

(continued from page 185)

changes in length.

The program is written so that it will run on
a Vic-20 of any size and with changes to the
sound routine in line 325 and the screen
colour Poke in line 705 will run on the CBM-

64. The number of Data satements can be

increased on expanded machines provided
they are of the same length. As the program

does not change in length when data is added
it can be re-saved in the same space on the

tape. It is considerably more convient to use
the program if it is the first program on the

tape as it is necessary to Save the program
whenever new data is added.

The following is a short explanation of the
program lines, more in order of execution than

the way they are listed.

Lines 700 to 730 look for the start of Basic

and print the menu. The option selected is
input in line 740 and is checked for validity,

the appropriate subroutine is selected in line

750.

The search option is handled in line 390 but
most of the work is done in lines 330 to 380.

Line 330 reads the Data statements and look

for an asterisk. The check for a match with the
search string is done in line 340. The

subroutine call to line 310 checks for a full
screen of records. If the screen is full this in

turn calls the subroutine in line 300 which

suspends operations until Return is pressed.
Line 360 prints “That’s all’ when the search is

exhausted. Line 370 produces the ‘“No Record
Found” message and sounds the tone — line

325. Lines 400 to 430 print out all the records,
checking for full screens and waiting at the
end ofthe list for another Return. Lines 440 to

570 handle data input. The size of the list is
checked in line 440 to see if there is enough
room for another entry. Lines 450 to 490

input the information to be stored and fill the
spaces with hyphens.

SOFTWARE FILE

The check for C 4 — option 4 — is

present as lines 450 to 490 are used again in

the editing option. The first empty record is

found in lines 500 to 520 and lines 530

calculates the address to start Poking the data
into place n line 540. Lines 560 and 570 do the
samefor thefirst data statement — line 200 —

which is the number of records + 1000. The

edit option is managed in lines 580 to 620
mostly by using parts ofother routines, this

allows a lot of program to be squeezed into a
small space. Lines 630 and 640 end the

program, if data has been added or altered line
640 prompts for the tape to be rewound and

then does the Save.
Lines 5 to 260 must be typed in exactly as in

the listing — including the Rem — but with no
space between the line number and the first

character of data. The data in lines 202 to 260
consist of twenty two asterisks. When the
program is Run your input data will appear in

these lines.

A model universe

W Roy Masefield,
Holland-on-Sea,
Essex.

THE MOTION of two bodies under the

influence of gravity — the so-called two-body
problem ofclassical mechanics — lends itself
very well to demonstration by computer. The
mathematics of the problem is quite

straightforward, involving nothing more than
Newton’s Laws of Force and Motion. The

possible demonstrations include such things

as the capture of one astronomical body by
another; orbits of satellites; behaviour of
binary stars and so on, given only the starting
data.

When the program is Run, the data is called
for, and to give you some idea of suitable

Figure 1.

Figure 2.

Ml=12@
vi1l=@
A

values to start with, I suggest you try out

those given in figures 1 to 5. Then, when you
get the feel of it, to try your own values.
Angles, by the way, are entered in degrees —

the program converts these to radians as
required by the ZX-Spectrum — with zero

being the east direction. Negative values for

the angles are legitimate.
The initial positions of the two bodies are

entered as x and y co-ordinates, these being
the normal pixel co-ordinates of the

Spectrum, but do not go above x=170
because the right-hand quarter of the screen is

(continued on page 189)

S REM MU Model Uniwverze ilie@ ;ET fa
& REM & W.R.Mazefield 12983 —xli4iys-gl)

1@ REM Input LDatsa 128 IF x2=H
28 CL3 : PRINT "MODEL UMIVERSE GO TO l4@

o PRINMT 13@
SB IMPUT "Firset Body: Hdssf v 2e-ul

ml,"VeloCcity? ';'l,“RnflLG "oal, 14@
Yuwocoor d” i,y cnufj ”;gi,”i 1)
econd Bod fiu-E? xm_,‘UeLaciig it
TVESflnqu Yhas,td coordT v, 4l
4=.“g coord? “;BEJ“Gravitatiuflaa 154
constants ";9: CL3 me

PRINT TRE =23, "Ml 1: i7a £
T TREB 23, "vwi=";wl1. FR T LET W

21: FPRIMT TRB =2 #1 13 i
TRAB 23; "31=",;4 PR =2 %o
M=, m2: FPRIMT =1 ig@ =
FRIF TRE 23; 3 W2

ET

b
t

o

ee ™
i* nl-(-m; 00X

411
T . n

i

o

YOUR COMPUTER, MARCH 1984 187

(continued from page 187)

reserved for displaying the starting data.
When all the data is entered, the program

starts to plot the paths. It is not fast, but
fascinating to watch, Plotting continues until
one of the curves runs off the edge of the

screen area, but plotting can be stopped at any

point by Break.
A look, now, at some of the possible

demonstrations:
Figure 1: This shows a small mass orbiting

a much larger one.
Figure 2: In this, a small body approaches

a more massive body at an oblique angle to the
direction of the gravitational force. The larger

body is initially at rest. The smaller body is
pulled out ofits straight-line path and traces a
near-parabola, and the larger body is given

some motion and it begins to trace out a

curved path.
Figure 3: Binary stars are illustrated here.

SOFTWARE FILE
One star is larger than the other, and each has

been given the required tangential velocity for
a circular orbit round the common centre of

gravity. Try other velocities and see what
happens:
Figure 4: This is an Earth-Moon

simulation. The larger body is given a velocity
asif in orbit round the sun. As we are looking

at only a short piece ofthis orbit, the lack of
curvature does not matter. The smaller mass
is given the velocity calculated to keep it in
orbit, plus the velocity ofthe larger.
The resultant paths are fair approximations

to what actually happens with the Earth-
Moon system; the moon performs a series of

loops and the Earth, because of the mutual
gravitational action, does a series of cycloid-

like loops. Certainly, the Earth’s path is not a

smooth one.
Figure 5: For fun, we may see what

happens when the force ofgravity is repulsive

instead of attractive, i.e., when we have the

anti-gravity ofscience-fiction.
To do this, enter a negative value for the

gravitational constant. The figure shows two

equal masses approaching each other almost,
but not quite, in a direct line. See if you can

interpret what is happening if they are in an

exact head-on course.
Adventurous programmers might like to

develop this program further by including
action under electric forces. In this case,
instead of Fg, we shall have Fg, which

depends on the electric charges (q) carried by

the bodies:

kq,q,
Feg=—"""

dZ

The motions resulting from this force

behave exactly as for gravitation, i.e., they
depend on the masses of the bodies.

Figure 3.

42=55
St G=10

Figure 4.

~

Figure 5.
Q

3
0
N
I
D
-

Connect Four

IN CONNECT FOUR for the BBC Model B or will have to be on your toes to outwit it.

A Cregeen, Electron the idea is to create a row of four Average response time is eight seconds. A

Braddan, counters. Full instructions are given in the help facility is included if you are completely

Isle of Man. program. It plays a pretty mean game and you stuck.

10#TV 255 370DEFPROCENTERMOVE
20MODE7 IBOPRINTTAB(0,28) § 1 INPUT"Which column",H$
IOPROCINSTRUCT IONS "sTAB(O,26)3"
40DIM A%(7,6) P%(7,6) ,C%(7) ,N%(7) ,CHOOSE (5) ,CHOOSEY

()
SOMODES
4OPROCDRAWBOARD
7OPROCENTERMOVE
BOIF H$="HELP" THEN GOTO 130
9OPROCF INDY
100PROCWIN (H% ,R%)
110PROCDRAWCOUNTER (H% \R%, 1)
1201IF WINZ=1 THEN PRINTTAB(0,28);"You win!

" ; PROCNEWGO s RUN
13OPRINTTAB(0,28) 5 "Thinking..."
140PROCMYMOVE
1SOIF H$="HELP" THEN PRINTTAB(0,26);"Try column ‘"jU

%" "160TO70
160PROCDRAWCOUNTER (U% , 1% ,2)
170IF P%(U%,I%)>900 THEN PRINTTAB(0,28);"1 WIN !

“ ; PROCNEWBO: RUN
1BOPRINTTAB (0,28) ;"

200RY%=0
210FOR AS%=1 TO 7:IF A%Z(AS%,1)<>0 THEN RY%Z=RYZ+1
220NEXT
230IF RY%=7 THEN PRINTTAB(S5,15);"D R A W":PROCNEWGD:

RUN
23I5FOR VB%=1 TO 7:FOR FD%=1 TO &:P%(VB%,FD%)=0:NEXT,
240607070
250DEFFROCDRAWBOARD
260GCOLO,3
270FOR F%=0 TO 7
280MOVE (F7%#*181) ,1024
290DRAW (F%#181) ,256
300IF F%<>7 THEN PRINTTAB((F%4#*3) ,23);F%+1
J10NEXT
320FOR F%=0 TO 6
3I3IOMOVE 0,1020-(F%#128)
340DRAW 1270,1020-(F%*128)
3ISONEXT
340ENDPROC

390PRINTTAB(0,28) ;"
"

4001F H$="HELP" THEN ENDPROC
410IF ASC(H$)<4B8 OR ASC(H$)>S7 OR LEN(H$)>1 THEN GOT
380
4111IF A%((VAL(H$)),1)<>0 THEN GOTO 380
420H%=VAL (H$)
4I0ENDPROC
440DEFPROCF INDY
AZOW%=71 K%=0
440REPEAT
470WK=WY%—1
4BOIF A% (H%,WX)=0 THEN R%=WZiK%Z=1
A90UNTIL K¥%=1
SOOENDPROC
510DEFPROCDRAWCOUNTER (X%, Y%, Z%)
s206C0L0, 2%
SIOIF Z%=2 THEN A% (X%,Y%)=1
S401IF Z%=1 THEN A%(X%,Y%)=2
S550Y%=1020~ (Y%#128)
SLOX%=X%*181
S570MOVEX%,Y%1 MOVE X%-181,Y%:PLOTSS, X%, Y%+128
S80PLOTES, X%-181,Y%+128
S90PROCDRAWBOARD
G00ENDPROC
&610DEFPROCMYMOVE
&620FOR X%=1 TO 7:FOR Y%=1 TO &
630M%=2: PROCSCAN (=1 ,~1,1,X%,Y%)
640M%=23: PROCSCAN (~1,0,2, X%, YZ)
650M%=23 PROCSCAN (—1,1,3,X%,Y%)
b660M%=2: PROCSCAN (0, 1,4, X%, Y%)
670M%=2: PROCSCAN(1,1,5, X%, Y%)
&£80M%Z=2: PROCSCAN (1,0,6, X%, Y%)
690M¥%=2: PROCSCAN (1 ,~1,7 , X%, Y%)
700PROCPTS (X%, Y¥)
710NEXTY% , X%
720PROCCHOOSE
730ENDPROC

(continued on next page)

YOUR COMPUTER, MARCH 1984 189

IK CHESS
Last month David Horne
showed you the board.
This month he illustrates
the move logic.

AS A REMINDER, figure 1 depicts the playing
board and figure 2 is the Basic program used
to enter the machine code. This month we will

start with the main driver. Enter Fast mode

and change line 10 to read:
10 FOR A = 16681 or 16779

Run 10 and start entering the code shown in
figure 3. The next routine to enter will be the

keyboard controller, after typing Save “4”.

Change line 10 to read:
10 For A = 16860 to 16916

Run 10, start entering the code shown in
figure 4 and then Save “5”. Enter Slow mode

and type Run — be prepared for a crash.
The machine is waiting for you to type

either a W or B, and will respond by placing
the appropriate symbol towards the top right
of your screen. Try entering anyletter you like
first, to ensure that the code rejects all other

inputs.
Now enter a number between 1 and 8,

followed by a letter A to H at which point just
about anything could- have happened. The
reason for the above exercise is to determineif
the keyboard controller is working, that is,

selecting which keys will be accepted as
inputs.
At this point, it becomes very much more

difficult to provide the reader with a

comprehensive set of diagnostics. Suffice to
say that we are breaking each party down into
small routines, which can be re-entered one

routine at a time in an effort to isolate the
offending error.

Alternatively you may wish to try the
program given in figure 7 of last month’s
article. Assuming after much murmuring, you

appear to have this bit correctly entered, our
next routine is the address converter. This
takes the alphanumeric input and translatesit

to a board position. Change line 10 to read:

10 For A = 16801 to 16859

Run 10 and start entering the code shown in

figure 5 and Save “6”. The address converter
has a little routine tacked on to the end which
effectively checks to see whether the correct
piece is being moved. So now enter Slow mode

and Run the program. By the way, it will
crash again. Enter your opening colour — B or
W — then try spare spaces and the wrong

colour positions to ensure that these entries
are not acceptable. Now try a correct position,

at which point the system will crash.
Finally, the move logic. This is going to be a

bit of a marathon. You will be entering 170

numbers, around 15 minutes work. Change

line 10 to read:

10 FOR A = 16917 to 17087

Run 10 and start entering the code shown in
figure 6, and finally Save “7”. Enter Slow
mode, Delete lines 10 to 15, and Save

“ZXCHESS”, type Run and hope!
To help with error corrections look for the

following: if the pawns do not move correctly,
then look at the code from 17021 to 17087;

problems with any other pieces, look at code
16981 to 17020. There is a piece selector from

16949 to 16980, if just one appears incorrect.
The move tables are at 16926 to 16941, with a

part of the pawn table at 16778 to 16780.
Now for a brief outline covering the

important functions of the machine-code

routines presented this month. We started at
address 16681 with a call to a subroutine —
16860 — which tests for which key has been
pressed, returning with a value in “a” which is
compared with B(39) or W(60) to see who

should start. Any other response will start the
test for key depressed sequence again.
Dependent upon B or W being pressed, a

black or white square is placed in the “whose
move now’’ position located by routine DP1.

The next routine at address 16701 overwrites
the From and To data at the bottom of the
board in preparation for the new data entry
and is effectively the start of the move routine.

<, D. Horne. 1983.

==-_q-.T

1-REH %% LOTS OF SPRCES 2%%
RAND USR 186S78

19 FOR RA=18S1i4 TO 17037
11 INP B
12 POKE A,
13 PRINT AT 1,8;R
15 NEXT R

Figure 2. Machine-code entry program.

295 229 ©S5 254 39
e 7 2Ss% B3 3I2 245 17S 24

I 3
659 62 128 22T 144 685 119 62
& 2a5 152 65 119 43 119 285

148 65 113 43 119 385 205 161
8g 254 3 32 234 34 s 64

i7E5 sa ez 64 8g 2as5 46 66
16734

=@as 1s2 65 285 161 88 254 2
235 48 212 33 62 a4 s3 126
R 480 224 133 111 126 18S 32

242 42 Bea 64 128 sS4 i8
2g§ 256 64 2@8S 144 65 126 198

T et

i2s 118 24 173 15 16 Figure 3. Main drives.
Continuing, we have a call to subroutine

KT, the routine — 16801 — which accepts a
number between 1 and 8 followed by a letter
between A and H, puts them in the From

position and transforms the pair of them to an

address on the board by means of the address

converter routine — 16806.
The board address is then tested to see

whether the contents of the address is either

the current mover’s piece, an opposition piece,
an empty square or part of the backcloth, and,

depdenent upon which, “a”is set to a specific
number. If it is not one ofthe current mover’s
pieces, it returns to the start of the move

-routine. If it is a current mover’s piece, the
From position is Saved and the number of

legal moves for the position is set to zero.
The piece-move routine — 16942 — is

called. This puts all the legal board positions
that the From piece can move to into a table.

The next data entry is also decoded by
subroutine KT. providing a board position,
and a status code of that position in “a”. The

“a” register is interrogated to see ifthe To

(continued on page 83)

; 1 1SFigure 4. Keyboard controller. 285 187 16334

a ez 288 18¢ 48 248 1386 4@ 17 238
245 68 77 285 189 7 126 28X 126 236
213 66 75 197 285 228 65 193 3 8
i8S 4@ 8 i2 16 245 2089 24 40 21
16894 i4 72
239 288 288 225 213 118 43 281 16974
229 17 29 8 288 238 65 229 254 55
17 38 3 285 R»R38 65 2ei1 134 245

Figure 5. Address converter. ag§ 12é

223 285 a a6 228 1237 254

iz2e 214 28 71 i4 i8S 17S 129 i7el14d
16814 193 225
16 253 193 31 43 78 144 268S =38 128

146 68 79 g 126 229 254 188 3 33
& 1 48 23 254 & 40 19 =229 2495
4 254 3 48 14 4 23 128 65 2SS4

187 285 144 6s 78 185 193 4.8 17854
16854 32 12

2 8 128 225 291 5§ 19

Figure 6. Move logic. 33 1;@ g%

&2 54 S2 126 133 111 1i3 201 24 288

255 241 242 246 16 14

29 227 22%S 31 243 13
127 254 53 40 72 14

8 33 38 66 254 sS1
33 38 &6 254 48 40

254 S4 4@ 1 4

40 33 34 66 123
229 197 283 127 32 24
65 254 2 48 i7 26

254 = 4 18 193 22S
z 48 S 241 24 224

2431 35 1& 217 2981 126
42 S I 3s &6 24
148 55 22 3 123 134
283 127 32 24 2@5 181

z 32 24 122 254 1

205 21 66 123 2S4 30
254 [438 18 241 228
32 218 2@1 122 254 1
aea 24 241 241 225 a9s
D. Horne. 1983.

YOUR COMPUTER, JANUARY 1983 81

(continued from page 87)

board position is empty or has an opposition
piece present. If neither of these two is true

the code returns to the start of move routines.
If true, the board address is compared —
16745.
With each of the legal move positions

tabulated by the From routine. Absence of a
match restarts the routine again. A match

leads on to the move routine — 16759 —
which recalls the From position, gets its

contents and replaces them with zero, the

contents are then put in the “To’ position and
routine B/W called. This rewrites all the black

vacant squares and finally the “whose move
now” square is changed followed by a jump
back to the start-of-the-move routine.
The listing provides for a double move for

pawns on their initial set-up ranks. The piece

moves are controlled by the tables — 16926 —
which are called — 16949 — to permit the

appropriate movement associated with that

piece. See figure 7.

Figure 7.

16681 CALL TKP 205 220 65
CPN 254 39
JP Z DIS 40 7
CPN 254 60
JP NZ DIS 32 245
XOR A 175
JP DIS 24 2
LDAN 62 128
CALL DPI 205 144 65
LD (HL) A 19

16701 LD AN 62 8 (Move
Routine)

CALL DP5 205 152 65
LD (HL) A 119
DEC HL 43
LD (HL) A 119
CALL DP4 205 148 65
LD (HL) A 119
DEC HL 43
LD (HL) A 119
INC HL 35
CALL KT 205 161 65
CP N 254 3
JP NZ DIS 32 234
LD (NN) HL 34 60 64
XOR A 175
LD (NN) A 50 62 64
LDEC 89

16731 CALL MOVE 205 46 66
CALL DP5 205 152 65
CALL KT 205 161 65
CP N 254 2
EX DE HL 235

JP NC DIS 48 212
LD HL NN 33 62 64

DEC (HL) 53
LD A (HL) 126
INC A 60
JP Z DIS 40 204

ADD L 133
LDLA 1

LD A (HL) 126
CPC 183
JP NZ DIS 32 242
LD HL (NN) 42 60 64
LD A (HL) 126
LD (HL) N 54 0
LD (DE) A 18

CALL B/W 205 156 64
CALL DPI 205 144 65
LD A (HL) 126
ADD N 198 128
LD (HL) A 119
JP DIS 24 179

15 16

16801 PUSH HL 229 (KT)
CALL KYBD 205 6 66
POP HL 225

16806 LD A (HL)

SUB N
LDBA
LDCN
XOR A
ADDAC
DJNZ DIS
ADD N
DEC HL
LD B (HL)
SUB B

16821 CALL DPZ
LDCA
ADD HL BC
LD A (HL)
PUSHHL
CPN
LDBN
JP Z DIS
CP N
JP Z DIS
NCB
CPN
JP Z DIS
INC B
AND N
PUSH BC
CALL DPI
LD C (HL)
cpC
POP BC
JP Z DIS
LDBN
LDAB
POP HL
RET

16860 CALL NN
LDAN
CPL
JP Z DIS
CPH
JP Z DIS
LDBH
LDCL
CALL NN
LD A (HL)
RET

16878 PUSH DE
LbBD
LDCE
PUSH BC
CALL NN
POP BC
CPC
JP Z DIS
INC C
DJNZ DIS
POP DE
JP DIS

16895 POP DE
POP DE
POP HL
PUSH DE
LD (HL) A
DEC HL
RET

16902 PUSH HL
LD DE NN
CALL NN
PUSH HL
LD DE NN
CALL NN
RET

16917 LD HL NN

INC (HL)
LD A (HL)
ADD L
LDLA
LD (HL) C
RET

126 (Address
Converter)

214 28
71
14 15

175
129
16 253
198 31
43
70
144

205 140 65 (Test)
79
9
126
229
254 128
6 1
40 23
254 0
40 19
4

254 8
40 14
4

230 128
197
205 144 65
78
185
193
40 2
6 0
120
225
201
205 187 2 (TKP)
62 255
189
40 248
188
40 245
68
77
205 189 7
126
201
213
66
75
197

205 220 65
193
185
40 6
12
16 245

209
24 239
209
209
225
213
119

43
201

229 (KYBD)
17 29 8
205 238 65
229
17 38 8
205 238 65
201
33 62 64

(ADDLIST)
52
126
133
m
113
201

16926 115-1-15-14-16 16 14
16934 17 -17 29 -29 -31 31 -13 13
16942 LD A (HL) 126 (Piece

move)

16981

17021

AND N
CPN
JP Z DIS
LDCN
LDBN
LD HL NN
CP N
JP ZDIS
LD HL NN
CPN
JP Z DIS
LDCB
CPN
JP Z DIS
LDBN
CPN
JP Z DIS
LD HL NN

LDAE

ADD A (HL)
PUSH AF
PUSH HL
PUSH BC
BIT 7A
JP NZ DIS
CALL NN
CP N
JP NC DIS
CALL ADDLIST
CPN
JP Z DIS
POP BC
POP HL
LDAC
CPN
JP Z DIS
POP AF
JR DIS
POP BC
POP HL
POP AF
INC HL
DJUNZ DIS
RET

LD A (HL)

AND N

JP Z DIS

LD HL NN
JR DIS

LD HL NN
LDDN
LDAE
ADD A (HL)

PUSH HL
PUSH AF
BIT7A
JP NZ DIS

CALL NN
CP N

JP NZ DIS
LDAD

CP N
JP NZ DIS

CALL ADDLST
LDAE

CP N
JP C DIS

CP N

JP NC DIS
POP AF
POP HL
INC HL

DEC D
JP NZ DIS

RET

LDAD
CP N
CALL NZ ADDLST
JR DIS

POP AF

POP HL
LDEA
JR DIS

D. Horne. 1983.

230 127

254 53
40 72

14 1

6 8

33 38 66

254 51
40 21

33 30 66

254 48

40 14

72

254 54

40 9

6 4
254 55

40 3
33 34 66

123 (Piece
move

routine)
134
245

229
197

203 127
32 24

205 181 65

254 2

48 17

205 21 66

254 0
40 10

193
225
121

254 1

40 5
241

24 224

193
225

241

35
16 217

201

126 (Pawn
move

routine)
230 128

40 5

33 35 66

24 3
33 140 65

2 3
123

134

229

245

203 127

32 24

205 181 65

254 1

32 24

122

254 1

32 12

205 21 66

123
254 30

56 19

254 90

48 15

241

225

43
21

32 218

201

122

254 1

196 21 66

24 241

241

225

95

24 205 |.

YOUR COMPUTER, JANUARY 1983 83

Just when Earth thought
its defences were secure
the invaders discover
machine code. Now Chris
Mortimer passes on the
secret to 16K ZX-81
owners.

THIS GAME has 40 deadly manoeuvring

Invaders, three laser bases, five defence

shields, increasing speed, and an on-screen

updated score written completely in machine’
code to ensure fast and exciting action. The
machine code is stored in one long Remstate-

ment which is 810 characters long. Due to the

fact that a Rem ofthis length would be hard to

enter direct from the keyboard, tryit this way.
First, enter the first line:

1 REM @ 94 characters @

Second, create lines 2 to 8 byediting line 1.
Third, enter line 9

9 REM @ 10 characters @

Four,

POKE 16512,3

POKE 16511,44

Fifth, enter the rest of the program in listing

1. Listing 2 contains the hex dump of the

actual program. This listing is in hexadecimal,
explained in chapter 24 of the ZX manual.

It is divided up into sections of 100 units,

each preceded by the address of the first unit
in both decimal and hexadecimal. There are

two ways to start to enter a section of the

machine code. To enter the start address in

hex, run the program. To enter the start
address in decimal you must use the following
procedure:
LET X EQUAL THE ADDRESS REQUIRED

GOTO 50

This will have the same effect as entering the

address in hex and will be especially useful
when it comes to debugging the program.

Any number of the units may be entered at

one time but they must be entered as pairs and

notsingle characters. If the program ends with

an error code 5/100 it just means that the

screen has been filled, but it is essential that

Contis operated or the last units entered may

be lost. The program may be saved at any time

as long as the next part to be entered is
remembered. Otherwise it may take some time
to find where you last gotto. It is advisable to

save the program at several points in case
anything goes wrong.

Once all the program has been entered, Save

a couple ofcopies then you are readyto try it
out. Type:

[

RAND USR 17247

This will jumpto the start of the machine code

and should produce a picture on the screen

just like that ofthe space invaders. If it does,
then congratulations. You have managed the

near impossibility of entering a machine-code

i

84 YOUR COMPUTER, JULY 1983

Vel [}
program correctly first time. If not, then I

hope that the following information will help
you debug it.

First, though, SRT (BVot oS
program into its final form. The final form of

the program is made by deleting all the lines

except the first — it is important that you do

not even edit this line as it will result in some

code being lost. This is done byentering the
line number of the line you wish to replace
and then pressing Newline. New must not be

Listing 1.

Er4 BBBBBB&QDBBBQBQDBQBBQ 1
OGQGBBBB@200DBDOBDeanmammmammmg@
.OagBBBG@BBOBGBBQQBOO@GBGGOD@GB@
2300000

2 REM 0002200000060b0DOOOBTaD
BBBGEBB@OBEB@BDOGOGGBGaOBOeB000
QB!0GGBOGIQBBBGOQGGEGBQQGQQBQBQQ
2220808

2 R 2RBARRAARARRNACRRDARARAR
QOBOQOBOQQGQBOOOQQOQQ B
gaweaggaaeeaeaeeaeaaegssggggg333

EN_ 02000020000000A0A00A0BD
V0232ARBARIABRZOODLRDBIAE

2 890090005000509000009@000@

5 REM O0Q02000000888800000800
22202222000200000202038C000C038C

used as it will delete line 1. Once this is done

line 10 is entered:
10 RAND USR 17247

The program is now complete and can be
saved. It is advisable to keep a copy of the

program with the hex loader attached as
several modifications are suggested later. The

program can now be started by the command

2000a0EPD0ETDODE0B0EOBDDRBDDODDD IF A%="" THEN INPUT A% Run. The command keys are:
2208008 82 IF Ak=S: THEN STOP

5 REM ODGOGOB0GCOCEEE0O3EEEOE PRI 23 VYNN
2PRPPACPPACABB0E0PBBABEBOCOBS BOREx5 S+CODE AE+CODE A (2
3338838aeeaamezaaazawaawa@asaam 1475. R — right

1 T
Zz 2000B000000CO0DBOBOBT- 128 LET Racds(s To > N

2P0BB00PI080005000900000000000 1s0 GOTO se * 0-6 fire
PEOOVBIDASIDBOBOBSOGCCOBLOB0DD LET X=4096:CODE R$+2586£C0ODE] T
220020 R te:$163CODE A% (35) +CODE Agidl - The hex loader listed in listing 1 has an

M 2020000000000000800EL0E 5 |
2200000000030000BC0BD0 ng-run advantage over some hex loaders because it
2000000000000000050000000 SRINT -ADDRESS ™ ;) ;

A% includes a hex lister from 300. Like the hex
REM 1234587800 o ; e
PRINT "URITE To ™ 2 & loader it will accept starting addresses in either

BRINT A 388 _PRINT i decimal or hexadecimal, except that the
GOSUB =200 . i ; : :
PRINT address to Goto, if decimal is used, 1s 340.
LET Aget"

i .

If you own a ZX Printer you may find it

easier to track down a fault if you take a listing

o o6 28 02 03

36

50 and compare it with that in listing 2. Any

o 5% oo 00 difference in the Rem statementis a fault, but

20 34 2 3 it should be possible to approximate where in
2A 38 . N ~ B .. .

Fe §§ 0 the program the fault is fromits position in the

cp 3B 2 Rem.
08 21
% o1 For the rest, the only way to do it is to

os oo slowly search through the program comparing
it with the listing. The hex lister will give the

address ofthe unit being looked at in decimal.
Knowing this it will be possible to correct any

errors by using the hex loader and addressing

it in decimal as I explained earlier.
The program is built up of several sub-

routines which are called in turn by the main

routine, the Driver. These subroutines are:

Screen — 40B3 — this routine prints the

screen and invaders. Any fault in the screen

layout means there is an error here. Keybd —
4143 — this is the routine which finds out

which key you are pressing and responds by

moving the base or firing a missile.
MVMIS — 418B — this routine moves the

missiles up and the bombs down and checks if

they have hit anything and adjusts everything
accordingly. If the bombs do not move,or the

program crashes when the bombs reach the

ground then the erroris in this routine.
MVINV — 4273 — this routine moves the

invaders across and down the screen. If the
program crashes when the invaders reach the

edge of the screen or disappear on reaching the

bottom then the error is here.
DELAY — 4355 — this routine is the one

which allows the invaders to increase speed.

This is done byrepeating a loop a number of

times dependent on the score.
Finally, a couple of modifications for those

who are never satisfied. The following set of

Pokes will reverse the keyboard arrangement:
POKE 16711,109

POKE 16719,92

POKE 16733,76

POKE 16762,93

this make the keyboard layout:

P — right

I — left

1-5 — fire

For those who, unlike me, can get very high

scores on these games this one can be made
much harder by increasing the number of

bombs dropped every time. This is done by

the following method:
POKE 17301,7 — To double the difficulty
POKE 17301,15 — To muiltiply the difficulty by

%y |

YOUR COMPUTER, JULY 1983 85

Listing 1.

16514 ~-283 203
1651658 2486
1681&8-205 7
igs528-2 221
16522-33 142
156524 ~-64 2801
16826-237 88
i8828-1 1
158853a8-28 62
16532-245 285
16534~-181 2
16536~-205 145
16838-2 288
15548~-32 2
16542-2831 38
158544 ~-165 B4
16546-1985 1864
1654868-2 211
16552-283 58
16552-4@ 64
16554188 194
15556-58 42
16558-84 2@8
165602-146 2
16562-2058 32
igE84-2 221
1656633 142
16568~64 188
18657a-164 B2

Listing 2.

1 REM
1@ FOR R=16S514

TQ 16871
28 INPUT B
30 SCROLL
4a@ PRINT RA,B
S5 POKE A, R
6@ NEXT A

Figure 1. An exaggerated illustration of TV

screen scanning. The unbroken line is the

active line, the dotted line is the line retrace

and the long line from bottom right to top left

is the end-of-screen retrace. The lines on the

next screen of information will be in the gaps

betwen these lines.

Figure 2. The even lines are transmitted in the

first screen of information. The odd — dotted

— lines are transmitted in the second screen of

information.

Fast mode is all very well
but the screen goes
blank. Richard
Taylor has a
compromise,

"ZZ@VLM.Zj

/4-saé%gaf

@@@QLZ/e,

[7_11/

/ ;,;’7"’[;ffiéwfl/&/Jf}

SCREEN
THE CULMINATION of this article will be a
machine-code program for any memory size

ZX-81 which will allow you to run Basic
programs in Slow mode at twice the normal

speed. It does this by creating an intemediary
between Fast and Slow mode. The operating

characteristics are similar to those of slow

mode except that there is a slight lack of
contrast and some screen flicker is introduced.
The program in listing 2 is a hexadecimal

loader program for entering the machine code.

Line 1 is a Rem statment followed by 70 Xs.
The actual machine code is shown in listing 1.

Each byte should be entered, followed by
Newline. Care should be taken to ensure that

each byte is entered into the correct address.
When you have finished, delete all lines except

the line 1 Rem statement which now holds the
machine code. Save a version on tape. Enter:

RAND USR 16514

and Newline. If all is well then characters

should appear to be composed of small dots
and the screen should flicker slightly. The

machine will return to Slow mode if Fast,

Slow, Pause, Copy, LList or LPrint are used;
it will also return to slow mode if a program
line is entered.

A program must contain the Rem statement

if it is to use this new mode. The statement
RAND USR 16514

can be used as a program line as well as a
direct command. The program has many uses

and existing software can easily be converted
to use this new facility.

Normally the ZX-81 spends 75 percent ofits
time on updating the display. My program

decreases this to only 50 percent. The con-
sequences ofthis are that some display flicker-

is introduced and the display loses some ofits
contrast. To understand how the program

works,it helps to know a bit about how a TV
works. A television display is made up of a
fast-moving beam of electrons which
bombards the phosphor-coated screen and
makes it glow. The amount the phosphor

(continued on next page)

YOUR COMPUTER, JULY 1983 139

(continued from previous page) Disassembled machine-code listing.
glows is proportional to the intensity of the SET 6. (I¥Y+53) This puts the machine into

electron beam which is controlled, in this case, CHLLUSI? _

by the computer. LD IX.LABEL H

start of new diselas routine

The beam moves too fast for the human eye FET Feturr to Basic
to see its individual movements. The beam |qpE| g LD AR
travels in an ordered and logical way in order LD BC,&481
to be sure thatit visits every part ofthe screen. LD A.245 Duteut the diselag. This onlw
Its movement can be likened to reading a ::HH: bl hawrens on even lines.
book. It starts at the top left-haqd corner anq CALL a4 Fead keshosrd sed
travels horizontally from left to right. When it incremsnt frames courter.
reaches the extreme right-hand side it flies LD IX.LABEL E Set interruet vector to start
back to the left hand side, sufficiently below of diselae routine for ocdd lines.
the previous scan line to allow another scan JFPEVE Feturn to interrueted eeooean.

line to be inserted between the first two later. LABEL E ouT 253.A Makes sure that all future

The beam carries on doing this until it irterruets will *5"5‘ of the

reaches the bottom right-hand corner, then LD A, (154245 Hmber 6% b1amTines sboue ar
covers the whole screen again, except this time b Low) S,

it is filling the gaps between the first set of ADD A. 194 FAdd am extra 134 lines
scan lines. When the beam reaches the bottom LD i1 '-r__ Y Restores new value
right-hand corner again it will return to the LALL &32 Initiates the value intc
top and the entire cycle will be repeated again. CALL Sd4 sl:::ré:aud and increment
The ZX-81 signal starts at the top by curter.

transmitting 55 white lines, followed by 192 LD IX,LAEEL A <t interruet be to the
lines which contain the actual active screen . euen line routine
area. Each character is eight lines high and JF EFE Returt to interrueted prosram.

there are 24 rows of characters:eight times 24 keyboard — which it does 50 times every television display hardware. If some way of
equals 192. second — and incrementing the Frames increasing the number of blank lines, without

Then there are another 55 white lines. This counter. seriously reducing the picture quality, could

adds up to 302 lines which is about half of 625 Exactly the same picture is transmitted on be found then program would run much
lines — the total number of lines displayed by both the odd and even screens of the signal. faster.

television receivers in this country. It is not The ZX-81 actually executes the program The best method is to only transmit the

exactly half because some extra blank lines are during the 110 blank lines. The rest of the picture on the even lines and to transmit blank

transmitted while the computer is reading the time its services are needed to supervise the lines during the whole of the odd screen. Il

 FORTH : A full implementation of this very fast running language.
Idealfor writing fast moving arcade type games. Allows the

i full colour and sound facilities of the Spectrum to be used. 14.9
N Future Microdrive enhancements will be made available. 48K .

// Spectrum only.

Chess 1.4 : 10 Levels m/c. Graphic screen display. 16K ZX81 only.

@ Invaders : Very fast m/c action. Includes mystery ship and

increasingly difficult screens. 16K ZX81 only.

Mazeman : A fast action m/c game that reproduces the

spirit of the original. The Spectrum version

includes excellent graphics and sound. 16K 4 05
g ZX81 & 16/48K Spectrum.

Adventure 1 : Based on the original game by Crowther, this
game was the start of the Adventure craze. ZX81
Reviewed Sinclair User.lss.2. Features Save
game routine as the game can literally take 895
months to complete. 16K ZX81 & 48K

Spectrum. .

/fifRf Sm\ A= LLEN,BOW ST, DYFED,SY24 5BA
o

24-hour Ansafone for Access orders on (0970) 828851

140 YOUR COMPUTER, JULY 1983

COMPRESSION
- TEXT

EvEN wITH A 16K RAMpack the memory

space of a ZX-81 is rapidly used up by
programs containing large amounts of text.
Adventure games and programs with Help
messages or long instructions can often not be
squeezed in at all. What is needed is a way of
compressing text before storage so that it
occupies much less memory space and then
expanding just those sections required at a
particular time, back to their original form.
Information can be compressed insofaras it

is predictable; that is if we can find, for
instance, sequences of letters that frequently
occur in the text, we can code the whole
sequence as one character each time it occurs.

ZX-Compander works bystoring certain pairs

of characters in the message as single bytes.
This method allows a maximum compression
of 50 percent if all the message is composed of
those pairs of letters which are being coded.

Each character recognised by the ZX-81 is

stored as a single byte in memory. the non-
inverted letters, numbers and most of the

punctuation and arithmetic symbols have
codes in the range 0 to 63. Thus of the 256
possible character codes 192 are not used in

normal English, these codes are thus available
for defining the pairs of letters we wish to

encode.
ZX-Compander operates by searching

through the text for any of the 18 characters
stored in location 16514 to 16529, when one

is found the next character is checked to see if
it matches any of the 12 characters stored in

locations 16514 to 16525.
If such a match is found the first character

of the pair is replaced by a character whose
code — in the range 64 to 255 — is calculated
from the codes of the letters in the pair. The

other member of the pair is then overwritten

by the rest of the text being moved one

ZX-Compander, a
text compression

routine for the

explained by
N\ | F Boulton.

e

Listing 1.

ZX-81 is

 Y =

character down in memory. This movement
does not actually shorten the whole text
string, it leaves the compressed text followed

by a number ofidentical characters.
The character repeated at the end is the last

characterof the original text — this will in fact
always be “$” — the number ofrepeats being

equal to the number of times the message has
been coded and moved down in the memory.
Thus the text will be shortened by one

character for every pair found, while the
string remains the same length in memory.
The actual compression occurs when the
machine-code routine returns to Basic.
The BC register pair — whose contentsis

returned as the argument of the USR function
— contains the length of the compressed text.
The original string is thus shortened by a line

of the form:
LET A$ = A$(TO USR 16621)

The reason why 16 characters are sought out
initially and only a subset of 12 of these is

accepted for the second member of the pair is
that with only 192 (192=16%*12) codes free
we cannot uniquely represent 256

(256=16*16) pairs.

Listing 2.

FORTHE ZX-81
The expansion section of the program

reverses the above proceedure except that the
decode result is printed directly onto the
screen. This allows the whole memory to be
filled with program and data without having

to leave an indefinite amount of space
available for holding decompressed text.
The compression which can be achieved

using the program depends on the careful
matching ofthe first 12 of the 16 characters to
the text being coded — the last four have
much less impact but are worth considering.

Theletters used in the listed program are the
12 most common letters in English —
ETAOINSHRDLU — plus the space charac-
ter and three other common letters — GCY.
The space character is placed at the start of

the list to speed the search as it is frequently

the most common character in a text.
As your text may contain many numbers or

symbols the program has been designed so

that the only alteration needed to allow
different sets of characters to be recognised is
for the relevant character codes to be Poked

into locations 16514 to 16529.
Another feature is that the character table

and decoding routine are held in the first Rem

while the encoding routine is held in the
second. This allows you to delete the

encoding routine once all the text has been
compressed, freeing another 89 bytes of

precious memory.
Beyond the restriction that your initial text

cannot contain characters with codes over 63,

there is one further problem; because the
variables in the ZX-81 are moved about in
memory by the machine’s operating system it

is necessary to flag the beginning and end of
the text string so that the routines can
recognise their data. This is done by starting

(continued on page 137)

YOUR COMPUTER, MARCH 1984 135

(continued from page 135)

the string with $$$, separating units within

the text that need to be separately retrieved —
up to a maximum of 256 items — with $ and
terminating the data with $$. For this reason
the $ sign may not be used casually in the text,

and the $$$ sequence must not occur in other

strings in the memory.
Start entering the program by typing a line

1 REM followed by a single space and then
100 zeros and a line 2 REM followed by 84

zeros. The machine-code loader in listing 1
can then be typed in and Run. Carefully enter
all the decimal codes in listing 2, addresses are
given for every fifth byte to help you check

your input.
Then edit line 10 to read

FOR | =16621TO 16704

and Run the program again, this time
entering the codes in listing 3. This should
give you two Rems identical to those shown in
listing 4. If all is well delete the loading
program and enter the Basic lines from listing
4. Tt is wise to save the program now before
running it, as any mistakes in the machine

Listing 3.

code will crash the machine.
If there are any mistakes in the routines

corrections can be Poked into the Rems; any
attempt to Edit them will probably corrupt

the code.
The program can now be Run. When

prompted enter any string you choose which
obeysthe rules on allowable characters. If you
wish you can separate sections within the text
with $ signs. After you hit Newline the text
will be encoded. You will then be asked for

the item number you require.
This will normally be 1 unless you have put

$ separaters in the text. If you enter an item
number which does not exist the program will

crash.
The item you have requested will now be

Listing 4.

printed starting at the first free print position

on the screen. If the original text is not
recovered or the program crashes the routine
must be carefully checked using Peek. Once

everything is working smoothly you can
proceed to use the routines in application pro-

grams.
As the routine adds five bytes of $ to the

message, plus one byte for each separater, the
greatest compression will only be achieved on

relatively long sections of text. The routines
typically achieve compressions of 30 to 40
percent on a wide range of input, from this
and the amount of memory occupied by the
decoding routine — 104 bytes — it can be seen
that savings in overall memory usage begin to

appear when the text is over about 300
characters long. Although the compressed

string actually appears longer this is due to
certain codes appearing as keywords.
In general your final application program

should be developed by first loading the ZX-
Compander routines from tape, adding in
Basic whatever editing facilities you need to

aid the input of your text, entering the text
and then compressing it using a line like line

30 in listing 4. Once this has been done the
editing section and line 2 can be deleted.
When you need to print an item all that is

required is that the item number be Poked
into 16507, the print position be specified
using Print At and the routine called using

Rand USR 16566.
The routines are not relocatable due to the

numerous subroutine calls using absolute

addresses.

THE OUILL is a major new uti]ity written in machine code which all

Whiteyour own machine code adventures

Mt]wut any]mow[et!ge ofmac]uhe coJe leatsoever

owWSs

even tlle novice programmer to Produce l'ligll-speecl macl'line cotle

adventures of superior (luality to many available at the moment without

any lmowleclge of machine code whatsoever.

Using a menu selection system you may create well over 200 locations,

clescril)e t}'lem ancl connect routes l)etween tllem. You may tl’len f111 tllem

with o‘Jjects and Prol)lems of your choice. Having tested your adventure

you may alter and experiment with any section with the greatest of ease .

A Part formecl adventure may l)e savecl to tape for 1ater comPletion.

‘When you have done soTHEQUILL will allow you to Produce a copy of

your adventure which will run inJePemlently of the main QUZLL editor,

so that you may sive coPies away to your frien

THEQUILL is Provi(led with a detailed tutorial manual which covers every

asPect of its use in wntms a(lventures.

e™ ——— —

FOR THE 48K SPECTRUM AT £14.95

Now available in W H Smith, and from many

computer shops nationwide, or directfrom us by
post or telephone.

SAEforfull details ofour range.

Dealer enquires welcome.

GILSOFT Credit Card Orderline
Personally manned for 24 hours

%‘;g‘;w‘h'"“ Road 0222 41361 Ext430

South Glamorgan oys
B(0446) 732765 D[

_—TS o, —

—

YOUR COMPUTER, MARCH 1984 137

