

(3
Fersonal

Start at

Coprright 1982,
Software Services.

lacation 14514 with the

ZXGT header .The two HALTs cause
the rect of the statement to be

blanked out in BASIC.
CF A
CP L
XOR H
cP C
HALT
HALT

Thie short secticon contains a

series of fixed jumping points

which are used to get from the
first half to the cecond half of

the code.

L281: JP L1551 ;PRINT
L2ez: JP L131 ;SCROLL
L283: JP LSl ;GET KEY
L264: JP LS3 ;TEST KEY
L285: JP L1485 ;PAUSE
L284: JP Lie@ ;MULTIPLY
LZ87: JPr @ ;PLOT
L2688 JP Lé@ ;RST 1@
L289: JP L&5 ;£BéB
L218: JP L28 ;DIVIDE
L211: JP L9% ;RANDOM
LZ12: JP L88 ;GETNUM
L213: JP L187 ;REM
LZ14: JF L2441 ;SAVE

When the break Key
come to here and do
ROM.

L252: RST @2
ADC AH

Routine to print a 1é& bit signed
integer which is held in the HL
register pair. & leading space

is added.

L1S1:

is pressed we

a RST to the

PUSH HL
PUSH DE
XOR A

CALL L231
LD DE,18089
CALL L1é@
JR NC,L154
LD DE,i1@0@
CALL L1469
JR NC,L155
LD DE,l@@
CALL L1s@
JR NC,L15é&
LD E,180
CALL Lis@
JR NC,L157
JP L1S8
CALL L120
LD DE,1800
cALL Liz2e
LD DE,1@8
CALL L12e
LD E,1@
CALL L1290
LD E,t
CALL L1280
¥OR A
POP DE
POP HL
JP Lé8
PUSH HL
AND A
SBC HL,DE
POP HL
RET

L153:

L154:
L1S5:

L1354

L157:

L158:

Li4@:

Repeatedly Subtract DE from HL
until the result is negative. If

A& starts with character code 28
(=char @) it finishes with the
character code of the left hand

digit of HL . Print this character.

L1Z26:

L121:

Li1zz2:

Negate =a

L231:

Scroll

L131:

Wait

return
register and test for break .

out ie

another

LSt

LS57:

LS54:

See

for

LD A,28
AND A
SBC HL,DE
JR C,L122
INC A
JR L121
ADD HL,DE
JP Lé&8
14 bit

LD A,H
CPL
LD H,A
LD A,L
CPL
LD L&
INC HL
RET

the screen up 1

LD HL,(143%98)
LD DE,_-
PUSH HL

LD BC,8
abD HL,BC
INC HL

PUSH Hio

ADD HL,DE
EX DE,HL
LD HL,7Z24
SBC HL,RBRC
EX (SP),HL
FPOF BC

EX DE,HL
LDIR
POF HL
LD BC,£82Bé
ADD HL,BC
LD (143%8),HL
LD 4,33
LD (£483%),A
LD A,=
LD (£4083A4),A
RET

a Key to be

the wvalue in

integer

line

pressed,
the A

Rub

trapped and waits for
Key to be pressed.

CALL #2ZBB
INC H
JR NZ,LSt
CALL £2BB
LD A,L
CP £FF
JR Z2,LS57
LD BC,£FD7F

JP 2,L252
LD BC,#FCEF
¥OR A
PUSH HL
SBC HL,BC
POP HL
JR Z,LS1
LD B,H
INC H
RET 2
LD C,L
CALL #7BD
LD &, (HL)
CcP o
RET

if any Key is pressed, works

like INKEY#
LS3:

Pause

leaving
L145:

L1éé6:

CALL #£2BB
LD A,H
CP £FE
JR 2,L51
JR LS54

for n 1/58ths of a
if a Key is pressed.

SET 7,H
LD (16436),HL
LD HL, (15434}
LD AL,H
AND £7F
OR L

secC

132 YOUR COMPUTER, JULY 1983

ZX-8]1
This compiler by David
Threlfall will speed up
programs by as much as
60 times.

éffigi/éffii?@;"/
woor

RAND

féfé@,fi?@zz
Ay

N

@C o’x’ij /M/5€N

YE,

= V% @/JVv 7

.!0?

@_'

THE AIM OFthis short series is to explain how

it is possible to write a compiler for a machine

as small as the ZX-81. We will look at the way
that some of the Basic statements are

translated — compiled — into machine code,

and then go on to discuss extending the simple
compiler to encompass string handling,

multiple arrays and full variable names.
Why compiled Basic? Basic was written as

an easy-to-learn language and to makeit easy

to run it was designed to be interpretative.

This means that as each line of code is
executed it is “retranslated” into a succession

of calls to machine-code subroutines stored in

the Basic ROM. This does not mean that
Basic is translated into machine code — far

from it — that is the purpose of a compiler.

This method makes the language very easy to
work with, particularly for developing a

program, but slow to run.
Many compilers exist for the larger desk-top

computers such as TRS-80, Pet, Apple and

CP/M-based machines but those offering full
floating-point arithmetic produce code only a

few times faster than interpretative Basic as

most of the time is spend executing maths

routines in the ROM rather than interpreting

the code. ZXGT is the first true compiler
small enoughto fit into the ZX-81. To provide

the necessary speed for games as well as to

keep the compiler small — it is only just over

2.3K bytes — it only runs integer Basic and so
is restricted to numbers from -32768 to 32767

with no strings or Boolean operations. The

result is extremely fast code.
Before we discuss writing a compiler in

detail it might be as well to define the purpose

of a compiler. Essentially there are two main
types of compiler, the first takes each line of

Basic and convertsit into a very compactset of
simple instructions which are interpreted by a

run-time system. The second type takes the
lines of Basic and generates machine-code

statements which carry out the functions of

the Basic. Amongst these statements there may
becalls to larger hunks ofmachine code within
the operating system.

The first type of compiler produces very
concise code but it cannot be executed directly
by the microprocessor; instead, it is

interpreted. The second type of compiler

produces somewhat longer code which is
directly executable and much faster.

When the design of this compiler was
contemplated, experience of other compilers

such as Microsoft and Accel led to the

conclusion that “speed meant integer”. To get

the most speed the generation of an

intermediate was rejected in favour of a
mixture of pure machine code and calls to a
library of fast routines within the compiler

run-time system. It was expected that this

would lead to an average speed up to about 20

times; in the event it was almost three times
better than this.

The ZX-81 is a good target for a compiler

for several reasons. First, its interpretative
Basic is very slow. On standard benchmarks

running in Slow mode it is 10 times slower

than the BBC machine making it impossible to
write good games in Basic. A compiler would

increase the speed and integer arithmetic

should be sufficient for most games.

Second, its Basic, in common with many

fcontinued on page 135)

RET 2
CALL LS3
JR Z,L166

Multiply two 16 bit
integers together. One
the other in DE. Recsult

Liaa: LD B,14
Lb C,D
LD A,E
EX DE,HL
LD HL,®
SRL C
RRA

JR NC,L182
ADD HL,DE
EX DE,HL
ADD HL,HL
¥ DE,HL
DaNZ , L1081
RET

Plot or wunplot a pixel

screen. fAssumes a full
32 character screen.

Lae: LD A,£2E
SUB B
JP C,L253
LD B,A
LD A,l
SRA B
JR NC, L1
LD A,4
SRA C
JR NC,LZ
RLC A

L2: PUSH AF
CALL LIS
LD A, (HL)
RLC A
CP £18
JR NC,L4
RRC A
JR NC,L3
XOR £8F
LD B,A
LD DE,£8C%E
LD A,(£4838)

SUB E
JP M,Lé
POP AF
CPL
AND B

JR L7
L&t POFP AF

OR B
CP 2
JrR C,L8
XOR £38F

L8: JP L48
L15: LD A,23

SUB B
JP C,L253
LD A,C
AND £1F
LD C,A
PUSH BC
PUSH BC
PUSH BC

Lial:

Liez2:

L1:

L?7:

LD BC, f16396)
ADD HL,BC
INC HL
LD (183%98),HL
POF BC

signed

in HL,
in HL.

on the

Z4 line

{listing continued on page 135)

YOUR COMPUTER, JULY 1983 133

(continued from page 133)

other machines,is tokenised, this means that

all reserved words such as Let, Print and so on

are represented as a single byte of code. This

makes them very easy for the compiler to
recognise.

Its Basic is rigorous. You may not leave out

Let as in many Basics and after Then the word
Goto may not be omitted.

The Basic is syntax-checked on input, so
much ofthe error checking is already done. In
fact, the only “‘errors” which can now occur
arise where a particular function — such as

strings — is not supported by the compiler.

The decision to restrict the scope of the

compiler was taken for several reasons. The
first was that the compiler was written in

assembler language rather than in machine

code, and only about 1.5K’s worth ofmachine
code can be held in assembler in a 16K

machine. The compiler was written in two
roughly equal sections yielding a total of 2,300

bytes of machine code. Also, the ZX-81 has no

discs and only a very slow tape interface, so
the compiler has to be in memory at the same
time as both the original Basic and the

machine code generated by the compiler. So
keeping it small was iportant.

The first restriction to be imposed was to
limit single letter variables, A-Y. By having

only 25 variables a predefined area of memory

can be set aside for them which may be
accessed by adding the base address of this
area to the position of the letter in the

alphabet. This position is fixed in the compiler
and if a variable is required the code to load it

into the accumulator can be written by the
compiler.

Next, the compiler was limited to one array
— Z. By having only one array, which may be

of any size that will fit in the machine, it can

be placed above the Basic system and below
the machine stack.

Furthermore, strings were omitted to keep
the compiler small and to avoid the dynamic

allocation of space their use entails. Dynamic

allocation means that as the string gets longer
more space is made for it; this can be slow.

Forloops in this compiler have only positive
single increments; the Step keyword is not
supported. Also Boolean algebra — And, Or
and Not — is not available.

Arithmetic expressions, except in Let s-ate-
ments, must be enclosed in parentheses as this
makesthe scope ofthe expression considerably

easier to assess. This does not invalidate

execution of the code in normalinterpretative
mode.

As regards the interface to Sinclair’s Basic

ROM,where possible the standard routines in
the Sinclair ROM were used, but it soon

becameclear that in many cases this would not
be possible. Two particular examples whereit

would at first seem possible to use the ROM

routines but where it was decided to write
special routines are worth considering.

Try plotting at every point on the screen

and by careful observation you might notice
that the top right-hand corner takes 70 percent
longer to plot than the bottom left. Because of

the variable length lines which are possible

with the 1K RAM,the machine takes a long

timeto calculate where a particular pointis in

(continued on page 137)

(listing continued from page 133)
LD A,24
SUB B
LD (14442),A
LD 4,33
SuB C
LD (14441),A
RET

Print the «character ot token
that is held in the A register.
If we are at the bottom of the
screen then display a ? and wait
for a Key to be pressed. 1+ it
is the COPY key make a copy. If
it is the SLOW Key scroll up at
two lines per second. If it is
the CONTINUE Key then clear the
screen and continue. Break
returns to BASIC. Any other Key
causes a fast scroll.
LéB: PUSH DE

PUSH HL
PUSH BC
PUSH AF
LD A,(14442)
CP 2
JR Z2.L43
POP AF

L73: CP 118
JR Z,Lé1
CP &4
JR NC,Lé&8
LD HL,(16398)
LD CHLY,A
INC HL
LD (16398),HL
LD A,(14441)
DEC A
LD (14441),A
LD &, (HL)
cP 118
JR NZ,L44

L4Z: LD &,{14442)
DEC A
LD (14442),A
INC HL
LD ¢14398),HL
LD A,33
LD (15441),A
JR Lé4

L&1: LD HL,(14398)
L74: LD &, CHL)

CP 118
JR Z,Lé2

L78:

JR L74
LD HL,(143%98>
LD BC,7é@
ADD HL,BC
LD A,143
LD (HL>,A

Léé: CALL LS3
JR Z,L4é
CP 48
JR 2,L47
CP 43
JR 2,L7S
CP 41
CALL 2Z,L7é
CALL L131
JR L??
CALL #£A2A
POFP AF
JR L73

Lé4: POP BC
POP HL
POP DE
RET

L?75: CALL £84&%
JR Léé
LD HL,1888080

DEC HL
LD A,L
OR H
JR NZ,L?77
RET

Print a sequence of characters.
DE points to

Lé7:
L79:

L7é:

L77:

where the

characters are and BC s the
number of them there are.
Printing is started at the
present cursor position.

Lé5: LD A,B
OrR C
RET 2z
LD A,(DE>
CALL Lé8
INC DE
DEC BC
JR Lé&S

Expand Tokens into the full
keywords adding blanks fromt and
back where necessary.

Lé8: CP &7
JR C,Ls89
CFP 192
RES &,A
JP C,L7Eg
AND £3F

L&9: LD HL,#£111
LD B,A
INC B
CP 33
JR NC,L78
XO0R A
CALL Léo
BIT 7,(HL}
INC HL
JrR Z2,L70
DJINZ ,L78
LD A, (HL>
BIT 7,A
JR NZ,L72
CALL Lé8
INC HL
JR L71
AND £3F
CALL Léa
XOR A
JP L73

An overflow of some sort has
occured so report an error B.

L253: RSTe8
ADC A,D

Divide the signed integer in HL
by the signed integer in DE,
result is in HL.

Lz28: LD A,E
OrR D
JR Z2,L253
CALL L48
PUSH BC
LD A,H
OR D
RLCA
JR C,L253
LD C,E
Lb B,D
LD DE,8
PUSH DE
EX DE,HL
INC HL

L21: ADD HL,HL
EX DE,HL
ADD HL,HL
LD A,C
SUB L
LD A,B
SBC A,H
EX DE,HL
JR NC,L21
EX DE,HL

L22: EX DE,HL
L35: XOR A

LD A,H
RRA
LD H,A
LD A,L
RRA
LD L,A
OR H
JR Z2,L23
EX DE,HL
XOR A

(listing continued on page 137)

L78:

L71:

L72:

YOUR COMPUTER,JULY 1983 135

(continued from page 135)

the Display File. Using the entry point given

in Mr Logan’s book on the ZX-81 ROM it
was possible to make the plotting an average

four timesfaster if called from machine code.
By medifying the calculation of the Display
File address, knowing that ZXGT will only
run on a 16K machine, it can be made 35
times faster than Basic.

The second problem is that if a Print causes
the screerr to be full after a call to Sinclair’s

printing routine, an error 5 results. When

using Basic pressing Continue allows the

screen to clear and the program to go on.

However, if a machine-code program causes

this to happen it will not return to that
machine-code program. For this reason new

Screen-handling routinesare built into ZXGT

which do not call the ROM. Thefinal version

handles all keyword expansion and, when the
screen is full, gives you several options.

You can Press C to continue as before; or

press D/Slow and the screen will scroll up at
about two lines per second while your fingeris

on the key. Alternatively press Z/Copy and a
copy is made on to the ZX Printer. A fourth
option is to press any other key than C, D, Z

and Break and the screen scrolls at speed —

Figure 1. The column on the right shows how
many times faster ZXGT is.

Test ZXGT Z2X-81
1. For-Next loop * (seconds)
1000 0.11 19 172
2. If loop * 1000 030 274 9N
3.As2 +
A=L/L*L+1-L 26 65 25

4. A$ 2 +
A=L/2*3+4-5 5.0 63 13

5. As 4 + GoSub 50 79 16
6. As 5 + inner

For loop 5.7 206 36
7. As 6+ Array

assign 7.0 280 40

Average 56
up to about 40 lines per second. The scroll is

much faster than Sinclair’s and does notresult
in a fragmented Display File which is hard to

clear. Try a screen of Scrolls in Basic followed
by CLS; it takes several seconds to clear.

The speed improvement of ZXGT over
Sinclair Basic is spectacular, varying from 13
to 172 times faster than Basic in the same
mode — Slow or Fast.

For example, a For loop of 1,000 steps in
interpreted Basic takes 19 seconds in Slow

mode while ZXGT takes a little over 0.1

seconds. To get a feel for how quick thisis,if

this is run in Fast mode under ZXGTit takes

0.03 seconds and, by comparison, a large
mainframe computer running Fortran needs

0.001 seconds. In addition, the order of
statements no longer matters for speed.

On the standard benchmarks the Slow mode
comparisons between ZXGT and Basic were
as shown in figure 1.

It is difficult to comprehend what a factor of

60 speed-up on a program means until you
realise one hour becomes one minute.

Now for the Assembler listing: those who

wish to assemble the ZXGT code given with

these articles should note the following. All

numbers starting $ are hexadecimal. All RST

commands are in hex but the dollar is not

(listing continued from page 135)
RR H
RR L
LD A,C
SUB L
LD &,B
SBC A,H
JP M,L22
LD A,C
SUB L
LD C,A
LD A,B
SBC A,H
LD B,A
EX (SP),HL
ADD HL,DE
EX (SP),HL
JR L22
POP HL
POP BC
BIT 7,B
JP NZ,L231
RET

Find the =sign of the division
and make both divisor and
dividend positive. Sign is in B.

L4a: LD B,H
LD A,H
RLA
CALL C,L231
EX DE,HL
LD A,H
XOR B
LD B,A
BIT 7,H
JP Nz ,L231
RET

a pseudo random integer
number using the standard
Sinclair Seed. The result s
always between 8 and 32748.

LD DE, (14424
LD H,E
LD L,%FD
LD A,D
oR A
SBC HL,DE
SBC A,8
SBC HL,DE
SBC 4,8
LD E,A
LD D,8
SBC HL,DE
JR NC,+1
INC HL
LD (14434) ,HL
RES 7,H
RET

Make a REM statement to contain
the cade which we are
generating. This REM always
contains two 118’s at the start
to stop BASIC trying to list the

machine code. There is a call to
ROM in here and this routine
must be executed in FAST mode.
The 1length of code arrives in
BC. On return HL is the address
of the first location available.
18818 is the location of the
first character in the REM.

Li187: INC BC
INC BC
PUSH BC
LD HL,é
ADD HL,BC
LD B,H
LD C,L
LD HL,18816
CALL £9A3
INC HL
LD A,118
LD (DE),A
LD (HL),@

Generate

L??:

INC HL
LD (HL)>,2
INC HL
POP BC
INC BC
INC BC
LD (HL),C
INC HL
LD (HL),B
INC HL
LD (HL),234
INC HL
LD (HL),A
INC HL
LD (HL),A
INC HL
RET

Get a scigned integer from the
Keyboard — used for INPUT and to
ask user where the code should
be put (see the second half of
the code).

The result is returned
register pair.

L8l : LD HL,@
FUSH HL
PUSH HL
CALL LSt
cP 22
JR NZ,L87
POP HL
POP DE
PUSH AF
PUSH HL
CALL L40
JR L&9
CP 118
POP HL
JR Z,L88
ADD HL,HL
PUSH HL
ADD HL,HL
ADD HL,HL
FOF DE
ADD HL,DE
cue 28
LD B,8
LD C,A
ADD HL,BC
ADD A, 28
CALL Lsa
JR L82
POP AF
CALL Z,L231
RET

in the HL

L82:
LB?:

Laz:

L8eg:

L?2:

Save the code away into the the
location pointed to by location
14507. If the SLOW key is
pressed display the location and
contents - useful in debugging.

L241: PUSH BC
PUSH HL
LD HL,(14587)
PUSH AF
LD (HL),A
PUSH HL
INC HL
LD (16587 ,HL
CALL LS3
cP 41
JR NZ,L242
LD A,118
CALL Lé&B
POP HL
CALL L151
POP AF
LD H,8
LD L,A
CALL L151
JR L243
POP HL
POP AF
POP HL
POP BC
XOR A
RET

L242:

L243: given. The labels are LO to L255. All
comment lines should be omitted. This is one

third of the code. You will require a Rem of
length 2,303 bytes as the first line in the
machine. Note that this means that

PEEK 16511 + 256 * PEEK 165612 = 2303

The remaining two-thirds of the code almost
fill the machine by themselves, so this third
must be assembled and then deleted.

The entry point to the complete compiler is

17389 — use Rand Usr 17389 — for the code
to be put in a Rem at line two or 17381 if you

wish it to ask where the code is to be put.
The entry to the code generated by ZXGT

is at 18823.

Next month we shall give details of the way

that the compiler translates Basic with
examples from the standard Basic repertoire.

We shall also supply a complete listing of the
compiler in machine code.

YOUR COMPUTER, JULY 1983 137

David Threlfall
continues his short

series with the
complete machine

code for ZXGT, a true
compiler for the ZX-81.
ZXGT is only just over
2.3K bytes. The fast

code is the result of limiting
the compiler to integer Basic. This
month, details are given of the way

that the compiler translates Basic
with examples from the standard

Basic repertoire.

GI COMPILER
LAST MONTH we considered the philosophy
behind ZXGT, my ZX-81 Basic compiler.
This month we move on to the intricacies of

integer arithmetic evaluation and see how

some statements compile.
For those uninitiated to Z-80 machine code

here are a few preliminaries. ZXGT uses the

the registers may be used for eight-bit storage

but the pairs BC and DE may also be used in
16-bit manipulations. Putting a register pair or
16-bit numberin brackets means that the value

in brackets should be taken to point to the

location required. For example:

LD HL,n load HL with the value n

Z-80 registers A,B,C,D,E,H and L. A is the put

eight-bit accumulator. H and L may be LD A,(HL) means load register A with the

considered as a single 16-bit accumulator. All data in the location pointed to by

Routine
factorial (n)

Yes

No

Factorial = n*factorial (n— 1)

Y
Return

Factorial = 1

Y
Return

the value in the HL register pair.

Here are a few simple examples to start the

description of the compiler.
CLS

This results in a call to Sinclair’'s ROM at

hexadecimal address 0A2A.
RETURN

This one is very easy, requiring the Z-80

instruction Ret — return.
PEEK n

This causes HL. — the double-precision

accumulator — to be loaded with the contents

of location n, thus:
LD HL,n load HL with n

LD A,(HL) load the accumulator with the
contents of location HL

LD LA move A into L

LD H,0 zero H
HL now contains the contents of

location n.

The next example is:

ABS X

Load HL with X and test the top bit ofH —
the sign bit. Call a negate routine if this bit is
set, thatis, ifthe numberis negative. Negating

a numberentails taking the 2’s complement but

there is no Z-80 instruction for this. Instead
we must take the 1’s complement of H and L

independently and then increment HL.

POKE x,y

This means put the lower byte of y in
location x. As we need x and y simultaneously
they cannot both be in the HL register pair.
Therefore we get x in HL and y in DE then do
LD (HL),E as required remembering that

Poke acts on only one byte.

GOTO n

This will be translated as a Jump — JP —
instruction; n must be a number and not a

variable. The compiler has two passes. On the
first, it generates a table of line numbers and

their addresses in the machine code. On the

second pass, the correct addresses will be
available for both forward and backward

Gotos. (continued on page 79)

YOUR COMPUTER, AUGUST 1983 77

(continued from page 77)

Note in particular that, in the compiled
code, the nearness of n to the start of the

program does not affect the time taken to

execute the Goto.
GOSUB n

This works just like a Goto except that it

results in a Call instead of a JP.
USR x

This results in the machine code at location
x being executed. It looks as if it should result

in just a Call to location x. However, there is
no machine code statement for “call to the

address given by a register pair”that is,
CALL (HL)

so subterfuge is necessary. Consider the

following code:
LD BC,BACK load BC with the address of

label BACK.
PUSH BC keep BC on the stack
LD HL,x get x into HL

PUSH HL and push HL on to the stack

BACK: continue code
The first four lines get the address of Back

and the address to which we wish to go on to

the stack. The Ret instruction makes the
machine “return”to the address at the top of

the stack which is x, just as we wanted. At the
end of the routine starting at x, a Return

causes a jump to the next address on the stack

which is Back and there we are.
FOR-NEXT

The For-Next pair is compiled into

directly executable code — not calls to other

routines — and so a For-Next loop is

extremely fast. The For statement has the

form:
FORK=M TO N

where M and N may be parenthesised expres-

sions. M is moved into variable K and (N +1)
is stored in the next word/two-byte location.

During compilation the address of the next
location after For — let uscall it zzzz — is also
stored. The next K statement is compiled

thus:
LD HL,(nnnn) where nnnn is the location

where variable K is stored.
INC HL make K one bigger
LD (nnnn),HL store this value

LD DE,(nnnn+2) get value of end of loop

AND A clear carry flag

SBC HL,DE subtract DE from HL

JP M,zzzz if HL-DE is negative jump to

the next address after FOR.

Otherwise execute the next
instruction.

This arrangement results in extremely fast
execution ofthe final code — about 170 times

faster than Basic. Machine-code enthusiasts

might care to consider what limitationsthetest

places on the values of M and N.
Now for some arithmetic. Wherever a

variable may be used in Basic an expression

may be substituted, so some means has to be

found to evaluate that expression. The method

which has been chosen for ZXGT uses an
often-mentioned but rarely-used mathematical

function called recursion.
For those who have not come across

recursion before, consider evaluation of n!,

that is, n factorial; n! is defined as:
nl =n x (n-1) x (n-2) x 1

and we may rewrite this as:
nl =n x (n-1)!

=n x (n-1) x (n-2) !
etc.

To calculate n! it is necessary to multiply n
by (n-1)!. To calculate (n-1)! we multiply

(n—1) by (n-2)! This process is continued until

we arrive at 1! which is 1. Figure 1 shows a
flow diagram for this process. The routine

Factorial calls itself repeatedly.
The process ofevaluating an expression uses

a similar technique which is shown in figures

2 and 3. We see that Variable calls Evaluate

and Evaluate calls Variable, but the way out

may not be clear. Each time we enter Evaluate,
a marker — 0 — is pushed on to the compiler
stack and when we reach the end ofthe line or

a right parenthesis, the stack is popped back to
see what “pending operations” are left.
Operations are performed until an

“operator”’ 0 is encountered. We placed this
(continued on page 81)

Figure 2.

Routine variable

Produce code for

LD HL, (nnnn)

| produce LD HL,nnnn

Evaluate number & |\

 Call evaluate Y

\4

Call evaluate to
get array item. |\

Produce code to get [~
this in HL

\4

Deal with function

(may call variable)

A\
4

 Z

N\

Done

YOUR COMPUTER, AUGUST 1983 79

(continued from page 79)
there to mark the end ofthe expression when

we entered the routine. Theexit is taken with

the result in HL.
Two other points should be noted. Firstly,

the right and left parentheses will match

exactly, because of Sinclair’s syntax checking.

Secondly, we are using two different stacks.

The operands of the expression are pushed
on to the stack of the compiled program by

code generated in the compiler. The operators
are kept on the compilerstack and are used by

Basic may be run and tested under the inter-
preter before the compiler is invoked. One

writes a program bearing in mind that

eventually it will be compiled. When you are

satisfied with your code a single Usr command
runs the compiler and puts your code into the

P the compiler to cause the correct code to be Rem statement. This is clearly a very powerful

igure 3. generated for combinations of operand in HL feature and one which should eventually

Routine evaluate and DE. become standard on all small machines.

In effect, infix notation is changed into Some people may not be aware of the way to

postfix or reverse Polish. make the large Rem required for ZXGT. Aq
The Let statement calls Evaluate directly. ossible procedure is as follows: first, type ay-| P y

Push @ on to stack Many other Basic statements are supported line 1:

such as: Fast-Slow, Input, Pause Rand/Rnd to

|

1 REM ABCDEFGHIJKLMNOPQRSTUVWXY

/ seed and use the random number generator, ABCDEFGHIJKLMNOPQRSTUVWXY
Print, Scroll, Stop Unplot/Plot. ABCDEFGHIJKLMNOPQRSTUVWXY

Call variable The ZX-81 does not have the ability to store ABCPEFGHILJKLMNOPOTSl b of the li

on tape anything except Basic statements so . Th1§ mMakes the. tota enlgt oft ‘f 1138

\ Y where can the machine code generated by the including the terminator — 118 — exactly

7 compiler be put so that it may be recalled from bytes. Check thatPEEK 16511
Generate code tape for later use? . o . .

to Push HL T e R is 96. Second, edit line 1 changing the line
0 FPus he general answer to this is “in a Rem ber 1o 2. Third, edit line 2 to make it line

statement’’ and that is the solution adopted by numberto 2. 1hird, edit Ine (o maxe f
: Lo 3. Repeat up to line 23. Fourth, edit line 1

Y the compiler. The one twist is that the ddine 1234567 i Jiately after Rem. We

compiler generates its own Rem statement 2 1n§ h 1mmte 2 eg a efr her ’ ters

Get next into which it puts the code. To accomplish ;(')fytvh a}:e lt(tehctorrec number of characters.

character this the code is first compiled over the ROM 1th, check tha PEEK 18815

. — and so not stored — and the resulting length is 118. Steps 6 to 10 of the procedure are:
ofcode is used in forming the Rem. It does not POKE 16512,8

delete any old compiled code. POKE 16511,255
One ofthe best features of ZXGT is that the {continued on page 83)

Figure 4. The hex loader. Y

p S FOR L=165S1¢ TO 18814 STEP 1 Generate code

12 SEkoic to pop HL
Push character 22 Efigg; Ry J

on to stack 38 TReur Tof
4@ PRINT TOT
45 IF L=18814 THEN LET L@&=F5

YV 82 IF Len'RetiLeTheNGoTo55 Pop operator
NT (L-/18) -INT (L-100) x1

. B‘égODE Ra;é);gs THE2$GQT

Call variable e’Sk S=ICODE A% (K) -28) £16+00
78 E L-1+INT (Krs2).C
B2 F=T+C

\/ 55 NEXT K
gg gER-BEI=T THEN GOTO 11i@ Y

/\ 108 PI:Q_INT “"ERRCR - PLERSE INPUT es

Pop character eeTHoro 10 ‘
back 118 NEXT L

Y Generate code Generate code
es to pop DE and to pop DE

evaluate HL/DE
or HL*DE

v b

No Generate code
. to eva

See if there are HL + I{;lgtgr
any operations HL - DE
on the stack. If
S0 generate code
to evaluate them (

No v

Error Push ‘operator’ N

onto stack

, \ End

N\

YOUR COMPUTER, AUGUST 1983 81

{continued from page 81)

POKE 16514,118
POKE 16515,118
POKE 16510,0

You now have a Rem called line zero of
length 2,303 bytes as required. Note that there

are minor differences between the assembler

code and the version of ZXGT in the hex

dump.
Figure 4 shows the hex loader that will

enable you to enter ZXGT. Note that the Rem
to contain the code must be exactly 2,303 bytes

in length, that is the total line length as

defined by Sinclair. The loader will prompt

with the address to be loaded and you should

refer to figure 5 to see the hex string that

should be entered.
You should input the 21 characters up to,

but not including, the equals sign followed by

Newline. You will then be prompted for the
check number by an equals sign. If the hex

and decimal agree you will be prompted for

the next line of input. If they disagree you will

be asked to re-enter the data. The last hex
string only contains five characters.
The entry point to the complete compiler is

17389 — use Rand Usr 17389 or Let L=Usr
17389 — for the code to be put in a Rem at

line 2 or 17381 if you wish it to ask where the

code is to be put.
The entry to the code generated by ZXGT

is at 18823. Use
Let L=USR 18823

Do not use
RAND USR 18823

In future issues, we shall give the remaining

third ofthe ZXGT assembler code and discuss
how to avoid some of the restrictions

mentioned in part 1. If you find the listing too
daunting to type in the compileris available on

cassette for £8.95 from Personal Software

Services, 452 Stoney Stanton Road, Coventry.

16514
163524
163534
16544
16554
163564
16574
16384
16334
16604
16614
16624
16634
16644
16654
16664
16674
16634
16634
16784
16714
16724
16734
16744
16734
16764
16774
16734

16734
162604
16514
16324
16834
16344
16254

17074
17824
17094
17104
17114
17124
17134
17144
17154
17164
17174
17134
17194
17204
17214
17224
17234
17244
17254

178E4 &

Figure 5. Hex dump of ZXGT compiler.

1BFBDACB37676C3B440C3=1607
22341C35741C34F41C383=1114
341C39741C3AB41C32142=1201
4C39C42C3DE42C33943C3=1414
57A43C33743C3B8B43CFBC=1331
6ESDSAFCDZ2142CB7CZ2808=12956
73E16L02142CD1B411110=718
827CD@741301A1 1ES03C0D=847
9074130151 16400C0074183533
930131EBACDO7413012C3=645
1FC40CDAC411 1ES03CDOD=1063
241116400C000411EQACD=710
380411EQ1CDAD41AFDIEI=1001
4C32142ESA7EDSZE1CI3E=1457
S1CA7EDSZ233933C12F515=531
6L321427C2F677DZFEF23=88E
PLOZABC4B1 1210RESH] BO=S53
80pa922ES19EEZ1DEBZED=1013
34ZEZC1EBEDERE101BEAZ=1544
PASZZAE4Q3E21 3232403E=447
183223R40C5CDERAZ7CFE=1148
ZFEZORECDBBRZ2428FACD=1217
2BBRZ7DFEFFZBFB8017FFL=1452
4AFESED4ZE1CABZ4001EF=1616
SFCAFEZED4ZE128004424=1543
6CB40C0EDE77EFERACICE=1462
FFC22:34402R24497CECTF=1041
SBACACLIF4123F20861 64/=1102
SVYBEBEZ190aCEI3 IF3a01=731
A19EBZEBIOFSCOZEZBI0=1247
1DADC4247ZEDLCEZE3A02=27]
2IEA4CB2320B2CBa7FSCD=1026
ZEB41VECEQPFELIOZ0A7CE=1164
4BF'GB/EEdF4?11°EMLJH=?h4
SI4e33FAEL41F 12FAB1E=1271
fiBZFlEBFE@ESd@ZEE8F18=1144
7363E173A0ADC4ZYIEEIF=1162
B4FCOCECEAFCELOCE1ACE=1486
S1@EBEVEI2014847BI0 =243
B470FED4BAC4RBEZE2ZBE=560
14@613E189@323H4JE21=?54
'H1J¢'54MF’DJE: H-14J,

E?EFE?GZB4H3H‘ j
P3A4B23Z22RE4RZEZ13239=
2401 238ZABE4RTEFETE2S=
SEEZZ1BFEZARC4PRIF302=205

FAEBFCDIF41 2EFEFEZS=1140
12515FE3F281 EFE292008=750
22118272B70E42aFBLD2=053
3411203C02ZARBAF 1 183AC1 =361
4E1D1CIC0ETRE18D37EE1=1485
SCBIACDZ142130B18FIFE=1623

SO5FECACBB7DA3I42=1221
VEE2F2111014704FES]130=714
854HFC02142DB?E2328F8=1138
F1OFI7ECB7F2E0CC02142=1063
B2318FSEE3FCOZ2142AFC3=1271
12042CFBATBBZZEFACDZ=1293
243CE7CBZOTERF 14B421 11828
2900@DSEBZ3ZIERZI7IST=1070
725CEB3OFEEBEBAF7CIF=1605

S677DIFEFB4281 BEBAFCER]1 227
61CCE10VI35789CFAFE42=1376
779934F7EIC4PES1IES1821155
SDDEICICEPECZ1B41C544m13517

97C170C1B41EB7CRAB47CE=1268
@7CC21B41C9EDTB324063m=11352
12EFD7AB7OEE@OEDS2I8ED=1318
252935FSQED'5230012322=846
33240CBBLCIY30303C303=913
40303093218049CDA30923=635
S3EVE7123360223C17123=760

17264 6702336ER2377237723C3=379
17274 7210P0OQESESCOT741FELI6=1124
172284 82007E101FSESCDZ14218=1277
17294 9FOFE?6E1281FZ9ES2529=1260
17304 BL1134FCD214273061C38=1036
17314 1084FPEPRASFEORIBDIF1=874
17324 Z3EE6CDZ214218C7F1CC1E=1271
17334 341CICSESZATB4OFS7PET=1514
17344 423227B4BCD4F41FE2920=332
17354 S5123E76CDZ142E1CDB440=1176
17364 £F126006FCDB4401S0ZE1=1050
17374 7F1E1CIAFCICICIZERFD7=1729
17384 3CD75491812210000C012=633
17394 244CDF748R3C07B43ESCD=1427
17484 @2643E1C01244CDS945C0=1167
17414 12644CDBD44CF7FIECICI=1178
17424 27E4522704QEDTE1C4@13=845
17434 3217240CDAT452ATH4BE0=FEE
17444 413<4°F68°74d?94fi11F8S92
17454 5001322784021 7040C004=853
17464 £442323E5232216400044=793
17474 V4SFEFECCCB44FEFZLCIE=1857
17424 ZB48FEFACCCE4BFEDEZSER=1862
17434 jFEE?FPID49FEE'FFZB45=1439

ZFEF4CCBE4TFEESLLF]
ZFEEECCSD43FEFECCEL

=1§55

C B a4
SFEFECCSF47FEESCAT647=1243
EFEFSCCS345FEEAZE 1 SFE=1068

7E7LCA447FEFECCBL44FE=1717
ZHHZBBECD444SFEFPE2B07=YIR
JE1CDOE43CE36443ERS =
534500524 3CFJECD
1215F4303AR4TEDDL EIBEB
ZDSEBESZ222349229R4000=112"
ZEC4SCD 349E1C0134515=1211
41BEBD1CDB4SEDSETE4D=1263
SCOB45SESENIBY24BATED=1422
AESZE1380322724BE1C573=1113
PRATIRECASESIEEZBLOES= 1065
BC12A1C4RZ3C0RE4TEBAT=1832
SED420@2A7Z48EDSZDSER=1561
B2E1BEDIECIFIC04445C0=134T
12A48C01 245EBCDBE4SEB=116T5
ZF1C3AB473ECDIBESETET=1662
IFETEZEESFEVEZBOSFILD=1236
46545F 1E1C2C04445FETE=1 502
5287FERBZE1AFECI284C=1048
GFEDEZ2E74C0E047215245=1162
FCDA247184FIE1BC0VE43=1035
H2ATEB48ESCDTE4901IFFFF=1274
92A164022037EFSCOEE49=213
AF 1IFERBZEOSLDVB4S 1BEF=1215
122164BE1C571233E110D=374
ZAB47ZERIELICDAB4TZ1EE=1117

17534 343CDAI471812C02747C0=1056
17844 4r14(d14d4DFDHE4‘¢1F5=1169
17854 S@3C0A547C04445FELIRZE=1113
17864 6RCFE132868Z1EC4SCDAI=1387

17874 7472R16402B221640RFCI=733
17884 8CD4D473E7DCD7B492168=1078
17894 3943CDAI4718DE3E76C368=123T
17984 @49FE40D2C144D6261717=1160
17914 1ED4B794026096FB3C3CD=1061
17924 24445CDF 145FEG4200RACD=1233
17934 32R493EESCD7B4926FFES=1323
17944 4CD4445FE14L2C144CD30=1337
17954 546C0D343E17CFEFFZ00AC=1457
17964 621D1EBCDRE47218945C3=1233
17374 7AS5473E22C3AB47AFFSCO=1323
17234 84D473EESCO7E4SC04445=1132
17324 3FE112850FE76284CFILD=1323
18004 A4047F1FE1S2804FELSZ0=1016
18914 123C1E77SFEORZOB4FSES=1213
18824 218D8ES214440CDAE47CD=1302
12834 327E4E3EES21E960CDRE47=1165

18044 418C4FSCT1B1CFELS2518=1042
18054 SFEL17CZ2C144C0CE4E2162=1336
15864 £43CDAZ471BACCDCE4EZ1=1224
18674 7EE4218FIZEEICOVB49F 1=13275
18934 BFEQUCEFELISZE11CDCE4E=1232
1836824 221A7EBCDAE47Z1EDSZCD=1442
18184 AAE4718EPCDCE463E13CD=
12114 17B4518003ED1CE7B43FE
18124 ZD3298FCD4D47FE1TEEFLD=1026
18134 3IAE4TZ1260AC3AE4TFED4=1222
12144 47HIZPD4D4741EB4EF“ 3 D
18134 3 A
18164
18174
12124
12154
18284
13214
1#224 ZCFC

 PFE!4F4HF4(F 4345FE41v

144¢1C4SCDRZ47SE= 11

1EMEHHel%
AF145E5E

DabassEaBCoAG= 158
S47IEA7Z1EDSECORBATIES1 161
EFFE 1CDAE4SEECDRES7=1645

‘AFEZEDEC144FELCRAC
BOE1CHEBR4FAS 1 20FE 5
116401 1050015221 64BE1=4,
2L52175430DAR47CD4445=
BCOF 1450238462E3BFSCO=178%

18544 43747C0C147214B4SCORE=11T1

18534 5473E3ECD7B43IF 1CD7B49=1238
18564 £3E322132040CDAB472165=8323
18574 743C3A9473EAB1SDEB2EZA=1074
18524 8213440CDAB473E222132=775
18594 940C3AR47FEDDZB1ZFEl14=1287
186084 B28141F30B1EEL7A7EDSZ=824
18614 137FB170P18BBEDS237C0=1132
13624 218B4EDSZ237CB3FCOCDET=11268
18634 247672EZELDRE47Z1AC48=1003
13644 4CDAZ472ABA4023C01345=285
12654 SEBCORE4SEB3EDZCDAB47=1477
18664 6LD4445FEDECZC1440721=1567
18674 7PF74B8LEZA347VCDEVBZZ13E=1284
18684 340CBEECIZ10645C3AB47=1197
12654 521384EE8FSC3@7624E ze
12784 B4¢ SABC4AADCAZRA0=cET

CD4445FEIFCECI=14E7
244CD4D47AFCICDYDG7>l =118
BED4BCDRAE47Z21 1C4BCDRE=1266
44721230203AE47CD:H44214
'QEDJFD?E49h £
£47Z1EEDIC

YOUR COMPUTER, AUGUST 1983 83

David Threlfall continues his
insight into how the ZXGT
compiler works and what must be
considered in the design. Here he
looks at the compiler’s
shortcomings and how they
have been overcome.

Display
File Spare

v v

ZXGT m/c ZXGT Assembler Code ZXAS Spare

4 + + +
16509 18816 27K 32K

Figure 1a: Memory map during work on ZXGT

Display

File Spare
Vv ¥

MCODERI ZXAS MCODER Il Assembler
m/c Code

¥
16509 20494 32K 48K

Figure 1b: Memory map during

work on MCoder Il

A FEwW MONTHS after ZXGT had been put on
the market as MCoder a few of its short-

comings became apparent. As it stood it
worked extremely well, was very fast and far

exceeded its original specification, but there

are several areas where improvements would

be welcome. Problem areas include;
B No strings — this can be circumvented but
string handling would make more a much

more versatile compiler.

B Only 25 variables — programs written for
ZXGT were getting larger and this restriction

was proving a major handicap to writing

understandable code. Multi-character names
were necessary, not even two-character names
as on the Pet could be considered.
B Only one numeric array — the array was
added as an afterthought primarily to help

fulfil the role of data logger on scientific
experiments. A full 26 arrays, even if one

dintensional, would be very useful.

4@C/J.C/

’ ,é_?/fi%~/ Ji/

/4=Q@f{\@?‘r—/‘mr/4»(-/
/45-!/""_/‘/4;7%

OMPIER
B Printing was not & Ja Basic — each number
was printed with a leading space and “,” did

not tabulate.
B Lprint was not supported.
B No Boolean algebra at all — a little would

be useful.
B Input was totally non-standard, it appears

on the main screen not on the input area and
there is no rubout. Inputat the bottom ofthe

screen with the ability to correct mistakes was

necessary.
B At about 56 times faster than Basic it was
not slow but work on the Spectrum version

had shown that more speed was possible — the

final version is almost 70 times faster than

Basic.
B Brackets are necessary except in Let — this

is compatible with Basic but annoying.
B Last but still relevant was size. The
original ZXGT had been aimed at 2K bytes

and only just ran overbut most users gave the

impression that to obtain the items above they

would sacrifice a little more space and longer
loading time. 4K was felt to be optimum if all

these features could be added.
M Floating point. Slight consideration was
given to full floating-point arithmetic.
However, work with Microsoft’s compiler on

a larger machine had shown that a speed up of

only five or so could be expected particularly
as Sinclair’s ROM routines are very slow. Put

another way the balance between inter-

pretation and evaluation is heavily on

evaluating. For this reason primarily it was
decided to stay with integer arithmetic on all

the compilers for Sinclair computers.
Readers may wonder why these features

were not implemented in ZXGT. ZXGT was
not written directly in machine code but in

assembler, a listing of which has been
appearing in parallel with this text. It is hard

(continued on next page)

The Sinclair functions are INT ? LD L,A FOR statement seen. Generate
examined here and code L201: CP 207 INC HL code to load the variable with
appropriate to each is JP NZ,L252 RET the first number and Keep the
generated. JP Li1@8 11 second number incremented by one

PEEK 2 L244: CALL Lies Get variable then code is in the next location.

L1é: ¢R 211 Get a pair of arguments and generated for 1d hi,(nnnn>. L18@: CALL L248
Jk NZ,L161 generate the code L2453 CALL L37 CALL L37
CALL L1e8 Id h1,nnnn or 1d hl,<nnnn> cP 100 PUSH HL
LD HL,£6F7E push hi JP 2,L234 PUSH HL
CALL L3é 1d hl,nnnn or 1d h1,(nnnn) LD A.42 cALL L2480
LD HL,£0024 pop de JP L38 . CALL L244

5 JP L3¢ CALL L2480 Get integer then code generated LD A,35
USR 2 246: PUSH AF for 1d h1,nnnn. CALL L241
L161: CP 212 L246: S|RAN LD A,229 L86: CALL L81 LD L ,£53ED

CALL 1188 CALL L241 LD A,33 CALL L3é
LD HL,L143 CALL Li08 JR L38 Pop HLI Laé LD A,289 STOP statement seen CALL L3¢

L143: LD BC,L160 CALL L241 18+ S‘SELHL" LD Ay 34
" PUsH BC POP AF e hPusH BC RET ;grsc,ussan INC HL

t thing is. CALL L38
RET t:zr?to:tu::?:b::e n:‘num:;;:go:- a CLS statement seen. Generate a POP HL

L16@: LD H.B . * 11 to the ROM. LD DEfunction? ca ,€(16507)
LD L.C LS2: LD HL,#A2A CALL L17e
RET L1e8: CALL L240 R LS; RET

CODE_INKEYE 7 Liez: P2 SCROLL statement seen. Generate NEXT statement. Find the
L1622 o roLiss CALL Z,L240 a call to the scroll routine. variable name and generate code

L I:248 16 L130: LD HL,L131 to increment it and test if we

cAL s JR Z,L218 JR L3? have reached the end. See Text.
cP & CP 44 A routine to save either HL as L1091 CALL L2406

JP NZ,L252 JR NC,L97 code, HL and A as code or to CALL L37
LD HL,LS3 cP 38 generate a call to the number PUSH HL

Eg"'; '539 CALL NC,L245 presently in HL. PUSH HL
o Hi £4F00 CALL C,L86 L39: LD A,205 LD A,42
P Laé Le8: POP AF L38: CALL L241 CALL L38

RND ? CALL Z,L23@ L3é: LD A,L LD HL,#£2223
N a: CP &4 RET CALL L241 CALL L3é

T gp NzZ,L172 L97: CALL L16 LD A,H POP HL
LD HL L117 JrR L98 9P 2 a4 CALL L3» L218: caLL L2608 POKE , get the two arguments an INC HL

ABS ? P L39 JR L98 make sure that a comma separates INC HL

? . them. LD A,237

L172: CP 210 Generate negation code. B
,

JR NZ,L201 L238: LD HL,L231 Liat: caLL 1244 CALL L241

CALL L1608 JR L39 LD HL,#73EB LD A,%1

LD HL,#7CCB Actually do the negation. JR LBZ %Lk %zg

cALL L3é L23t: LDA,H Check that the char in A is a bl
LD A,196 cp comma, if not error. :

LD HL,L231 LD H,A L187: CP 26 L)
JP L38 LD A,L JP Nz,L252 . (listing continued on next page)

19 cPL RET

YOUR COMPUTER SEPTEMBER 1983

(listing continued from previous page) gzacégi‘fiz cE;; to tt; :l:;émg routine. LD HL,16436
CALL L38 LD B,0 Lé1: F'USH,AF CALL L38

LD A,258 D c.A CALL L=aa LD A,34

POP HL ADD HL,BC CALL L1877 52 E;é16434

EQLIBE‘:»:? Lear BushnL LD HL,2£4548 IF tests start here. Arrive with
CALL L38 : LD HL, (164086 fiug :gé DE=first argument, HL=second and
RET ’ ’ A=operation. Result is carry set

13 LD DE,5 CALL L241 i condition true.
ADD HL,DE POP AF Lige: CP 221

Get a number from the code LD (16486) ,HL CALL L241 JR 2,L182
skipping over the floating point POP HL LD A,£32 CcP 286
form which follows it. RET LD HL,%4030 JR Z,L184
L8t: LD HL,@ INPUT statement. Find the CcAaLL L38 RRA ’

JR L83 variable and generate a call to LD HL,L113 JR NC,L181
L8S: CALL L2486 read the keybagrd and then code JP L3% EX DE,HL

CP 126 to put the resitt in the slot 14 Lis81: RLA
JR Z,L84 reserved for that variable. UNPLOT statement. Much 1ike PLOT AND A
PUSH AF L75: LD HL,L88 but with a different argument SBC HL,DE
LD DE,18 CALL L39 generated. SCF
cALL L112 CALL L24@ L65: LD A,2A0 RET M
POP AF CALL L37 JR Lé1 RLAL83: CP 38 JP L18S RAND statement. Gets number and RET NC
JP NC,L252 PLOT statement. Find the pair of puts it into location 16436. . .
cp 28 arguments and then generate a L31: LD &,42 (listing continued on page 123)

(continued from previous page) with this but by the time MCoder II was 2Nbytesee 32 —+4—32 —ve-2x2N-s
to write very compact machine code mainly completed 32K bytes of code had to be run Aarray Bs c4 |Xarray
because changes and corrections are nearly back in each time the machine crashed. With +
impossible so space is always left just in case. the standard tape interface that takes about 15 STKEND STKEND Last M
However, it is impossible to fit an

assembler, the target code and the source for
more than 1.5K of machine code in a 16K

machine. That is why the code was written in

two longish sections — figure la. This left two

options — write the code in more than two
sections — two were hard to manipulate, three
or more would be devilish — or baotstrap
from Basic.

The concept of bootstrapping is to write a
small compiler with features that allow you to

write a larger one. At least one Algol compiler
has been written that way. Just a kernel of

machine code is necessary to get started and
this already existed in ZXGT.

This route was avoided since the code
generated by ZXGT is 16-bit integer and
therefore would not be suited to the mainly

eight-bit character handling of a compiler.

Perhaps somone would like to write an eight-
bit version of ZXGT — it would be even
faster.

Now, you are probably asking why I did not
buy a 32K or larger memory pack. The answer
is that I had one but that ZXAS — the

assembler I had — sat in the 27 to 32K slot so
stopping Basic from crossing the 32K word

boundary. For those who do not already know,

it is quite permissible for Basic code — not just
variables and arrays — to cross this boundary

but at no time must the display file straddle
the line, either side is equally alright. Also,

you cannot run machine code which sits above
32K.

Salvation finally came when DCoder arrived
on the market. DCoder is a disassembler but

more important it is a relocator so it was

possible to relocate ZXAS to sit above the
compiler machine code — figure 1b.

Relocatable code is code which may be put

and run anywhere in the machine. It is easy to
write relocatable sub-routines but whole

programs are harder. Suffice to say that

neither ZXAS or ZXGT are relocatable.
So a relocatoris a smart disassembler which

can spot which jumps and calls are to within
the code to be moved and change them

appropriate to the new location. This does not
make the relocated code relocatable but merely
changes where it will run. The twist to this

story is that DCoder was written indepen-
dently by someone using MCoder — alias
ZXGT.
The third major limitation was the Sinclair

tape interface. I have rarely had any trouble

120 YOUR COMPUTER, SEPTEMBER 1983

minutes. This time the remedy was QSave

which records 32K bytes in a little under one
minute onto a standard tape recorder.

The final piece in the jigsaw, which arrived
when MCoder II was nearly complete, was lan
Logan’s ROM disassembly forthe ZX-8l.

This allowed several new features to be added
by using ROM routines to save space. ROM

routines were only used where time was not
critical eg.. inEprint. It also explained some of

the clever but slow features of Sinclait’s Basic.

In this section problem areas will bf‘
discussed in detail;

B Strings: The ma]or difficulty with strings

was to avoid garbage collection when the
string was lengthened or shortened. Event-

ually this was solved by decreeing that all
strings would have a maximum length of 32

bytes. This length is held in a location that is
known to the user so that it may be Poked
from Basic.

The value is reset to 32 when the compiled
program is run and must be Poked from your
program. By this means the maximum length

for individualstrings can be set as the string is

used for the first time. Thereafter the length of
that string cannot be increased beyond that
limit. There are no string arrays.

All strings — and numeric arrays for that

matter — are allocated space at run-time and so
sizes need not be preset. These strings/arrays

are stored above Stkend. Consider this short
program:

1 INPUT N
2 DIM A(N)

3 LET B$ ="QWERTYUIOP”

4 LET C$="BROWN FOX"

5 DIM X(N+N)

The program would prompt for N, allocate

the array A — 2*N bytes to be zeroed —

allocate B$ and C$ and finally allocate the
array X of length 2N. Note the use of addition

rather than multiplication to form 2N.
Multiplication takes 10 times longer than

addition and division 50 times longer. The
result is the memory map shown in figure 2.

To concatenate strings, and that includes
CHRS, INKEYS$or “string”,it is necessary to

form the new string elsewhere than its final
resting place in case a string appears both on

the left and right hand side of the assignment.
For example:

LET A$ = A$(1 TO 3) + A$(6) + CHR$
128 + B$ + “*”

results in the new A$ being built above Last —

Figure 2: Dynamic allocation of space.

see figure 3 — and then locations Last to End
are copied into A$. The length of the string is
simply the number of bytes between Last and
End ’

Printing strings is a similar process except
that the final copy is to the screen. A more
difficult task is to compare two strings, for

example:

IF A$ <> B$ THEN PRINT “NOT EQUAL"

A copy of A$ is made above Last — which is

reset first — and a copy of B$ is made above
¥ad. Each is terminated with the code 255.
With HL pointing to A$ and BC to BS,

incrementing and comparing and using the
results flags it is possible to do all six standard

comparisons with one short routine.
B Full variable names: Sinclair Basic is rare

in allowing variable names of any length

which may contain spaces if desired. Apart
from disallowing spaces this is fully

implemented in MCoder II. The variable
names are stored as shown in figure 4. The
names are entered downwards from just below

the machine stack — actually 256 bytes clear of
RAMtop — and the last letter is stored in

inverse video, ie., bit seven is set.

For strings the names are considered to be
A$ to Z$ and for arrays A< to Z< thereby

differentiating between the three sorts of

variable. An example might be to store the
names Fred, A$, One and an array C, these

would be stored down from just below the
stack thus:

m
x
o
m

Inverse D

A

Inverse $
0
N

Inverse E

C
Inverse <

0

The zero on the bottom marks the end ofthe
list. There can only be 255 variables as a single

byte is used to store the number ofvariables. A
careful note should be kept during compila-
tion of the maximum number of concurrent
variables together so that space may be

reserved for them at the end of the compiled
code.

In Basic the command Clear removes all the

(continued on page 123)

(continued from page 120)

variables, but in MCoder the command

merely zeroes all the variables used in the

program. Zeroing the locations reserved for a

string variable actually zeroes the pointer to
the string implying that it has not yet been

allocated.
B Numeric arrays: As the DIM statement for

an array is encountered by the compiler, code

is generated to load the HL register pair with
the length of the array — always one dimen-

sional — and a call is generated to the ““allocate

space and zero” routine. This generates and
stores a pointer to where the array is to be put

and then zeroes the array as follows:

LD HL, where array is to be put (=LAST)

LD, BC, length of array*2
LDD, H

LDE,L

INC DE

LD (HL),0

LDIR

LD (LAST),DE

If the array already exists then the old one is

forgotten and a new one created. This failure

to collect old, unused space can be wasteful
but is not considered too detrimental.

Array elements are accessed by calculating
the index, doubling it — two bytes per element

— and adding this number to the base address

of the array. No array bound checking is done
as the code is assumed to be fully tested under
Basic.
B Printing to the screen: To attain the same

result as Basic is really only a matter of

attention to detail. However, the Tab
command may be of some interest. Sinclair

stores the column number where printing is to

take place next but stores it backwards. The
actual column number stored is 33 — the

number the user inputs. For example Tab 5
makes the system variable S__POSN (16441)

take the value 28 and Tab 25 yields the

value 8.
B Printing to the ZX printer: If printing to
the screen is clear, but perverse, consider

B AND C which is true if B and C are non zero
B OR C which is true if either B or C or both
are non zero.
These are only implemented in the If

statement using routines for Or and And
which are called with HL containing one 16

bit argument and DE the other. They return a

set carry flag if the result is true.

AND: LD AH stest if

ORL ;HL is zero

RET Z ;return if it is

LD A,D :now do DE

ORE

RET Z

SCF ;set carry flag

RET ;return

OR: LD AH :test if HL zero

ORL

JRZ,+2 ;jumponifitis

SCF :HL non zero, set carry

RET

LD A,D

ORE
RET Z :both HL and DE zero

SCF

RET

B Input: This had to be completely rewritten

to be like Basic. For simplicity of coding input
is limited to 31 characters plus the prompt so

that it all fits on one line. This avoids the

problem of compressing the display file.
Invalid characters will not print, incorrect

ones may be rubbed out, but you cannot step

over characters using the cursors.
The screen is used as the input buffer and a

string input is copied directly to the space

reserved for the variable. The length can be
ascertained from the position ofthe cursor. At
the end the buffer is cleared using part of the

array zeroing routine described above.

B Speed: In ZXGT the particular If test to be
carried out was decided at run-time. This

resulted in very short code for the six

functions. In MCoder II code is generated at

compile time. As before HL and DE contain
the two operands in the general form.

condition
Jis true
;next statement after IF

where ‘flag’ depends on the operator. For

example <> requires the use ofthe zero flag.

This results in considerably quicker code than

in ZXGT, often by almost 50 per cent.
B Brackets: Originally an arithmetic expres-
sion was terminated either by the end of line

character — 118 — or by a right bracket. The
change required to evaluate an expression
where brackets are not necessary — ie, like

Basic — turned out to be very easy but needed

the logic to be stood on its head. The

expression is now not terminated by the four

operators +,—,/,* and everything else means
that the end has been reached, be it with a

comma, semicolon, bracket etc.

Sinclair makes a distinction between the way

that various functions decide where their
arguments stop. For instance Peek 16388+ 1

means (Peek 16388)+1 not Peek (16388+ 1)
but Poke 16388+ 1,n means the same as Poke

16389,n.
It seemed as ifall the functions just picked

up the next item, encloséd in brackets if
necessary, while statements such as Poke, Plot

etc., took expressions treating the comma or
end ofline as terminator. However, all was not

so simple as Tab, which seems to be a

function, takes the whole expression up to the
next delimiter eg., Tab 5+3 means Tab 8.

B Size: The final size of MCoder II at 3980
bytes is considerably larger than

ZXGT/MCoder showing how expensive in

space the refinements proved but it is a much

easier program to use and its versatility is

greatly enhanced.
I hope that this short series has given some

insights into the way that a compiler works
and what it is necessary to consider in the

design.
ZXGT is marketed by Personal Software

Services, 452 Stoney Stanton Road, Coventry
CV6 5DG. B

Lprint. The printer buffer is in locations IF operandl operator operand2 THEN
16444 to 16476. Tab 5 makes PR__CC take and the code generated is: Stringand A$(1103)| As(6) |CHR$128| Bs %
the value 69 and Tab 25 makes it 89, these LD HL,operand1 ;this may be the resuit of an SN Lper o
numbers being the lower byte ofthe address in PUSH HL evaluation +100
the buffer. Otherwise the change from Printto LD HL,operand2 Figure 3: Forming a concatenated string.
Lprint commands requires only that bit one of 5qp oF
location 16385 be set and then Sinclair’s ANp A clear carryflag ’

: : ! Line numbertable @ Varnames| stackroutines for Print, Tab, At etc may be used. s, HL, DE :subtract the two operands
u Boglean operations: Only two. Boolegn from each other STKEND RAMTOP

operations have been made available in JP ‘flag’, NEXT
MCoder 1I: | ;code to be executed if the Figure 4: Storage of variable names.

ot ; EX DE,HL INC HL LD HL,£929(listing continued from page 120) (0 A,218 o ae16396) 5p ise |

JR Li88 CALL L38 SBC A,L L234: CALL L233
L182: SBC HL,DE CALL L24¢ RET N2Z LD A,#D5
L183: SCF cp 222 LD A, (14397) CALL L241

RET N2Z JP Nz,L252 SBC A,H LD HL,L171
JR L18S RET RET CALL L39

L184: SBC HL,DE FAST and SLOW statements. DIM statement. Make sure LD HL,#D1EB
L188: SCF Because the direct calls to the argument is only single JP L3é

RET 2 ROM moved in the new ROM some of dimensional. The size is ignored Finally a jump list which 1links
L185: CCF the ROM code is duplicated here. as there is only one array. Note to the jump list at the start of

RET L48: LD HL,L183 that the array is not zeroed. the first section. Al though

IF statement. Generate code to JP L39 L236: CALL L2490 relatively expensive in space
get the two operands to be L183: CALL #@2E7 cP 43 this method is pretty fool proof
compared and put operation in A LD HL,#483B JP N2Z,L252 if any code is moved.
register. Generate call to " If RES 6, (CHL) CALL L188 L151: JP #4888;PRNT
tests". On return test carry and RET XOR A L131: JP #4888;SCROLL
jump to next line of code if its L3e: LD HL,L1084 RET LS1: JP £408E;GETK
not set. JP L39 16 LS3: JP £4891 ;TESTK
Li186: CALL L244 L1e4: LD HL,£483B These last two routines are used L111: JP £4894;PAUSE

LD H,A SET &, (HL) in calculating the location of L112: JP #£4897;MULT
LD L,62 JP #2087 an array element. Basically the L113: JP £489A;PLOT
CALL L3¢ Get address of next line. Enter subscript is doubled and added L114: JP £489D;RST18
LD HL,Li8@ with HL pointing to the length to the contents of STKEND L11S: JP £48A0;£B4B
CALL L339 of the present line. Return with (16412) . L11é&: EX DE,HL

LD HL,(16394) HL pointing to the new line. L233: CALL L1868 JP £48A3;DIV
INC HL L58: LD C,(HL) LD HL,#4BED L117: JP $48A&;RND
cALL L9 INC HL CALL L36 Lee: JP £48A9;GETNUM
EX DE,HL LD B,(HL) LD HL,16412 L187: JP £48AC;REM
cALL L171 ADD HL,BC CALL L36 L241: JP £40AF ;SAVE

YOUR COMPUTER, SEPTEMBER 1983 123

