

PC-2 Assembly Language
Article by Bruce Elliott

This is the first in a series of articles which will describe
the MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map and certain ROM calls which
are available. Please realize that much of what we are talk-
ing about refers to the overall capabilities of the MPU and
does not imply that all of these things can be done with
a PC-2. Some known precautions when working with the
PC-2 include:

¢ Po—This signal is not supplied to an external output
pin on the PC-2.

* TI—The Timer Interrupt service routine is not available
on the PC-2. If a Timer Interrupt occurs, an RTl is
im.nediately executed.

* NMI—The Non-Maskable Interruptis not available to
the programmer on the PC-2.

* The MPU signals BRQ and BAK are not supplied to the
external output pins.

¢ Though MEQ is available as an output from the MPU,
DMEO (from one of the support chips) performs a
similar function and should be used.

Please understand that the information provided in these
articles is the only information which is available. We will try to
clarify any ambiguities which occurin the articles, but can not
replyt questions outside the scope of these articles. Further,
published copies of TRS-80 Microcomputer News are the
only source ofthis information, and we will not be maintaining
back-issues.

BLOCK DIAGRAM
PC.2 MDCX (MAGRAN
fl |fl

OUTLINE OF THE 8-BIT CMOS MPU

The 8-bit MPU chip (LH5801) uses CMOS static technol-

ogy. This gives the MPU the low power dissipation inherent to
CMOS technology. The MPU incorporates the LCD back-
plane signal generator, input port, external latch clock and
the timer.

The MPU features:
¢ 16 bit address bus
¢ 8 bit data bus
* 8 bit input port
e DMA and multiprocessor capabilities
» Contains a WAIT function for memory access contro
¢ LCD backplane control
¢ Clock frequency of 2.6 MHz.

a. Internal machine cycle of 1.3MHz.
b. Minimum instruction execution time of 1.3

microseconds.
In the PC-2, the MPU performs the following functions:
e Key input routine

e Acknowledges remaining program lines
* Interprets program execution statements
e |nterprets cassette control statements

* Interprets printer control statements
¢ Interprets command statements
¢ Display processing routine
¢ Arithmetic routines
® Print routine
e Instructs I/0O chip to perform serial communications,
sound buzzer, and control counter/timer

A08.AD8

Addrves ButterSEEJ -

 vA

§
§

.

[
e
t

C
i
d
e
y

— t 3
&

3 ITITT%“QT
nes ea I‘O""'O““" o0 B

8 84 CMOS MPU Block Diegram

MPU SIGNALS
®D—Output disable signal, when this signal is active, the data bus is in the

output mode
®OS—This clock signal is in phase with the internal basic clock and is

supplied to the outside system. 2MHz of the clock frequency is supphed
when a 4MHz crystal 's being used between XLO and XL 1. Since PC-2

uses a 2.6MHz chip, the clock frequency is 1. 3MHz.
ADO-AD15-—-Address bus. The address bus is tri-state and goes into the

high impedance slate when a Bus Request. BRQ., is issued.

TRS-80 Microcomputer News. March 1983 23

PHB] P Program Counter

| SHB I SLa S: Stack Pointer

XH B XL e X Data Address

¥YH 8 YL B Y or

UH 8 uL e U General Purpose Register

A 8 A Accumulator

pjlo| O} H] V] Z]|IE T: Status Register

Carry and Borrow (inter-bytes)

 IE: Interrupt Enable

 Zero Indication V: Overflow H: Carry (inter-digits)

™ 8 T™: Timer Counter

1 PU General Purpose

1 Pv Flip-flops

1 DISP: LCD Display On/Otf Control
MPL Internal Registers and Flip fiops

BAK -——The BAK outpul is synchronized with the internal clock. When BAK
goes high,the Address Bus, Data Bus, MEO, ME 1, RW. and ®D all turn
to the high impedance state. Not used in PC-2

3IFO, BFI—BFQ is an output of the BF flip-flop and BFI is an input to the BF
fip-flop. The BF flip-fop is normally used for the memory backup
system. |n the PC-2, BF! is connected 1o the {BREAK) key. and goes

“high™ when the (BREAK) key is depressed. BFO, in the PC-2, is
connected to the Chip Select Circuit and the Expansion Porl.

BRO— Bus Request. The MPU responds to the BRQ by turning BAK (Bus
Acknowledge) high. Not used in PC-2. Tied to GND

D0-D7— Bidirectiona! data bus through which data i1s written to or read from
external memory.

DISP—A fip-flop which 1s used to control the on and off acton of the L.C.D.
Instructions are provided io set and resel this flip-flop.

GND—-Ground

HO-H7 —These are the LCD backplane signals.
HA—Output of the MPU internal driver. Divider output of 625 Hz in the PC-2.

Used by the display chips.
HIN—LCD backplane signal and an input 1o the counter that generates HO-

H7. This 15 connected to HA in the PC-2.
IND-IN7 —This is the input port which the MPU uses to bring 8-bit data into

the imternal accumulator. Internal pull-up resistance is present in the

PC-2. the input port is connecled o the keyboard
MEQ, ME1 —The Memory Enable signals used by the MPU to directly

access a maximum of 128K bytes in external memory Inthe PC-2. MEO
is connecled 1o the chip select circuit and 1o the ME1 input of the 11O
chip. Inthe PC-2, ME 115 connected lo the MEO input of the /O chip and
the expansion port.

Mi—The Maskable interrupt Input signal. The MPL will respond o this
interrupt request when the Interrupt Enable flag (IE} is on. Interrupt

processing will begin at the address indicated by FFF8 and FFF9_ In the
PC-2 this i1s connected to the INT output of the /O Chip.

NMI—The Non-Maskable Interrupt Input. The MPU will respond uncondi-
tonally, and interrupt processing will begin at the address indicated by
the contents of FFFC and FFFD. Not used in the PC-2, tied to GND.

OPF—Operanon Code Fetch. Allows the MPU 1o felch an operation {instruc-
tion) code. OPF appears when an inslruction code is fetched. during
address data and immediate data operations, and when the second
byte of a two step instruction 1s being tetched. Not used in the PC.2.

P® —External latch clock. The contents of the accumulator is transferred on
the data bus when this clock is in the high slate, and can be used as an
output port when an externallatch IC is present. Not used in the PC-2.

PU, PV—These are MPU internal tip-flops. Set and reset instructions are
provided for both PU and PV In the PC-2, both PU and PV are con-

nected to the expansion port. PU is one of the enable signals for the
printer ROM.

RMW—Memory Read/Write Signal.
RESET— MPU reset input which causes the MPU to reset when a high signal

is received. Program execution begins at the memory address pointed
lo by the contents of FFFE (low order) and FFFF (high order)} Execution
begins at the indicaled address when the RESET input changes from a
high to a low state Onthe PC-2 this is connected to the All Reset Switch.

VA—Paower Supply to the LCD. High voltage for segment signals, 1.2—2.2
volls.

VB — Power Supply o the LCD. Low vollage for segment signals, 2—12

volts,

Vee— +4.7 volts
VDIS—Power Supply to the LCD. +3.7 volls,

vgg— +4.7 volts
VM —Power Supply to the LCD. An intermediate voltage used for the com-

mon and segment signals. .8—1.6 volts.
WAIT—When the MPU receives a high signal at the WAIT input, the MPU

internal clock is halted to stop microprogram execution inside the MPU.

WA is an internal flip-lop which accepts the WAIT input at the falling

edge of the clock 00S and stops the MPU clock when it is in a high state.

Connected to the WAIT output of the I/O chip in the PC-2. This informs
the CPU when memory or an /O device is not ready.

XLO. XL1—Crystal connection pins. PC-2 uses a 26MHz crystal which
operates the MPU at a 1.3MHz clock frequency. XLO—Input, XL1—

Output

MPU DESIGNATIONS
A "A" represents the 8-bit register (accumulalor) used for retention of

arithmetical results or for data transter with external (non-MPU) memory.

DISP. LCD display onfoff control
P : "P” represents the 16-bit register (program counter) that indicates the

next address that follows the currently executing instruction, and 1s
automatically incremented by one when the next instruction is fetched
The maximum 64K bytes addressed by MEQ is addressable by P and
constitutes the program area.

PH. High order 8 bits of the program counter

PL: Low order B bils of the program counter
PU: General purpose flip-flop
PV: General purpose flip-tlop

R - represents any one of the X, Y, or L) 16-bit registers. These registers can
also be used as data pointers. When X, Y, or U are used as data pointers,

it becomes possible 1o issue Memory Enable signals, MEO and ME1,
independently. A maximum of 12BK bytes of memory area is available

to X. Y. and U {(a maximum of 64K bytes in the memory area accessed
by MEQ and another 64K bytes in the memory area accessed by ME1.)

RH: represents any one of the high order XH, YH, or UH 8-bil registers.
RL: represents any one of the low order XL, YL, or UL 8-bit registers.
S : "S" represents the 16-bit register (stack pointer) that indicates the next

availabie stack address tor the push-down or pop-up stack N memory.
The maximum 64K byles addressed by MEOQ is available as the stack

area.

SH: High order 8 bits of the stack pointer
SL: Low order 8 bits of the stack pointer
T "T" represents the 5-bit register (status register or flags) designed to hold

status information such ascarry {C). borrow (H), zero (Z). overflow (V).
and interrupt enable (IE). The flags (C. H, Z, V). other than the interrupl

enable. can be tested by the conditional branch or conditional subrou-
tine jump instructions,

TM: “TM"is the 9-bit polynormial counter (timer counter)
U . 16-bit register
UH: High order 8 bits of register U

24 TRS-B0O Microcomputer News, March 1983

ULLow order 8 bits of register 1J
X 16-bit register
XH. High order 8 bils of register X,
XL Low order 8 bils of register X

¥ - 16-bit register

YHHigh order 8 bits of register Y
YL: Low order 8 bits of regisler ¥

OPERATIONAL SYMBOLS
- Signal or data flow
- Signal or data flow
. Logical AND

. Logicat OR
- Exclusive OR
- Arithmetic addition
- Anthmetic subtraction

+
D
<

o
1
]

MEMORY AND ADDRESS REPRESENTATION

Since the Memory Enable signals, MEO and MET1, are
output from the MPU, the PC-2 microprocessor can directly

access any area within 128K bytes. MEO takes care of one
64K byte memory area and ME1 another 64K byte memory

area. However, MEO is dedicated to program or data areas

and ME1 to data area only.

o000 0000

Memory Area

accessible by

X. ¥ and U

Memory Area

accessible by

S X, Y.andU

 FFFF FFFF

!
Memory Enable signal, MEQ

Memory Enable signal. MEY

Memory Area accessible by MPU

Addiess bus

t6 f

i ' / |

Wy Brogram or dats ares Dats sten

p} / | ¢
B 7 l Jats bua

W

 MEQ

{R). The contents of Ihe MED accessible memory thal can be specitied by the
register R.

#(R)- The contents of the ME1 accessible memory that can be specified by
the regisier R.

(ab): "a” is a number that represents the high order B bits of the address and

"b" low order8 bils of the address. Together, they indicate the contents
of the memory that can be represented by the 16 combined bits of a and
b (MED accessible).

#{ab). Same as the above. except that it can be accessed by ME1.
ab used in defining the conditional jumps and subroutine calls 1o designate

the two hex digits which comprise a single byle immediale value ™"

STATUS FLAGS
The status flags, C. V. H, Z, and IE are contained in the 5-bit status

regisier. The contents of C. V. H, and Z may change upon completion of an
arthmetic instruction.

Assume that the added results of each bit of the 9-bit tull adder are as
tollows:

L7.56.E554 X3 T251 X0 withcarry ol C7.C8&, C5,C4,C3,C2.C1. CO.
The input conditions for each of flags shall be as descrnbed below

7 =———— C

Y7AERAGH L0 —— 7

ce¥ ————— v
(1) Carry flag C— The carry flag C 1s eilher sel or resel depending on the

presence of a carry in C7 (Bth tat).
(2) Half carry flag H—The half carry flag H s erther set or reset depending on

the presence al a carry in C3.
(3) Zero lag Z —The zero flag Z is dependent on the arthmetic results: it will

be set when the result is zero. otherwise, it will be reset.
(4) Overllow flag V— The overtlow flag V 1s set when the arilhmelic resulls of

one byle is in overflow, provided (hat the Bth bitis used for a sign withrest

ot the 7 bits for used for numeric representahon

IO PORT CHIP

Contains.
= two B bl bi-directional ports. labeled PA and PB. Each bit in these two ports

can be programmed as either an mput or an cutput The CPU can

access PA or PB as one location in memory PA is used for the keyboard
strobe and PB is used for cassette, counter/bmer, and as an interrupt

input.
= pne 8 bil output port labeled PC. PC can be accessed as one localion in

memory and 15 used for counter/timer control and to sound the buzzer.
s Two interrupt request inputs, used with { BREAK) and IRQ inpuis from the

expansion port.
+ one interrupt request output connected to the CPU.
+ CPU WAIT control output. Qutputs two memory enable signals, DMEQand

DME 1. which are used with memories that have slow access imes

» Controls serial communications. The two wait input lines. W0 and W1, are
used in serial commurcations.

LCD DISPLAY CHIPS
Four display chips used for displaying information on the LCD, and as

memoty space for fixed memories E$ - Z$ Display chips 1 and 3 are used for

the LCD dsplay. indicators. and fixed memories ES - O3 Display chips 2 and
4 are used for the LCD display and for tixed memornes P§ - Z§.

LCO

5’9""‘""“"‘ 1. 30 Saqrtentsdi .80 Segmenity R1.80

Dispiay l L Display Dractey Duaplpy

Chip =4] Crvp =7 Lhip #3 | Chup +4 I

T TDan‘] 1 TI.‘.H! ol T TD‘-D? T Tl'.'M-Dl

ot7840 FTO0- 7 TR0 7800- Fha0 FIDG-FTAD

OTHER PARTS OF THE PC-2 SYSTEM
* Chip Select Decoder Circuil

* 16K Systerm ROM
* 1K Systern RAM (two 5514 RAM chips). This RAM s used for hixed

memones A% - DS, ixed memones A - 7, stack space. the 80 character

input butfer, and 1s used by FOR-NEXT staltermnents.
« 2K User RAM {one 6116 BAM chip) This RAM is used for fixed memaones

A27 or A$27 and above as well as being used for Reserve. Program
and Vanable memory

* Buzzer circuit
s Counter/Timer circunt
s Module port
* Expansion porl

» Keyboard ¥

TRS RO Mierocomputer News. March 1983 25

Memory Map:
0000 -
4000 -

4800 -
7000 -
7600 -

7700 -

7800 -

3FFF Module ROM - 16K
47FF User RAM - 2K
AN00 - AQ07 Researve Mermory ponters
4008 4021 Meni
4022 - 4038 Meny 2
4013C - 4055 Meny 3
4056 -40C3 Funchion Key Definihans
40C4a 0 10 mark end nt funchon key detinihons
40C5 47FF Program (Vanabie) Memory

6FFF Module RAM
75FF Duplicate of 7600 - 7BFF
76FF Display Chip 1 & 3

. 764D LCD Dsplay Sections 1 & 3
751r Inqhcator

A1 0 Busy
Rt v Snh
A4 2 - Japanese
B30 3 . Simall
Ri 4 11
fats
B h -l
Ba 7 Det

764F Inrhcator
B0 De
Aty G

fin 2 Rad
B 3
Rt 4 Reserve
RtS Pin
Rt 6 Run
B 7

7R50 - 7AS5F €S
7660 766K VS

7670 767F %

7680 768F H$
7690 - 7H49F 1$

T6A0 - 76AF U

7680 76BF K$
76C0O 76CF LS
7600 76DF M$
76EQ 76FF N§
76F0 - 76FF Q%

77FF Display Chips 2 & 4
7700 - 774D LCD Drsplay - Secthons 2 & 4
774E - 774F Not used
7750 775F PS
1760 776F O%
7770 - 777F R$
7780 - 778F S$
7790 -779F 1§
77A0 77AF US
7780 - 778F VS
77C0 - 77CF WS
7700 - 770F X8
77€EQ0 - 77EF ¥Y$
77F0 - 77FF S

7BFF Sys1em Memory -
78BF Syslem Memory l02Bylm

7863 RAM top High orddee 8 bits
7864 RAM hottom - H|9h order 8 hits
7R65 7866 Baginning ot BASIC program
7RR7 78R8 Encl ol BASIC program
7869 - 786A Head addrass uf a4 BASIC program to pertorm ediing based

on keyboart enines
7368 Reep On/Renpy it
7878 LCD Cursnr Postion
7R79 Cassette parameter FF
7880 LCD display parameter FiF
7890 7893 Used by RIGHTS, LEFTS. MIDS
7804 Stang Butter Pointer 7894 = 10H
7899 -7R9A Starl of vanable slorage area
7R98 Eree Code = ERR2 4
78C0O - 78CF AS
78D0 7RIF RS
78E0 7HFF (S
78F0 78FT D%
7900 - 7907 A
730R - 790F R
e 797 C
A 7N D
7920 - 7927 €
7928 - 7921 f
7930 7937 G
7938 - 793F H
7940 - 79471
7948 - 794F J
7950 - 7957 K
7958 - 795F L
7960 - 7967 M
7968 796F N
7970 79770
7978 - 797F P
7980 7987 0
*OA8 7OAF R
790 7997 S
7R T99F T
7OA0 TOAT L
79A8 POAF v
T80 7T 4
7908 791F X

79€B -79€EF
79F0 Printer Text/Graphic mode
79F1
79F2 Printer ROTATE value
79F3 Printer pen color
79F 4 Printer CSIZE
7A00 - TA07 Numenc Data Bulter or String ponter
7A10 -7A17 Numernc Data Bufter or Sting pomnter
7810 - 784F Sinng Buller
7B60 - 7B67 Tape oul Synchrorizaton header
7868 - Tape out file mode
7869 - 7878 Tape out hle name
7879 - 7884 Tape oul header (avadabie 10 user)
7885 - 7886 Tape outl # bytes in BASIC He -1
7887 - 7B88 Tape oul end header
7891 - 7BA0 Tape n hie name

7BA1 - 7BAB Tape n user header
7BAC - 7BAD Tape n # bytes in BASIC Ite -1
7BAE - 7BAF Tape in end header
7BBO - 7BFF BO Character Display Buler

7C00 - 7FFF Duplicate of 7800 - 7BFF
8000 - BFFF Expansion ROM - 16K

A519 Change printer pen color
A769 Printer motor oft
A781 Send ASCII character 1o printer (no LF)
ARDD Move pen
A9F 1 Send line feed (LF) to prnnter

AAN4 Send n ine feeds 10 printer
AAD9 Pen Up/Down
ABCB Switch prnter from graphic 1o text mode
ABEF Switch printer from tex! 10 graphe mode
BBD6 Write 1ape synchromzal'on header
BBFS Finalizaton of 1ape /O contro!
BCES Reac tape synchronization header/search for lename
B803C Read/Write tle 10 1ape
BOCC Send a characler 10 tape
BOFO Read a character from tape
8F 11 Turn tape drive 00
BF43 Turn tape drwve off

CO000 - FFFF System Program ROM - 16K
D002 Magniude Comparnson tor Numenc Values
DOF9 Magntude Comparison tor Character Strings
D2EA ‘%eavch for pro?vam lne number
0461 Find address ofvanable
0925 Sirng concatenaton
D981 CHRS
D9CF STRS
D907 VAL
0900 ASC f YL = 60H, LEN d YL =64H
D9F3 RIGHTS. LEFTS. MIDS
£243 Keyhoard Scan - wail for character
E33F Aulo Power Off
E42C Keyboard Scan - no wad
EB8CA Oisplay contents of display buttes
£000 Output n characters to LCD using current cursor locahon
€038 Output n characters 1o LCD beginning at cursor = G
ED4D Outpul one char 10 LCD and increment cursor posiion by one

EDS57 Output one character to LCD
£095 Convert two bytes of ASCIl code {0-9.A-F) into one byte of hex data

EDEF Output one graphic column 1o current Cursor Positon

EFB6 X-Y =X
EFBA X +Y—-X

F008 VOP Flag 2
FO1A XY =X
FOB84 XIY =X
FOE9 SORX = X
F161 INX —- X
F165 LOG X —- X
FiCB EXP X = X
F1D4 10 ~ X = X
F391 COSX = X
FJI9€E TAN X = X
F3A2 SINX — X
F492 ACS X = X
F496 ATN X - X
F49A ASN X - X
F531 DEG X -+ X
F564 DMS X - X
F597 ABS X - X
F590 SGN X = X
FSBE INT X — X
F89C Exponentaton (X ~ Y = X)

FFOO - FFF6 Vectors for jumps and calls
FFF8 - FFF9 Start Address for Ml routine
FFFA - FFFB Starl Address for the Internal Timer

FFFC - FFFD Start Address for the NMI routine
FFFE - FFFF Start address for the RESET routine

ARONOUDODEB O
DOLABEDOO
DOHDEROBHODD

Sroon

0 7907 Y
7OC8 -790k /7

7900 - 7BFF System Memory - 560 Byles
TOP0 791 1 Pomer X ave, posahon rolalese 0 oncin] .tovm

79F 2 JOLY Prnter Y v poratinn relaliye 10 0opn B m m m

704 7GF 5

796 Prusier HCHRGON vatue

19F7 - 19FR
79€9 Prnter pen un/down
79EA Pooter tne type

26 TRS-80 Microcomputer News, March 1983

PC-2 Assembly Language-Part 2
Article by Bruce Elliott

This is the second in a series of articles which will de-
scribe the MPU (microprocessor unit) used in the Radio
Shack PC-2 pocket computer. It is our intention to include
specific information about the 8-bit CMOS microprocessor,
the machine code used by the microprocessor, as well as
information about the PC-2 memory map and certain ROM
calls which are available. Please realize that much of what we
are talking about refers to the overall capabilities of the MPU,
and does not imply thatall of these things can be done with a
PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occurin the articles, but can not reply to ques-
tions outside the scope of these articles. Further. published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.

Instruction Set

LOGICAL OPERATIONS

ADC—The contents of the internal register (RL or RH), or the
contents of external memory [(R), #(R), (ab), or #(ab)]
is added into the accumulator including the carry C.
The result is stored in the accumulator. Flags C, H, Z,
and V may change after the execution of this
instruction.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ADC XL A+ XL+C-A 02 1 6
ADC YL A+YL+C-A 12 1 6
ADC UL A+UL+C-A 22 1 6
ADC XH A+XH+C-=A 82 1 6
ADC YH A+YH+C—-A 92 1 6
ADC UH A+UH+C—-A A2 1 6
ADC (X) A+(X)+C—-A 03 1 7
ADC (Y) A+)+C-A 13 1 7

ADC (U) A+ U)+C—-A 23 1 7

ADC (ab) A+ (ab) + C —- A A3ab 3 13
ADC #(X) A+ #X) +C—-A FD 03 2 1
ADC #(Y) A+ #Y) +C—A FD 13 2 11
ADC #(U) A+ #U) +C—-A FD 23 2 11
ADC #(ab) A+ #ab) + C - A FDA3ab 4 17

ADI—Performs immediate addition to the accumulator or to
external memory [(R), #(R). (ab). or #(ab)]. Changes
may take placein C, H, Z, or V. The carry flag C will be
included in the immediate addition to the accumulator.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ADI A A+i1+C-=A B3 i 2 7

ADI (X).i (X) + i = (X) 4F | 2 13
ADI (Y).i (Y) + i = (Y) 5F | 2 13
ADI (U).i (U) + = (U 6F i 2 13
AD! (ab). (ab) + » — (ab) EFabi 4 19
AD! #(X).i H#X) + o+ — #(X) FD 4F i 3 17
ADI #(Y).i #Y) + 0 — #Y) FD 5F i 3 17

ADI #(U).i FD 6F i 317
AD! #(ab).i FDEFabi 5 23

ADR—The content of the accumulator is added into the

register R in 16 bits. Change may take place in C, H,

#U) + 1 =~ #(U)
#(ab) + i — #(ab)

Z orV.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

ADR X XL + A -~ XL FD CA 2 1
ADRY YL+ A-YL FD DA 2 1
ADR U UL + A= UL FD EA 2 1
Comment—RH+1 — RH f C7 =1 (no change in CVHZ)

AND—The content of the accumulator is logically ANDed
with the content of external memory [(R), #(R), (ab), or
#(ab)] and the result is stored in the accumulator.
Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

AND (X) Ar(X)y - A 09 1 7
AND (Y) AA(Y)—-A 19 1 7
AND (V) ArU) - A 29 1 7
AND (ab) AAr(ab) - A A9ab 3 13
AND #(X) AABX) - A FD 09 2 11
AND #(Y) AAHY) = A FD 19 2 11
AND #(U) ArKU) - A FD 29 2 1
AND #(ab) A A #ab) - A FDA9ab 4 17
Comment—A represents the AND operation

ANI—Logical AND of the accumulator and an immediate
value, or of external memory [(R). #(R), (ab). or #(ab)]
and an immediate value with the results stored in the
accumulator or external memory as indicated.

Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

ANI Ai AN A B9 i 2 7

ANI(X).i X) " i = (X) 49 2 13
ANI (Y).i (Y) A i = (Y) 59 i 2 13
ANI (U).i (W~ = (V) 69 i 2 13
AN(ab),i (ab) A i — (ab) E9abi 4 19
ANI #(X).i #(X) N i — #(X) FD 49 i 3 17
ANI #(Y).i #) N i — #(Y) FD 59 i 3 17
ANI #(U).i #U) i — #U) FD 69 i 3 17
ANI #(ab),i #(ab) 1 — #{ab) FDE9abi 5§ 23

DCA—The content of external memory [(R) or #(R)] including
the carry C is added to the accumulator in the binary-
coded-decimal (BCD) system and the result is stored
in the accumulator. Change may take placeinC, H, Z,
or V.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

DCA (X) A+(X)+C—=A 8C 1 15
DCA (Y) A+ M +*+C=A 9C 1 15
DCA (U) A+{U)y+C—=A AC 1 15
DCA #(X) A #X)+C=A FO 8C 2 19

TRS-80 Microcomputer News. April 1983 39

DCA #(Y) A+ #Y)+C—=A FD 9C 2 19
DCA #(U) A+ #U)+C— A FD AC 2 19

DCS—The content of the external memory [(R) or #(R)].
including the carry C is subtracted from the content of
the accumulator in the BCD system, and the result is
stored in the accumulator. Change may take place in
C,HZ orV

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle.

DCS (X) A-(X)-C— A oC 1 13
DCS (Y) A-M-C—~A 1C 1 13
OCS (U) A-(U)-C- A 2C 1 13
DCS #(X) A-#X)-C— A FD oC 2 17
DCS #(Y) A-#(V)-C- A FD 1C 2 17
DCS #(U) A-#U)-C - A FD 2C 2 17
DEC—Decrements the accumulator or the register (RL, RH,

or R). Change may take place in C, V, H, and Z for the
decrement of the accumulator, or the register, RL or
RH. But no change takes place in flags when the 16-
bit R is decremented.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

DEC A A-1 <A DF 1 5
DEC XL XL-1 = XL 42 1 5
DEC YL YL-1 =YL 52 1 5
DEC UL UL-1 - UL 62 1 5
DEC XH XH-1 — XH FD 42 2 9

OEC YH YH-1 —~ YH FD 52 2 9
DEC UH UH-1 — UH FD 62 2 9
DEC X X-1-~X 46 1 5
DECY Y1 ~Y 56 1 5
DEC U U-1-U 66 1 5

EAl—The accumulator is EXCLUSIVE ORed with an immedi-
ate value and the result is stored in the accumulator.

Change may take place in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

EALi A®i-A BOD i 2 7
Comment— ® - represents the XOR operation

EOR—Logical EXCLUSIVE OR (XOR) of the accumulator
with external memory [(R). #(R), (ab), or #(ab)] is
performed and the result is stored in the accumulator.
Change may take place in the Z flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

EOR (X) A® (X - A 0D 1 7
EOR (Y) A®(Y)—-A 1D 1 7
EOR (U) A® (U -—-A 2D 1 7

EOR (ab) A ©® (ab) — A ADab 3 13
EOR #(X) A®#X) - A FD 0D 2 11
EOR #(Y) A O #Y)—=A FO 1D 2 1
EOR #(U) A® #U) - A FD 2D 2 11
EOR #(ab) A ® ¥#ab)—A FDADab 4 17

INC—Increments the accumulator or the register (RL, RH, or
R). Change may take place in C, V, H, and Z for an
increment of the accumulator, or the registers, RL or
RH. But no change takes place in flags when the 16-bit
register R is incremented.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

INC A A+1~A DD 1 5
INC XL XL + 1 — XL 40 1 5
INC YL YL+ 1 - YL 50 1 5

INC UL UL + t —- UL 60 1 5

INC XH XH + 1 —~ XH FD 40 2 9
INC YH YH + 1 — YH FD 50 2 9
INC UH UH + 1 — UH FD 60 2 9

INC X X+ 1 =X 44 1 5
INC Y Y+ 1Y 54 1 5
INC U U+1-=U 64 1 5

ORA—-The accumulator is logically ORed with external
memory [(R), #(R), or (ab)] and the result is stored in
the accumulator. Change maytake place in the Z flag
only.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

ORA (X) AvX)— A 08 1 7
ORA (Y) Av(Y)—-A 1B 1 7
ORA (U) Av(U) - A 28 1 7
ORA (ab) Av(ab) - A ABab 3 13
ORA #(X) Av H#X)— A FD 0B 2 1
ORA #(Y) Av #Y) - A FD 1B 2 11
ORA #(U) Av#U) - A FD 2B 2 11
ORA #(ab) A v #(ab) — A FDABab 4 17
Comment—v - represents the OR operation

ORI—Logical OR of the accumulator or external memory
[(R), #(R). (ab), or #(ab)] with an immediate value. The
result is stored in the accumulator or the external mem-

ory as indicated. Change may take place in the Z flag
only.

. Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

ORI A Avi—A BB i 2 7

ORI (X).i X)vi— (X 4B i 2 13
ORI (Y).i Mvi- (M 5B i 2 13
ORI (U),i (V) vi-— (U 6B i 2 13
ORI(ab).i (ab) v i — (ab) EBabi 4 19
ORI #(X),i #X) vi—= #X) FD 4B i 3 17
OR! #(Y).i #Y)vi—~ #¥Y) FO 5B i 3 17
ORI #(U).i MUY vi— ¥ FDeBi 3 17
ORI #(ab),i #(ab) v i — #(ab) FDEBabi 5 23

SBC—The content of the internal register [RL or RH] or
external memory [(R), #(R).(ab), or #(ab)] including
the carry C is subtracted from the accumulator and
the result is stored in the accumulator. Change may
take place in C, H, Z, or V.

This operation can be expressed in the following
manner: The complement of the contents in the inter-
nal register, RL or RH, or external memory, (R). #(R).
(ab), or #(ab) is first obtained. Then the complement is
added into the accumulator including the carry C, and
the result is stored in the accumulator. Change may
take place in C, H, Z, or V.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

SBC XL A-XL-C= A 00 1 6
SBC YL A-YL-C-~ A 10 1 6
SBC UL A-UL-C- A 20 1 6
SBC XH A-XH-C— A 80 1 6
SBC YH A-YH-C - A 90 1 6
SBC UH A-UH-C- A AO 1 6
SBC (X) A-(x)-C- A o1 1 7
SBC (Y) A-(V)-C- A 11 1 7
SBC (V) A-(U)-C—- A 21 1 4
SBC (ab) A-(ab)-C — A At ab 3 13
SBC #(X) A-#X)-C-A FD 01 2 11
SBC #(Y) A-#(Y)-C—-A FD 11 2 11
SBC #(U) A-#U)-C—-A FD 21 2 11
SBC #(ab) A-#ab)-C —-A FDAtab 4 17

SBI—The immediate value including the carry C is sub-
tracted from the accumulator and the result is stored in

the accumulator. Change may take place in C, H, Z.
or V.

40 TRS-80 Microcomputer News, April 1983

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

SBI A.i A-i-C=A Bt i 2 7

COMPARISONS, BIT TESTS

Bll—The accumulator or external memory [(R), #(R). (ab), or
#(ab)] is logically ANDed with an immediate value. The
result of the test is in the Z flag. Change may take place
in the Z flag only.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

Bl A.i Ari=Z BF i 2 7

Bl (X).i Ari=2Z 4D i 2 10
Bl (Y).i MAri-2 5D i 2 10
BIl (U).i UWri=-2 6D 2 10
Bll (ab).i (ab)ri—-2 EDabi 4 16
Bl #(X),i OAi=2 FD 4D i 3 14
BIl #(Y),i rHMNri=2Z FD 5D 3 14

Bil #(L),i PN 2Z FD 6D i 3 14

Bil #(ab),i #ab)ri—- 2 FDEDabi § 20

Comment—A . represents the AND operation

BIT—The accumulator is logically ANDed with external
memory [(R), #(R). (ab), or #(ab)]. The result is in Z.
Change may take place in the Z flag only.

Hex

Moemonic Symbolic Operation Op-Code Byte Cycle

BIT (X) ArX) -2 OF 1 7
BIT () Ar) =2 1F 1 7
BIT (U) Ar(U) -2 2F 1 7
BIT (ab) AAr(ab) - Z AFab 3 13
BIT #X) Ar#X)y—2 FO OF 2 11

BIT #(Y) ArN#Y) -2 FD 1F 2 11
BIT V) Ar#U) - 2Z FD 2F 2 11
BIT #(ab) A A #ab) - Z FDAFab 4 17

CPA—Compares the contents of the accumutator with that of
the register, RL or RH, or external memory, (R), #(R),
(ab), or #(ab). Change may take placeinC, V, H, or Z.

Hex
Mnemonlc Symbolic Operation Op-Code Byte Cycle

CPA XL A-XL 06 1 6
CPA YL A-YL 16 1 6

CPA UL A-UL 26 1 6
CPA XH A-XH 86 1 6
CPA YH A-YH 96 1 6
CPA UH A-UH A6 1 6
CPA (X) A - (X) 07 1 7

CPA (Y) A-(M 17 1 7
CPA (U) A-(U) 27 1 7
CPA (ab) A - (ab) A7ab 3 13
CPA #(X) A - ¥(X) FD 07 2 11
CPA #(Y) A-HKY) FO 17 2 11
CPA #(U) A—#U) FD 27 2 1
CPA #(ab) A - #(ab) FDA7ab 4 17
Comment— If C z v H

A>°p 1 0 - "

A=0p 1 1 * ¢
A(op 0 0 ‘ *

V and H may change depending upon the arithmetic result of the
compare.

CPI—The content of the accumulator or the register RL or
RH, is compared with the immediate value, i. Change
may take place in C, V, H or Z.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

CPLA A-i B7i 2 7
CPI XL,i XL i 4E i 2 7

CPI YL.i YL —i 5E i 2 7
CPI UL, UL =i 6E i 2 7
CPI XH,i XH-i aC i 2 7

CPI YH,i YH -1 5Ci 2 7

CPl UH,i UH =i 6C i 2 7
Comment— If C z Vv H

(op)) i 1 0 * *
(op) = i 1 1 ¢ .

(op) (i 0 0 * .

V and H may change depending upon the arithmetic result of the
compare.

LOADS, STORES

ATT—The content of the accumulator is transferred to the T

register. All flags are subject to change depending on
the content of A.

Hex
Op-Code Byte Cycle

FD EC 2 9

Mnemonic Symbolic Operation

ATT A-T
Comment—T - Status Register

LDA—The content of the register, RL or RH, or external
memory [(R), #(R), (ab), or #(ab)] is loaded into tr
accumulator. When the content loaded is "00", it sets
the flag Z. No change is made with respect to other
flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LDA XL XL —- A 04 1 S
LDA YL YL—-A 14 1 5
LDA UL UL - A 24 1 5
LDA XH XH - A 84 1 5
LDA YH YH-A . 94 1 5

LDA UH UH - A A4 1 5
LDA (X) " -A .05 1 6
LDA (Y) M -A 15 1 6
LDA (U) Uy - A 25 1 6
LDA (ab) (ab) - A AS5ab 3 12
LDA #(X) #X) - A FD 05 2 10
LDA #(Y) #Y) - A FD 15 2 10
LDA #(U) #U) —- A FD 25 2 10
LDA #(ab) #(ab) - A FDA5ab 4 16

LDE—The content of the register R is decremented upon
loading the content of the external memory (R) into the
accumulator. Change may take place only in the Z
flag.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LDE X N -AX-1=X a7 1 6
LDE Y M=AY-1=-Y 57 1 6
LDE U U-AU-1-U 67 1 6

LDI—The immediate value is loaded into the accumulator,
register (RL or RH), or the stack pointer S. Only the
immediate value being placed in S may contain 2
bytes. When using LD! A,i the Z flag may change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LDV A i—- A B5i 2 6
LDI XL,i i = XL 4A 2 6
LDV YL, i - YL S5A i 2 6
LD UL,i i= UL 6A 1 2 6
LDl XH.i i = XH 48 i 2 6
LDl YH,i | - YH 58 i 2 6
LDl UH,i i - UH 68 i 2 6
LD S,ij i— SH,j—SL AA | 3 12

LDX—The content of the register R, stack pointer S, or
program counter P is loaded into the X register. No
change takes place in flags.

TRS-80 Microcomputer News, April 1983 41

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

LDX X X - X FD 08 2 1
LOXY Y - X FD 18 2 11
LDX U U-X FD 28 2 11
LDX S S-X FD 48 2 1
LDX P P—-X FD 58 2 11

LIN—Increments R upon loading the content of the external
memory (R) into the accumulator. Change may take

place only in the Z flag.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

LIN X (X) = A X+1 =X 45 1 6
LINY (Y) =AY+l =Y 55 1 6
LINU uU-AU+1 -U 65 1 6

POP—The contents placed on the stack by PSH is returned
to the accumulator, A or the register, R. POP incre-
ments S by one in the case of the accumulator, and
increments S by two in the case of a register. The Z
flag may change as a result of the POP.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

POP A (S+1) - AS+1 S FD 8A 2 12
POP X (S+1) — XH.

(S+2) - XL, S+2 - S FD OA 2 15
POP Y (S+1) = YH.

(S+2) - YL, S+2 -S FD 1A 2 15
POP U (S+1) — UH,

(S+2) - UL.S+2 - S FD 2A 2 15

PSH—The content of the accumulator A or register R is
stacked into the memory location specified by S. PSH
decrements S by one in the case of the accumulator,
and decrements S by two in the case of the register R.
No change takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

PSH A A-~(5).5-1-S FD C8 2 11
PSH X XL = (S).

XH - (§-1).5-2 =S FD 88 2 14
PSH Y YL = (S).

YH - (§5-1),5-2 =S FD 98 2 14
PSH U UL - (S).

UH - (5-1),5-2 =S FD A8 2 14

SDE—The register R is decremented after the content of the
accumulator is stored in external memory (R). No
change takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SDE X A~ (X). X=-1 =X 43 1 6
SDE Y A-MY-1=Y 53 1 6
SDE U A-@U).U-1-U 63 1 6

SIN—Theregister R is incremented after content of the accu-
mulatoris stored in external memory (R). No change
takes place in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SIN X A= (X). X+1 =X 41 1 6
SIN'Y A=(Y)Y+1 =Y 51 1 6
SINU A—-U.U+1 -U 61 1 6

STA—The content of the accumulatoris stored into register,
RL or RH, or into external memory [(R). #(R). (ab),
#(ab)]. No change takes place in flags.

Hex
Op-Code Byte CycleMnemonic Symbolic Operation

STA XL A — XL OA 1 5

STA YL A =YL 1A ! S
STA UL A — UL 2A 1 S

STA XH A — XH 08 1 5
STA YH A —-YH 18 1 5

STA UH A — UH 28 1 5
STA (X) A = (X) 0E 1 6
STA (Y) A —(Y) 1E 1 6
STA (U) A - (U) 2E 1 6
STA (ab) A — (ab) AE ab 3 12

STA #(X) A — #(X) FD OE 2 10
STA #(Y) A — #(Y) FO 1E 2 10
STA #(U) A — #U) FD 2E 2 10
STA #(ab) A — #(ab) FOAEab 4 16

STX—The content of the X register is stored into register R,
stack pointer S, or program counter P. No change
takes place in flags.

Hex
Mnemonic Symbolic Operation. Op-Code Byte Cycle

STX X | X — X FD 4A 2 11
STXY X—-Y FD 5A 2 11
STX U X-U FD 6A 2 1"
STX S X-S FD 4E 2 11
STX P X~P FD SE 2 11

TTA—The content of the T register is transferred to the
accumulator. The Z flag may change as a result of this
operation.

. Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

TTA T-A FD AA 2 9
Comment—T - Status Register

BLOCK TRANSFER, SEARCH
AEX—The high order 4 bit digit in the accumulator is ex-

changed with the lower order 4 bit digit.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

AEX F1 1 6

CIN—The content of the accumulator is compared with the
content of the external memory (X), the flags C. V,
H, and Z are set by the compare, then X register is
incremented.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

CIN A-(X) X+1 - X F7 1 7

DRL—Performs digit-to-digit forward rotation between the
accumulator and external memory, {(X) or #(X)]. No
change takes place with respect to flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

DRL (X) D7 1 12
DRL #(X) FO D7 2 16

A (X) or #(X)
DRR—Performs digit-to-digit backward rotation between the

accumulator and external memory [(X) or #(X)]. No
change takes place with respect to flags.

Hex
Op-Code Byte CycleMnemonic Symbolic Operation

DRR (X) 03 1 12
DRR #(X) FD D3 2 16

A (X) or #(X)
ROL—Forward rotation is made between the accumulator

and the flag C. Flags C. V, H. and Z are subject to
change. Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

RoL lg-—=1 to®
A

42 TRS-80 Microcomputer News, April 1983

ROR—Backward rotation is made between the accumulator

and the flag C. Flags C, V, H, and Z are subject to

change.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

AR o1
A

SHL—The content of the accumulator is shifted to the left.
Flags C, V, H, and Z are subject to change.

SHL *-<0 D9 1 6

SHR—The content of the accumulator is shifted to the right.
Flags C, V, H, and Z are subject to change.

SHR 0*- D5 1 9

TIN—The content of the external memory (X) is transferred
into the external memory (Y), the X and Y registers are
then incremented. No change takes place in flags.

Hex
Op-Code Byte CycleMnemonic Symbolic Operation

TIN xX) — ().
X+1 - X, Y+1 =Y FS 1 7

INPUT/QUTPUT
AMO—The contents of the accumulatoris transferred timer.

Since the timer is composed of a 9-bit polynomial
counter, the content of the accumulator is setin the 1st
through 8th bits of the counter and “0"is set in the Sth
bit. It causes no change in flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

AMO A — Timer (0-7)
0 — Timer (8) FD CE 2 9

AM1—Same as AMO, except that “1"”is set in the 9th bit. It
causes no flag changes.

AM1 A — Timer (0-7)
1 — Timer (8) FD DE 2 9

ATP—Sends the content of the accumulator to the external

data bus. It causes no flag change.
Hex
Op-Code Byte Cycle

FD CC 2 9

Mnemonic Symbolic Operation

ATP A — Data Bus

CDV—Clears the internal divider. It causes no flag changes.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

cov 0 — Divider FD 8E 2 8

HLT—The MPU is putinto ahalt state when this instruction is
executed, except that the divideris still in operation.
MPU operation can be resumed by means of the
interrupt. No changes in flags occur.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

HLT FD B1 2 9

ITA—The contents of the input IN is transferred to the accu-
mulator. Change may take place in the Z flag, but there
will be no change in other flags.

Hex
Op-Code Byte Cycle

FD BA 2 9

Mnemonic Symbolic Operation

1ITA IN — A

NOP—No operation

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

NOP 38 i 5

OFF—Resets the BF flip-flop. It causes no change in the
flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
OFF 0 - BF FD 4C 2 8

RDP—Resets display flip-flop.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

RDP 0 — Display FD CO 2 8

REC—Resets the carry flag C off. It causes no change in
other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

REC 0-C F9 1 4

RIE—Resets the Interrupt Enable (IE) flip-flop off. It causes r
change in other flags.

Hex
Op-Code Byte Cycle

FD BE 2 8
Mnemonic Symbolic Operation

RIE "0 —-IE

RPU—Resets the general purpose flip-flop PU off. It causes
no change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

RPU 0-PU E3 1 4

RPV—Resets the general flip-flop PV off. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

RPV 0 - PV B8 1 4

SDP—Sets display flip-flop.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

SDP 1 — Display FD C1 2 8

SEC—Sets the carry flag C on. It causes no change in other
flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SEC 1-C FB 1 4

SIE—Sets the Interrupt Enable (IE) flip-flop on. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SIE 1 =-IE FO 81 2 8

SPU—Sets the general purpose flip-flop PU on. It causes no

change in other flags.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle

SPU 1 - PU £l 1 4

SPV—Sets the general purpose flip-flop PV on. It causes no
change in other flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle

SPV 1 - PV A8 1 4

P

TRS-80 Microcomputer News, April 1983 43

Pocket Computer

PC-2 Assembly Language-Part 3
By Bruce Elliott

This is the third in a series of articles which will describe
the MPU (microprocessor unit) used in the Radio Shack
PC-2 pocket computer. It is our intention to include specific
information about the 8-bit CMOS microprocessor, the ma-
chine code used by the microprocessor, as well as informa-
tion about the PC-2 memory map, and certain ROM calls
which are available. Please realize that much of what we
are talking about refers to the overall capabilities of MPU,
and does not imply that all of these things can be done with a
PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occurin the articles, but can not reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One and Twoofthis series were published in the March
and April issues, respectively.

JUMPS/BRANCHES

BCH—Causes a relative jump to a new program area that is
determined by adding/subtracting the immediate
value i to/from the program counter P.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BCH +1 P+i—P 8E i 2 8
BCH - P-i—-P SE i 2 9

BCR—Conditional relative jump instruction. The relative
jump is made when "C=0" If “C=1" control pro-
ceeds to the next instruction. It causes no flag
changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BCR +i fC=0 P+i=P 81i 2 8-11
BCR -i tC=0 P-i-P 91 2 8-11

Comment—Iif C=1, no jump

BCS—Conditional relative jump instruction. When the condi-
tion “C=1"is met, a relative jump is made to the
program area that is found after adding/subtracting
the immediate value i to/from the program counter P. If
“C =0", control proceeds to the next instruction with-
out making the relative jump. It causes no flag
change.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BCS +1 tC=1 P+i=P 83 2 8-11
BCS-i fC=1 P-i=P 93 2 8-11

Comments—if C =0, no jump

BHR—A relative jump is made when “H=0". If "H=1"
control proceeds to the next instruction. It causes no
flag changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BHR +i ifH=0 P+i=P 85i 2 8-11
BHR - ifH=0, P-i=P 95 i 2 8-11
Comment—if H=1, no jump

BHS—A relative jump is made when “"H=1"|f "H=0" con-
trol proceeds to the next instruction. It causes no flag
changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BHS +i ftH=1 P+i—-P 87 i 2 8-11
BHS -i tH=1 P-i—-P 97 i 2 8-11

Comment—if H=0. no jump

BVR—A relative jump is made when “V =0"1f “V =17 control
proceeds to the next instruction. It causes no flag
changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BVR +i ifV=0,P+i—-P 8D 2 8-11
BVR -i ifV=0 P-i—-P 9D i 2 8-11

Comment—if V=1, no jump

BVS—A relative jump is made when "V =1"1f "V =07 control
proceeds to the next instruction. It causes no flag
changes.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BVS +i fVv=1 P+i-P 8F i 2 8-11
BVS-i ifv=1 P-i=P oF 2 8-11

Comment—if V=0, no jump

BZR—A relative jump is made when “Z=0"1f “Z= 1" control
proceeds to the next instruction. It causes no flag
changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
BZR +i ifZ=0 P+i—P 89 i 2 811

BZR-i ifZ=0 P-i—-P 99 i 2 8-11
Comment—if Z=1, no jump

BZS—A relative jump is made when “Z=1"1f"Z=0", control
proceeds to the next instruction. It causes no flag
changes.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
BZS +i fZ=1,P+i-P 8B i 2 8-11
BZS -i fZ=1 P-i=P 9B 2 8-11
Comment—if Z=0. no jump

JMP—Causes a jump to a new program area implied by the
immediate value in the second and third bytes. It
causes no flag change.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
JMP ijj i—PH, |—PL BAij 3 12

TRS-80 Microcomputer News, May 1983 33

LOP—This instruction causes a relative jump to a new pro-
gram area if, when UL is reduced by 1, no borrow
occurs (i.e., UL remains positive or zero). The new
program area is determined by subtracting the imme-
diate value i from P. If a borrow occurs when UL is
reduced by 1, no jump takes place and execution
proceeds to the next instruction. It causes no flag
changes.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
LOP UL, UL-1-=UL 88 i 2 8-11
Comment—it borrow =1, no jump; if borrow =0, P-i—-P

CALLS

SJP—Makes a subroutine jump to the address specified by
the immediate values i and j. At the same time, the
address of the next instruction is stored in the stack. It
causes no flag changes.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
SJP PL—(S). PH—(S-1), BE i| 3 19

$-2-S,i—PH, j—-PL

VCR—Conditional vector subroutine jump. When “"C =0,
the vector subroutine jump is performed. If “C = 1', the
control proceeds to the next instruction. The Z flag is
reset after the jump. VCR uses FFOO through FFF6 as
its vector address table, and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VCR i itC=0, Cti 2 8-21

PH—(S - 1), PL—~(S)
(FFab)—PH, (FFab + 1)—PL
S-2-8

Comment—if C=1, no jump, ab = Hex digits in i

VCS—Conditional vector subroutine jump. When “C=1", it
performs the vector subroutine jump. If “C=0" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VCS uses FFOO through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VCS i HC=1, C3i 2 8-21

PH—~(S-1), PL—(S)
(FFab)—PH, (FFab + 1)—PL
S-2-S

Comment—if C=0, no jump, ab = Hex digits in i

VEJ—Vector subroutine jump. VEJ is a one byte instruction
which makes a subroutine jump based on a vectored
address. The vector table is located in memory from
FFOO to FFF6. The Z flag is reset after the vector jump
is executed.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
VEJ (ab) PL—(S). S-1—S
VEJ (CO) PH—(S). S-1-=S Co 1 17
VEJ (C2) (FFab)—PH Cc2 1 17

VEJ (C4) (FFab+ 1)—PL ca 1 17
VEJ (C6) C6 1 17
VEJ (C8) C8 1 17
VEJ (CA) CA 1 17
VEJ (CC) CC 1 17

VEJ (CE) CE 1 17

VEJ (DO) DO 1
VEJ (D2) D2 1 17
VEJ (D4) D4 1 17
VEJ (D6) D6 1 17
VEJ (D8) D8 1 17
VEJ (DA) DA 1 17
VEJ (DC) DC 1 17
VEJ (DE) DE 1 17
VEJ (EO) EO 1 17
VEJ (E2) E2 1 17
VEJ (E4) E4 1 17
VEJ (E6) E6 1 17
VEJ (EB) E8 1 17
VEJ (EA) EA 1 17
VEJ (EC) EC 1 17
VEJ (EE) EE 1 17
VEJ (FO) FO 1 17
VEJ (F2) F2 1 17
VEJ (F4) Fa 1 17
VEJ (F6) F6 1 17
Comment—Where, "ab" is the instruction code of VEJ.

VHR—Conditional vector subroutine jump. When “"H=0"
the vector subroutine jump is performed. If "H=1"
the control proceeds to the next instruction. The Z fla
is reset after the jump. VHR uses FFOO through FFFb
as its vector address table and the values 00 through
F6 are valid for the immediate value.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
VHR i it H=0, C5i 2 8-21

PH—(S-1), PL—(S)
(FFab)—PH, (FFab+ 1)—PL
S-2-S

Comment—if H=1, no jump, ab = Hex digits in i

VHS—Conditional vector subroutine jump. When “H=1" it
performs the vector subroutine jump. If "H=0" the
control proceeds to the next instruction. The Z flag is
reset after the jump. VHS uses FFOO0 through FFF6 as
its vector address table and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VHS i tH=1, C7i 2 8-21

PH—(S - 1), PL—(S)
(FFab)—PH, (FFab + 1)—PL

S-2-8
Comment—it H=0, no jump; ab = Hex digits in i

VMJ—Vector subroutine jump. VMJ is the subroutine jump
that branches to a vectored address, of which the
high order byte is composed of “FF'’ and low order
byte is composed of the immediate value i. Note that
the Z flag is reset after the vector jump, when VMJ is
executed. VMJ uses FFOO through FFF6 as its vector
address table, and the values 00 through F6 are valid
for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
VMJ i PL—(S). S-1=S CDi 2 20

PH—(S). S-1-=S
(FFab)=PH

(FFab+ 1)—-PL
Comments—ab = Hex digits in i

VVS—Conditional vector subroutine jump. When "V =1" it
performs the vector subroutine jump. If “V=0" the
control proceeds to the next instruction. The Z flag 1s
reset after the jump. VVS uses FFOO through FFF6 as

34 TRS-80 Microcomputer News, May 1983

its vector address table and the values 00 through F6
are valid for the immediate value.

Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
WSi V=1, CFi 2 8-21

PH—(S-1). PL=(S)
(FFab)—PH, (FFab + 1)—PL
S-2-S

Comment—if V=0, no jump; ab = Hex digits in i

VZR—Conditional vector subroutine jump. When "Z =0’ the
vector subroutine jump is performed. If “Z=1" the

control proceeds to the next instruction. The Z flag is
resetafter the jump. VZR uses FFOO through FFF6 as
its vector address table and the values 00 through F6

are valid for the immediate value.
Hex

Mnemonic Symbolic Operation Op-Code Byte Cycle
VZR i if 2=0, C9i 2 8-21

PH—(S-1), PL—(S)
(FFab)—PH, (FFab + 1)—PL
S-2-§

Comment—if Z=1, no jump; ab = Hex digits in i

VvZS —Conditional vector subroutine jump. When “Z=1" it

performs the vector subroutine jump. If “Z=0" the

control proceeds to the next instruction. The Z flag is
reset after the jump. VZS uses FFOO through FFF6 as
its vector address table, and the values 00 through F6
are valid for the immediate value.

Hex
Mnemonic Symbolic Operation Op-Code
VZSi ifZ=1, CBi

PH—(S-1), PL=(S)
(FFab)—~PH, (FFab + 1)—PL
§$-2-S

Comment—if Z=0, no jump; ab = Hex digits in i

Byte Cycle
2 8-21

RETURNS

RTI—Return instruction from the interrupt subroutine to the
main routine. All flags are subject to change.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
’TI (53 +1)=PH, 8A 1 14

(S+2)-PL,

(S+3)-T,
S+3-S

RTN—Return instruction from a subroutine to the calling
routine. RTN causes no changes in the flags.

Hex
Mnemonic Symbolic Operation Op-Code Byte Cycle
RTN (S+1)—-PH, 9A 1 11

(S+2)—-PL,
S+2-S

TIMER

The timer is composed of a 9-bit polynomial counter and
the time duration can be set using the AMO and AM1 instruc-

tions. This counteris in operation at all times, so it needs to be

set to 000 (Hex) before being used. A timerinterrupt request

can be generated when the content of the counter is 1FF

(Hex), if Interrupt Enable IE is on.
When a timerinterrupt occurs, interrupt processing be-

gins at the address specified in addresses FFFA and FFFB.

When a 4MHz crystal oscillator is used, the clock
produces a oF of 31.25KHz with a cycle of 32 microseconds.
In other words, the timer counter is incremented once every
32 microseconds.

_L—_XLO Divider

4MHz
c— gFosD

2 1 500 250 125 62.5 31.25
MHz MHz KHz KHz KHz KHz KHz

@ D (D @ 0 b 0o

EEODDODODEBO000 8
OOEEDEEDDODaa
DOEEOOODBa B
oGOEIOdOooD e

TRS-80 Microcomputer News. May 1983 35

Pocket Computer

PC-2 Assembly Language—-Part 4
By Bruce Elliott

This is the fourth in a series of articles which describe the Hex

MPU (microprocessor unit) used in the Radio Shack PC-2 Mnemonic Symbolic Operation Byte

pocket computer. It is our intention to include specific infor- ADI #(X).i #X) + i — #(X) FD 4F i 3

mation about the 8-bit CMOS microprocessor, the machine ADI #(Y). #Y) + i = #(Y) FD SF 3

code used by the microprocessor. as well as information ADI(@), (abj% 1 = () EFab: 4

about the PC-2 memory map, and certain ROM calls which :g: Sz))' &J)) . i' - ((;’)) ig: z

are available. Please realize that much of what we aretalking ADI (Y):: M +i- M SF i 2

aboutrefers to the overall capabilities of the MPU, and does ADI Al A+i+C—A B3i 2

not imply that all of these things can be done with a PC-2.
The information provided in these articles is the only ADR U UL + A = UL FD EA 2

.nformation which is available. We will try to clarify any ambi- ADR X XL + A= XL FD CA 2

gutties which occur in the articles, but can not reply to ques- ADRY YL+ A=YL FD DA 2

tons outside the scope of these articles. Further, published

copies of TRS-80 Microcomputer News are the only source A

of this information, and we will not be maintaining back is- AEX 7 al{3 o F1 .

sues. Parts One, Two and Three of this series were published u

'n the March, April, and May 1983 issues, respectively.
The first three articles described the MPU used in the

BC-2, including information on the MPU's structure and its
machine language. We also gave you details on the AMO A — Timer (0-7) FO CE 2

PC-2 memory map and the locations of ROM routines which 0 - Timer (8)

are available. 1n thus article we will present two lists which we AM1 A — Timer(0-7) FD DE 2

nope will make finding a particular machine language in- 1 = Timer (8)

truction easier. We will alsc provide some information on AND#ab) AN Kab) — A D A% a b .

';;z\giis?%lé might begin to use the information we have AND #(U) AAHU) — A £D 29 ”

' AND #(X) AAH#X) —~ A FD 09 2
AND # A A KY) = A FD 19 2

ALPHABETIC OP-CODE LIST D6y AA oay :
The following list presents the PC-2 machine language AND (U) AA(U) = A 29 1

instructions alphabetically aiong with each code's symbolic AND (X) AA(X)— A 09 1

operation and its hex op-code, and byte count. AND (Y) AA(Y)—=A 19 1

Parts two and three of this series presented the same

information arranged according to function and provided 2:: :ES?)_-' :E;?’A’_' "#’:l(j;b) *;g ggéb' g
S ; ; (U).i - ;

details on how the instructions work. ANI #00, ¥OO A i = #0X) D 49 | 3

Hex ANL #(Y),i #Y) A i = #Y) FD39i 3

Mnemonic Symbolic Operation Op-Code Byte ANI(ab),! (ab) A i = (ab) E9abi 4

ADC #(ab) A+ #ab) + C —~ A FDA3ab 4 ANt (U),i VA= (U 69 2

4DC #(U) A+ #(U) + C —~ A FD 23 2 ANI (X).1 X) A= (X) 49 2

ADC #(X) A+ #X) + C— A FD 03 2 ANI (Y).i MAi—=(Y) 59 i 2

ADC #(Y) A+ #(Y) + C =A FD 13 2 ANI Ai Ani—A B9 i 2

ADC (ab) A+(ab)+C —A A3ab 3

A0C (U) A+U)+C—A 23 1 ATP A — Data Bus FD CC 2

ADC (X) A+(X)+C~—A 03 1
ADC (¥) A+M+C—A 13 1 ATT A—T FD EC 2

ADC UH A+UH+C—A A2 1
ADC UL A+UL+C—A 22 1 BCH+i P+i—P 8E i 2

ADC XH A+XH+C—A 82 1 BCH -i P-i=P 9E 2

ADC XL A+XL+CT—=A 02 1
ADC YH A+TH+C—A 92 1 BCR+ 1 fC=0,P +i—P 81i 2

ADC YL A+YL+C—A 12 1 BCR- i fC=0,P-i—~P 911 2

ADI #(ab). #ab) + 1 — #(ab) FDEFabi 5 BCS+ i tC=1,P+i-P 83i 2

ADI #(U).! #U) + | — #(U) FD 6F i 3 BCS- i fC=1,P-i=P 93i 2

TRS-80 Microcomputer News, Sepiember 1983 21

Mnemonic

BHR+

BHR - ¢

BHS + 1

BHS -1

Bl #(ab).i

B #(U).1

Bl #(X).i
BH #(Y).:

Bl (ab).:

Bit (U).1

BH (X).i

BH (Y).i

Bit A

BIT #(ab)
BIT #(U)
BIT #(X)
BIT #(Y)
BIT (ab)
BIT (U)
BIT (X)
)

BVR + |

BVR - |

BVS+

BYS - .

8ZR+

BZR-

BZS+ 1

BZS-

Cbv

CIN

CPA #(ab)

CPA #(U)

CPA #(X)
CPA #(Y)
CPA (ab)

CPA (U)

CPA (X)
CPA (Y)
CPA UH

CPA UL
CPA XH

CPAXL

CPA YH

CPA YL

CP! AL

CPIURH

CPIUL.:
CPI XH :

CPl XLt

CPIYHT

CPIYL..

DCA #(U)
DCA #(X)
DCA #(Y)

>
P
2
>
2
>
D
P
p
P
P
r
r
r
>
r
>
r
>
»

>

)

Symbolic Operation

fH=0.P +i—-P

fH=0,P -1 =P

fH=1 P+ 1 =P

tH=1,P -i—=P

#ab)Ai = Z

FIHOAI~2Z

#X)A 1~ 2
tVYA1—= 2

(ab)ar = 2

War—2

Xyar =2
Mai—2Z

AA: =7

A A #ab) - Z
AA#U) —Z
AN#X) —2
AAKY) =2
AA(@b) —~2

AAU)—~Z
AANX)—= 2
An()—~2

fVv=0.P+ 1P

fV=0,P -i—P

fV=1.P+i—P

fV=1P -1 —~P

fZ=0.P +i—P

fZ=0.P -~ P

HZ=1.P +1i =P

fZ=1,P -1 =P

0 — Divder

(X). X+1 —= X

- #(ab)

- #U)
- #(X)
- #(Y)

- (ab)

- (V)

(X)

-
- UH

- UL

- XH

- XL

- YH

- YL

A -

UH -

UL -
XH - i

XL -

YH -1

YL -

A+ 44U +C—-A

A+#X)+C—A

A+ #Y)+C—A

Hex
Op-Code

851
95 i

87 i
97

FOEDabi

FD 6D i

FD 4D i

FO50Di

EDabi

6D

4D i

5D

BF i

FODAFab

FD 2F

FD OF

FD 1F

AFab

2F

OF

1F

8D
9D i

8F i
9F i

89 i

99

8B
9B i

FD 8E

F7

FDA7ab
FD 27
FD 07
FD 17

A7 ab

27

07

17

A6

26
86

06

96
16

B7

6C i

6E i

aC i

4E i

5C

5E i

FO AC
FD 8C
FD 9C

Byte

N
N

N
N

B
W
W
W
L
W
O
M

-
-
2
W
S

N
N

N
N

—
N
N
N

N
N
N

Mnemonic

DCA (U)

DCA (X)

DCA (Y)

DCS #(U)
DCS #(X)
DCS #(Y)
DCS (U)
DCS (X)
0CS (Y)

DEC A
DEC U
DEC UH
DEC UL
DEC X
DEC XH
DEC XL
DECY
DEC YH
OEC YL

DRL #(X)
DRL (X)

DRR #(X)
DRR (X)

EAl i

EOR #(ab)

EOR #(U)
EOR #(X)

EOR #(Y)
EOR (ab)

EOR (U)

EOR (X)

EOR (Y)

HLT

INC A
INC U
INC UH
INC UL
INC X
INC XH
INC XL
INC Y
INC YH
INC YL

ITA

JMP i}

LDA #(ab)
LDA #(U)
LDA #(X)
LDA #(Y)

Symbolic Operation

A+ U)+C-A

A+ (X)+C—-A

A+ Y)y+C—~A

A-#U)-C—A
A-#X)y-C—-A
A-#Y)-C—A
A-U)-C—~A
A-(X)-C—A
A-Y)y-C—-A

A-1—-A

Uu-1-=-yu

UH - 1 —= UH

UL -1 —-UL

X-1-X

XH -1 =+ XH

XL -1 —-XL

Y-1=Y

YH - 1 = YH

YL -1-=YL

A (X) or #(X)

A (X) or #(X)

A®i—~A

A ® #(ab) - A
A ® #U) - A
A® H#X) — A
A ® #(Y) — A
A® (ab) — A
A®(U) — A
AB(X) — A
AB(Y) - A

A+ 1—A

u+1 -y

UH + 1 = UH

UL +1-=UL

X+1-X

XH + 1 - XH

XL +1 = XL

Y+1-Y

YH + 1 = YH

YL+ 1 =YL

IN = A
L Vi AL

i—~ PH, j— PL

#(ab) — A
#U) — A
#X) = A
#Y) = A

FD 2C
FD oC
FD 1C

0oC
1C

DF

FD 62
62
46
FD 42
42
56
FD 62
52

FD D7
o7

FD D3
D3

BDi

FDADab

FD 2D

FD 0D

FD 1D

ADab

2D

0D

1D

FD B1

DD
64
FD 60
60
44
FD 40
40
54
FD 50
50

FD BA

BAij

FDASab
FD 25
FD 05

FD 15

Byte!

—
-

-
N
N

—
_
D
)

e
N
N

=
-

A
N

A
=
N

=
2
N
—

=
N

=
=
a
W
N
D
N
O
E

N
n

w
N
D
N

S

22 TRS-80 Microcomputer News, September 1983

Hex
Mnemonic Symbolic Operation Op-Code Byte Mnemonic Symbolic Operation g;::ode Byte

LDA (ab) (ab) — A A5ab 3 PSH A A—=(S).S~-1~=5S FD C8 2
LDA (U) U) —~ A 25 1 PSH U UL — (S).
LDA (X) X) = A 05 1 UH = (S-1).8-2 =S FD A8 2
LDA ())= A 15 1 PSH X XL = (S).
LDA UH UH = A A4 1 XH = (S-1),$-2 =8 FD 88 2
LDA UL UL — A 24 1 PSH Y YL = (S).
LDA XH XH = A 84 1 YH = (S-1),$-2 =S FO 98 2
LDA XL XL = A 04 1
LDA YH YH = A 94 1 RDP 0 — Display FD CO 2
LDA YL YL— A 14 1 DA are

REC 0—=CALK F9 1
LDE U (U =AU-1-U 67
LDE X (X) = AX=1—=X 47 RIE 0—1IE . "pry v FD BE 2
LDE Y N=AY-1-Y 57 A

LDI A i~ A B5 i 2 l . B "‘
LDI S.ij | = SH. | = SL AA] 3 ROL bB !
LDI UH.i i = UH 68 i 2 A
LDI UL.i i = UL BA i 2
LOI XH.i i — XH 48 i 2 m
LOI XL.i i = XL 4A 2 ROR D1 1
LD! YH.i i - YH 58 i 2 A
LDI YL,i i - YL 5A | 2

LDX P P — X FD 58 2 RPU 0~ PU €3 !
LDX S S~ X FD 48 2 RPV 0~ PV 88 1

LDX U U—X FD 28 2
LDX X X = X FD 08 2 RTI (S + 1) = PH, 8A 1
LDX Y Y = X FD 18 2 (S + 2) - PL,

S+3)—~T
LIN U Uy = AU+1 = U 65 1 S+3-=5S
LIN X (X) = AX+1 =X 45 1
LINY M=AY+1 =Y 55 1 RTN (S + 1) = PH. 9A 1

(S +2) - PL,
LOP UL.i UL - 1= UL 88 i 2 S+2-5

f borrow = 0. P -1 =P

SBC #(ab) A - #ab) - C— A FDAlab a4

NOP 38 1 SBC #(U) A-#U) -C—A FD 21 2
. SBC #(X) A - #X) - C-A FD 01 2
OFF 0 - BF FD 4C 2 SBC #(Y) A - #(Y) - C— A FD 11 2

SBC (ab) A -(ab) -C~A Alab 3
ORA #(ab) A v #a@b) = A FDABab 4 SBC (U) A-U-C-A 21 1
ORA #(U) Av #U) — A FD 2B 2 SBC (X) A-(X)-C—-A 0 1
ORA #(X) A v #X) = A FD 0B 2 SBC (Y) A-(Y)-C—A 1 1
ORA #(Y) A v #Y) = A FD 1B 2 SBC UH A-UH-C—A AO 1
ORA (ab) Av(ab) = A ABab 3 SBC UL A-UL-C-A 20 1

ORA (U) Av(U) = A 2B 1 SBC XH A-XH -C~A 80 1
ORA (X) Av(X)— A 0B 1 SBC XL A-XL-C~A 00 1
ORA (Y) Av(Y)—~A 1B 1 SBC YH A-YH-C—A 90 1

SBC YL A-YL-C—A 10 1

OR! #(aby).i #(ab) vi — #(ab) FDEBabi 5 _ o
ORI #{U).i KU)vi — #U) FD 68 i 3 SBIA.i A-i-C=A B1: 2

oRl o X v #09 FD 48 3 SDE U A= (U)U-1-U 63 1
(Y).1 #Y)vi = #Y) FD 5B i 3

ORI (ab). (ab) v i — (ab) EBabi 4 SDE X A= (X). X1 =X 43 !
: : . SDE Y A= (Y),Y=1=Y 53 1

ORI (Uy,i Uyvi— () 6B i 2

ORI ().) vi—~X) 4B 2 SDP 1~ Display . ; <t.c FDCI 2
ORI (Y).i Mvi—=(5B i 2
ORI A.i Avi—+A BB 2 SEC 1=C A0 - FB 1

POP A (S+1) = A, S+t =S FD 8A 2 -
POP U (S+1) = UH, SHL 7 0 }4—0 09 1

(S+2) - ULS+2 —~ S FD 2A 2 A
POP X (S+1) = X,

(S+2) =+ XLS+2 = S FD OA 2 l

POP Y (S+1) = YH, SHR 0=’ O*H 05 ’
(S+2) = YLS+2 =S FD 1A 2 A

TRS-80 Microcomputer News. September 1983 23

Hex Hex

Mnemonic Symbolic Operation Op-Code Byte Mnemonic Symbolic Operation Op-Code Byte

SIE 1 = IE FD 81 2 VEJ (DE) DE 1
VEJ (EO) EO 1

SINU A-(U,U+1-U 61 1 VEJ (E2) E2 1
SIN X A= (X)X+1 =X 41 1 VEJ (E4) E4 1
SINY A-MY+1 =Y 51 1 VEJ (E6) E6 1

- VEJ (EB) E8 1
SJP PL = (S),PH = (S-1). BEij 3 VEJ (EA) EA 1

§-2-8i-PH VEJ (EC) EC 1
j—~PL VEJ (EE) EE 1

VEJ (FO) FO 1
SPU 1 - PU E1 1 VEJ (F2) F2 1

VEJ (F4) F4 1
SPv 1=PV A8 1 VEJ (F6) F6 1

STA #(X) A - #(X) FD OE 2 (FFab) - PH

STA #(Y) A = #Y) FD 1E 2 (FFab+1) —= PL
STA (ab) A — (ab) AEab 3 §S-2-9S

STA (V) A -~ (V) 2E 1 '

STA (X) A= (X OE ! VHS | tH=1, c7 i 2
STA (V) A=) 1E ! PH— (S-1), PL = (5)
STA UH A — UH 28 1 (FFab) — PH
STA UL A - UL 2A 1 (FFab+1) — PL
STA XH A~ XH 08 1 S-2-5
STA XL A — XL 0A 1
STA YH A - YH 18 1 , .

M PL—+(S).S-1—
STA YL A - YL 1A 1 M1 PH_,(Q)SS_1_,SS co! 2

STX P X = P FD SE 2 (Freo ~ab+1) = P
STX S X—S FD 4E 2 (; -
STX U X - U FD 6A 2 . , .

VS fV=1, F

STXY X—Y FD SA 2 (FFab) — PH
(FFab+1) — PL

TIN 00 = M), F5 1 S-2-5§
X+1 =X, Y+1 =Y

VZR i it Z=0, C9i 2

FFab) —P
VCRi fC=0, Cti 2 EFF22)+1) .}jpl_

PH = (S-1),PL = (S) S - 2 =S
(FFab) — PH
gFabz“-‘)s* PL VZS | itz=1, CBi 2
~—ec= PH = (S-1), PL—(S)

FFab) —=PH
VCS i fC=1, C3i 2 EFF:b)"' 1) —=PL

PH — (S-1),PL = (S) S - 2 S

(FFab) - PH
(FFab+1) — PL P

§-2-8 - . 2 ‘

VEJ (CO) PL—~(5).S-1~S co 1 — I
VEJ (C2) PH—(5).S-1—8 c2 1 o9 &, (e
VEJ (C4) (FFab) — PH c4 1 N - L ol e

s AT E 1 gg;::fi:fifi:::::“VEJ (C8) c8 1 ca
VEJ (CA) CA 1 DGeGEeOoaean
VEJ (CC) ce ! PEeEsnEsdddcoooa
VEJ (CE) CE 1 v Co :
VEJ (D0) DO 1

:,(Ej :83 gi } NUMERIC OP-CODE LIST
VEJ (D6) D6 1 The following list presents the PC-2 machine language

VEJ (D8) D8 1 instructions numerically and includes the hex and decimal

VEJ (DA) DA 1 values for the op-codes. Numeric values which are missing

VEJ (DC) 0C 1 from the list have no valid op-code that we are aware of.

24 TRS-80 Microcomputer News, September 1983

Hex Decimal | Hex Decimat Hex Decimal
Value | Value Value Opcode Value Value Opcode

| Bl (Y} Co 192
193 |

i ADI(Y).: C2 194
g -

T

£
0

8
0

L
s
G

<3 2

3

3 3 vES (00
L0 CRLuL 1 204 ROR
AN ADI L) D2 210 VEJ (02}

o o e o N } T -
= & w 5) & 1y & &

.fl
.fl
.

PG
ok -4

 &

5O A0 DCA
20 ' BYR o 224 YEJ (20}
8F 142 B+ = 235 SPU
aF 143 WS+ g2 206 VEJ2

i 227 RPU

cad
235 ab:

P37 ab:

253 08)
253 09 AND #X
25310 POPX
253 11 ORA #i2

 i

e

 b EOR (a0

Lab siT {éfil};z.e

o
o

e
g
e

e i

Ei) 11 25
FD 13 25
= =, o2

1 o W

R
b
e
e
s

TRS-30 Microcomputer News. September 1083 25

X Decimal Hex Decimal

ue Vaiue Opcode Value Value

253 30 STA #i7)
BIT #(7"

FD ?8%
FO 8F P

B
0
D

n
n
e
n

D
L
G

HOW DO | USE ALL THIS?

The prnmary advantage of machine language over

BASIC 's speed. Your PC-2 has a very complete BASIC so

there really isn t a iot of reasonto program n machine lan-

guage uniess you are locking for a speed advantage. Lets

icox ata c\;upe of programs which will demonstrate how fast

machine ‘anguage 1s compared to BASIC.
What we wili do s write a BASIC program which will

reverse eacn graphic point on the PC-2's LCD display Any

point which 1s black (on) will be turned white (off) and any

point wnich is off wiil be turned on. We will then snowyou a

similar program in macnine language. This shouid let you

compare the speeds of the two languages.

~First the BASIC program:

WALT 9
CLS

GCURSOR 3
. REM SHIFT PRINTING RIGHT SLIGHTLY

PRINT "Microcomputer News'

FOR I=8 TO 155
: REM GRAPHIC COLUMNS

GCURSOR L

. REM SET GRAPHIC CURSCR

A=POINT I
: REM STORE COLUMN VALUE

B=d
: REM NEW COLUMN - ALL POINTS

¥OR J=6 TQ ¥ STEP ~1

: REM EXAMINE DOTS

C=INT{A/27J)

: POINT ON QR OFF (i

IF C=9 LET B=Bs+27J

: REM TURN ON IF OFF

A=A-Ck2°]
: REM GET READY

NEXT J
" : REM DO NEXT DOT
GPRINT 3;

: REM PRINT REVERSED COLUMN

294
21
N
-.

239
249

OFF

OR 4)

FOR NEXT POINT

Hex Decimal
Opcode Value Value Opcode

FDASab 283 16%an AND #(ab)
FO AA 253 170 TTA

53171anbL()HBHU ORA #at)
D 3

283 172

Bl #qu‘ '
ADI #(Uy

FOEQ ab: 253233 ab ANI #(ab

SBC #iab) FD EA 25\‘ 234 ADR U
ADC #tabi FD ERB 3 2C ORI #(abl.:
LD aby F o AT

348 NEXT 1

- REM DO NEXT COLUMN

358 GOTu 35¢

To use the program. enter it into your PC-2. Change line
230 to print what ever you wish on the LCD. When you runtne
program, the LCD wiil be reversed one column at a tme irom

left to night.
Letsiock at a machine language programto do the same

thing:

WALT ¢
CLS
GCURSOR 3
PRINT "TRS-3¢ pC-2"
POKE 18409, 72, 118,

78. 153, 8
POKE 18421, 76,

18, 154
89 CaLl 184¢9

1d
29
30
49
59 74, &, 5, 189, 255, 65, 78,

6 119, 139, 6, 72, 119, 74, @, 158,

Looks kind of like a BASIC program doesn't it?
With the PC-2. you will normally use BASIC as a "venr-

cle” for getting the machine language routing into the com-
puter and then executing it

Lines 10-40 of this second program (00k a lot like the first
four ines of our first program. and they do the same things—
housekeeping and getting something on the LCD so the
program can reverse it.

Lines 50 and 60 conta:n the actual machine code for our

program. POKE is a PC-2 command which tells the computer

to "poke’ values into memory. The first value following POKE

(18409 and 18421) tells the computer where in memary (0
start poking and the remaining values are the values tc be
POKEd into successive memory locations.

The CALL statement in ine 80 tells the PC-2to “jump™ 1o

the memory location specified (184089) and begin executmg

the program it finds there. If you have the comouter jump 10 &

26 TRS-80 Microcomputer News. Septemper 1983

memory location and the location does not begin a valid
program, your PC-2 may freeze or perform in an unpredict-
able manner.

The GOTO 100 statement in line 100 “freezes” the LCD
and lets you see the result of the reversal.

If you have entered and RUN the second program, you

should have noticed that your message was printed on the
display and then, almost instantly, the LCD was reversed.
Quite a bit faster than BASIC’s many seconds to reverse the
screen.

This second program was copied from pages 62 and 63
of your PC-2 Owner's Manual. Add lines 70 and 90 from
those pages to see multiple reversals. | numbered the first

program in so that both programs can be in memory at the

same time for comparisons of their speed.

DISASSEMBLY

You may be curious about how the machine code in lines
50 and 60 are able to reverse the display. To find out, we need
to “disassemble” the machine code. The term “disassem-
ble” means to take the hexadecimal (hex) or decimal values
which represent a machine code program and to translate
those values into more recognizable assembly language op-
eration codes (op-codes.) Once you have the op-codes you
will be better able to understand the logic that makes the
program work.

Here is how | went about disassembling the machine
code from lines 50 and 60:

1. Find the first value which represents an instruction to
the computer. This is the value 72 in line 50. We know
thatthis is a decimal value because a hex value (on the
PC-2) is preceded by an ‘&'

2. Locate the value 72 in the numeric op-code list. Re-
member that the decimal values are in the second
column. The listing looks like this:

Hex Value Decimal Value Op-Code

48 | 72 LDI XH.i

The Op-code is LDI XH, .

3. The ‘I’ in the op-code tells us that this instruction
requires another value to be complete.

4. A quick check in the alphabetic listing givesthis listing
for LDI XH,i:

Hex
Mnemonic Symbolic Operation Op-Code Byte

LDI XH.i i = XH 48 i 2

Mnemonic is just another word for op-code. The sym-
bolic operation tells us that the value ‘i’ is stored into ‘XH'
(the high 8-bits of the 16-bit X register). We already knew
the Hex Op-Code. The ‘Byte’ informationtells us that this
instruction requires two bytes (two values.)
Since this command requires a second value, we go
back to line 50 in the BASIC program and get the next
value (118).

5. | now have two values (72 118) which represent an
instruction to the computer. The instruction translates
as: Load the high portion of the X register with the
decimal value 118.

6. | would now go back to line 50, get the next available
value (74) and continue with steps 2-5 until | had used
all of the available values in lines 50 and 60.

The result of the disassembly is:

Decimal Hex Op-Code
Values Codes Transiation

72 118 48 76 LDI XH. 76H
74 0 4A 00 LDt XL. OOH
5 05 LDA (X)
189 255 BD FF EAl FFH
65 41 SIN X
78 78 4E 4E CPI XL. 4EH

153 8 99 08 8ZR - 08H

76 119 4C 77 CPI XH. 77H

139 6 8B 06 BZS + 06H
72 119 48 77 LDl XH. 77H
74 0 4A 00 LOI XL. 00H
158 18 9E 12 BCH-12H
154 9A RTN

You should have noticed that I included the hex equiva-
lents of the decimal values as | went along, and noticed that|
used the hex values in my disassembled list (with an 'H’ after
those valuesfor clarity.) The reason for doing this is that it will
make comparisons with the PC-2 memory map a little easier.
Also. most assembly language listings you read wiil use hex,
so now is the time to start getting used to hex codes (if you
aren't already.)

The simplest way of getting the hex codes is to get them
from the numerical listing of op-codes that was presented

earlier in this article.
Great, you say, but what do | do with all of this stuff? We

will look at each line of the listing and see if we can make
sense of it. To help the process, | am going to give each line a
number(starting with 100 and incrementing by 10) to make
referring to the lines a little easier.
Line Decimal Hex Op-Code

100 72 118 48 76 LDI XH. 76H
110 740 4A 00 LDI XL, OOH
120 5 05 LDA (X)
130 189 255 BD FF EAI FFH
140 65 41 SIN X
150 78 78 4E 4E CPI XL, 4EH
160 163 8 99 08 BZR - 08H
170 76 119 4C 77 CPI XH, 77H
180 139 6 88 06 BZS + 06H
190 72 119 48 77 LDl XH, 77H
200 740 4A 00 LDl XL. O0H
210 158 18 9E 12 BCH - 12H
220 154 9A RTN

Lines 100 and 110 load the X register with the hex value
7600.

Line 120 then tells the computerto load the A register with the
value stored in the memory location that the X register is
pointing to (7600). A quick glance at the PC-2 memory
map (March MCN, pg. 26) shows us that the memory
locations beginning at 7600H and continuing to 764DH
are part of the PC-2's LCD display. What the computer
has done is to look at the first byte of LCD memory
(which corresponds to the first column of dots in the
main LCD display area) and then place a copy of the
value in that location into the MPU's A register.

Line 130 tells the computer to take the value in the A register
and exclusive OR (XOR) it with the immediate value

FFH. The bit pattern for FFH is: 1111 1111,

TRS-80 Microcomputer News. September 1983 27

The exclusive OR operation compares each bit of the
display value (stored in A) with a one bit from the FFH (a
solid black, all on, column). If both bits are ones the
computer stores a zero (0). If one bit is a one and the
otheris a zero, the computer stores a one. The net result
is that after the EAl (XOR) operation, the A register
contains a reversed copy of the original display byte.

Line 140 contains the one byte instruction SIN X. This single
instruction tells the computerto take the value which is
currently in the A register (our reversed column image)
and store that value in the memory location pointed to
by the X register.

If you remember (the computer does), this is currently
the first byte of LCD RAM. Once the value from A has
been stored, the computer will add one to the value
currently in the X register.

Let's pause a moment and see what has happened. With
~nly eight bytes of memory we have told the computer where
e first column of LCD memory is (7600H), we have made a

copy of that column, reversed the copy, stored the result back
into the first column of LCD memory (7600H) and we have
incremented our counter (the X register) so that it now points
to the second column of the LCD. No wonder machine
language is so fast!

Line 150 tells the computer to compare the lower 8-bits of the
X register with the value 4EH. The computer will set its
'flags’ based on whether the value in XL is 4EH or not.

Recall that the X registeris pointing to LCD memory. A
glance back to the PC-2 memory map shows usthatiif X
contains 764EH, it is pointing just past the end (7640H)
of LCD display sections 1 and 3.

Line 160 instructs the computer to examine the flags which
were set by the CPl instruction in line 150. Ifthe Zflag is
zero (Z =0), meaning that XL did NOT contain the value
4EH, then the computer is instructed to count back-
wards eight bytes and continue executing the program
from that point. If Z= 1 the computer will continue to the
instruction in line 170.

To count back eight bytes the way the computer will do it,
we have to understand that the program counter (which is
what will be reduced by eight) is already pointing to the first
byte of the instruction in line 170. Count back eight from that
point. You should have stopped on the O5H in line 120. The
computer would continue executing instructions beginning
with line 120.

What the programmer did was to create a loop. The
purpose of the loop is to have the computer move one byte at
a time through the memory of LCD chips 1 and 3 (7600H -
764DH) reversing each byte in memory as the computer
comes to them.

Line 170 tells the computer that if the value in XL was 4EH
(from the test and compare in lines 150 and 160), then
test the value in XH (the upper 8-bits of X) to seeifa 77H

is present. The first time the computer executes line 170
the value in XH will be a 76H (put there in line 100.)

Line 180 tells the computer to move its program counter
forward six bytes if the value in XH WAS a 77H. Remem-
bering that the program counteris currently pointing to
the first byte in line 190, adding six would move the
pointer forward to the single byte in line 220.

Line 190 is executed only if the value XH was not a 77H.

Line 200 will puta 00H into XL.. A quick glance at the memory
map shows us that 7700H if the first byte of LCD display
memory for chips 2 and 4.

Line 210 tells the computer to subtract 12H (18 decimal) from
its current program counter value. Since the program
counter would be pointing at the 9AH in line 220, mov-
ing back 18 decimal would make the program counter
point to line 120 again.

We already know that this will cause the computer to
move through this new section of LCD memory (start-
ing at 7700H this time) until the value in XL reaches
4EH. When XL reaches 4EH (this would be the second
time), the computer would find 77H in XH (line 170) and
the program counter would be moved forward to point

at line 220 (line 180).

Line 220 is very important in any program which began by
BASIC executing a CALL command. If you will ook
back to the BASIC program which loaded the machine
code into memory, you will find the CALL command in
line 80. The purpose of the RTN instruction in line 220 of
our machine language program is to return control of
the computer to BASIC and the program which con-
tained the CALL command. If you forget to do this, you
may have to push the ALL RESET button on the back of
the PC-2 to regain contro! of the computer. P

28 TRS-80 Microcomputer News, September 1983

Pocketmputer

PC-2 Assembly Language-Part 5
By Bruce Elliott

This is the fifth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refersto the overall capabilities of the MPU, and does
not imply that all of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occur in the articles, but cannot reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80 Microcomputer News are the only source of
this information, and we will not be maintaining back issues.
Parts One, Two, Three and Fourof this series were published
in the March, April, May, and September 1983 issues,
respectively.

The first three articles described the MPU used in the
PC-2, including information on the MPU'’s structure and its
machine language. We also gave you details on the
PC-2 memory map and the locations of ROM routines which
are available. In the fourth article we presented two lists to
make finding a particular machine ianguage instruction eas-
ier. We also provided some information on how you might
begin to use the information we have published. In this fifth
article we want to present information on how to create your
own machine language routines, and begin describing how
to use the PC-2 ROM calls which are available.

CREATING YOUR OWN PROGRAMS

Last month we looked at an existing machine language
program and described a procedure (disassembly) for deter-
mining how the program did what it was supposed to do. This
month | want to define a program and then describe the
procedure for creating a workable program that fits the defini-
tion. To make things simple. the program we are going to
design will do only one thing—display on the LCD the key
you press on the keyboard. | know that this program may
sound silly. After all, doesn't the PC-2 automatically display
the key you press? The answeris no,it doesn't. Try using the
INKEY$ command. With INKEYS, if you want the character
displayed you must display it yourself.

What we are really doing is designing a program which
will accept characters from the PC-2 keyboard and display
them on the LCD. This program should show you how to do
three important things in assembly language:first, how to get
information from the keyboard into the computer; second,
how to take information that is in the computer and display

it on the LCD; and third, how to use the PC-2's ROM

subroutines.

In Part 1 of this series (March, 1983, pg. 26) we
published a PC-2 memory map. It is in this section of PC-2
memory that we find ROM subroutines.

WHY DO ROM SUBROUTINES EXIST?

In general. any computer consists of similar basic parts.
To function, a computer must have a processing unit, input
and output functions, working memory to store temporary
results, and some sort of control mechanism or program.

in the PC-2, the processing unit is the MPU which we
have been describing in this series. The input function is
handled primarily by the keyboard, and the output function is
handled primarily by the LCD. The working memory is RAM
(Random Access Memory), and the control mechanism is in
the form of programs stored in ROM (Read Only Memory).

In order to make the PC-2 behave so that you can use it.
the manufacturer wrote an operating system to control the
various functions of the computer. Part of this operating sys-
tem is instructions which control the keyboard, the LCD, and
BASIC. This is where ROM subroutines come from. To func-
tion properly, the PC-2 has to have a routine which looks at
the keyboard and stores any key which may be pressed.
Likewise, there has to be a routine somewhere which takes a
character and displays it on the LCD. The PC-2 memory map
tells us where some of these routines are located, and we
will use this information to create our machine language
program.

IS THIS INFORMATION AVAILABLE ON OTHER
COMPUTERS?

Radio Shack has received permission from the original
manufacturer of the PC-2 to disclose the information which
we are presenting in this series of articles. The information is
fixed, and we do not expect it to change.

If you hagpen to own a different TRS-80 you may have

tried to get similar information for that computer and you were
told "1 am sorry, but we cannot provide you with that informa-
tion.” Why? Well, there are two major reasons. The first and
largest reasonis that most computers are evolving products.
As a computer evolves, the contents of its operating systems
also change. It we give you information about where a partic-
ular routine is located in the first version of a program or
operating system, you are going to expect that information to
be true in the second version of that program or operating
system also. With few exceptions, every change of amachine
language program such as an operating system means a

relocation of ALL of the contents of that program.
Because the contents of programs are subjectto change

with each revision, what Radio Shack typically does is to
publish certain “published entry points.” These published
entry points won’t normally change, even if the rest of the

TRS-80 Microcomputer News, October 1983 35

program does change. Other than the published entry

points, Radio Shack, in general, will not provide you with

other information about the contents of the program. Using

only published entry points protects your software from be-
coming obsolete as soon as Radio Shack issues a new

version of the program.
The second major reason for not providing the informa-

tion is that Radio Shack often does not have permission from
the copyright holderto release the information. As an exam-
ple. Microsoft BASIC on any of our machines is owned by
Microsoft. Since Microsoft owns the code. they have the right
to tell us what we can and cannot publish.

BACK TO THE PC-2

The stated function of our machine language program is
to accept keyboard entries and display the pressed key on

the LCD.
A quick glance at the memory map for System Program

ROM shows two keyboard scan routines and two routines
*~hich output single characters to the LCD.

E243H Keyboard Scan—Wait for Character
E42CH Keyboard Scan—No Wait
ED4DH Output one character to LCD and increment

cursor position by one
ED57H Output one character to LCD
(Remember that the H after the address. as in E243H,

indicates that the numberis in Hexadecimal notation and not

decimal.)
E243H
My information on the E243H Keyboard scan routine

tells me that the PC-2 will wait for a key to be pressed. Once a
key has been pressed. the key's code will be placed in the

MPU Accumulator. If a key is not pressed within about seven
minutes, the PC-2 will be turned off automatically. Once

power-down has occurred, pressing the (ON) key will return

the computer to the keyboard scan routine.

E42CH
The information on the E42CH routine states that if a key

has been pressed, the key code will be in the accumulator. If a

key has not been pressed the accumulator will contain QOH.

ED4DH
To output a character using ED4DH. the ASCII code of

the character to be displayed is placed in the accumulator
and the routine is executed. The character will be placed at

the current cursor position, and then the cursor position will

be updated.
The current cursor position is stored in memory location

7875H. According to our information, if the old cursor post-

tion (betore the call to ED4DH) was less than 96H the new
cursor position (stored in 7875H) will be the old position plus
6H. If the old cursor position was 96H or greater, the new
position will be O0H.

EDS7H
To display a character using the ROM routine at EDS7H,

place the ASCII value of the character to be displayed into the
accumulator and execute the ED57H routine. The character

will be displayed at the current cursor location and the cursor
position. will not be updated.

LET’S WRITE THE PROGRAM

| try to program conservatively when | use machine

inguage. What | mean by this is that | try to disturb as few

things as | can. So. the first part of my program will “save the
MPU registers.” What | mean by this is that | will save a copy
of the various registers so | can restore the MPU when | am
finished with my program. This is done by using the appropri-
ate push (PSH) instructions to “push” the register values onto
the stack.

FD C8 PSH A
FD 88 PSH X
FD 98 PSH Y

FD A8 PSR U

Now that | have saved a copy of the registers. | want to
set the PC-2's cursor position to the left side of the LCD. This
would make the cursor position (stored in 7578H) zero (0).

BS 00 LDI A, POH
4A 75 LDI XL, 7SH
48 78 LDL XH, 78H
QE STA (X)

Notice that | used three LoaD Immediate (LD}) instruc-
tions. The first LDI puts the cursor position (O0H) into the
MPU's Accumulator (A register.) The next two LDIs load the X
register with the address which stores cursor position
(7578H). The fourth instruction (STA) tells the MPU to put the
value currently in the A register into the memory location
which is currently in the X register.

Now that the cursor 1s where | want it, it is time to get a
keystroke from the keyboard. Since the only thing | wantto do
is to get a keystroke, | choose to use the routine which waits
for a key to be pressed before returning. A ROM routine is
executed by using the Subroutine JumP (SJP) command.

BE E2 43 SJP E243H

We learned earlier that once a key is pressed, the PC-2
stores the ASCli value of the key in the A register. Both display
routines | am considering require the ASCII value of the
character | want displayed to be in the A register. Since the
keyboard scan routine already put the ASCII value in the A
register, all | need to do is use a subroutine jump to the proper

display routine.

BE ED 4D SJP ED4DH

| chose to display each character in cursor position 0, so |
used the display routine at ED4DH.

The purpose ofthis program was to get a character from

the keyboard and to display it on the LCD. My program has
done that, so | restore the registers by POPping their values
(in reverse order) off the stack.

FD 2A poP U

FD 1A POP Y

FD @A POP X

FD 8A POP A

There is one final task which any machine language
program which is called from BASIC (as this one will be) must
perform and that is to return control of the PC-2 to BASIC. This
is accomplished by executing a return command.

9A RTN

Here is the completed machine language program

along with various comments so | can remember what is

happening.

FD C8 PSH A 'Save Registers

FD 388 PSH X

FD 98 PSH Y

36 TRS-80 Microcomputer News. October 1983

FD A8 PSH U

BS 9@ LDI A, @9H 'Cursor Position
4A 75 LDI XL, 75H 'Cursor Storage
43 78 LD XH, 78R ' Location
gE STA (X} 'Store Cursor
BE E£2 43 SJP E243H ‘Read Keyboard
BE ED 4D SJP ED4DH 'Display Character
FD 24 POP U 'Restore Registers
FD 1A POP ¥

FD dA POP X
FD 8aA POP A
9A RTN 'Return to BASIC

TURN IT INTO A BASIC PROGRAM

Now that | have the machine code for my program, |
need a way to get the program into the PC-2 and executed. A
very straight forward way to do this in the PC-2 is to put the
machine language program into a BASIC program shell like
the following:

19 WAIT &
2¢ DATA &FD, &CB, &FD, 488
30 DATA &FD, 598, &FD, &A8
4@ DATA &BS, &P9, &4A, &75
5S¢ DATA &48, 578, &0E
60 DATA &BE, &E2, 443
70 DATA &BE, &ED, &40
80 DATA &FD, &2A, &FD, &lA
90 DATA &FD, &PA, &FD, &8A
109 DATA &9A
119 M=16999
12¢ FOR I=1 TO 3¢
13¢ READ A
148 POKE M+I, A
15¢ NEXT I
16¢ M=M+]
178 PRINT *
188 CALL M
19¢ GOTO 18¢

READY"

Line 10 simply sets the PC-2 PRINT command delay
time to O.

Lines 20-100 contain DATA statements into which | have
placed the hexadecimal values for my machine language

Op-Code Suggested Name Op-Code

Suggested Name

program. Notice the use of a leading ‘&' to indicate that the
values are in Hex.

Line 110 contains the address (minus one) where | will
begin storing the machine language program in memory.

Lines 120-150 POKEthe machine language routine into
PC-2 RAM memory. Line 160 updates the memory pointer
from line 110 so that it contains the actual starting address of
my routine (17000 decimal).

Line 170 tells me that the machine language program
has been put into memory and will begin executing with the
next instruction.

Line 180 telis BASIC to turn control of the PC-2 over to
the machine language program which begins at location M
(my memory pointer). The PC-2 will set the cursor position to
zero, waitfor akey to be pressed on the keyboard, display the
proper character and return to BASIC.

Line 190 tells BASIC to go back to line 180 and execute
the machine language program again.

THAT IS ALL THERE IS TO IT!

If you have followed this series of articles all the way
through, you now have enough information about the PC-2
and how it operates to begin writing your own programs in
machine language.

Next month we plan on giving you some additional infor-
mation about the various ROM subroutines which are avail-
able to you in the PC-2.

A CLOSING GIFT

Operation codes (op-codes, mnemonics) are short
names which programmers give to machine language com-
mands to make them more readable, and more remember-
able. We have given you severallists with op-codes and have
provided some detail on what the commands do. At least one
person has asked "How am | supposed to pronounce those
funny looking things?"

Below is a listing of the various PC-2 op-codes and a
recommended “name” or pronunciation for each.

Op-Code Suggested Name

DCS Decimal Sumnaf*' ROL Rotate Leit Branch Halt CarfySet
AND AND Accumulator ROR RQate Righi BHR Brancn Half Carry Reset
ANI ANDEnmpcdze i it BZS Branch Zero Set

O < B Branch Zero Reset

DEC Decrement

 CPA Compare Accumuiator Accumuiator to Port Vector Carry Set
CPI Compare Immediate Part Input t© Accumulator VCR Vector Carry Reset
BIT B Set PU VHS Vector Halt Carry Set
Bl B4 Immediate et PU VHR Vector Half Carry Resst

Br g st < R

 Store Accumulator ‘ . RTI Return from Interrupt
Store and Decrement AMO Accumuiaior1o TimerB 9=0 MEO Memory Enable 0
Store and Increment AN Accumuiator 10 Timer, Bit 9=1 ME1 Memory Enable 1

9?‘-(Store X NCP No Operation £3

TRS-80 Microcomputer News. October 1983 37

Pocket Computer

PC-2 Assembly Language—-Part 6
By Bruce Elliott

This is the sixth in a series of articles which describe the
MPU (microprocessor unit) used in the Radio Shack PC-2
pocket computer. It is our intention to include specific infor-
mation about the 8-bit CMOS microprocessor, the machine
code used by the microprocessor, as well as information
about the PC-2 memory map, and certain ROM calls which
are available. Please realize that much of what we are talking
about refers to the overall capabilities of the MPU, and does
not imply that ali of these things can be done with a PC-2.

The information provided in these articles is the only
information which is available. We will try to clarify any ambi-
guities which occurin the articles, but can not reply to ques-
tions outside the scope of these articles. Further, published
copies of TRS-80MicrocomputerNewsare the only source of
this information, and we will not be maintaining back issues.

In this article we want to present information on some of
the PC-2 ROM calls which are available.

When you are going to use a ROM call, there are four
items which you want to be concerned with:

1. Entry Address
2. Entry Conditions
3. Exit Conditions
4. Flags
The Entry Address is the address you use in the CALL

statement from BASIC or a SJP call from machine language.
The Entry Conditions are conditions you mustfuffill if the

routine is to function properly. Normally, entry conditions
specify where information must be and what information you
must put in the MPU registers for the routine to function
properly.

The Exit Conditions tell you where you will find the result
of the operation (if there is a result) or provide you with other
information about how things will change as a result of usmg a
particular ROM call.

If a ROM call makes particular changes to any of the
machine’s flags, this information will be noted so you can .
properly interpret the results you get.

A CAUTION
| have not had time to test the information which is

provided below on ROM calls. The information provided is as
accurate as | could make it from the materials | am working
with. Test any ROM call for proper operation BEFORE you
use it in a program. Remember that the ‘H' following a
numeral indicates hexadecimal notation.

CURSOR INFORMATION

The PC-2 cursor pointer is located at 7875H. This loca-
tion is used by the PC-2 to keep track of where the cursor
should be. If you are working exclusively in machine lan-
guage, updating 7875H is all that is needed for cursor
location.

If you are working from BASIC, and wish to update the
cursor location directly using POKEs or CALLs, you must
also set bit 0 of location 7874H. Setting this bit from machine
language can be accomplished by:

ORI 7874H, 01H
This operation is done automatically when you use the

CURSOR or GCURSOR BASIC commands.
If you execute a ROM call whichresets the cursor pointer

and are going to return to BASIC, you must set bit 0 of
location 7874H as described above.

If you wish to reset the cursor from machine language,
you can use the following code:

ANI 7874H, OFEH
ANI 7875H, O0H
To increment the cursor pointer, use the following:

it you are displaying characters:
(7875H) = (7875H) + 06H

it you are displaying graphics:
(7875H) = (7875H) + O1H

Note: (7875H) must be between 00H and 9BH

SYSTEM CALLS FOR THE LCD DISPLAY
Output one character to the LCD

1. System call address: EDS7H
2. Entry Conditions:

a. The ASCII character code for the character to be
displayed must be in the ACC (Accumulator) before
making the call.

b. The location where the character will be placed is
determined by the content of the cursor pointer.

3. Exit Conditions: The cursor pointer does not change.
4. Flags: Carry = 0 The cursorstays between 00H and 95H

on call.
= 1 The cursor stays in 96H on the call.

Output one character to the LCD and increment the
cursor position by one character (6H).
1. System call address: ED4DH
2. Entry Conditions: The ASCII character code for the char-

acter to be displayed must be in the ACC (Accumulator)
before making the call.

3. Exit Conditions: If the cursor position before the call was in
the range OOH to 95H, then the new cursor position equals
the old position plus 6H. If the cursor position before the
call was 96H orlarger, then the new cursor position is set
equal to zero.

4. Flags:
Outputting n characters to the LCD.
1. System call address: EDOOH = VM) —14 {
2. Entry Conditions:

a. The 16 bit starting address for the string to be dis-
played is placed in the U register (OOO0H (= U (=
FFFFH).

TRS-80 Microcomputer News, February 1984 43

b. The length of the character string is placed in the
Accumulator (01H (= ACC (= 1AH).

c. The cursor pointer indicates where on the LCD the
computeris to begin displaying the string.

3. Exit Conditions: The cursor pointer is updated.
4. Flags: Carry = 0 The cursor position is set to the right-

most end of the displayed character
string on the LCD.

= 1 The specified character string ended in
the 26th LCD column, or the string was
too long to be displayed within 26 col-
umns. The cursor will be steady, indica-
ting the last character displayed.

The number of characters specified in the accumulatoris
output from consecutive addresses beginning with the ad-
dress specified in the U register. The characters will be placed
on the LCD beginning with the position indicated by the
cursor pointer. The cursor pointer can be set from machine
language, or by using the BASIC CURSOR or GCURSOR
commands. If the information to be displayed exceeds the
156th dot on the LCD, the excess information will not be
displayed.

Outputting n characters to the LCD beginning from char-
acter position 1.

1. System call address: ED3BH
2. Entry Conditions:

a. The 16 bit beginning address location of the string to
be displayed is stored in the U register (0000H (= U
(= FFFFH).

b. An 8 bit number indicating the length of the character
string is stored in XL (The lower half of the X register.
O1H (= XL (= 1AH).

3. Exit Conditions:
4. Flags: Carry = 0 The character string has been dis-

played in 25 or fewer columns.
= 1 The character string reached or ex-

ceeded the 26th column.
Transferring 1 byte of data (1 dot column of graphic

information) to the current cursor position.
1. System call address: EDEFH
2. Entry Conditions: The byte representing the graphic pat-

tern to be displayed is placed in the accumuiator.
3. Exit Conditions:

a. The data is transferred to the current cursor position,
which does not change.

b. The contents of ACC and the X and U registers may
change.

c. The content of the Y register will not change.
4. Flags:

DATA CONVERSIONS

Converting two bytes of ASCIl code (0 - 9, A - F only) into
a one byte hexadecimal value.
1. System call address: ED95H
2. Entry Conditions: The X register should contain the ad-

dress of the first of two consecutive bytes in memory which
contain the ASCII characters.

3. Exit Conditions:
a. The X register will be incremented by 2
b. The U and Y registers will be unchanged
c. The ACC will contain the converted hex value.

4. Flags:

DISPLAY THROUGH A BUFFER

Data can be placed into an 80-byte buffer (7BBOH -
7BFFH) and then displayed as needed by specifying the
proper cursor address in the buffer.
1. System call address: EBCAH
2. Entry Conditions:

a. Any character string which is placed in the buffer must
have a ODH code as the last character. This means
that the longest allowable characterstring is 79 char-
acters plus the ODH end code.

b. The Y register holds the cursor pointer for the buffer.
The documentation does not specify what value goes
into Y. SinceY is 16 bits long,| presumethatyou would
use the actual memory address within the buffer.

c. Address 7880H contains a parameter which deter-
mines how the contents of the buffer are to be
displayed:

If the binary content of 7880H is 0100 0000, then the
character string stored in the buffer is output to the
LCD using the content of the Y register as the cursor
pointer.

Note: If the number of characters in the buffer is 26 or
less, then all of the characters are displayed on the
LCD starting from the left side of the LCD. The cursor
pointer (7875H) has no effect on this operation. If the
number of characters in the buffer is greater than 26,
the characterin the address specified by theY register
and the PRECEDING 25 characters are displayed on
the LCD starting at the left side of the LCD.

If the binary content of 7880H is 0000 0000, then the
cursor pointer in the Y register is ignored and the first
26 characters stored in the buffer are output to the
LCD.

if the binary content of 7880H is 0010 0000, then
numeric data stored in memory addresses 7AO00H -
7A07H are output to the LCD.

Note: See below for a discussion of the 7AO00H -
7A07H buffer.

3. Exit Conditions:
4. Flags:

‘The 7A00H - 7A07H Buffer

The PC-2 documentation describes three possible sets
of data for the 7A00H buffer:

Decimal Values:

A decimal value may fall into the range
9.999999999 x 10E99 = x = 9.999999999 x 10E99.

7A00H contains the exponent (negative exponents are ex-
pressed as compiements: 03H = x10E3, 1FH =
x 10E31, and FFH = x 10E-1)

7A01H contains the sign of the mantissa (O0OH = +,80H = =)
7A02H - 7A06H contains the mantissa.
7A07H contains 00H.
Examples
7A00H 7A07H
00H OOH 00H 00OH 00H 00H OOH 00H = 0.0
00H 00H 12H 34H 50H 00H O0H O0H = 1.2345
FEH 00H 98H 76H 54H 32H 12H O0H = 0.9876543212
08H 80H 54H 32H 00H O00H OOH OOH = -5.432 x 10

44 TRS-80 Microcomputer News, February 1984

‘nteger Values:
An integer value may fall into the range -32768 (= x (=
32767.
7A00H—7A03H - Don't Care
7A04H—B2H
7A05H—7A06H Binary number in complements (e.g. OOH

OOH = 0, FFH FBH = -5, 7FH FFH = 32767)
7A07H—Don't Care
Character Strings:
7A00H—7A03H—Don't Care
7A04H—DOH
7A05H—Upper two bytes of string address in memory
7A06H—Lower two bytes of string address in memory

(string address can be in the range 0000H - FFFFH)
7A07H—Length of the string (range 01H - S0H)

Note: This last set of conditions (for strings) seems to
imply that a string buffer can be anyplace in memory,
rather than being restricted to 7BBOH - 7BFFH. Test this
before relying on it.

<ASSETTE VO AND CONTROL
During tape I/O activities, the paper feed action of the

printeris inhibited.
Turn Tape Drive On
1. System call address: BF11H
2. Entry Conditions: Memory address 7879H is used to spec-

ify certain conditions:
Bit 7: 0 = CMT input port closes; select 0 for CMT input.

1 = CMT input port opens; select 1 for CMT input.
Bit 4: 0 = Remote O

1 = Remote 1
3. Exit Conditions:
4 Flags:

Turn Tape Drive Oft

1. System call address: BF43H
2. Entry Conditions:
3. Exit Conditions: Remote drive 0 is turned off uncondition-

ally. Remote drive 1 is turned off or on depending on bit 7 of
an unspecified address (probably 7879H). If bit 7 is O the
drive is OFF, and if bit 7 is a 1 then, the drive is ON. This bit
can be set using the BASIC commands RMT ON and RMT
OFF.

4. Flags:

Construct Tape Synchronization Header

The header, a 40-byte data set, consists of the synchroni-
zation header, a file name,file mode, and other data. This
headeris created inside the computer (addresses 7B60H -
7B87H) and output to tape.

1. System call address: BBD6H
2. Entry Conditions: The file mode (00 =Machine Object,

01 =Program, 02 = Reserve, 04 = Data) must be placed in
the accumuiator.

3. Exit Conditions:
a. An 8 byte synchronization header will be in 7B60H -
7B67H

b. File mode will be in 7B68H
c. O0H characters will be placed in locations 7B69H -

7B87H.

4. Flags:

A program file name (16 or fewer characters) can be
placed in memory locations 7B69H - 7B78H, if you wish.
Address locations 7B79H - 7B87H may be used for your own
purposes.

Output Tape Synchronization Header

1. System call address: BCESH
2. Entry Conditions:

a. Bit seven of address 7879H must be zero and bit four
will be a zero for remote O and a one for remote 1.

b. Whether the PC-2 will beep or not during cassette I/O
is controlied by the BASIC commands BEEP ON and
BEEP OFF, or by setting bit zero of 786BH.

3. Exit Conditions:
4. Flags:

Send a Character to Tape

1. System call address: BDCCH
2. Entry Conditions: Character to be output is placed in the

Accumulator. The call to write the synchronization header
must be used before outputting data using this system call.

3. Exit Conditions:
4. Flags:

Write a tape file

Files can be written by specifying the start address of the
data and the number of bytes to be output.
1. System call address: BD3CH
2. Entry Conditions:

a. The X register should contain the start address
(OO00H ¢ = X ¢ = FFFFH) for the file to be written.

b. The U register should contain the number of bytes to
be written minus one (0000H ¢ = U { = FFFFH).

3. Exit Conditions: Check sum data is output at the rate of 2
bytes for each 80 bytes written. The number of check sum
bytesis notincluded in the U register number of bytes to be
output. .

4. Flags: CARRY = 0 if Output ended normally
= 1 if BREAK key was pressed

Read Tape Synchronization Header

Before the header can be read from tape, you must
construct a header using the BBD6H call. This will specify the
file type. If you are searching for a particular file, you may
place the file name in address locations 7B69H - 7B78H.|f
you specify a file name, the tape will be searched for a
matching name. If you do not specify a file name(file name =
all 0OH characters) then file names will be ignored during
input.

1. System call address: BCESH
2. Entry Conditions:

a. build a header with file type
b. specify a file name if you wish.
c. Set 7879H: Bit Seven = 1

Bit Four = O for Remote 0
= 1 for Remote 1

TRS-80 Microcomputer News, February 1984 48

3. Exit Conditions:
a. 7B91H - 7BA0H will contain the 16 characterfile name

(padded with O0H characters if file name was less than
16 characters)

b. 7BA1H - 7BAFH will contain whatever was in 7B79H -
7B87H when the file was written to tape.

4. Flags: Carry = 0 Reading finished
= 1 BREAK key pressed

Read a Character from Tape

1. System call address: BDFOH
2. Entry Conditions:
3. Exit Conditions: The data value read from the tape is

placed in the accumulator.
4. Flags: Carry = 0 Byte read properly

= 1 BREAK key was pressed

Read a file from tape

1. System call address: BD3CH
2. Entry Conditions:

a. The X register contains the first memory address
(0000H ¢ = X (= FFFFH) that the file is to be loaded
into.

b. The U register contains the number of bytes minus
one (0000H ¢ = U ¢ = FFFFH) to be read from tape.

¢. Address 7879H bit seven contains zero
bit six = O for data read

= 1 for data verify
3. Exit Conditions:

a. Check sum information is automatically checked dur-
ing tape input.

b. The X register contains the address of the last data
byte plus one.

4. Flags: Carry =0 if loading ended normally
= 1 abnormal end, check H and V flags

H=1ifC=1 then BREAK key pressed
= 0 checkV flag

V=1ifC=1 and H=0 then data in memory
and the data from the tape did not verify
properly.

= 0ifC=1andH =0 then a check sum error
occurred.

Finishing Tape I/O Activities

When you are finished using tape I/O you should inform the
system.

1. System call address: BBF5H ,
2. Entry Conditions: Bit seven of 7879H should be a zero to

terminate data output or a one to terminate data input.
3. Exit Conditions:

a. The serial port is reset
b. Printer Paper Feed is enabled
c. Cassette motor drives are turned off.

4. Flags:

BASIC Program Tapes

The PC-2 creates and reads tapes for BASIC program files
using the file read and write routines described here.
Before the synchronization headeris written to tape, the

PC-2 stores the length of the program (in bytes) minug
one in locations 7B85H and 7B86H. This information is
then recorded as part of the synchronization information
for later use in reading the file. When the header informa-
tion is read back during a synchronization header read,
the length information is in 7BACH and 7BADH.

KEYBOARD INPUT CALLS

Scan Keyboard, wait for a key to be pressed

1. System call address: E243H
2. Entry Conditions:
3. Exit Conditions:

a. Key code is in the accumulator
b. GHIFYD GEE) e do not cause

this routine to return. _
c. Auto power off will occurafter about seven mindtes if no

key is pressed. . g
d. If the BREAK key is entered, execute the follwing

ANI #FOOBH, OFDH (FDH E9H FOH 0BH FDH)
4. Flags: Carry 0 = Accumulator has key code

1 = BREAK key, Accumulator = OEH

Key Code Table
0 1 2 3 4 5 6 7

0 SPACE 0 @ P p
1 (SHIFT) F1 ! 1 A Q a q
2 (SML) F2 " 2 B R b
3 F3 # 3 C S8 ¢ s
4 F4 $ 4 D T d t
5 F5 % 5 E U e wu
6 F6 & 6 F V f v
7 : 7 G W g w
8 + CL (8 H X h x
9 5 RCL) 9 I Y i y
A ! CA * : J Z 2z
B 1 (OEF) + ; K rad Kk
C - INS , < L i
D ENTER DEL - = M n m
E BREAK . > N A n
F OFF MODE / ? O o

Scan keyboard and Return

1. System call address: E42CH
2. Entry Conditions:
3. Exit Conditions:

a. If no key was pressed, accumulator = 00H
b. If a key was pressed, Key code is in accumulator

4. Flags:

NUMERIC FUNCTION CALLS
From the documentation, it appearsthat numeric func-

tions are called with the X registerpainting to 7A00H - 7A07H
and the Y register pointing to 7A10H- 7A17H it Y is needed.
Results appear to alwaysbe stored in 7A00H - 7A07H.
Numeric data is stored inthese memory areas as previously
described. oMLY Sd

Two Variable Numeric Functions
Addition X + Y=X EFBAH 2 «¢
Subtraction X-Y=X EFB6H ,
Multiplication X *Y=X FO1AH 1260
Division X1Y—=X Fog4H 84
Exponentiation XAY—X F89CH

48 TRS-80 Microcomputer News, February 1984

Single Variable Numeric Function

Square Root SQR X—X FOE9H
Logarithm LN X—X F161H

LOG X—+X F165H
Exponentials EXP X—+X F1CBH

10AX—X F1D4H
Sine SIN X—X F3A2H
Cosine COS X—X F391H
Tangent TAN X—X F39EH
Arcsine ASN X—X F49AH
Arccosine ACS X-—X F492H
Arctangent ATN X=X F496H

DEG X—+X F531H
DMS X—X F564H

Absolute Value ABS X—X FS97H
Signum Function SGN X—X FS9DH
integer Function INT X—X FSBEH

OPERATIONS WITH STRINGS

ASC and LEN Subroutines

1. System call address: DSODDH
2. Entry Conditions:
a. Characterstring information is stored in 7A04H - 7A07H as

previously described.
b. YL = 60H for ASC

= 64H for LEN
3. Exit Conditions:
a. The resuit is in 7A00H - 7A07H
b. UH contains the error code (00H is a normal finish) if an

error occurred.
4, Flags:

CHR$ Subroutine

1. System call address: D9B1H
2. Entry Conditions:
a. Integers from 0 - 255 are placed into 7A07H.
b. 7894H = 10H
3. Exit Conditions:
a. lf UH = 0 then a proper exit occurred, otherwise UH

contains the error code.
b. 7B10H contains the ASCIl code
c. TAO4H - 7A06H contain C1H 7BH 10H
d. If the ASCIl code was O0H then 7A07H contains OOH

otherwise, 7A07H contains 01H.
4. Flags:

VAL Subroutine

1. System call address: D9D7H
2. Entry Conditions: string information is in 7AO0H - 7AQ7H.
3. Exit Conditions:
a. The result is in 7A00H - 7A07H
b. UH contains the error code (00H is a normal finigh) if an

error occurred.
4. Flags:

STR$ Subroutine

1. System call address: DSCFH

2. Entry Conditions:
a. numeric value to be converted is in 7AO0H - 7A07H
b. 7894H = 10H
3. Exit conditions:
a. The string pointer is in 7A00H - 7A07H
b. The actual character string is stored at 7B10H and

following.
c. UH contains the error code (OOH is a normal finish) if an

error occurred.
4. Flags:

RIGHT$(X$.Y), LEFT$(X$,Y), and MID$(X$.Y.2)
Subroutines

1. System call address: D9F3H
2. Entry Conditions:

RIGHTS LEFT$ MID$
(7890H) ((7891H)-8 same ((7891H)-16
(7892H) (7890H)+8 same (7890H) + 16
(7894H) 10H 10H 10H
7A00H- Y Y Z
7A07H
(7890H)- X$ X$ X$
(7890H) + 7
(7890H)+8- - - Y
(7890H) + 15
YL 02H 7AH 7BH
3. Exit Conditions:
a. The string pointer is in 7A00H - 7A07H
b. The actual character string is stored at 7B10H and

following.
c. UH contains the error code (00H is a normal finish) if an

error occurred.
4. Flags:

Note: (7890H) and (7891H) cannot be overwritten or
changed. If these are changed, the routine will not
function properly.

String Concatenation

1. System call address: D925H
2. Entry Conditions:
a. 7894H = 10H
b. information on the first characterstring is stored in 7A00H -

7AQ07H
c. Information of the second character string is stored in
7A10H - 7A17H in the same format as previously
described.

3. Exit Conditions:
a. Information on the new characterstring is placed in 7A00H

- TAO7H.
b. Actual concatenated string is put in 7B10H and following
memory locations.

c. If an error occurs, UH contains the error code.
4. Flags:

TRS-80 Microcomputer News, February 1984 47

