

power 1S free.

Surprise! Your HP 86 is more powerful than you think and all the extra

THERE’S GOLD
IN THEM DISKS

BY GORDON S. BUCK

Unless you've studied the HP 86 demonstration disk, you're in for a
pleasant surprise—your 86 is more powerful
than you think. Best of all, this extra power is
free, or at least won’t cost you more than
you've already spent.

The extra power comes from the binary
routines on the demo disk.

WHAT ARE BINARIES?

A binary is a machine-language program. The
demo disk binaries add Basic-like commands
to the 86. They function like the internal
ROM-based commands except the binaries are
loaded from mass storage. Since they're writ-
ten in machine language, binaries execute
many times faster than programs written in
Basic. Binaries let you do things you can’t with
Basic.

There are 47 predefined functions and
144 Basic commands and statements in the 86
manual. HP also provides 20 additional com-
mands through the demo disk binaries. To use
these commands, simply load the binary pro-
grams and execute the commands as instruct-
ed on the demo disk. For some reason, nei-
ther the operating manual nor the Introduction
to the HP 86 stresses using these binaries.

My system is an 86A with an additional
64k, an 82905B printer, 82913A monitor and
single 9130A 5. 25-inch disk drive. For the first
few months, I didn’t try to use the demo disk
binaries—learning the operating manual was
enough to keep me busy. I've found that most
86 owners have this in common. However,
many owners never find out about the binaries
or are' hesitant to use them.

Binary programs are described briefly in
the operating manual. Like Basic programs,
binary programs are loaded from disk except
that the command is LOADBIN instead of LOAD.
Both a binary and a Basic program can be in
memory at the same time. In fact, up to five
binaries and ape Basic program can be stored
simultaneously. However, loading a Basic pro-

gram will scratch the binaries from memory,
so you must load Basic programs before load-
ing binaries. (Note: the CHAIN command will
load and execute a program without harming
the binaries.)

The demonstration disk that comes with
your 86 or 87 contains four binary programs:
Utill1, Getsave, Gdump and Askiob.

Utl/l contains the largest number of
commands and has been the most useful bina-
ry to me, providing additional control over the
cursor and keyboard. It also helps manipulate
strings and enhance graphics.

Getsave converts Basic program state-
ments into string data and allows you to merge
two programs. It can help transfer programs
between different computers. An improved
Getsave 1s built into the 86B.

Gdump prints the graphics display on a
dot matrix printer.

Askiob determines the system configura-
tion. The model number of the computer,
space remaining on a disk, type of disk drive
and plotter model number can be determined
within a program. This helps to get the same
program to run with different peripherals.

Now that you know the binary power
available from the demo disk, you need to
learn the commands to use the programs. The
demo disk program Cardfile contains the
instructions.

Place your demo disk in the disk drive
and type LOAD CARDFILE, press END LINE and
then RUN. When the Cardfile instructions are
displayed, press L to load an existing file.
You'll then be prompted for the file name.
Enter BINARIES and press END LINE. Cardfile
reads the disk file named BINARIES and displays
a key label menu. K4 is labeled DISPLAY; K5 is
labeled PRINT. Either key will get you the
instructions for the binaries.

UTIL/1

This is the binary I use most often. I've be-

ILLUSTRATION BY HOWARD LEWIS OCT/NOV 1984 PROFESSIONAL COMPUTING 43

DPemo disk binaries, written in machine language, add Basic-like commands
to the 86 and let you do things you can’t with Basic—and much faster.

come so accustomed to some of its commands
that I routinely include them in my Basic pro-
grams. Utl/1 requires 2,922 bytes and con-
tains 13 usable commands.

The first command is AREAD (string vari-
able). AREAD reads the display. However, the
cursor must be in the position of the first
character to be read. This is done with the
AWRITE [row, column, [string]] command list-
ed after AREAD.

AREADfills the string variable with charac-
ters from the screen. This means the string
must be properly dimensioned or specified. 1
had some problems with AREAD until I realized
that a clear display is made of CHR$(13)s
(ASCII nulls) and not CHR$(32)s (spaces).

You can move the cursor around the dis-
play by using AWRITE and specifying the row
and column. The instructions imply that
AWRITEis limited to PAGESIZE 16; however, it
worksjust as well for PAGESIZE 24. Notice that
the first row is zero instead of one. Also, the
first column is zero; the last column is 79. The
example that follows moves the cursor to row
10, column 45, writes I MOVED IT, then moves
to row 15, column 50 and writes AGAIN. It then
moves the cursor to row 10, column 47 and
reads X$[1,4] as MOVE.

LOADBIN “UTIL/1”

10 CLEAR

20 AWRITE 10,45, “I MOVED IT”

30 AWRITE 15,50, “AGAIN”

40 AWRITE 10,47

50 AREAD X$[1,4]

60 END

RUN

After running this example, notice that the
cursor doesn’t show on the monitor. Press
END LINE. The cursor now appears at the left
margin on the line just below I MOVED IT.
Before pressing END LINE, the cursor was not
visible but was positioned at row 10 and col-
umn 47 by line 40. Now type in X$[1,4] and
press END LINE. The display will show MOVE.

START CRT AT (line) allows you to position
the display window. Remember that the 86
uses a 54-line CRT memory in the Alpha mode
and 204 lines in the Alphall mode. This
command also gave me some problems. START
CRT AT uses an absolute numbering system.
AWRITE and AREAD use line numbers relative
to the current display window. With START
CRT AT you can prepare two display screens
and flip back and forth between them in your
programs.

The following example clears the entire
CRT memory to provide 54 blank lines. It then
writes PAGE 1 on the first 24-line window and,

PAGE 2 on the second. The function keys let
you flip between the windows.

10 ALPHALL

20 ALPHA

30 PAGESIZE 24

40 START CRT AT 0

50 AWRITE 0,65, “PAGE 1”

60 AWRITE 1,0, “THE FIRST PAGE.”

70 START CRT AT 24

80 AWRITE 0,65, “PAGE 2”

90 AWRITE 1,0, “THE SECOND PAGE.”

100 START CRT AT 0

110 ON KEY# 1, “PAGE 1” GOTO 160

120 ON KEY# 2, “PAGE 2” GOTO 180

130 ON KEY# 3, “EXIT” GOTO 200

140 KEY LABEL

150 GOTO 150

160 START CRT AT 0

170 GOTO 140

180 START CRT AT 24

190 GOTO 140

200 END

Flip between the two pages by pressing
K1, then K2. Press K3 to exit from the pro-
gram. Now hold down the ROLL key. You'll see
the two pages rolling down the screen.

The next command, LINPUT, is used ex-
actly as the normal INPUT command except
that commas will be accepted as part of the
string variable. This allows you to input dates
and geographical data as they are normally
written. Use caution when entering LINPUT,
as syntax errors have been known to cause
a crash.

Entering the command UTIL/A will return
the revision number of the binary program.

TAKE KEYBOARD is used to restrict access
to the keyboard during program execution. It
locks out and puts in a buffer all keys except
function keys K1 through 14 and RESET. The
instructions say that you must define all func-
tion keys even if they're not used. But this
doesn’t seem to be true in all cases.

KEY$ returns one character from the buff-
er set up by TAKE KEYBOARD. If you use KEYS,
you must use TAKE KEYBOARDfirst. Failure to
do so can crash the system. Using KEY$ re-
duces the use of the END LINE key when re-
sponding to prompts. You can also redefine
the entire keyboard if you wish.

RELEASE KEYBOARD is the reverse of TAKE
KEYBOARD. If you use TAKE KEYBOARD in your
programs, at some critical point you’ll forget to
put in a RELEASE KEYBOARD. When this hap-
pens, the keyboard will be dead. Chalkit up to
experience and press RESET.

Here’s an example using TAKE KEYBOARD,
KEY$ and RELEASE KEYBOARD:

44 PROFESSIONAL COMPUTING OCT/NOV 1984

FEAMNK INE CYCLE
Farnkine Cucle Efficietrncua: Z&.3%
Theoretical Steam Rate: 7 .51 lbshp br

Superheated Yapor
vaa F aEE Psis

i i
30 Lo

r” 2328
Turbine — o Te

i1aa ' e BEtus1lb

— e e e el Bl ler —
Btu-lk a0 1@ Psia

T 851(Leone FErmis
o =5 1
Bt Saturated Liguid

123 F

10 CLEAR size is the same as in the Alpha mode. The EXAMPLE OF graph-
20 TAKE KEYBOARD
30 DISP “ENTER 'Q’ WHEN TIRED OF A DEAD

KEYBOARD”
40 IF KEY$ () “Q” THEN 40
50 DISP “THE KEYBOARD IS WORKING NOW”
60 RELEASE KEYBOARD
70 END

FAST LABEL (column, row, string, high-
light) is the next command. This is a nice
feature to use in graphics displays. It’s much
faster than using LABEL when writing on the
graphics screen.

The first parameter, column, is the alpha
column for the first character of the string.
Graph-mode columns are numbered from zero
to 49. In the Graphall mode, columns are
numbered from zero to 67.

The second parameter, row, is given in
dots from the top of the screen. Because the
row is specified in dots, sometimes more ef-
fort is required to position the label; however,
the method does give greater flexibility.

The upper left-hand corner of the charac-
ter block is positioned at the specified row and
column. If the entire string can’t be written on
the specified row starting at that column, the
excess characters are written on the next row
(one dot lower) starting at column zero.

Remember, in both Graph and Graphall
modes, the display has dots numbered from
zero to 239. You have no control over charac-
ter size when using FAST LABEL. The character

following shows how FAST LABEL is used:

10 GCLEAR

20 GRAPH

30 FAST LABEL 0,0,“0 COLUMN AND 0 ROW”,0

40 FAST LABEL 0,10,“0 COLUMN AND 10

ROW.”1

50 FAST LABEL 29,221, “29 COLUMN AND 221

ROW.”,0

60 FAST LABEL 47,231, “47 COLUMN AND 231

ROW.”, 1

70 END

ics dump using DUMP
GRAPHICS command
with the HP 82905B
printer.

Now change statement 20 to GRAPHALL and
run the program again.

SGCLEAR (x1,x2,y1,y2) [, mask] clears a
rectangular area of the graphics display. This
can save time if you need to redraw only a
portion of a graphics display. The x and y
values are measured from the lower left cor-
ner. Note that the x value will be rounded off
to the nearest multiple of eight. Remember
that the Graph mode has 400 dots in the x
direction; Graphall has 544. Try this example:

GCLEAR

FRAME

MOVE 0,0

DRAW 168,100

MOVE 0,100

DRAW 168,0

SGCLEAR 100,300,60,200

MSUS$ (“.volume”) simply returns the
mass storage unit specifier of the disk with the

OCT/NOV 1984 PROFESSIONAL COMPUTING 45

Uzxl/1 provides additional control over the keyboard and helps you
manipulate strings and enhance your graphics.

WHAT MOTHER
DIDN'T TELL YOU

ABOUT UTIL/1

specified volume label. People with only one
disk drive don’t seem too interested in this
command. Try the command with one of your
disks and its label.

RPT$ (string, number) is most easily re-
membered and described as “repeat the
string.” It's a nice feature. An example is
included with the example for TRIMS.

TRIMS$ (string) turns out to be a handy
command to use along with AREAD. Remem-
ber, AREAD filils the string. I prepare the
screen by AWRITEing spaces in the areas to be
AREAD. The extraneous spaces that are AREAD
can then be removed by TRIMS.

10 CLEAR
20 AWRITE 5,20,RPT$(* ”,18) ! Writes 18 spaces
30 AWRITE 5,20,“13 CHARACTERS”
40 AWRITE 5,20
50 AREAD X$
60 AWRITE 10,0
70 DISP “X$: ”;X$
80 DISP “X$ LENGTH: ” LEN (X$)
90 DISP “TRIMMED STRING: ”; TRIMS$ (X$)
100 DISP “TRIMMED STRING LENGTH: ”;LEN

(TRIMS (X$))
110 END

Since string variables are dimensioned as
18 characters unless otherwise specified,
the AREAD command reads the 13 written
characters and then an additional five
spaces. The LEN command, therefore, cor-
rectly shows a length of 18 characters. After
trimming with TRIM$, the LEN is 13, the

Util/1 was developed in a hurry some time
after the final release of the Gemini (86/87)
operating system to fill a need for extra screen
support, initially in the demo disk programs.

While the program has been widely ac-
cepted by Series 80 users, most people don’t
realize there are some bugs lurking just be-
neath the surface. Here's a brief rundown of
the most common bugs and the cures.

LINPUT (string$). If you mistakenly enter
a $ before the string reference, you can crash
on the spot. The problem is traceable to some
expedient, but faulty, design in the parse rou-
tine that pushes bytes before adequate testing
has been done on the proposed new program
line. Avoid this syntax.

Remedy: Enter LINPUT statements with
due care.

KEY$. A program reference to KEY$ with-
out a prior call to TAKE KEYBOARD will crash
the program clear back to power on.

correct length for the intended purpose.

GETSAVE

Getsave lets you store and retrieve Basic
programs as string data instead of tokenized
(compiled instruction) code. Getsave requires
1,480 bytes and has two usable commands,
GET and SAVE. With Getsave, you can convert
an 86/87 Basic program into string data, load
the data into an 85 and convert it to pro-
gram instructions by using the 85 program
Getsav. My 86 instructions for Getsave say
that the 85 binary is named Dgtsav. How-
ever, I couldn’t find Dgtsav in the HP Users
Library. I found and used the 85 binary Getsav
instead.

[found that the string data stored by
Getsave can be read by the HP word process-
ing program Word/80 using the GET command.
This means that Word/80 can be used as a
program editor. After editing, use Gefsave to
convert the Word/80 text file back to a Basic
program. However, since Word/80 expects 80
characters per line and Basic program lines
can have 159 characters, Basic statements will
be truncated to 80 characters.

Another use for Getsave is to merge two
Basic programs by SAVEing the first program,
loading the second as a Basic program and
then GETting the first while the second is in
memory. Be certain you have renumbered one
of the programs to avoid any conflicts.

The command GETSAVE returns the revi-
sion number of the binary.

Remedy: Make sure you have set up the
key buffer first.

START CRT AT (numeric_ref). Executing
this statement with a negative value will con-
fuse the CRT controller and cause a sideways
wrapped screen.

Remedy: Track the values you plan to
use for screen START AT addressing and trap
any value less than zero.

TRIM$ (string$). Fails to work on strings
longer than 32,767 bytes because of incorrect
register usage in the runtime code segment.

Remedy: Don’t use strings longer than
32,767 bytes.

RPT$ (string$,number_of_repeats). If
you're trying to fill a string longer than 32,767
bytes with a single byte, the function fails
because there is a call at input to system
routine ONEB when ONEX should have been
used. It’s probably the result of a hurried
conversion of the HP 85 code.

Remedy: If you're filling a long string, do

46 PROFESSIONAL COMPUTING OCT/NOV 1984

GDUMP

Since I don’t have a plotter, I appreciate
Gdump more than any other binary. It re-
quires 3,542 bytes and has one usable com-
mand, DUMP GRAPHICS. Gdump dumps the
graphics display onto the printer. With the
82905B printer, my command is simply DUMP
GRAPHICS when the graphics are done in Graph
mode (see figure).

The full command is DUMP GRAPHICS [low-
er bound [,upper bound [,rotate [printer
type]ll]l. The instructions give three printer-
type codes for five HP printers. I've been told
that the Epson MX80 HP printer will give a
good graphics dump if it’s identified as an HP
82905A printer (use a negative number to
indicate the type of printer). If you have a
program that uses graphics, use DUMP GRAPH-
ICS after program execution is complete. The
next example shows how DUMP GRAPHICS can
be executed from the keyboard.

LOADBIN “GDUMP”

SCALE 0,100,0,100

FRAME

PRINTER IS 701,80

DUMP GRAPHICS 0,0,0,0

Now put the printer into compressed
mode by keying in PRINT CHR$(27)&"“&k2S”. Re-
peat the example. Try it again with — 1 for the
rotate code. This should be useful.

Notice that both the upper and lower
bounds were specified as zero. If the lower

it twice with a RPT$ value less than the work-
ing maximum and concatenate.

Even though some of these problems
could have been avoided, one of the most
common areas for failure of string functions
concerns the reserved memory requirement
of these system and binary programs. For the
same reason, you can experience a memory
overflow error trying such innocuous things as
adding a few more bytes to a very long string
using the system concatenation operator &.

If you want to add just two bytes to a
string 65,000 bytes long, you must have at
least 65,000 bytes of free memory for the
procedure to succeed. The wait for this rela-
tively simple operation can be pretty annoying.

If you receive a memory overflow error
when using these functions (and similar ones in
the Advanced Programming ROM), thank the
bugs.

Don Person

bound of the scale is zero, this will cause the
complete graphics screen to be dumped. If the
screen is not scaled from zero, specifying zero
as the lower bound will return an error.

The command GDUMP returns the revi-
sion number of the binary.

ASKIOB

With Askiob, you can determine the system
configuration. This can be useful if you are
writing programs that run on 86 systems other
than your own. Askiob requires 1,172 bytes
and has four usable commands.

DISK FREE (x,y,msus) will return with
x equal to the number of free sectors on
the disk at that mass storage unit specifier
(msus). Also, y will be equal to the largest
contiguous block. Therefore, if x and y are
not equal, there are null files on the disk.
(There are 1,040 sectors on an empty but
initialized disk.)

Executing DISK FREE for a non-initialized
disk produces a warning for null data. Assum-
ing you have a disk in the drive at msus d700,
try the following example:

LOADBIN “ASKIOB”

DISK FREE X, y,“:d700”

X

y

Entering x then pressing END LINE returns the
value for x. The y value is obtained similarly.
The value for x is the number of free sectors
on the disk. If y is not equal to %, you can PACK
the disk to eliminate the null files.

DISK TYPE (msus) will return a one if the
disk at that location is an eight-inch or a hard
(Winchester) disk. A zero will be returned if
the disk is a 5.25-inch or 3.5-inch disk. With
your disk still at d700, try:

DISK TYPE (*:d700”)

PLOTTER ID (device selector) returns the
model number of the plotter located at that
address. Not having a plotter, [haven’t need-
ed this one, but I know different plotters have
different physical limits, numbers of pens and
capabilities.

ASKIOB returns the revision number of the

binary.

You may not need all 20 of these new
commands, but I'll bet some of them can help
you right away. Your 86 is now more powerful
than ever. 0

Gordon Buck 1s a registered engineer in
Louisiana and a software developer for the
HP Series 80.

OCT/NOV 1984 PROFESSIONAL COMPUTING 47

