BF! is connected 1o the {BREAK) key. and goes
“high” when the (BREAK) key is depressed. BFO. in the PC-2, is
connected to the Chip Select Circuit and the Expansion Port

BRQ— Bus Request. The MPU respands to the BRQ by turning BAK {Bus
Acknowledge) high. Not used in PC-2. Tied to GND

D0-D7 —Bidirectional data bus through which data is written to or read from
external memory.

DISP— A flip-flop which is used to control the on and off action of the L.C.D.
Instructions are provided to set and reset this flip-flop.

GND—-Ground

HO-H7 —These are the LCD backplane signals.

HA—Output of the MPU internal driver. Divider output of 625 Hz inthe PC-2.
Used by the display chips.

HIN —1CD backplane signal and an input to the counter that generates HO-
H7?. This 15 connected to HA in the PC-2

IND-IN7 — This is the inpu! port which the MPLU uses to bring 8-bit data into
the imternal accumulator. Internal pull-up resistance 1§ present. in the
PC-2. the input port is connecled to the keyboard

MEQ, ME1 —The Memory Enable signals used by the MPU to directly
access a maxmum of 128K bytes in external memory Inthe PC-2, MEO
is connecled to the chip select circuit and to the ME1 input of the /O
chip. Inthe PC-2, ME1 is connected o the MEQ input of the 1/O chip and
the expansion port.

Mi—The Maskable interrupt Input signal. The MPU will respond to this
interrupt request when the Interrupt Enable flag (IE} is on. Interrupt

processing will begin at the address indicated by FFF8 and FFF9_ In the
PC-2 this i1s connected to the INT output of the IO Chip.

NMI—The Non-Maskable Interrupt Input. The MPU will respond uncondi-
tionally, and interrupl processing will begin at the address indicated by
the contents of FFFC and FFFD. Not used in the PC-2, tied to GND.

OPF — Operation Code Fetch. Allows the MPU to felch an operation {instruc-
tion) code. OPF appears when an instruction code is fetched, during
address data and immediate data operations, and when the second
byte of a two step instruction 1s being fetched. Not used n the PC.2.

P® —External latch clock. The contents of the accumulator is transferred on
the data bus when this clock is in the high state, and can be used as an
output port when an external latch IC is present. Not used in the PC-2

PU, PV—These are MPU internal tlip-flops, Set and reset instructions are
provided for both PU and PV. In the PC-2, both PU and PV are con-
nected to the expansion port. PU is one of the enable signals for the
printer ROM.

RMW—Memory Read/Write Signal.

RESET—MPU reset input which causes the MPU to reset when a high signal
is received. Program execution begins at the memory address pointed
1o by the contents of FFFE (low order) and FFFF (high order.) Execution
begins at the indicaled address when the RESET input changes from a
high to alow state. On the PC-2 this is connected 1o the All Reset Switch.

VA—Power Supply to the LCD. High voltage for segment signals, 1.2—2.2
volls.

VB —Power Supply !0 the LCD. Low vollage for segment signals, .2—12
volts,

Vee— +4.7 volls

VDIS—Power Supply to the LCD. +3.7 volts,

vgg-— +4.7 volts

VM —Power Supply to the LCD. An intermediate voltage used for the com-
mon and segment signals. .8—1.6 volts.

WAIT—When the MPU receives a high signat at the WAIT input, the MPU
internal clock is halted to stop microprogram execution inside the MPU.
WA is an internal flip-fiop which accepts the WAIT input at the falling
edge of the clock 00S and stops the MPU clock when it is in a high state.
Connected to the WAIT output of the VO chip in the PC-2. This informs
the CPU when memory or an IO device is not ready.

XL0. XL1—Crystal connection pins. PC-2 uses a 2.6MHz crystal which
operates the MPU at a 1.3MHz clock frequency. XLO—Input, XL1—
Output

MPU DESIGNATIONS

A - "A" represents the 8-bit register (accumulator) used for retention of
arithmetical results or for data transfer with external (non-MPU) memory.

DISP. LCD display on/off control

P . "P" represents the 16-bit register (program counter) that indicates the
next address that follows the currently executing instruction, and is
autormatically incremented by one when the next instruction is fetched
The maximum 64K bytes addressed by MEQ is addressable by P and
constitutes the program area.

PH: High order 8 bits of the program counter

PL: Low order 8 bils of the program counter

PU- General purpose flip-flop

PV: General purpose flip-flop

R represents any one of the X, Y. or L 16-bit registers. These registers can
also be used as data pointers. When X, Y, or U are used as data pointers,
it becomes possible 1o issue Memory Enable signals, MEO and ME1,
independently. A maximum of 128K bytes of memory area is available
o X, Y. and U (a maximum of 64K bytes in the memory area accessed
by MEO and another 64K bytes in the memory area accessed by ME1.)

RH: represents any one of the high order XH. YH, or UH 8-bit registers.

RL: represents any one of the low order XL, YL, or UL 8-bit registers.

S : "'$" represents the 16-bit register (stack pointer) that indicates the next
available stack address tor the push-down or pop-up stack in memory.
The maximum 64K byles addressed by MEQ is available as the stack
area,

SH: High order 8 bits of the stack pointer

SL: Low order 8 bits of the stack pointer

T:"T" represents the 5-bil register (status register or flags) designed to hold
status information such as' carry (C). borrow (H), zero (Z), overflow (V).
and interrupt enable (1E). The flags (C, H, Z. V). other than the interrupt
enable. can be tested by the conditional branch or condiional subrou-
line jump INstructons.

TM: "TM" is the 9-bit polynomial counter (timer counter)

U . 16-bit register

UH: High order 8 bis of register U

24 TRS-B0 Microcomputer News, March 1983

UL Low order 8 bits of register U
X 16-bit register

XH. High order 8 bits of register X,
XL Low order 8 bits of register X
Y - 16-bit register

YH- High order 8 bits of register Y
YL: Low arder 8 bits of register Y

OPERATIONAL SYMBOLS

Signal or data flow
- Signal or data flow
. Logical AND
. Logicat OR
: Exclusive OR
- Arithmetic addition
- Anthmetic subtraction

+D< ot |

MEMORY AND ADDRESS REPRESENTATION

Since the Memory Enable signals, MEQ and MET, are
output from the MPU, the PC-2 microprocessor can directly
access any area within 128K bytes. MEO takes care of one
64K byte memory area and ME1 another 64K byte memory
area. However, MEO is dedicated to program or data areas
and ME1 to data area only.

o000 0000

Memory Area
accessible by
X. Y and U

Memory Area

accessible by
PSS X.Y.andU

FFFF FFEF

1

Memory Enable signal, MEDQ

Memory Enable signal, ME1

Memory Area accessible by MPU

Address bus

16 4
i ' ’]
V] Program or dats ares Data sten
1 » {‘({ t Dats bus
RiwW

MEQ

(R) . The contents of the MEQ accessible memory thal can be specified by the
register R.

#(R)- The contents of the ME1 accessible memory that can be specified by
the register R.

{ab): "a” is a number that represents the high order 8 bits of the address and
"b" low order 8 bils of the address. Together, they indicate the contents
of the memory that can be represented by the 16 combined bits of a and
b (MEO accessibie).

#(ab): Same as the above, except that it can be accessed by ME1.

ab . used in defimng the conditional jumps and subroutine calls 1o designate
the two hex digits which comprise a single byle immediale value "

STATUS FLAGS

The status flags. C. V. H, Z, and IE are contained in the 5-but status
regisier. The contents of C, V. H, and Z may change upon compiletion of an
arithmetic instruction.

Assume that the added results of each bit of the 9-bit full adder are as
tollows:
£7.56.I5 X4 £3 Y2 31 X0, with carryol C7.C6, C5,C4,C3,C2.C1. CO.
The input conditions 1or each of flags shall be as descrbed below

cy —— C

ca H

N7 +AR NG g ———— 7
Ch 4 CT —e——

(1) Carry flag C—The carry flag C is eiher sel or resel depending on the
oresence of a carry n C7 (8th bil).

(2) Half carry flag H—The hatt carry flag H s either set or reset depending on
the presence of a carry in C3.

(3) Zero flag Z —The zero flag Z is dependenl on the arithmetic results: it will
be set when the result is zero, otherwise. i1 will be reset.

(4) Overflaw flag V- The overtlow flag V 1s set when the arithmenc resulls of
one byle is in overflow, prowvided that the Bth bitis used for a sign with rest
of the 7 bits for used for numeric representahon

/O PORT CHIP

Contains:

= Iwo 8 bil bi-directionat ports. labeled PA and PB. Each bitin these two ports
can be programmed as either an input or an outpul. The CPU can
access PA or PB as one location in memory PA is used for the keyboard
sirobe and PB is used for cassetle, counterfimer, and as an nterrupt
input.

= one 8 bil output port labeled PC. PC can be accessed as one location in
memory and 1s used for counter/timer control and to sound the buzzer.

s Two interrupt request inputs, used with (BREAK) and IRQ inputs from the
expansion port.

* gne interrupt request output connected to the CPU.

* CPU WAIT control output. Outputs two memory enable signals, DMEQ and
DME 1, which are used with memories that have slow access times

* Controls serial communications. The two wait input lines, W0 and W1, are
used in serial commurnications.

LCD DISPLAY CHIPS

Four display chips used for displaying information on the LCD, and as
memorty space for hxed memories E$S - 23 Display chips 1 and 3 are used for
the LCD dhsplay. indwcators. and fixed memories ES - O3 Display chips 2 and
4 are used for the LCD display and for fixed memories P§ - Z§.

Lco

Segments 71.40 l

Dispiay l Display Ciaptey Orsplmy
Chup =t] Chup n2 £hup «3 Chup +4

T wa‘l ’ TDO-O) T TD‘-B? T TM-D!

TRO0- TRAD 7T00- 70 7800- FEA0 TI00-T74D

OTHER PARTS OF THE PC-2 SYSTEM

» Chip Select Decoder Circuil

» 16K Systermn ROM

» 1K Systemn AAM [(iwo 5514 RAM chips). This RAM s used tor hxed
memones A% - D3, fixed memones A - Z, stack space. the 80 character
input butter, and 15 used by FOR-NEXT stalements.

* 2K User RAM (one 6116 RAM chip) This RAM is used for fixed memornes
A27 or A$27 and above as well as being used for Reserve. Program
and Variable memory

* Buzzer circutt

* Counter/Timer circunt

s Module port

* Expansion por!

* Keyboard ¥ x|

TRS AD Microcomputer News. March 1983 25

Memory Map: 7968 - 79EF

79F0 Prnter Text/Graphic mode
79F1
0000 - 3FFF Module ROM - 16K 79F2 Printer ROTATE value
4000 - 47FF User RAM - 2K 79F3 Printer pen color
4000 - 4007 Heserve Marmory ponters 79F4 Printer CSIZE
4008 4021 Meng | 7A00 - 7A07 Numenc Data Butter or String ponter
4022 - 4038 Meny 2 7A10 - 7A17 Mumernc Data Butter or Sting ponter
403C - 4055 Meny 3 7810 - 7B4F Sinng Butfer
4056 40C3 Funchon Key Detiniions 7860 - 7B67 Tape oul Synchromzation header
40C4 0 t0 mark end ot functon key detinihons 7868 - Tape out hle mode
40CS5 47FF Program (Vanabie) Memory 7869 - 7878 Tape out e name
4800 - 6FFF Module RAM 7879 . 7884 Tape oul header (avadabie 10 user)
7000 - 75FF Duplicate of 7600 - 7BFF ;gg; . ;ggg E’S‘S 23: :"tévi::azmel\SIC He -1
7600 - 76FF Display Chip 1 & 3 7891 - 7BAQ Tape n fie name
7600 - 764D LCD D=play Sectons 18 3 78A1 - 7BAB Tape n user header
764F Ingdicator 7BAC - 7BAD Tape n # byles in BASIC e -1
A1 0 - Busy 7BAE - 7BAF Tape in end header
Rt 1 Shh 7BB0 - 7BFF B0 Character Display Butter
B g anese 7C00 - 7FFF Duplicate of 7800 - 7BFF
Ara 1 8000 - BFFF Expansion ROM - 16K
ats5 1l A519 Change printer pen color
Ak 1 A769 Printer motor oft
B 7 Det A781 Send ASCH! character 1o printer (no LF)
704F InAicator ARDD Move pen
B0 De A9F 1 Send Iine feed (LF) to prnter
Aattr G AAN4 Send n ine feeds 10 printer
2 Rad AAD9 Pen Up/Down
B1 3 ABCB Switch printer from graphic 1o text mode
A1 4 Reserve ABEF Switch printer from text 1o graphc mode
ALS Pin BBD6 Write 1ape synchromzallon header
Bt 6 Run BBf S Finalizaton of 1ape /0 contro!
B 7 BCES Read tape synchromizaton header/search for tlename
7R50 - 7R5F €S 803C ARead/Wrie e 10 tape
7660 7RGH ¥S BOCC Send a characler to tape
7670 7671 GS BDFO Read a character from tape
7680 - 768F HS BF 11 Turn tape drive on
7690 - 7HIF 18 BF43 Turn tape drwve ot
76A0 - 76AF JS CO000 - FFFF System Program ROM - 16K
7680 - 76RF K$ DOD2 Magnitude Comparison tor Numenc Vaiues
76C0 76CF LS DOFY Magntude Comparison for Character Strings
7600 - 760F M$ D2EA Search for program hne number
76EQ0 76EF NS 0461 Find address of vanable
76F0 - 76FF O 0925 Sirng concatenation
7700 - 77FF Display Chips 2 & 4 D9B1 CHRS
7700 - 774D LCD Display - Sections 2 & 4 DICF STRS$
774E - 774F Not used 0907 VAL
7750 775F P$ 0900 ASC f YL =60H. LEN ¢ YL =64H
7760 776F O$ D9F3 RIGHTS. LEFTS. MIDS
7770 - 777F RS £243 Keyhoard Scan - wai for character
7780 - 778F S$ E33F Aulo Power Off
7790 779F 1§ E£42C Keyboard Scan - no wad
77A0 7TAF US EB8CA Oisplay contents of display butter
7780 - 778F VS EDOO Oulput n characters to LCD using current cursor locaton
77C0 - 77CF WS ED3B Output n characters 10 LCD beginning at cursor = O
7700 - 770F x$ ED4D Outpul one char 1o LCD and ncrement cursor position by one
77€0 - 77EF Y$ EDS7 Quiput one character to LCO
77F0 - 77FF S £095 Convert two bytes of ASCII code {0-9.A-F) into one byle of hex data
rren hon
7800 - 7BFF Sys1em Memory 1K Erosg E)"m;m_'o;e graphic column 10 current Cursor posHho
7800 78RF Syslem Memory 192 Bytes EFBA X+Y—-X
7863 RAM top - High orcee 8 bits F00B VOP Fiag 2
7864 RAM hottom ngn orcer 8 bits FOIA XY <X
7865 - 7R66 Baginning ot BASIC prngram FOB4 XI1Y = X
7RR7 78R8 Endl nl BASIC program FOEQ SOR X = X
7869 - 786A Head addrass uf a BASIC program 1o pertorm ediing based F161 INX = X
on keybeoard enines -
7868 Reep On/Reep it ;1858 LEC;% ; - ;
7R7S LCD Cursor Postion Fice P X
7879 Cassette parameter FIF £391 COS X = X
7880 LCOD display parameter FIF F.JQE TAN X = X
7890 7893 Used by RIGHTS, LEFTS. MIDS F3A2 SIN X — X
7894 Stang Bufter Pointer 7894 = 10H FaQ2 ACS X ~ X
7899 - 7R9A Siarl of vanable slorage area Fl‘:!G ATN X — X
7R9B Erre Code = ERRUZ -1 F49A ASN'X — X
78C0 - 7RCF AS FS31 DEG X -+ X
78D0 780F RS Fo64 DMS X = X
7REN JRFF (S F597 ABS X - X
7870 J8¢C 03 F590D SGN X = X
7900 - 7907 A F5BE INTX = X
;2??\ ’ ;::?r ? F89C Exponentaton (X ~ Y -+ X)
M 7917 C :
7918 7911 D FFOO - FFF6 Vectors for jumps and calls
7920 - 7927 £ FFF8 - FFF9 Start Address for M! routine
Toa0 7a7 6 FFFA - FFFB Start Address for the Intesnal Timer
7938 - 799 B FFFC - FFFD Start Address for the NMI routine
7940 - 7947 | FFFE - FFFF Start address for the RESET routine
7948 . 794F J
7950 - 7957 K
7958 - 795F L
7960 - 7967 M
7968 796F N
7970 79770
7978 - 797F P
7980 - 7987 Q
>qR8 TO8F R
700 7997 S
TR T9F T
7000 7NA7 U

79A8 TOAE V
780 7TOHT v
7908 - 79RF X

NGO 79067 ¢
7oC8 790 /7
79D0 - 7BFF System Memory - 560 Bytes
PO 791 1 Poenter X ave, pasibon enlatee 10 orogin
79 2 - JOLY Prnter Y aeis pocatinn eelalive 10 onpn
794 7985
796 Praster HCHRSOR vatue
1907 - 7T9FR
79€9 Prnter pen un/down
79EA Proter tne tyne a

26 TRS-80 Microcomputer News, March 1983

PC-2 Assembly Language-Part 2

Article by Bruce Elliott

This is the second in a series of articles which will de-
scribe the MPU (microprocessor unit) used in the Radio
Shack PC-2 pocket computer. It is our intention to include
specific information about the 8-bit CMOS microprocessor,
the machine code used by the microprocessor, as well as
information about the PC-2 memory map and certain ROM
calls which are available. Please realize that much of what we
are talking about refers to the overall capabilities of the MPU,
and does not imply that all of these things can be done with a
PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but can not reply to ques-
tions outside the scope of these articles. Further. published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.

Instruction Set

LOGICAL OPERATIONS

ADC—The contents of the internal register (RL or RH), or the
contents of external memory [(R), #(R), (ab), or #(ab)]
is added into the accumulator including the carry C.
The result is stored in the accumulator. Flags C, H, Z,
and V may change after the execution of this

instruction.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
ADC XL A+ XL +C-A 02 1 6
ADC YL A+YL+C-A 12 1 6
ADC UL A+UL+C-=-A 22 1 6
ADC XH A+XH+C-A 82 1 6
ADC YH A+YH+C—-A 92 1 6
ADC UH A+UH+C-A A2 1 6
ADC (X) A+ (X)+C—-A 03 1 7
ADC (Y) A+)+ C—-A 13 1 7
ADC (U) A+U)+C-=-A 23 1 7
ADC (ab) A+ (ab) + C—-A A3ab 3 13
ADC #(X) A+ #X)+C—A FD 03 2 T
ADC #(Y) A+ #Y)+C—=A FD 13 2 11
ADC #(U) A+ #U) +C—~A FD 23 2 11
ADC #(ab) A+ #ab) + C —- A FDA3ab 4 17

ADI—Performs immediate addition to the accumulator or to
external memory [(R), #(R). (ab). or #(ab)]. Changes
may take placein C, H, Z, or V. The carry flag C will be
included in the immediate addition to the accumulator.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
ADI A A+i+C=A B3i 2 7
ADI (X.i (X) + i = (X) aF i 2 13
ADI (Y).i M+i=mM SF i 2 13
ADI (U).1 (U) + 1 - (V) 6F i 2 13
AD! (ab).i (ab) + + — (ab) EFabi 4 19
ADI #(X).i #X) + 0 — #(X) FD 4F i 3 17
ADI #(Y).i HY) + 0 — YY) FD 5F i 3 17

ADI #U).i
AD! #(ab).i

#U) + i - #(U)
#(ab) + i — #(ab)

FD 6F i 3 17
FDEFabi 5 23

ADR—The content of the accumulator is added into the
register R in 16 bits. Change may take place in C, H,

Z orV.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
ADR X XL + A = XL FD CA 2 11
ADR Y YL+ A =YL FD DA 2 "
ADR U UL + A—- UL FD EA 2 1"

Comment—RH+1 — RH f C7 =1 (no change in CVHZ)

AND—The content of the accumulator is logically ANDed
with the content of external memory [(R), #(R), (ab). or
#(ab)] and the result is stored in the accumulator.
Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
AND (X) AA(X) - A 09 1 7
AND (Y) AA(Y) = A 19 1 7
AND (U) AAU) = A 29 1 7
AND (ab) A A (ab) - A A9ab 3 13
AND #(X) AAH#X) = A FO 09 2 11
AND #(Y) AN KY) = A FD 19 2 11
AND #(U) AArKU) —- A FD 29 2 11
AND #(ab) A A #(ab) — A FDA9ab 4 17

Comment—A represents the AND operation

ANI—Logical AND of the accumulator and an immediate
value, or of external memory [(R). #(R), (ab). or #(ab)]
and an immediate value with the results stored in the
accumulator or external memory as indicated.
Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
ANl Ai Ari— A B9 i 2 7
ANI (X).i) M= (X) 49 2 13
AN (Y).i () A i = (Y) 59 i 2 13
ANI (U).i (W~ = (V) 69 i 2 13
AN (ab),i (ab) A i — (ab) E9abi 4 19
ANI #(X).i #X) N i — #(X) FD 49 i 3 17
ANI #(Y).i #N) N — #(Y) FD59i 3 17
AN #(U).i #U) A i — #U) FD69i 3 17
ANI #(ab),i #(ab) * + — #(ab) FDE9abi S 23

DCA — The content of external memory [(R) or #(R)] including
the carry C is added to the accumulator in the binary-
coded-decimal (BCD) system and the result is stored
in the accumulator. Change may take placein C, H, Z,

or V.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
DCA (X) A+(X)+C-—-A 8C 1 15
DCA (Y) A+M+C=-A 9C 1 15
DCA (U) A+(nh+C-A AC 1 15
DCA #(X) A« #X)y+C—=A FD 8C 2 19

TRS-80 Microcomputer News. April 1983 39

DCA #(Y) A+ KY)+C—~A FD 9C 2 19

DCA #(U) A+ #U)+C—A FD AC 2 19

DCS—The content of the external memory [(R) or #(R)],
including the carry C is subtracted from the content of
the accumulator in the BCD system, and the result is
stored in the accumulator. Change may take place in

C, H ZorV
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle.
DCS (X) A-(x)-C — A oC 1 13
DCS (Y) A-M-C —~A 1C 1 13
OCS (U) A-(U)-C - A 2C 1 13
DCS #(X) A-#X)-C — A FD OC 2 17
DCS #(Y) A-#(Y)-C — A FD 1C 2 17
DCS #(U) A-#U)-C —- A FD 2C 2 17

DEC— Decrements the accumulator or the register (RL, RH,
or R). Change may take place in C, V, H, and Z for the
decrement of the accumulator, or the register, RL or
RH. But no change takes place in flags when the 16-
bit R is decremented.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
DEC A A-1 - A DF 1 5
DEC XL XL-1 — XL 42 1 5
DEC YL YL-1 =YL 52 1 5
DEC UL UL-1 - UL 62 1 5
DEC XH XH-1 - XH FD 42 2 9
DEC YH YH-1 - YH FD 52 2 9
DEC UH UH-1 —~ UH FD 62 2 9
DEC X X-1 <X 46 1 5
DECY Y-1=Y 56 1 5
DEC U U-1-U 66 1 5

EAl—The accumulator is EXCLUSIVE ORed with animmedi-
ate value and the result is stored in the accumulator.
Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

EALi A®i-A BDi 2 7

Comment— ® - represents the XOR operation

EOR—Logical EXCLUSIVE OR (XOR) of the accumulator
with external memory [(R), #(R), (ab), or #(ab)] is
performed and the result is stored in the accumulator.
Change may take place in the Z flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
EOR (X) A® X -A oD 1 7
ECR (Y) A®(Y)-A 1D 1 7
EOR (U) A® (U -A 20 1 7
EOR (ab) A ® (ab) — A ADab 3 13
EOR #(X) A® #X)~ A FD 0D 2 1"
EOR #(Y) A O #Y)—=A FD 1D 2 1
EOR #(U) A® #U)—-A FD 2D 2 1
EOR #(ab) A ® #ab)—-A FDADab 4 17

INC—Increments the accumulator or the register (RL, RH, or
R). Change may take place in C, V, H, and Z for an
increment of the accumulator, or the registers, RL or
RH. But no change takes place in flags when the 16-bit
register R is incremented.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
INC A A+ 1A DD 1 5
INC XL XL + 1 = XL 40 1 5
INC YL YL+ 1 —YL 50 1 5
INC UL UL + 1 - UL 60 1 5
INC XH XH + 1 —~ XH FD 40 2 9
INC YH YH + 1 = YH FD 50 2 9
INC UH UH + 1 —- UH FD 60 2 9

INC X
INCY
INC U

X+1-X
Y+1=Y
Uu+1-uU

44
54
64

1 5
1 5
1 5

ORA—The accumulator is logically ORed with external
memory [(R), #(R), or (ab)] and the resuilt is stored in
the accumulator. Change may take place in the Z flag

only.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
ORA (X) Av(X)— A 0B 1 7
ORA () Av(Y)—A 18 1 7
ORA (U) Av(U) - A 28 1 7
ORA (ab) Av(ab) — A ABab 3 13
ORA #(X) AvH#X)— A FD 0B 2 1
ORA #(Y) Av #Y) - A FD 1B 2 11
ORA #(U) Av#U) - A FD 28 2 1"
ORA #(ab) A v #(ab) — A FDABab 4 17

Comment—v - represents the OR operation

ORI—Logical OR of the accumulator or external memory
[(R). #(R). (ab), or #(ab)] with an immediate value. The
resultis stored in the accumulator or the external mem-
ory as indicated. Change may take place in the Z flag

only.
. Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
ORI A,i Avi—A BB 2 7
ORI (X).i X)vi—= (X 4B 2 13
ORI (Y).i Mvi-M 5B i 2 13
ORI (U),i (WUWyvi-—(U) 6B i 2 13
ORI (ab).i (ab) vi — (ab) EBabi 4 19
ORI #(X),i #(X) vi— #X) FD 4B i 3 17
ORI #(Y).i #Y)vi— ¥Y) FDSB i 3 17
ORI #(U).i MU)vi— K FDeBi 3 17
ORI #(ab),i #(ab) v i — #(ab) FDEBabi 5 23

SBC—The content of the internal register [RL or RH] or
external memory [(R)., #(R).(ab), or #(ab)] including
the carry C is subtracted from the accumulator and
the result is stored in the accumulator. Change may
take place in C, H, Z, or V.

This operation can be expressed in the following
manner: The complement of the contents in the inter-
nal register, RL or RH, or external memory, (R). #(R).
(ab), or #(ab) is first obtained. Then the complement is
added into the accumulator including the carry C, and
the result is stored in the accumulator. Change may
take place in C, H, Z, or V.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SBC XL A-XL-C-A 00 1 6
SBC YL A-YL-C—-A 10 1 6
SBC UL A-UL-C =~ A 20 1 6
SBC XH A-XH-C - A 80 1 6
SBC YH A-YH-C - A 90 1 6
SBC UH A-UH-C - A A0 1 6
SBC (X) A-(X)-C = A ot 1 7
SBC () A-)-C-A 1" 1 7
SBC (U) A-(U)-CT-A 21 1 7
SBC (ab) A-(ab)-C — A Atab 3 13
SBC #(X) A-#X)-C —-A FD 01 2 11
SBC #(Y) A-#Y)-C —A FD 11 2 11
SBC #(U) A-#U)-C —-A FD 21 2 11
SBC #(ab) A-#ab)-C —-A FDAtab 4 17

SBiI—The immediate value including the carry C is sub-
tracted from the accumuiator and the result is stored in
the accumulator. Change may take place in C, H, Z,
or V.

40 TRS-80 Microcomputer News. April 1983

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SBI A A-i-CT—A Bti 2 7

COMPARISONS, BIT TESTS

Bll—The accumulator or external memory [(R), #(R), (ab), or
#(ab)] is logically ANDed with an immediate value. The
result of the test is in the Z flag. Change may take place
in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
Bil Aji ArMi=Z BF i 2 7
BiI (X).i Mri=-2 4D i 2 10
Bl (Y),i Mri-2 5D i 2 10
Bil (U).i UWnri=-2 6D i 2 10
Bli (ab).i (ab)ri—-2 EDabi 4 16
BIl #(X),i X)Ai=2Z FD 4D 3 14
BIl #(Y).i HmAi-2 FD 5D 3 14
Bil #(U),i Y Ai—-2 FO6Di 3 14
BIl #(ab),i #ab)ri—-2 FDEDabi 5 20

Comment—~ - represents the AND operation

BIT—The accumulator is logically ANDed with external
memory [(R), #(R). (ab), or #(ab)]. The result is in Z.
Change may take place in the Z flag only.

Hex

Moemonic Symbolic Operation Op-Code Byte Cycle
BIT () Ar) =2 OF 1 7
BIT (V) AN =2 1F 1 7
BIT (U) Ar(U) -2 2F 1 7
BIT (ab) AA(ab) - Z AFab 3 13
BIT #X) Ar#X)—-2 FO OF 2 1 -
BIT #(Y) ANKY)~2 FO IF 2 11
BIT #(U) ArMHU) - 2 FD 2F 2 1
BIT #(ab) AA#ab) - 2 FDAFab 4 17

CPA—Compares the contents of the accumulator with that of
the register, RL or RH, or external memory, (R), #(R),
(ab), or #(ab). Change may take placeinC, V, H, or Z.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
CPA XL A-XL 06 1 6
CPA YL A-YL 16 1 6
CPA UL A-UL 26 1 6
CPA XH A-XH 86 1 6
CPA YH A-YH 96 1 6
CPA UH A-UH A6 1 6
CPA (X) A-(X) 07 1 7
CPA (V) A-(Y) 17 1 7
CPA (U) A-(U) 27 1 7
CPA (ab) A - (ab) A7ab 3 13
CPA #(X) A - #(X) FOD 07 2 11
CPA #(Y) A-KY) FD 17 2 11
CPA #(U) A-#HU) FOD 27 2 1"
CPA #(ab) A-#(ab) FDA7ab 4 17
Comment— If Cc z ' H

A)op 1 0 . .

A=0p 1 1 . .

A(op 0 0 . .

V and H may change depending upon the arithmetic result of the

compare.

CPI—The content of the accumulator or the register RL or
RH, is compared with the immediate value, i. Change
may take place in C, V, H or Z.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
CPl A A-i B7i 2 7
CPI XL, XL-i 4E i 2 7

CPI YL, YL—-i 5E i 2 7
CPI UL.i UL =i 6E i 2 7
CPI XH,i XH =i aci 2 7
CPl YH,i YH-i 5Ci 2 7
CPl UH,i UH =i 6C i 2 7
Comment— If C V4 \ H

(op))i 1 0 * ¢

(op) = i 1 1 * .

(op) (i 0 0 . .

V and H may change depending upon the arithmetic result of the
compare.

LOADS, STORES

ATT—The content of the accumulator is transferred to the T
register. All flags are subject to change depending on
the content of A.

Hex
Op-Code Byte Cycle
FD EC 2 9

Mnemonic

ATT A-T
Comment—T - Status Register

Symbolic Operation

LDA—The content of the register, RL or RH, or external
memory [(R), #(R), (ab), or #(ab)] is loaded into t+
accumulator. When the content loaded is “00", it sets
the flag Z. No change is made with respect to other

flags.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LDA XL XL - A 04 1 5
LDA YL YL—-A 14 1 5
LDA UL UL - A 24 1 5
LDA XH XH - A 84 1 S
LDA YH YH-A . 94 1 5
LDA UH UH - A A4 1 5
LDA (X)) —-A -05 1 6
LDA (Y) m-A 15 1 6
LDA (U) U -A 25 1 6
LDA (ab) (ab) - A AS5ab 3 12
LDA #(X) #(X) - A FD 05 2 10
LDA #(Y) N~ A FD 15 2 10
LDA #(U) #U) - A FD 25 2 10
LDA #(ab) #(ab) - A FDASab 4 16

LDE—The content of the register R is decremented upon
loading the content of the external memory (R) into the
accumulator. Change may take place only in the Z

flag.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LDE X X)) =-AX-1=X a7 1 6
LDEY M-—-AY-1-Y 57 1 6
LDE U W-AU-1-U 67 1 6

LDI—The immediate value is loaded into the accumulator,
register (RL or RH), or the stack pointer S. Only the
immediate value being placed in S may contain 2
bytes. When using LD! A,i the Z flag may change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LDl A, i~ A BS5i 2 6
LDI XL,i i—= XL 4A i 2 6
LDt YL, i=- YL S5Ai 2 6
LDI UL.i i= UL 6A i 2 6
LD XH.i i—= XH 48 i 2 6
LDI YH,i i - YH 58 i 2 6
LD UH,i i—= UH 68 i 2 6
LDIS.ij i—~SH j—SL AAij 3 12

LDX—The content of the register R, stack pointer S, or
program counter P is loaded into the X register. No
change takes place in flags.

TRS-80 Microcomputer News. April 1983 41

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
LDX X X =X FD 08 2 1
LOX Y Y - X FD 18 2 11
LOX U U-X FD 28 2 11
LDX S S—-X FD 48 2 "
LDX P P—-X FD 58 2 1"

LIN—increments R upon loading the content of the external
memory (R) into the accumulator. Change may take
place only in the Z flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LIN X X) = A X+1 =X 45 1 6
LINY Y)-A Y+1 =Y 55 1 6
LINU U -AU+1 -U 65 1 6

POP—The contents placed on the stack by PSH is returned
to the accumulator, A or the register, R. POP incre-
ments S by one in the case of the accumulator, and
increments S by two in the case of a register. The Z
flag may change as a result of the POP.

Hex
Op-Code Byte Cycle

Mnemonic Symbolic Operation
POP A (S+1) - A S+1 =S FD 8A 2 12
POP X (S+1) — XH.

(S+2) - XL,S§+2 - S FD OA 2 15
POP Y (S+1) — YH,

(S+2) - YL, S+2 -5 FD 1A 2 15
POP U (S+1) — UH,

(§+2) - UL.S+2 —S FD 2A 2 15

PSH—The content of the accumulator A or register R is
stacked into the memory location specified by S. PSH
decrements S by one in the case of the accumulator,
and decrements S by two in the case of the register R.
No change takes place in flags.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
PSH A A-(5).S-1-S8 FD C8 2 11
PSH X XL = (S).

XH - (5-1).5-2 =S FD 88 2 14
PSHY YL -~ (S).

YH - (§-1).8-2 =S FD 98 2 14
PSH U UL - (S).

UH - (5-1),5-2 =S FD A8 2 14

SDE —The register R is decremented after the content of the
accumulator is stored in external memory (R). No
change takes place in flags.

Hex
Mnemonic Symbeotic Operation Op-Code Byte Cycle
SOE X A—(X). X-1 =X 43 1 6
SDE Y A—=Y)Y-1=Y 53 1 6
SDE U A-(U).U-1-U 63 1 6

SIN—The register R is incremented after content of the accu-
mulator is stored in external memory (R). No change
takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SIN X A= (X)X+1 =X 41 1 6
SIN Y A—=(Y).Y+1 =Y 51 1 6
SINU A—-ULU+1 =U 61 1 6

STA—The content of the accumulator is stored into register,
RL or RH, or into external memory [(R). #(R). (ab).
#(ab)]. No change takes place in flags.

Hex
Op-Code Byte Cycle

Mnemonic Symbolic Operation

STA XL A — XL 0A 1 5
STA YL A =YL 1A ! S
STA UL A—- UL 2A 1 5

STA XH A — XH 08 1 5
STA YH A — YH 18 1 5
STA UH A - UH 28 1 5
STA (X) A — (X) 0E 1 6
STA (Y) A~ (V) 1E 1 6
STA (U) A — (U) 2E 1 6
STA (ab) A — (ab) AEab 3 12
STA #(X) A — #(X) FD OE 2 10
STA #(Y) A — #(Y) FD 1E 2 10
STA #(U) A — #U) FD 2E 2 10
STA #(ab) A — #(ab) FDAEab 4 16

STX—The content of the X register is stored into register R,
stack pointer S, or program counter P. No change
takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
STX X | X — X FD 4A 2 1"
STX Y X =Y FD 5A 2 1"
STX U X-U FD 6A 2 "
STX S X =S FD 4E 2 1
STX P X—-P FD 5E 2 1

TTA—The content of the T register is transferred to the
accumulator. The Z flag may change as a result of this

operation.
. Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
TTA T-A FD AA 2 9

Comment—T - Status Register

BLOCK TRANSFER, SEARCH
AEX—The high order 4 bit digit in the accumulator is ex-
changed with the lower order 4 bit digit.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
A
AEX {7 als o] F1 16

=]
CIN—The content of the accumulator is compared with the
content of the external memory (X), the flags C. V.
H. and Z are set by the compare. then X register is

incremented.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
CIN A-(X). X+1 =X F7 1 7

DRL —Performs digit-to-digit forward rotation between the
accumulator and external memory, {(X) or #(X)]. No
change takes place with respect to flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
DRL (X) 5 D7 1 12
DRL #(X) FO D7 2 16

A (X) or #(X)
DRR—Performs digit-to-digit backward rotation between the
accumulator and external memory [(X) or #(X)]. No
change takes place with respect to flags.

Hex
Op-Code Byte Cycle

Mnemonic Symbolic Operation
DRR (X) D3 1 12
DRR #(X) FD D3 2 16

A (X) or #(X)
ROL —Forward rotation is made between the accumulator
and the flag C. Flags C. V, H. and Z are subject to
change. Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
RoL ‘g-—o- % roe
A

42 TRS-80 Microcomputer News, April 1983

ROR—Backward rotation is made between the accumulator
and the flag C. Flags C, V, H, and Z are subject to
change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ROR L[_?_\ - D1 19
A

SHL —The content of the accumulator is shifted to the left.
Flags C, V, H, and Z are subject to change.

SHL '- <0 D9 1 6

SHR—The content of the accumulator is shifted to the right.
Flags C, V, H, and Z are subject to change.

SHR 0*— D5 1 9

TIN—The content of the external memory (X) is transferred
into the external memory (Y), the X and Y registers are
then incremented. No change takes place in flags.

Hex
Op-Code Byte Cycle

Mnemonic Symbolic Operation
TIN (X) = (V).

X+1 =X, Y+1 =Y FS 1 7
INPUT/OQUTPUT

AMO—The contents of the accumulator is transferred timer.
Since the timer is composed of a 9-bit polynomial
counter, the content of the accumulator is setin the 1st
through 8th bits of the counter and 0" is set in the Sth
bit. It causes no change in flags.

Hex
Op-Code Byte Cycle

Mnemonic Symbolic Operation
AMO A — Timer (0-7)
0 — Timer (8) FD CE 2 9

AM1—Same as AMO, except that “1" is set in the 9th bit. It
causes no flag changes.

AM1 A — Timer (0-7)

1 — Timer (8) FD DE 2 9

ATP—Sends the content of the accumulator to the external
data bus. It causes no flag change.

Hex
Op-Code Byte Cycle
FD CC 2 9

Mnemonic Symbolic Operstion
ATP A — Data Bus

CDV—Clears the internal divider. It causes no flag changes.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
cov 0 — Divider FD 8E 2 8

HLT —The MPU is put into a halt state when this instruction is
executed, except that the divider is still in operation.
MPU operation can be resumed by means of the
interrupt. No changes in flags occur.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
HLT FD B1 2 9

ITA— The contents of the input IN is transferred to the accu-
mulator. Change may take place in the Z flag, but there
will be no change in other flags.

Hex
Op-Code Byte Cycle
FD BA 2 9

Mnemonic Symbolic Operation
ITA IN - A

NOP—No operation

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
NOP 38 1 5
OFF —Resets the BF flip-flop. It causes no change in the
flags.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

OFF 0 — BF FD 4aC 2 8

RDP —Resets display flip-flop.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
RDP 0 — Display FD CO 2 8
REC—Resets the carry flag C off. It causes no change in

other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
REC 0-C F9 1 4

RIE—Resets the Interrupt Enable (IE) flip-flop off. It causes r
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
RIE ‘0 -—-IE FD BE 2 8

RPU— Resets the general purpose flip-flop PU off. It causes
no change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
RPU 0-PU E3 1 4

RPV —Resets the general flip-flop PV off. It causes no
change in other flags.

Hex
Op-Code Byte Cycle

Mnemonic Symbolic Operation
RPV 0 - PV B8 1 4
SDP—Sets display flip-flop.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SDP 1 — Display FD Ct 2 8
SEC—Sets the carry flag C on. It causes no change in other

flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SEC 1-C FB 1 4

SIE—Sets the Interrupt Enable (IE) flip-flop on. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SIE 1= 1E FOD 81 2 8

SPU—Sets the general purpose flip-flop PU on. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SPU 1 - PU (3] 1 4

SPV—Sets the general purpose flip-flop PV on. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
SPv 1 - PV A8 1 4
£

TRS-80 Microcomputer News. Aprit 1983 43

Pocket Computer

PC-2 Assembly Language-Part 3

By Bruce Elliott

This is the third in a series of articles which will describe
the MPU (microprocessor unit) used in the Radio Shack
PC-2 pocket computer. It is our intention to include specific
information about the 8-bit CMOS microprocessor, the ma-
chine code used by the microprocessor, as well as informa-
tion about the PC-2 memory map, and certain ROM calls
which are available. Please realize that much of what we
are talking about refers 1o the overall capabilities of MPU,
and does not imply that all of these things can be done with a
PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but can not reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One and Two of this series were published in the March
and April issues. respectively.

JUMPS/BRANCHES

BCH—Causes a relative jump to a new program area that is
determined by adding/subtracting the immediate
value i to/from the program counter P.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BCH +1 P+i—=P 8E i 2 8
BCH -1 P-i—P SE i 2 9

BCR—Conditional relative jump instruction. The relative
jump is made when “C=0" If “C=1" control pro-
ceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BCR +i fC=0 P+i~P 81i 2 8-11
BCR-i #C=0 P-i-P 91 2 8-11

Comment—If C=1, no jump

BCS — Conditional relative jump instruction. When the condi-
tion “C=1" is met, a relative jump is made to the
program area that is found after adding/subtracting
the immediate value i to/from the program counter P. If
“C =0", control proceeds to the next instruction with-
out making the relative jump. It causes no flag

change.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BCS +! tC=1 P+i=P 83i 2 8-11
BCS-i fC=1P=-i=P 93i 2 8-11

Comments—it C =0, no jump

BHR—A relative jump is made when "H=0". It "H=1"
control proceeds to the next instruction. It causes no
flag changes.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BHR +i ifH=0 P+i=P 85i 2 8-11
BHR-i fH=0,P-i=P 951 2 8-11

Comment—if H=1, no jump

BHS —A relative jump is made when “H=1"1f "H=0" con-
trol proceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BHS +i ftH=1 P+i—P 87 i 2 8-11
BHS -i tH=1 P-i—P 97 i 2 8-11

Comment—if H=0. no jump

BVR— A relative jump is made when "V =0"1f "V =17 control
proceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BVR +i itV=0, P+i—P 8Di 2 8-11
BVR-i itV=0,P—i—=P 9D i 2 811

Comment—if V=1, no jump

BVS —A relative jump is made when “V = 1" 1f “V =0", control
proceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BVS +i ifV=1 P+i-P BF i 2 8-11
BVS-i ifV=1 P-i—-P 9F i 2 8-11

Comment—if V=0, no jump

BZR—A relative jump is made when “Z=0"1f"Z = 1" control
proceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BZR+i ifZ=0 P+i—-P 89 i 2 8-11
BZR-i fZ=0 P-i=-P 99 2 811

Comment—ift Z=1, no jump

BZS —A relative jump is made when “Z=1"1f“Z=0", control
proceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BZS +i tZ=1P+i=P 8Bi 2 8-11
BZS -i fZ=1 P-i=P 9B 2 8-11

Comment—it Z=0. no jump

JMP —Causes a jump to a new program area implied by the
immediate value in the second and third bytes. It
causes no flag change.

Hex
Mnemonlic Symbolic Operation Op-Code Byte Cycle
JMP ij i—~PH, |—PL BAij 3 12

TRS-80 Microcomputer News, May 1983 33

LOP —This instruction causes a relative jump to a new pro-
gram area if, when UL is reduced by 1, no borrow
occurs (i.e., UL remains positive or zero). The new
program ared is determined by subtracting the imme-
diate value i from P. If a borrow occurs when UL is
reduced by 1, no jump takes place and execution
proceeds to the next instruction. It causes no flag

changes.
Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LOP UL, UL-1-UL 88 i 2 8-11
Comment—if borrow =1, no jump; if borrow =0, P-i—P
CALLS

SJP—Makes a subroutine jump to the address specified by
the immediate values i and j. At the same time, the
address of the next instruction is stored in the stack. It
causes no flag changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

SJP PL—(S). PH—(S-1), BEij 3 19

$-2-S,i=PH, j—PL

VCR—Conditional vector subroutine jump. When “C=0"
the vector subroutine jump is performed. If “C = 1" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VCR uses FFOO through FFF6 as
its vector address table, and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VCRi ifC=0, Cti 2 8-21

PH—(S-1), PL—(S)
(FFab)—PH, (FFab + 1)—PL
S-2-S

Comment—if C=1, no jump, ab = Hex digits in i

VCS —Conditional vector subroutine jump. When “C=1" it
performs the vector subroutine jump. If “C=0" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VCS uses FFOO through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VCS i itC=1, C3i 2 821
PH~(S-1). PL—(S)
(FFab)—PH, (FFab + 1)—PL
S$-2-S
Comment—if C=0, no jump, ab = Hex digits in i

VEJ— Vector subroutine jump. VEJ is a one byte instruction
which makes a subroutine jump based on a vectored
address. The vector table is located in memory from
FFOO to FFF6. The Z flag is reset after the vector jump

is executed.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
VEJ (ab) PL—(S). $-1-S

VEJ (CO) PH—(S). S-1-=S Co 1 17
VEJ (C2) (FFab)—PH c2 1 17
VEJ (C4) (FFab+ 1)—PL Ca 1 17
VEJ (C6) Cé6 1 17
VEJ (C8) cs 1 17
VEJ (CA) CA 1 17
VEJ (CC) cc 1 17
VEJ (CE) CE 1 17

VEJ (DO) Do

1
VEJ (D2) D2 1 17
VEJ (D4) D4 1 17
VEJ (D6) D6 1 17
VEJ (D8) D8 1 17
VEJ (DA) DA 1 17
VEJ (DC) DC 1 17
VEJ (DE) DE 1 17
VEJ (EO) EO0 1 17
VEJ (E2) E2 1 17
VEJ (E4) E4 1 17
VEJ (E6) E6 1 17
VEJ (EB) E8 1 17
VEJ (EA) EA 1 17
VEJ (EC) EC 1 17
VEJ (EE) EE 1 17
VEJ (FO) FO 1 17
VEJ (F2) F2 1 17
VEJ (F4) Fa 1 17
VEJ (F6) F6 1 17

Comment—Where, “ab” is the instruction code of VEJ.

VHR—Conditional vector subroutine jump. When “H=0"
the vector subroutine jump is performed. If "H=1"
the control proceeds to the next instruction. The Z fla
is reset after the jump. VHR uses FF0O through FFF6
as its vector address table and the values 00 through
F6 are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VHR i it H=0, C5i 2 8-21
PH—(S-1), PL—(S)
(FFab)—PH., (FFab + 1)—PL
§-2-S
Comment—if H=1, no jump, ab = Hex digits in i

VHS —Conditional vector subroutine jump. When “H=1" it
performs the vector subroutine jump. If "H=0" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VHS uses FF0O0 through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VHS i ftH=1, C7i 2 8-21

PH—(S-1), PL=(S)
(FFab)—PH, (FFab+ 1)—PL
S$-2-§

Comment—if H=0, no jump; ab = Hex digits in i

VMJ —Vector subroutine jump. VMJ is the subroutine jump
that branches to a vectored address, of which the
high order byte is composed of “FF’, and low order
byte is composed of the immediate value i. Note that
the Z flag is reset after the vector jump, when VMJ is
executed. VMJ uses FFOO through FFF6 as its vector
address table, and the values 00 through F6 are valid
for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VMJ i PL—(S). $-1=S CDi 2 20
PH—-(S). S-t-S
(FFab)—PH
(FFab+ 1)—PL

Comments —ab = Hex digits in i

VVS —Conditional vector subroutine jump. When "V =1" it
performs the vector subroutine jump. If “V=0" the
control proceeds to the next instruclion. The Z flag 1s
reset after the jump. VVS uses FFOO through FFF6 as

34 TRS-80 Microcomputer News. May 1983

its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
WS i V=1, CFi 2 8-21

PH—(S-1). PL—(S)
(FFab)—PH, (FFab+ 1)—PL
$-2-S

Comment—if V=0, no jump; ab = Hex digits in i

VZR—Conditional vector subroutine jump. When “Z =0', the
vector subroutine jump is performed. If “Z=1" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VZR uses FFOO through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VZR i ifZ=0, Coi 2 8-21
PH—(S-1), PL—(S)
(FFab)—PH, (FFab + 1)—PL
S-2-§
Comment—if Z=1, no jump. ab = Hex digits in i

VZS —Conditional vector subroutine jump. When “Z=1" it
performs the vector subroutine jump. If “Z=0" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VZS uses FFOO through FFF6 as
its vector address table, and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code
VZSi itZ=1, CBi
PH—(S - 1), PL—=(S)
(FFab)~PH, (FFab + 1)—PL
§$-2-S
Comment—if Z=0, no jump; ab = Hex digits in i

Byte Cycle
2 8-21

RETURNS

RTI—Return instruction from the interrupt subroutine to the
main routine. All flags are subject to change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
/Tl (3+1)=PH, BA 1 14
(S+2)—-PL,
(S+3)-T,
S+3-S

RTN—Return instruction from a subroutine to the calling
routine. RTN causes no changes in the flags.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
RTN (S+1)—PH, 9A 1 11
(S+2)—PL,
S+2-S
TIMER

The timer is composed of a 9-bit polynomial counter and
the time duration can be set using the AMO and AM1 instruc-
tions. This counter is in operation at alf times, so it needs to be
set to 000 (Hex) before being used. A timer interrupt request
can be generated when the content of the counter is 1FF
(Hex), if Interrupt Enable IE is on.

When a timer interrupt occurs, interrupt processing be-
gins at the address specified in addresses FFFA and FFFB.

When a 4MHz crystal oscillator is used, the clock
produces a oF of 31.25KHz with a cycle of 32 microseconds.
In other words, the timer counter is incremented once every
32 microseconds.

XLO Divider
L 4MHz

em— | gF
T 2 | [] l {] | . l

2 1 500 250 125 62.5 31.25

MHz MHz KHz KHz KHz KHz KHz

G 0) @ 0D CD GD OD Gb OO a
EDEONEDADDEaD0DnAg
OO EENEEOOODaa
DoODoEddOoaa s
OGO EIOdooeanD s

TRS-80 Microcomputer News, May 1983 35

Pocket Computer

PC-2 Assembly Language—Part 4

By Bruce Elliott

This is the fourth in a series of articles which describe the Hex
MPU (microprocessor unit) used in the Radio Shack PC-2 Mnemonic Symbolic Operation Op-Code Byte
pocket computer. It is our intention to include specific infor- ADI #(X).i #X) + i = #(X) FD 4F i 3
mation about the 8-bit CMOS microprocessor, the machine ADI #(Y).1 #Y) + i~ #(Y) FD SF» 3
code used by the microprocessor. as well as information ADI (@b (ab) + i~ (ab) EFab: 4
about the PC-2 memory map, and certain ROM calls which :g: éu)'_‘ &J)) M 'z &J)) fE ; 2
are available. Please [ealize that much of what we are talking ADI :;: M +i=Mm SF i g
about refers to the overall capabilities of the MPU, and does ADI A A+i+C—=A B3i 2
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only ADR U UL + A= UL FD EA 2
.nformation which is available. We will try to clarify any ambi- ADR X XL + A= XL FD CA 2
gurties which occur in the articles, but can not reply to ques- ADR Y YL+ A=YL FD DA 2
tons outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source A
of this information, and we will not be maintaining back is- AEX 7 al3 0 £1 1
sues. Parts One. Two and Three of this series were published u
‘n the March, April, and May 1983 issues, respectively.

The first three articles described the MPU used in the
BC-2, including information on the MPU's structure and its
machine language. We also gave you details on the AMO A — Timer (0-7) FD CE 2
PC-2 memory map and the locations of ROM routines which 0 - Timer (8)
are available. 1n this article we will present two lists which we AM1 A — Timer (0-7) FD DE 2
nope will make finding a particular machine language in- 1 = Timer (8)

wruction easier. We will also provide some information on
~ow you might begin to use the information we have ~ AND#&0) AA#ab) = A FOA9a0 4
published. AND #(U) AA#U) —~A FD 29 2
AND #(X) AA#X) = A FD 09 2
AND # AA#Y) = A FD 19 2
ALPHABETIC OP-CODE LIST o An A ony 2

The following list presents the PC-2 machine language AND (U) AAU) = A 29 1
instructions alphabetically aiong with each code’s symbolic AND (X) AA(X) - A 09 1
operation and its hex op-code. and byte count. AND (V) An() = A 19 1

“Parts two and three of this series presented the same

information arranged according to function and provided 2:: :Ef})’)" :E‘L‘f)’),\"_' "#’:l(j’)b) Eg ggfw‘ g

; ; ; (V)i (s i

details on how the instructions work. ANI #0%), HO A i = #00) D291 3
Hex ANI #(Y),i #HY) A i = #(Y) FD 59i 3

Mnemonic Symbolic Operation Op-Code Byte ANI (ab).i (ab) A i — (ab) E9abi 4

ADC #(ab) A+ #ab)+C— A FDA3ab 4 AN (U),i Unai=U 69 2

ADC #(U) A+ #U) + C —~ A FD 23 2 ANI (X).1 XA =X 49 2

ADC #(X) A+ #(X) + C - A FD 03 2 ANI (Y).i NAai=M 59 2

ADC #(Y) A+ #(Y) + C —~ A FD 13 2 ANI A AAni— A B9 2

ADC (ab) A+ (ab) +C~A A3ab 3

&0C (U) A+)+ C—A 23 1 ATP A — Data Bus FD CC 2

ADC (X) A+~(X)+C—A 03 1

ADC (1) A+M+C—A 13 1 ATT A—T FD EC 2

4DC UH A+UH+C—A A2 1

ADC UL A+UL+C—A 22 1 BCH+i P+i—-P 8Ei 2

ADC XH A+XH+C—A 82 1 BCH -i P-i-P 9E i 2

ADC XL A+XL+C=A 02 1

ADC YH A+YH+C—A 92 1 BCR+ i fC=0,P +i=P 81i 2

ADC YL A+YL+C—A 12 1 BCR- i fC=0,P - i—=P 911 2

4D #(ab). #@b) + 1 = #(ab) FDEFabi 5 BCS+ i tC=1,P+i—>P 83i 2

ADI #(U).1 #U) + 1~ #U) FD 6F i 3 BCS- i fC=1.P-i=P 93i 2

TRS-80 Microcomputer News, September 1983 21

Mnemonic
BHR +
BHR - ¢

BHS + 1
BHS -

Bll #(ab).i
Bil #(U).1
Bil #(X).
BH #(Y).:
Bl (ab).!
Bit (U).
BH (X).:
BH (Y}
Bil A

BIT #(ab)
BIT #(U)
BIT #(X)
BIT #(Y)
BIT (ab)
BIT (U)
BIT (X)
BIT (M)

BVR+ .
BVR- |

BVS+
BYS- .

BZR+
BZR -

BZS+
BZS-

cov
CIN

CPA #(ab)
CPA #(U)
CPA #(X)
CPA #(Y)
CPA (ab)
CPA (U)
CPA (X)
CPA (Y)
CPA UH
CPA UL
CPA XH
CPA XL
CPA YH
CPA YL

CP! At

CPI UH
CPIUL.:
CPI XH.:
CP1 XL
CPIYHI
CPILYL.:

DCA #(U)
DCA #(X)
DCA #(Y)

Symbolic Operation
fH=0.P +i—-P
fH=0,P -1 =P

fH=1 P+ 1—-P
tH=1 P -i—=P

#ab)Ai = Z
#NHAI~2Z
#X)A 1= 2
VA1~ Z
(ab)ar = 2Z
Uyar—2
Xyar—2
MAi—=2Z
AA:=Z

AA#ab)—~ 2
AA#U) —Z
ANA#X) —~2
AAH¥Y) =2
AA(b) —~2Z
AAU) —~2Z
AANX)—~Z
An(Y)—~2

fV=0P+ 1P
fV=0P-i—P

fV=1P+i—-P
fV=1P -1 —~P

fZ=0.P +i—P
fZ=0.P -~ P

tZ=1P +1 =P
fZ=1, P~ 1—P

0 — Divider

A = (X). X+1 =X

- A - #ab)
A - #U)
A - #(X)
A~ #(Y)
A - (ab)
A - ()
A - (X
A=)
A - UH
A - UL
A - XH
A - XL
A - YH
A~ YL
A -
UH - i
UL -
XH =i
XL -
YH -
YL -

A+ #U)+C—A
A+ #X)+C—A
A+ #Y)+C—A

Hex
Op-Code
851
95 i

87i
97

FDEDabi
FD 6D
FD 4D
FD 50D
EDabi
6D

4D

5D

BF i

FDAFab
FD 2F

FD OF

FD 1F
AFab
2F

OF

1F

8Di
9D

8Fi
oF i

89i
99

8B i
9B i

FD 8E
F7

FDA7ab
FD 27
FD 07
FD 17
A7ab
27

07

17

A6

26

86

06

96

16

B7
6C
6E i
ac i
4E i
5C i
5E i

FD AC
FD 8C
FD oC

Byte

N N

DO EWWLWWLWO

-, a2 WD S

n

-

- b b et e w2 WD

LRSI RN BN IV)

N NN

Mnemonic
DCA (U)
DCA (X)
DCA (V)

DCS #(U)
DCS #(X)
DCS #(Y)
DCS (U)
DCS (X)
OCS (Y)

DEC A
DEC U
DEC UH
DEC UL
DEC X
DEC XH
DEC XL
DECY
DEC YH
DEC YL

DRL #(X)
DAL (X)

DRR #(X)
DRR (X)

EAIl i

EOR #(ab)
EOR #(U)
EOR #(X)
EOR #(Y)
EOR (ab)
EOR (U)
EOR (X)
EOR (Y)

HLT

INC A
INC U
INC UH
INC UL
INC X
INC XH
INC XL
INC Y
INC YH
INC YL

ITA

JMP i}
LDA #(ab)
LDA #(U)

LDA #(X)
LDA #(Y)

Symbolic Operation
A+U)+C—-A
A+ (X)+C—A
A+(V)+C—~A

A-#U) -C—-A
A-#X)-C—-A
A-#Y)-C—A
A-U-C-a

A-X)-C—-A
A--C-A

A-1—=A
Uu-1-u
UH -1 = UH
UL -1 —-UL
X-1-=X
XH -1 = XH
XL -1 - XL
Y-1=Y
YH - 1 = YH
YL -1-=YL

A (X) or #(X)

A (X) or #(X)
ABi-—A

A ® #@ab) = A
AB#U) — A
A®HX) - A
A®#Y)—~ A
A®(ab) = A
A®OU) - A
AB((X) - A
AO(Y) — A

A+1—-A
u+1-u
UH + 1 = UH
UL +1 —-UL
X+1-X
XH + 1 - XH
XL+ 1 - XL
Y+1-=Y
YH + 1 = YH
YL+t =YL

IN = A
[RO Yot
i— PH,j— PL

#(ab) — A
#U) - A
#X) ~ A
#Y) =~ A

Hex
Op-Code

AC
oC

FD 2C
FDoC
FD 1C
2C

1C

DF
66
FD 62
62
46
FD 42
42
56
FD 52
52

FD D7

FD D3
D3

BDi

FDADab
FD 2D

FD 0D

FD 1D
ADab
2D

00

1D

FOD B1

DD
64
FD 60
60
44
FD 40
40
54
FD 50
50

FD BA
BAij
FDASab
FD 25

FD 05
FD 15

Byte!

—_ - L NN

_,) s s N D) — -

AN DN = === N == osWRNOOE N

n

w

NN S

22 TRS-80 Microcomputer News. September 1983

Hex
Mnemonic Symbolic Operation Op-Code Byte Mnemonic Symbolic Operation g;’-(code Byte
LDA (ab) (ab) - A A5ab 3 PSH A A= (S).S-1=5S FD C8 2
LDA (U)) -~ A 25 1 PSH U uL - (9).
LDA (X) X) = A 05 1 UH — (S-1).5-2—-S FDAS8 2
LDA (Y) Y =A 15 1 PSH X XL = (S).
LDA UH UH = A A4 1 XH = (S-1),$-2 =S FD 88 2
LDA UL UL —A 24 1 PSH Y YL — (S).
LDA XH XH — A 84 1 YH = (S-1),S-2 =S FD 98 2
LDA XL XL = A 04 1
LDA YH YH - A 94 1 RDP 0 - Display FD CO 2
LDA YL YL~ A 14 1 Dovat. ars
REC 0= CAug~ F9 1
LDE U (U-=AU-1->U 67
LDE X X) = A X=-1-X 47 RIE 0= IE vy v~ FD BE 2
LDEY N=AY-1-Y 57 AT
LDI A, i— A B5 i 2 l . .
LOIS.iy i = SH. | = SL AAj 3 ROL bB L
LDI UH.i i = UH 68 i 2 A
LDl UL.i i— UL 6A i 2
LDI XH.i i~ XH 48 2 m
LOI XL.i i = XL 4A 2 ROR D1 1
LDI YH.i i— YH 58 i 2 A
LDI YL i i - YL 5A 1 2
LDX P P — X FD 58 2 RPU 0~ PU Es !
LDX S S —+X FD 48 2 RPV 0~ PV B8 1
LDX U U - X FD 28 2
LDX X X = X FD 08 2 RTI (S + 1) = PH, 8A 1
LDX Y Y = X FD 18 2 (S +2) - PL.
S+3~T
LIN U Uy~ A U+1 = U 65 1 S+3=5S
LIN X X) = A X+1 =X 45 1
LINY V)= AY+1 =Y 55 1 RTN (5 + 1) = PH. 9A 1
(S +2) - PL,
LOP UL.i UL - 1= UL 88i 2 S+2=8
if borrow = 0. P - i = P
SBC #(ab) A - #ap) - C— A FDAlab 4
NOP 38 1 SBC #(U) A-#U) -C~-A FD 21 2
. SBC #(X) A-#X -C-A FD 01 2
OFF 0 - BF FD 4C 2 SBC #(Y) A~ #Y) -C—A FD 11 2
SBC (ab) A-(@b)-C-A Atab 3
ORA #(ab) A v #ab) — A FDABab 4 SBC (U) A-(U-C-A 21 1
ORA #(U) Av#U) = A FD 28 2 SBC (X) A-(X)-C-A 01 1
ORA #(X) Av #X) = A FD 0B 2 SBC (Y) A~ -C-A 1 1
ORA #(Y) Av#Y) = A FD 1B 2 SBC UH A-UH-C—A AO 1
ORA (ab) Av(ab) = A ABab 3 SBC UL A-UL-C=A 20 1
ORA (U) Av(U)— A 2B 1 SBC XH A-XH-C~A 80 1
ORA (X) Av(X)—= A 08 1 SBC XL A-XL-C—~A 00 1
ORA (T Av(Y)—~A 18 1 SBC YH A-YH-C-A 90 1
SBC YL A-YL-C-A 10 1
ORI #(ab).i #(ab) vi — #(ab) FDEBabi 5 } o
ORI #{U).i HU) Vi~ #(U) FD 68 i 3 SBIA. i A-i-C=A B1: 2
8:: ;(X)'l AR il 3 SDE U A-U).U-1-U 63 1
(Y).1 #Y)vi— #Y) FD 5B 3
ORI (ab). (ab) v i — (ab) EBabi 4 SDE X A= (X). X=1 X 43 !
: . . SDE Y A= (Y),Y~1=Y 53 1
ORI (UY,i Wyvi— () 6B i 2
ORI (X). Qv 481 2 soP 1~ Display . ; <t.¢ FDC1 2
ORI (Y).i Mvi=(Y) 5B i 2
ORI At Avi—=A BB i 2 SEC 1=-CACrp - EB 9
POP A (S+1) =+ A S+1—=§ FD 8A 2 ~
POP U (S+1) — UH, SHL 7 0 }-— 0 D9 1
(S+2) -~ ULS+2 =S FD 2A 2 A
POP X (S+1) = XH,
(S+2) =+ XLS+2 =S FD OA 2
POP Y 5+1) = YH, SHR 0~7 O~ C D5 1
(S+2) » YLS+2 =S FD 1A 2 A
TRS-80 Microcomputer News. September 1983 23

Mnemonic
SIE

SIN U
SiN X
SINY

SJP

SPU
SPv

STA #(ab)
STA #U)
STA #(X)
STA #(Y)
STA (ab)
STA (U)
STA (X)
STA (V)
STA UH
STA UL
STA XH
STA XL
STA YH
STA YL

STX P
STX S
STX U
STX X
STXY

TIN

TTA

VCRi

VCS i

VEJ (CO)
VEJ (C2)
VEJ (C4)
VEJ (C6)
VEJ (C8)
VEJ (CA)
VEJ (CO)
VEJ (CE)
VEJ (D0)
VEJ (02)
VEJ (D4)
VEJ (D8)
VEJ (D8)
VEJ (DA)
VEJ (DC)

Symbolic Operation
1 - IE

A-(U.U+1 U
A= (X),X+1 =X
A= (V). Y+1 =Y

PL = (S), PH — (S-1),
S-2-S,i-PH,
i~ PL

1-PU
1-=PV

A — #ab)
A = #U)
A = #(X)
A = #Y)
A = (ab)
A= (U)
A =X
A=
A - UH
A - UL
A = XH
A = XL
A - YH
A - YL

X—P
X—S
X = U
X=X
X—=Y

0 =~),
X+1 =X, Y+1 =Y

T—A

i C=0,

PH = (S=1),PL = (5)
(FFab) — PH
(FFab+1) = PL
S-2-S

#C=1,

PH — (S=1), PL = (5)
(FFab) = PH
(FFab+1) — PL
S-2-§

PL—(S).S-1~S
PH— (5).S-1—S
(FFab) — PH
(FFab+1) — PL

Hex
Op-Code
FD 81

61
41
51

BEij

E1
A8

FDAEab
FD 2E
FD OE
FD1E
AEab
2E

OE

1E

28

2A

08

OA

18

1A

FD SE
FD 4E
FD 6A
FD 4A
FD 5A

F5

FD AA

Cti

co
c2
C4

C8
CA

CE

D2
D4

D8
DA

—_

-

A A N SIS Y

NN

vy

- ek cd ot b A b b b ok —d b —d 4

Mnemonic

VEJ (DE)
VEJ (EO)
VEJ (E2)
VEJ (E4)
VEJ (E6)
VEJ (EB)
VEJ (EA)
VEJ (EC)
VEJ (EE)
VEJ (FO)
VEJ (F2)
VEJ (F4)
VEJ (F6)

VHR i

VHS i

VMJ i

WS

VZR i

VZSi

PHEeENEDDEEDDaua
HAoScEscedooaooo
G T R R Il L]
aEceenmsddtcoBon

Symbolic Operation

it H=0,

PH = (S—1), PL = (S)
(FFab) — PH
(FFab+1) = PL
S-2-5

fH=1,

PH— (S=1), PL = (S)
(FFab) — PH
(FFab+1) — PL
S-2-5

PL—(S).S-1—S
PH = (S).S-1—-S
(FFab) — PH
(FFab+1) — PL

V=1,
PH = (S—1), PL = (5)
(FFab) — PH
(FFab+1) — PL
S-2-5

it Z=0.

PH = (S=1), PL~(S)
(FFab) —PH
(FFab+1) —PL
S-2-8

itZ=1,

PH = (S=1), PL—~(S)
(FFab) —PH
(FFab+1) —=PL

S -2-S

bl

NUMERIC OP-CODE LIST

The following list presents the PC-2 machine language
instructions numerically and includes the hex and decimal
values for the op-codes. Numeric values which are missing
from the list have no valid op-code that we are aware of.

C7i

CDi

CFi

Cgi

CBi

Byte

—_- e - s b h Ak d

24 TRS-80 Microcomputer News, September 1983

Hex Decimal Hex Decimal Hex Decimal

Value Value Value Value Opcode Value Value Opcode
00 a0 a0 93 Bl (Y1 192 JACO)
01 5 S5E i a4 CRLYL T 193

02 5F : 95 ADL(Y 194

195 1

7R
VEJ (CAY
iiltl:f“

VEJ (O0}
ROR
VEJ (D2)

) LA i A
BHR + -
CPA XH

141 = 204 YES E0
QF 142 B+ = 2325 SPU
3 I 375 , VEJ (E2)

LA LH
B85 at LDA (3D

CPA Lk
3 LOX X
253 09 AND #)
25310 POP X

ORA #

TRS-80 Microcomputer News. September 1983 25

X Decimal Hex
ue Vaiue Opcode Value
FO e 253 30 STA #(Y)
FD tF 253 31 BIT #(7

PED BT
LFD 23 «
- £D 25

e

253 84
FO 42 253 66
FD 48 253 72
FD 49 253 73

FRDUATH TR

HOW DO | USE ALL THIS?

The pnmary advantage of machine language over
BASIC s speea. Your PC-2 has a very complete BASIC so
there really 1sn t & ot of reason to program n machine lan-
guage uniess you are fooking for a speec advantage. Let's
iook at a couple of programs whicn will gemonstrate how fast
machine language 1s compared to BASIC.

Whnat we wili do is wrte a BASIC program which will
reverse eacn graphic pont on the PC-2's LCD display Any
point which s black (on) will be turned white (off) ana any
point which is off will be turned on. We will then snow you a
similar program in machine language. This shouid let you
compare the speeds of the two languages.

Decimal
Value

Hex Decimal

Opcode Value Value Opcode
FOASab 253169 an AND #(ab)
FD AA 253 170 TTA
FDABab 253 171ab ORA #(ab)

DCA #(1))

253233zt ANI #ab).

253 234 ADR U

253235 ab: ORIt #(ab),:
3 AT

348 NEXT 1

: REM DO NEXT COLUMN
354 GOTu 359

To use the program. enter it into your PC-2. Change line
230to printwhat ever you wish on the LCD. When you run tne
program. the LCD wiil be reversed one column at a ime irom
left to right.

Lets lock at a machine language programto do the came
thing:

13
20
30
49

WALT ¢

CLS

GCURSOR 3

PRINT "TRS-8¢ pC-2"

First the BASIC program:

W WALT 9
2id CLS
228 GCURSOR 3

. REM SHIFT PRINTING RIGHT SLIGHTLY
23¢9 PRINT "Microcomputer News'
249 FOR I=8 TO 155

: REM GRAPHIC COLUMNS
258 GCURSOR I

. REM SET GRAPHIC CURSCR
269 A=POINT 1

: REM STORE COLUMN VALUE
279 B=9

: REM NEW COLUMN - ALL POINTS OFF
288 FOR J=6 TO © STEP -1

: REM EXAMINE DOTS
299 C=INT(As27°J)

. POINT ON OR OFF {1 OR ¥)
398 IF C=9 LET B=Bs+27J

: REM TURN ON [F OFF
3 A=A-C*2°

. REM GET READY FOR NEXT POINT
j2¢ NEXT O

" : REM DO NEXT DOT

3384 GPRINT 3B;

: REM PRINT REVERSED COLUMN

S POKE 18409, 72, 118, 74, @, 5, 189, 255, 65, 78,
78, 153, 8

6d POKE 18421, 76,
18, 154

84 CALL 184¢9

- NEXT

119, 139, 6, 72, 119, 74, @, 158,

Looks kind of hike a BASIC program doesn't t?

With the PC-2. you will normally use BASIC as a "veni-
cle” for getting the machine language routine into the com-
puter and then executing it.

Lines 10-40 of this second program ook a lot like the first
four lines of our first program, and they do the same things —
housekeeping and getting something on the LCD so the
program can reverse He

Lines 50 and 60 contain the actual machine code for our
program. POKE is a PC-2 commana which tells the computer
to “poke” values into memory. The first value following POKE
(18408 and 18421) tells the computer where in memaory 0
start poking and the remaining values are the values tc be
POKEd into successive memory locations.

The CALL statement in iine 80 tells the PC-2to "jump " to
the memory location specified (18409) and begin executing
the program it finds there. If you have the comouter jump to a

26

TRS-80 Microcomputer News. Septemoer 1983

memory location and the location does not begin a valid
program, your PC-2 may freeze or perform in an unpredict-
able manner.

The GOTO 100 statement in line 100 “freezes” the LCD
and lets you see the result of the reversal.

If you have entered and RUN the second program, you
should have noticed that your message was printed on the
display and then, almost instantly, the LCD was reversed.
Quite a bit faster than BASIC's many seconds to reverse the
screen.

This second program was copied from pages 62 and 63
of your PC-2 Owner's Manual. Add lines 70 and 90 from
those pages to see multiple reversals. | numbered the first
program in so that both programs can be in memory at the
same time for comparisons of their speed.

DISASSEMBLY

You may be curious about how the machine code in lines
50 and 60 are able to reverse the display. To find out, we need
to "disassemble” the machine code. The term “disassem-
ble” means to take the hexadecimal (hex) or decimal values
which represent a machine code program and to translate
those values into more recognizable assembly language op-
eration codes (op-codes.) Once you have the op-codes you
will be better able to understand the logic that makes the
program work.

Here is how | went about disassembling the machine
code from lines 50 and 60:

1. Find the first value which represents an instruction to
the computer. This is the value 72 in line 50. We know
that this is a decimal value because a hex value (on the
PC-2) is preceded by an '&’.

2. Locate the value 72 in the numeric op-code list. Re-
member that the decimal values are in the second
column. The listing looks like this:

Hex Value Decimal Value

Op-Code

481 721 LDI XH.i

The Op-code is LDI XH, i.

3. The ‘i’ in the op-code tells us that this instruction
requires another value to be complete.

4. A quick check in the alphabetic listing gives this listing
for LD! XH,i:
Hex

Mnemonic Symbolic Operation Op-Code Byte

LDI XH.i i— XH 48 i 2

Mnemonic is just another word for op-code. The sym-
bolic operation tells us that the value ‘i’ is stored into ‘XH'’
(the high 8-bits of the 16-bit X register). We already knew
the Hex Op-Code. The 'Byte’ information tells us that this
instruction requires two bytes (two values.)

Since this command requires a second value, we go
back to line 50 in the BASIC program and get the next
value (118).

5. | now have two values (72 118) which represent an
instruction to the computer. The instruction translates
as. Load the high portion of the X register with the
decimal value 118.

6. | would now go back to line 50, get the next available
value (74) and continue with steps 2-5 until | had used
all of the available values in lines 50 and 60.

The resuit of the disassembly is:

Decimal Hex Op-Code
Values Codes Translation
72 118 48 76 LDI XH. 76H
740 4A 00 LDI XL. 0OH
5 05 LDA (X)

189 255 BD FF EAl FFH

65 41 SIN X

78 78 4E 4E CPI XL. 4EH
153 8 99 08 B8ZR - 08H
76 119 4C 77 CPI XH. 77H
1396 8B 06 BZS + 06H
72 119 48 77 LDl XH. 77H
74 0 4A 00 LOI XL. 00H
158 18 9E 12 BCH-12H
154 9A RTN

You should have noticed that | included the hex equiva-
lents of the decimal values as | went along, and noticed that |
used the hex values in my disassembled list (with an "H’ after
those values for clarity.) The reason for doing this is that it will
make comparisons with the PC-2 memory map a little easier.
Also. most assembly language listings you read will use hex,
so now is the time to start getting used to hex codes (if you
aren't already.)

The simplest way of getting the hex codes is to get them
from the numerical listing of op-codes that was presented
earlier in this article.

Great, you say, but what do | do with all of this stuff? We
will look at each line of the listing and see if we can make
sense of it. To help the process, | am going to give eachline a
number (starting with 100 and incrementing by 10) to make
referring to the lines a little easier.

Line Decimal Hex Op-Code
100 72 118 48 76 LDI XH. 76H
110 740 4A 00 LDI XL, OOH
120 5 05 LDA (X)

130 189 255 8D FF EAI FFH
140 65 41 SIN X

150 7878 4€ 4E CPI XL. 4EH
160 163 8 99 08 BZR - 08H
170 76 119 4C 77 CPI XH, 77TH
180 1396 88 06 8ZS + 06H
190 72 119 48 77 LDI XH, 77H
200 740 4A 00 LDI XL. 00H
210 158 18 9E 12 BCH-12H
220 154 9A RTN

Lines 100 and 110 load the X register with the hex value
7600.

Line 120 then tells the computer to load the A register with the
value stored in the memory location that the X register is
pointing to (7600). A quick glance at the PC-2 memory
map (March MCN, pg. 26) shows us that the memory
locations beginning at 7600H and continuing to 764DH
are part of the PC-2's LCD display. What the computer
has done is to look at the first byte of LCD memory
(which corresponds to the first column of dots in the
main LCD display area) and then place a copy of the
value in that location into the MPU's A register.

Line 130 tells the computer to take the value in the A register
and exclusive OR (XOR) it with the immediate value
FFH. The bit pattern for FFH is: 1111 1111,

TRS-80 Microcomputer News, September 1983 27

The exclusive OR operation compares each bit of the
display value (stored in A) with a one bit from the FFH (a
solid black, all on, column). If both bits are ones the
computer stores a zero (0). If one bit is a one and the
other is a zero, the computer stores a one. The netresult
is that after the EAl (XOR) operation, the A register
contains a reversed copy of the original disptay byte.

Line 140 contains the one byte instruction SIN X. This single
instruction tells the computer to take the value which is
currently in the A register (our reversed column image)
and store that value in the memory location pointed to
by the X register.

If you remember (the computer does), this is currently
the first byte of LCD RAM. Once the value from A has
been stored, the computer will add one to the value
currently in the X register.

Let's pause a moment and see what has happened. With
~nly eight bytes of memory we have told the computer where
«e first column of LCD memory is (7600H), we have made a
copy of thatcolumn, reversed the copy, stored the result back
into the first column of LCD memory (7600H) and we have
incremented our counter (the X register) so that it now points
to the second column of the LCD. No wonder machine
language is so fast!

Line 150 tells the computer to compare the lower 8-bits of the
X register with the value 4EH. The computer will set its
'flags’ based on whether the value in XL is 4EH or not.

Recall that the X register is pointing to LCD memory. A
glance back to the PC-2 memory map shows us that if X
contains 764EH, it is pointing just past the end (7640H)
of LCD display sections 1 and 3.

Line 160 instructs the computer to examine the flags which
were set by the CPl instruction in line 150. If the Z flag is
zero (Z =0), meaning that XL did NOT contain the value
4EH, then the computer is instructed to count back-
wards eight bytes and continue executing the program
from that point. If Z= 1 the computer will continue to the
instruction in line 170.

To count back eight bytes the way the computer will do it,
we have to understand that the program counter (which is
what will be reduced by eight) is already pointing to the first
byte of the instruction in line 170. Count back eight from that
point. You should have stopped on the O5H in line 120. The
computer would continue executing instructions beginning
with line 120.

What the programmer did was to create a loop. The
purpose of the loop is to have the computer move one byte at
a time through the memory of LCD chips 1 and 3 (7600H -
764DH) reversing each byte in memory as the computer
comes to them.

Line 170 tells the computer that if the value in XL was 4EH
(from the test and compare in lines 150 and 160), then
test the value in XH (the upper 8-bits of X) to seeifa 77H

is present. The first time the computer executes line 170
the value in XH will be a 76H (put there in line 100.)

Line 180 tells the computer to move its program counter
forward six bytes if the value in XH WAS a 77H. Remem-
bering that the program counter is currently pointing to
the first byte in line 190, adding six would move the
pointer forward to the single byte in line 220.

Line 190 is executed only if the value XH was not a 77H.

Line 200 will put a 00H into XL. A quick glance at the memory
map shows us that 7700H if the first byte of LCD display
memory for chips 2 and 4.

Line 210 tells the computer to subtract 12H (18 decimal) from
its current program counter value. Since the program
counter would be pointing at the 9AH in line 220, mov-
ing back 18 decimal would make the program counter
point to line 120 again.

We already know that this will cause the computer to
move through this new section of LCD memory (start-
ing at 7700H this time) until the value in XL reaches
4EH. When XL reaches 4EH (this would be the second
time), the computer would find 77H in XH (line 170) and
the program counter would be moved forward to point
at line 220 (line 180).

Line 220 is very important in any program which began by
BASIC executing a CALL command. If you will look
back to the BASIC program which loaded the machine
code into memory, you will find the CALL. command in
line 80. The purpose of the RTN instruction in line 220 of
our machine language program is to return control of
the computer to BASIC and the program which con-
tained the CALL command. If you forget to do this, you
may have to push the ALL RESET button on the back of
the PC-2 to regain control of the computer. P |

28 TRS-80 Microcomputer News, September 1983

Pocket .. .mputer

PC-2 Assembly Language-Part 5

By Bruce Elliott

This is the fifth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overall capabilities of the MPU, and does
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but cannot reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One, Two, Three and Four of this series were published
in the March, April, May, and September 1983 issues,
respectively.

The first three articles described the MPU used in the
PC-2, including information on the MPU'’s structure and its
machine language. We also gave you details on the
PC-2 memory map and the locations of ROM routines which
are available. In the fourth article we presented two lists to
make finding a particular machine language instruction eas-
ier. We also provided some information on how you might
begin to use the information we have published. In this fifth
article we want to present information on how to create your
own machine language routines, and begin describing how
to use the PC-2 ROM calls which are available.

CREATING YOUR OWN PROGRAMS

Last month we looked at an existing machine language
program and described a procedure (disassembly) for deter-
mining how the program did what it was supposed to do. This
month | want to define a program and then describe the
procedure for creating a workable program that fits the defini-
tion. To make things simple. the program we are going to
design will do only one thing—display on the LCD the key
you press on the keyboard. | know that this program may
sound silly. After all, doesn't the PC-2 automatically display
the key you press? The answer is no, it doesn't. Try using the
INKEY$ command. With INKEYS, if you want the character
displayed you must display it yourself.

What we are really doing is designing a program which
will accept characters from the PC-2 keyboard and display
them on the LCD. This program should show you how to do
three important things in assembly language: first, how to get
information from the keyboard into the computer; second,
how to take information that is in the computer and display
it on the LCD; and third, how to use the PC-2's ROM
subroutines.

In Part 1 of this series (March, 1983, pg. 26) we
published a PC-2 memory map. It is in this section of PC-2
memory that we find ROM subroutines.

WHY DO ROM SUBROUTINES EXIST?

In general. any computer consists of similar basic parts.
To function, a computer must have a processing unit, input
and output functions, working memory to store temporary
results, and some sort of control mechanism or program.

in the PC-2, the processing unit is the MPU which we
have been describing in this series. The input function is
handled primarily by the keyboard, and the output function is
handled primarily by the LCD. The working memory is RAM
(Random Access Memory), and the control mechanism is in
the form of programs stored in ROM (Read Only Memory).

In order to make the PC-2 behave so that you can use it.
the manufacturer wrote an operating system to control the
various functions of the computer. Part of this operating sys-
tem is instructions which control the keyboard, the LCD, and
BASIC. This is where ROM subroutines come from. To func-
tion properly, the PC-2 has to have a routine which looks at
the keyboard and stores any key which may be pressed.
Likewise, there has to be a routine somewhere which takes a
character and displays it on the LCD. The PC-2 memory map
tells us where some of these routines are located, and we
will use this information to create our machine language
program.

IS THIS INFORMATION AVAILABLE ON OTHER
COMPUTERS?

Radio Shack has received permission from the original
manufacturer of the PC-2 to disclose the information which
we are presenting in this series of articles. The information is
fixed, and we do not expect it to change.

If you hagpen to own a different TRS-80 you may have
tried to get similar information for that computer and you were
told “1 am sorry, but we cannot provide you with that informa-
tion.” Why? Well, there are two major reasons. The first and
largest reasonis that most computers are evolving products.
As a computer evolves, the contents of its operating systems
also change. i we give you information about where a partic-
ular routine is located in the first version of a program or
operating system, you are going to expect that information to
be true in the second version of that program or operating
system also. With few exceptions, every change of a machine
language program such as an operating system means a
relocation of ALL of the contents of that program.

Because the contents of programs are subjectto change
with each revision, what Radio Shack typically does is to
publish certain “published entry points.” These published
entry points won't normally change, even if the rest of the

TRS-80 Microcomputer News, October 1983 35

program does change. Other than the published entry
points, Radio Shack, in general, will not provide you with
other information about the contents of the program. Using
only published entry points protects your software from be-
coming obsolete as soon as Radio Shack issues a new
version of the program.

The second major reason for not providing the informa-
tion is that Radio Shack often does not have permission from
the copyright holder to release the information. As an exam-
ple. Microsoft BASIC on any of our machines is owned by
Microsoft. Since Microsoft owns the code. they have the right
to tell us what we can and cannot publish.

BACK TO THE PC-2

The stated function of our machine language program is
to accept keyboard entries and display the pressed key on
the LCD.

A quick glance at the memory map for System Program
ROM shows two keyboard scan routines and two routines
‘~hich output single characters to the LCD.

E243H Keyboard Scan—Wait for Character

E42CH Keyboard Scan—No Wait

ED4DH Output one character to LCD and increment

cursor position by one

ED57H Output one character to LCD

(Remember that the H after the address. as in E243H,
indicates that the number is in Hexadecimal notation and not
decimal.)

E243H

My information on the E243H Keyboard scan routine
tells me that the PC-2 will wait for a key to be pressed. Once a
key has been pressed. the key's code will be placed in the
MPU Accumulator. If a key is not pressed within about seven
minutes, the PC-2 will be turned off automatically. Once
power-down has occurred, pressing the (QN) key will return
the computer to the keyboard scan routine.

E42CH

The information on the E42CH routine states that if a key
has been pressed, the key code will be in the accumulator. If a
key has not been pressed the accumulator will contain 00H.

ED4DH

To output a character using ED4DH, the ASCII code of
the character to be displayed is placed in the accumulator
and the routine is executed. The character will be placed at
the current cursor position, and then the cursor position will
be updated.

The current cursor position is stored in memory location
7875H. According to our information, if the old cursor posi-
tion (betore the call to ED4DH) was less than 96H the new
cursor position (stored in 7875H) will be the old position plus
6H. If the old cursor position was 96H or greater, the new
position will be 00H.

EDS7H

To display a character using the ROM routine at EDS7H,
place the ASCII value of the character to be displayed into the
accumulator and execute the ED57H routine. The character
will be displayed at the current cursor location and the cursor
position. will not be updated.

LET’S WRITE THE PROGRAM

| try to program conservatively when | use machine
inguage. What | mean by this is that | try to disturb as few

things as | can. So. the first part of my program will “save the
MPU registers.” What | mean by this is that | will save a copy
of the various registers so | can restore the MPU when | am
finished with my program. This is done by using the appropri-
ate push (PSH) instructions to “push” the register values onto
the stack.

FD C8 PSH A
FD 88 PSH X
FD 98 PSH Y
FD A8 PSH U

Now that | have saved a copy of the registers. | want to
set the PC-2's cursor position to the left side of the LCD. This
would make the cursor position (stored in 7578H) zero (0).

BS @0 LDI A, @0H
4A 75 LDI XL, 75H
48 78 LDI XH, 78H
@E STA (X)

Notice that | used three LoaD Immediate (LD}) instruc-
tions. The first LDI puts the cursor position (O0OH) into the
MPU's Accumulator (A register.) The next two LDIs load the X
register with the address which stores cursor position
(7578H). The fourth instruction (STA) tells the MPU to put the
value currently in the A register into the memory location
which is currently in the X register.

Now that the cursor is where | want it, it is time to get a
keystroke from the keyboard. Since the only thing | wantto do
is to get a keystroke, | choose to use the routine which waits
for a key to be pressed before returning. A ROM routine is
executed by using the Subroutine JumP (SJP) command.

BE E2 43 SJP E243H

We learned earlier that once a key is pressed, the PC-2
stores the ASCli value of the key in the A register. Both display
routines | am considering require the ASCIl value of the
character | want displayed to be in the A register. Since the
keyboard scan routine already put the ASCII value in the A
register, all | need to do is use a subroutine jJump to the proper
display routine.

BE ED 4D SJP ED4DH

| chose to display each character in cursor position 0, so |
used the display routine at ED4DH.

The purpose of this program was to get a character from
the keyboard and to display it on the LCD. My program has
done that, so | restore the registers by POPping their values
(in reverse order) off the stack.

FD 2A poP U
FD 1A POP Y
FD QA POP X
FD 8A POP A

There is one final task which any machine language
program which is called from BASIC (as this one will be) must
perform and that is to return control of the PC-2 to BASIC. This
is accomplished by executing a return command.

9A RTN

Here is the completed machine language program
along with various comments so | can remember what is
happening.

FD C8 PSH A 'Save Registers
FD 388 PSH X
FD 98 PSH Y

36 TRS-80 Microcomputer News. October 1983

FD A8 PSH U

BS 9¢ LDI A, @94 'Cursor Position
LA 75 LDI XL, 75H 'Cursor Storage
43 78 LDI XH, 78H ' Location

oE STA (X) 'Store Cursor

BE £2 43 SJP E243H
BE ED 4D SJP ED4DH

‘Read Keyboard
'Display Character

FD 2A POP U 'Restore Registers
FD 1A POP Y

FD ¥A poP X

FD 84 POP A

9A RTN 'Return to BASIC

TURN IT INTO A BASIC PROGRAM

Now that | have the machine code for my program, |
need a way to get the program into the PC-2 and executed. A
very straight forward way to do this in the PC-2 is to put the
machine language program into a BASIC program shell like
the following:

19 WAIT ¢

20 DATA &FD, &CB, &FD, &88
30 DATA &FD, &98, &4FD, &AS8
49 DATA &BS, &P9, &4A, &75
5¢ DATA &48, 578, &PE

60 DATA &BE, &E2, 443

70 DATA &BE, &ED, &4D

80 DATA &FD, &2A, &FD, &lA
99 DATA &FD, &PA, &FD, &8A
198 DATA &9A

119 M=16999

128 FOR I=1 TO 3¢
138 READ A

140 POKE M+I, A
158 NEXT I

168 M=M+]

178 PRINT ™

180 CALL M

19¢ GOTO 180

READY"

Line 10 simply sets the PC-2 PRINT command delay
time to O.

Lines 20-100 contain DATA statements into which | have
placed the hexadecimal values for my machine language

Op-Code

Suggested Name Op-Code

ublract Immediate CIN ompare and Increment Brancn Carry Reset
DCS Decimal Subtract ROL Rotate Left Branch Half Carry Set
AND AND Accumulator ROR Ro'ate Righi Brancn Half Carry Reset

AND Immediate SHL

Suggested Name

program. Notice the use of a leading ‘&' to indicate that the
values are in Hex.

Line 110 contains the address (minus one) where | will
begin storing the machine language program in memory.

Lines 120-150 POKE the machine language routine into
PC-2 RAM memory. Line 160 updates the memory pointer
fromline 110 so that it contains the actual starting address of
my routine (17000 decimal).

Line 170 tells me that the machine language program
has been put into memory and will begin executing with the
next instruction.

Line 180 tells BASIC to turn control of the PC-2 over to
the machine language program which begins at location M
{my memory pointer). The PC-2 will set the cursor position to
zero, wait for akey to be pressed on the keyboard, display the
proper character and return to BASIC.

Line 190 tells BASIC to go back to line 180 and execute
the machine language program again.

THAT IS ALL THERE IS TO IT!

If you have followed this series of articles all the way
through, you now have enough information about the PC-2
and how it operates to begin writing your own programs in
machine language.

Next month we plan on giving you some additional infor-
mation about the various ROM subroutines which are avail-
able to you in the PC-2.

A CLOSING GIFT

Operation codes (op-codes, mnemonics) are short
names which programmers give to machine language com-
mands to make them more readable, and more remember-
able. We have given you several lists with op-codes and have
provided some detail on what the commands do. At least one
person has asked “How am | supposed to pronounce those
funny looking things?"

Below is a listing of the various PC-2 op-codes and a
recommended “name" or pronunciation for each.

Op-Code

Suggested Name

Branch Zero Set

OR Accumulator SHR Right , Brancn Zero Reset
TR RL Y fﬁ&ﬁ%@%“’% v 1 :
RR cimal Rotate Ri
EX Accumulator Nit
EC Set Carry
ement, REC.» wi Beset Carry
b Decrement COvV lear Dwider Vector Unconaitional
CPA Compare Accumuiato: ATP Accumuiator to Port Vector Carry Set
CPI Compare Immediate TA Port Input to Accumuiator Vector Carry Reset
BIT Bit SPuU Set PU Vector Half Carry Set
Bl Bit Immediate RPU Reset PU
: Al 5 RDP & HiEnIay N

SIE. ,
RIE Reset interrupt £n
SOE Store and Dacfemem AMO Accumuiator to Timer, Bit 9=0 Memoty Enable 0
iN Store and Increment AM1 Accumuiator to Timer, Bit 9=1 ME1 Memory Enable 1
STX Store X NCP No Operation A3

TRS-80 Microcomputer News. October 1983 37

Pocket Computer

PC-2 Assembly Language—Part 6

By Brucs Elliott

This is the sixth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overalt capabilities of the MPU, and does
not imply that ali of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but can not reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.

In this article we want to present information on some of
the PC-2 ROM calls which are available.

When you are going to use a ROM call, there are four
items which you want to be concerned with:

1. Entry Address

2. Entry Conditions

3. Exit Conditions

4. Flags

The Entry Address is the address you use in the CALL
statement from BASIC or a SJP call from machine language.

The Entry Conditions are conditions you must fuffill if the
routine is to function properly. Normally, entry conditions
specify where information must be and what information you
must put in the MPU registers for the routine to function
properly.

The Exit Conditions tell you where you will find the result
of the operation (if there is a result) or provide you with other
information about how things will change asa result ofusinga
particular ROM call.

If a ROM call makes particular changes to any of the

machine’s flags, this information will be noted so you can

properly interpret the results you get.

A CAUTION

I have not had time to test the information which is
provided below on ROM calls. The information provided is as
accurate as | could make it from the materials | am working
with. Test any ROM call for proper operation BEFORE you
use it in a program. Remember that the ‘H' following a
numeral indicates hexadecimal notation.

CURSOR INFORMATION

The PC-2 cursor pointer is located at 7875H. This loca-
tion is used by the PC-2 to keep track of where the cursor
should be. If you are working exclusively in machine lan-
guage, updating 7875H is all that is needed for cursor
location.

If you are working from BASIC, and wish to update the
cursor location directly using POKEs or CALLSs, you must
also set bit 0 of location 7874H. Setting this bit from machine
language can be accomplished by:

ORI 7874H, O1H

This operation is done automatically when you use the
CURSOR or GCURSOR BASIC commands.

If you execute a ROM call which resets the cursor pointer
and are going to return to BASIC, you must set bit 0 of
location 7874H as described above.

If you wish to reset the cursor from machine language,
you can use the following code:

ANI 7874H, OFEH

ANI 7875H, 00H

To increment the cursor pointer, use the following:
it you are displaying characters:

(7875H) = (7875H) + 06H
It you are displaying graphics:

(7875H) = (7875H) + O1H
Note: (7875H) must be between 00H and 9BH

SYSTEM CALLS FOR THE LCD DISPLAY

Output one character to the LCD
1. System call address: ED57H
2. Entry Conditions:

a. The ASCII character code for the character to be
displayed must be in the ACC (Accumulator) before
making the call.

b. The location where the character will be placed is
determined by the content of the cursor pointer.

3. Exit Conditions: The cursor pointer does not change.
4. Flags: Carry = 0 The cursor stays between 00H and 95H
on call.
= 1 The cursor stays in 96H on the call.
Output one character to the LCD and increment the
cursor position by one character (6H).
1. System call address: ED4DH
2. Entry Conditions: The ASCII character code for the char-
acter to be displayed must be in the ACC (Accumulator)
before making the call.
3. Exit Conditions: If the cursor position before the call was in
the range OOH to 95H, then the new cursor position equals
the old position plus 6H. If the cursor position before the
call was 96H or larger, then the new cursor position is set
equal to zero.
4. Flags:
Outputting n characters to the LCD.
1. System call address: EDOOH = VA7) —tu {
2. Entry Conditions:

a. The 16 bit starting address for the string to be dis-
played is placed in the U register (JOO0H (= U (=
FFFFH).

TRS-80 Microcomputer News, February 1984 43

b. The length of the character string is placed in the
Accumulator (01H (= ACC (= 1AH).

c. The cursor pointer indicates where on the LCD the

computer is to begin displaying the string.
3. Exit Conditions: The cursor pointer is updated.
4. Flags: Carry = 0 The cursor position is set to the right-
most end of the displayed character
string on the LCD.
= 1 The specified character string ended in
the 26th LCD column, or the string was
too long to be displayed within 26 col-
umns. The cursor will be steady, indica-
ting the last character displayed.
The number of characters specified in the accumutator is
output from consecutive addresses beginning with the ad-
dress specified inthe U register. The characters will be placed
on the LCD beginning with the position indicated by the
cursor pointer. The cursor pointer can be set from machine
language, or by using the BASIC CURSOR or GCURSOR
commands. If the information to be displayed exceeds the
156th dot on the LCD, the excess information will not be
displayed.
Outputting n characters to the LCD beginning from char-
acter position 1.
1. System call address: ED3BH
2. Entry Conditions:
a. The 16 bit beginning address location of the string to
be displayed is stored in the U register (0000H ¢ = U
(= FFFFH).

b. An 8 bit number indicating the length of the character
string is stored in XL (The lower half of the X register.
O01H (= XL (= 1AH).

3. Exit Conditions:

4. Flags: Carry = 0 The character string has been dis-
played in 25 or fewer columns.

= 1 The character string reached or ex-
ceeded the 26th column.

Transferring 1 byte of data (1 dot column of graphic
information) to the current cursor position.

1. System call address: EDEFH

2. Entry Conditions: The byte representing the graphic pat-

tern to be displayed is placed in the accumulator.

3. Exit Conditions:

a. The data is transferred to the current cursor position,

which does not change.

b. The contents of ACC and the X and U registers may

change.

c. The content of the Y register will not change.

4. Flags:

DATA CONVERSIONS

Converting two bytes of ASCll code (0 - 9, A - F only) into
a one byte hexadecimal value.
1. System call address: ED95H
2. Entry Conditions: The X register should contain the ad-
dress of the first of two consecutive bytes in memory which
contain the ASCIHl characters.
3. Exit Conditions:
a. The X register will be incremented by 2
b. The U and Y registers will be unchanged
c. The ACC will contain the converted hex value.
4. Flags:

DISPLAY THROUGH A BUFFER

Data can be placed into an 80-byte buffer (7BBOH -
7BFFH) and then displayed as needed by specifying the
proper cursor address in the buffer.

1. System call address: EBCAH
2. Entry Conditions:

a. Any character string which is placed in the buffer must
have a ODH code as the last character. This means
that the longest allowable character string is 79 char-
acters plus the ODH end code.

b. The Y register holds the cursor pointer for the buffer.
The documentation does not specify what value goes
into Y. Since Y is 16 bitslong, | presume that you would
use the actual memory address within the buffer.

c. Address 7880H contains a parameter which deter-
mines how the contents of the buffer are to be
displayed:

If the binary content of 7880H is 0100 0000, then the
character string stored in the buffer is output to the
LCD using the content of the Y register as the cursor
pointer.

Note: If the number of characters in the buffer is 26 or
less, then all of the characters are displayed on the
LCD starting from the left side of the LCD. The cursor
pointer (7875H) has no effect on this operation. If the
number of characters in the buffer is greater than 26,
the character in the address specified by the Y register
and the PRECEDING 25 characters are displayed on
the LCD starting at the left side of the LCD.

If the binary content of 7880H is 0000 0000, then the
cursor pointer in the Y register is ignored and the first
26 characters stored in the buffer are output to the
LCD.

If the binary content of 7880H is 0010 0000, then
numeric data stored in memory addresses 7A00H -
7A07H are output to the LCD.

Note: See below for a discussion of the 7A00H -
7A07H buffer.

3. Exit Conditions:
4. Flags:

"The 7A00H - 7A07H Buffer

The PC-2 documentation describes three possible sets
of data for the 7A00H buffer:

Decimal Values:

A decimal value may fall into the range
9.999999399 x 10EQ9 = x = 9.999999999 x 10E99.

7A00H contains the exponent (negative exponents are ex-
pressed as complements: 03H = x10E3, 1FH =
x 10E31, and FFH = x 10E-1)

7A01H contains the sign of the mantissa (00H = +,80H = =)

7A02H - 7A06H contains the mantissa.

7AQ07H contains 00H.

Examples

7A00H 7A07H

00H 00H 00H 00H 00H 00H O0H O0H = 0.0

00H 00H 12H 34H 50H 00H 00H OOH = 1.2345

FEH 00H 98H 76H 54H 32H 12H 00H = 0.9876543212

08H 80H 54H 32H 00H 00H O0H OOH =-5.432 x 10

44 TRS-80 Microcomputer News, February 1984

‘nteger Values:

An integer value may fall into the range -32768 (= x (=

32767.

7A00H—7A03H - Don't Care

7A04H—B2H

7A05H—7A06H Binary number in complements (e.g. OOH
00H = 0, FFH FBH = -5, 7FH FFH = 32767)

7A07H—Don't Care

Character Strings:

7A00H—7A03H—Don’t Care

7A04H—DOH

7A05H—Upper two bytes of string address in memory

7A06H—Lower two bytes of string address in memory

(string address can be in the range 0000H - FFFFH)

7A07H—Length of the string (range 01H - 50H)
Note: This last set of conditions (for strings) seems to
imply that a string buffer can be anyplace in memory,
rather than being restricted to 7BBOH - 7BFFH. Test this
before relying on it.

<ASSETTE IO AND CONTROL

During tape I/O activities, the paper feed action of the
printer is inhibited.
Turn Tape Drive On
1. System call address: BF11H
2. Entry Conditions: Memory address 7879H is used to spec-
ify certain conditions:
Bit 7: 0 = CMT input port closes; select 0 for CMT input.
1 = CMT input port opens; select 1 for CMT input.
Bit 4: 0 = Remote O
1 = Remote 1
3. Exit Conditions:
4 Flags:

Turn Tape Drive Off

1. System call address: BF43H

2. Entry Conditions:

3. Exit Conditions: Remote drive O is turned off uncondition-
ally. Remote drive 1 is turned off or on depending on bit 7 of
an unspecified address (probably 7879H). If bit 7 is O the
drive is OFF, and if bit 7 is a 1 then, the drive is ON. This bit
can be set using the BASIC commands RMT ON and RMT
OFF.

4, Flags:

Construct Tape Synchronization Header

The header, a 40-byte data set, consists of the synchroni-
zation header, a file name, file mode, and other data. This
header is created inside the computer (addresses 7B60H -
7B87H) and output to tape.

1. System call address: BBD6H
2. Entry Conditions: The file mode (00 =Machine Object,
01 =Program, 02 = Reserve, 04 = Data) must be placed in
the accumulator.
3. Exit Conditions:
a. An B byte synchronization header will be in 7B60H -
7B67H
b. File mode will be in 7B68H
c. OgH %haracters will be placed in locations 7B69H -
7B87H.

4. Flags:

A program file name (16 or fewer characters) can be
placed in memory locations 7B69H - 7B78H, if you wish.
Address locations 7B79H - 7B87H may be used for your own
purposes.

Output Tape Synchronization Header

1. System call address: BCES8H
2. Entry Conditions:
a. Bit seven of address 7879H must be zero and bit four
will be a zero for remote 0 and a one for remote 1.
b. Whether the PC-2 will beep or not during cassstte I/O
is controlied by the BASIC commands BEEP ON and
BEEP OFF, or by setting bit zero of 786BH.
3. Exit Conditions:
4. Flags:

Send a Character to Tape

1. System call address: BDCCH

2. Entry Conditions: Character to be output is placed in the
Accumulator. The call to write the synchronization header
must be used before outputting data using this system call.

3. Exit Conditions:

4. Flags:

Write a tape file

Files can be written by specifying the start address of the
data and the number of bytes to be output.

1. System call address: BD3CH

2. Entry Conditions:

a. The X register should contain the start address
(0O000H (= X ¢ = FFFFH) for the file to be written.

b. The U register should contain the number of bytes to
be written minus one (0000H (= U { = FFFFH).

3. Exit Conditions: Check sum data is output at the rate of 2
bytes for each 80 bytes written. The number of check sum
bytesis notincluded inthe U register number of bytes to be
output. .

4. Flags: CARRY = 0 if Output ended normally

= 1 if BREAK key was pressed

Read Tape Synchronization Header

Before the header can be read from tape, you must
construct a header using the BBD6H call. This will specify the
file type. If you are searching for a particular file, you may
place the file name in address locations 7B69H - 7B78H. If
you specify a file name, the tape will be searched for a
matching name. If you do not specify a file name (file name =
all 0OH characters) then file names will be ignored during
input.

1. System call address: BCE8H
2. Entry Conditions:
a. build a header with file type
b. specify a file name if you wish.
c. Set 7879H: Bit Seven = 1
Bit Four = 0 for Remote 0
= 1 for Remote 1

TRS-80 Microcomputer News, February 1984 45

3. Exit Conditions:
a. 7B91H - 7BA0H will contain the 16 character file name
(padded with 00H characters if file name was less than
16 characters)
b. 7BA1H - 7BAFH will contain whatever was in 7B79H -
7B87H when the file was written to tape.
4. Flags: Carry = 0 Reading finished
= 1 BREAK key pressed

Read a Character from Tape

1. System call address: BDFOH

2. Entry Conditions:

3. Exit Conditions: The data value read from the tape is
placed in the accumulator.

4. Flags: Carry = 0 Byte read properly
= 1 BREAK key was pressed

Read a file from tape

1. System call address: BD3CH
2. Entry Conditions:

a. The X register contains the first memory address
(0000H (= X { = FFFFH) that the file is to be loaded
into.

b. The U register contains the number of bytes minus
one (0000H ¢ = U ¢ = FFFFH) to be read from tape.

¢. Address 7879H bit seven contains zero
bit six = O for data read

= 1 for data verify
3. Exit Conditions:

a. Check sum information is automatically checked dur-
ing tape input.

b. The X register contains the address of the last data
byte plus one.

4. Flags: Carry =0 if loading ended normally
=1 abnormal end, check H and V flags
H=1if-C=1 then BREAK key pressed
=0 check V flag
V=1if C=1and H=0 then data in memory
and the data from the tape did not verify
properly.
= Qif C=1and H =0 then a check sum error
occurred.

Finishing Tape I/O Activities

When you are finished using tape /0O you should inform the
system.
1. System call address: BBF5H
2. Entry Conditions: Bit seven of 7879H should be a zero to
terminate data output or a one to terminate data input.
3. Exit Conditions:
a. The serial port is reset
b. Printer Paper Feed is enabled
c. Cassette motor drives are turned off.
4. Flags:

BASIC Program Tapes
The PC-2 creates and reads tapes for BASIC program files

using the file read and write routines described here.
Before the synchronization header is written to tape, the

PC-2 stores the length of the program (in bytes) minug
one in locations 7B85SH and 7B86H. This information is
then recorded as part of the synchronization information
for later use in reading the file. When the header informa-
tion is read back during a synchronization header read,
the length information is in 7BACH and 7BADH.

KEYBOARD INPUT CALLS
Scan Keyboard, wait for a key to be pressed

1. System call address: E243H
2. Entry Conditions:
3. Exit Conditions:
a. Key code is in the accumulator
b. (BHIFD @EE), and (EMID do not cause
this routine to return. _
c. Auto power off will occur after about seven mirites if no
key is pressed. L
d. If the BREAK key is entered, execute the fllcwing
ANI #FO0BH, OFDH (FDH ESQH FOH 0BH FDH)
4. Flags: Carry 0 = Accumulator has key code
1 = BREAK key, Accumulator = OEH

Key Code Table
0

1 2 3 4 5 6 7
0 SPACEO0 @ P p
1 (SHIFT) F1 ' 1 A Q a q
2 (SML) F2 " 2 B R b
3 F3 # 3 C S c¢ s
4 F4 $ 4 D T d t
5 F5 % 5 E U e wu
6 F6 & 6 F V { v
7 : 7 G W g w
8 - CL (8 H X h x
9 5 RCL) 9 I Y i vy
A) CA . o d 2 j oz
B t (DEF) + ;7 K rad k
C - INS , < L i
D ENTER DEL = M n m
E BREAK . > N A n
F OFF MODE / ? 0 o

Scan keyboard and Return

1. System call address: E42CH
2. Entry Conditions:
3. Exit Conditions:
a. If no key was pressed, accumulator = 00H
b. If a key was pressed, Key code is in accumulator
4. Flags:

NUMERIC FUNCTION CALLS

From the documentation, it appeers that pumeric func-
tions are called with the X register pointing to 7ZAO0H - 7A07H
and the Y register pointing to 7A10H - 7A17H it Y is needed.
Results appear to always be stored in 7A00H - 7A07H.
Numeric data is stored in these memory areas as previously
described. oNeyY BEd

Two Variable Numeric Functions

Addition X+ Y-X EFBAH 2 «¢
Subtraction X-Y=X EFB6H ,
Multiplication X*Y=X FO1AH 120
Division X1Y-=X Fos4H 83
Exponentiation ~ XAY—X F89CH

48 TRS-80 Microcomputer News, February 1984

Single Variable Numeric Function

Square Root SQR X—X FOE9H
Logarithm LN X—X F161H
LOG X=X F165H
Exponentials EXP X—X F1CBH
10AX—X F1D4H
Sine SIN X=X F3A2H
Cosine COS X—X F391H
Tangent TAN X—X F39EH
Arcsine ASN X—X F49AH
Arccosine ACS X—X F492H
Arctangent ATN X=X F496H
DEG X—X F531H
DMS X=X F564H
Absolute Value ABS X—X F597H
Signum Function SGN X—X F59DH
Integer Function INT X—X FSBEH
OPERATIONS WITH STRINGS

ASC and LEN Subroutines

1. System call address: DSDDH

2. Entry Conditions:

a. Character string information is stored in 7A04H - 7A07H as
previously described.

b. YL = 60H for ASC

= 64H for LEN

3. Exit Conditions:

a. The result is in 7A00H - 7A07H

b. UH contains the error code (00H is a normal finish) if an
error occurred.

4, Flags:

CHR$ Subroutine

1. System call address: D9B1H

2. Entry Conditions:

a. Integers from 0 - 255 are placed into 7A07H.

b. 7894H = 10H

3. Exit Conditions:

a lf U4 = Q then a proper exit occurred, otherwise UH
contains the error code.

b. 7B10H contains the ASCII code

¢. 7A04H - 7TA06H contain C1H 7BH 10H

d. If the ASCIl code was 00H then 7A07H contains OOH
otherwise, 7AQ7H contains 01H.

4. Flags:

VAL Subroutine

1. System call address: D9D7H

2. Entry Conditions: string information is in 7ZAOOH - 7AQ7H.

3. Exit Conditions:

a. The result is in 7A00H - 7A07H

b. UH contains the error code (O0H is a normal finish) if an
error occurred.

4. Flags:

STR$ Subroutine
1. System call address: D9CFH

2. Entry Conditions:

a. numeric value to be converted is in 7A00H - 7AO7H

b. 7894H = 10H

3. Exit conditions:

a. The string pointer is in 7AQ00H - 7A07H

b. The actual character string is stored at 7B10H and
following.

¢. UH contains the error code (00H is a normal finish) if an
error occurred.

4. Flags:

RIGHTS$(XS.Y), LEFT$(X3,Y), and MID$(X$.Y.2)
Subroutines

1. System call address: D9F3H
2. Entry Conditions:

RIGHTS LEFT$ MID$

(7890H) ((7891H)}-8 same ((7891H)-16
(7892H) (7890H)+8 same (7890H) + 16
(7894H) 10H 10H 10H
7A00H- Y Y z

7AO7H

(7890H)- X$ X$ X$
(7890H) + 7

(7890H) +8- - - Y

(7890H) + 15

YL 02H 7AH 7BH

3. Exit Conditions:

a. The string pointer is in 7A00H - 7A07H

b. The actual character string is stored at 7B10H and
following.

c. UH contains the error code (00H is a normal finish) if an
error occurred.

4, Flags:

Note: (7890H) and (7891H) cannot be overwritten or
changed. If these are changed, the routine will not
function properly.

String Concatenation

1. System call address: D925H

2. Entry Conditions:

a. 7894H = 10H

b. Information on the first character string is stored in 7AGOH -
7A07H

c. Information of the second character string is stored in
7A10H - 7A17H in the same format as previously
described.

3. Exit Conditions:

a. Information on the new character string is placed in 7A00H
- TAO7H.

b. Actual concatenated string is put in 7B10H and following
memory locations.

c. If an error occurs, UH contains the error code.

4. Flags:

TRS-80 Microcomputer News, February 1984 47

