

Notes on this document:

Regrettably page 5 is missing. Should I ever find it, I'll promptly update this PDF document. Sorry !

 Valentin Albillo, 05-11-2021

PAGE 2 NENSEOS - Issue Number 8

HIDDEN POWER: The Productivity Pac's Binary Keywords - by Don Person

Now that the HP Productivity Pac has become such a popular item, a lot of
HP owners have at their disposal an added bonus that they may not be aware of.
This bonus 1is a set of very useful new binary programs. The 'BIG THREE' among
these programs are "FILE/80BIN", “"STEVIE" and "BIN24", which are found on the
"FILE/80" disk.

The thrust of this article is a discussion of a number of the keywords that
drive the "FILE/80" program, and the major program examined is "FILE/80BIN".
The new Basic keywords supplied by this program fall into several categories,
but the most interesting ones are implementations of new disk operating

routines, some new array sorting routines and general system enhancements.

Here is the entire list of new FILE/80BIN keywords:

KEY SEARCH RECORD SEARCH SET BUFFCOL REMOVE BLANKS

OPEN FILE CLOSE FILE RSECTOR WSECTOR

ICHRS$ INUM RCHR$ RNUM

NUMOK? SORT BUFFER IS SORT PARMS REVERSE

ICH2$ INUM2 MASK UNMASK

BLANK? PTARRAY IS SIFT MAKEHEAP

SORTHEAP POP POPALL MSUS$

DISK FREE DISC FREE CATS VOLS$

PRTIS DTYPE WPROT? GIVEBACK

Let's start with some general purpose language enhancements (examples
follow some of the descriptions).

PRTIS - Returns the address of the current PRINTER IS declaration.

DISP PRTIS

701

DTYPE(msus$) -The argument for this function 1s a string value representing a
mass storage address.

The function returns a numeric result indicating the type of drive present.

DTYPE (":D7007)
0

MASK [string reference] - This command performs a function similar to HGL§, to
highlight a particular string on the screen. It sets the most significant bit

in each character of the specified string. It may not be combined with DISP
statements. 'MASK A$' would be OK. 'DISP MASK AS$' would NOT be OK, and will
return an error. This command is of most significant use in file indexing.

UNMASK [string reference] - This command clears the MSB in each character
gspecified in the string reference, and is similar to the UNHGL command found in

the BIN24 binary.
UNMASK A$ or UNMASK HEADERS$[31,32]

NUMOK?(string) - This function evaluates a string to determine if the string in

question 1s actually a representation of a number or not. 1= NUMBER OK;

0=SORRY, NOT A NUMBER. This 18 quite useful when used with the LINPUT
statement, or the FORM binary program available from the HP User's library.

BLANK?(string) - This function tests a string to determine if there are any

characters present other than spaces. 1=YES, it 1is blank; O0=NO, there are
characters other than blanks here.

BLANK?(™ ™)
1

BLANK?(™ * ™)

0

NENSESZOS - Issue Number 8 PAGE 3

POP - This command 1is programmable, but may also be executed in calculator
mode. When executed, it removes ONE address from the top of the RTIN (Return)

stack. This allows for recursive use of subroutine calls and is a useful

debugging tool as well. Executing it with no addresses on the stack of course

causes an error, as does executing it 1in calculator mode with a de-allocated
program present.

POPALL - This command is similar to POP but instead clears the stack
completely. It does not cause an error when executed in and of itself.
Executing a RETURN subsequently can however. (POP may already be familiar to
programmers who have used other than SERIES 80 computers, while POPALL is not

that common.)

Now for some fabulous new file manipulation statements. All of these new
statements can be executed in 'calculator' mode too! These are direct sector

read/write operations:

OPEN FILE [filename],buffer# - This statement opens a buffer, declared by
buffer#, and assigns it to the named entry in the disk directory. The
[filename] may declare a DATA file, a PROGRAM file or a BINARY PROGRAM file; in
short any catalog entry. This opens the door to a way of examining Binary
programs and compiled BASIC programs while stored in disk files (See our SNOOP'R
program in this issue - Editor). It can also be applied for file recovery or
examination when the programmer or user is uncertain of the contents. It allows
for very efficient usage of disk space as well. The burden of management falls

on the programmer.

OPEN FILE "NAMES$",1 ! (Valid buffer numbers are 1 to 12)

CLOSE FILE buffer# - Closes the referenced file buffer.

RSECTOR [string],sector#,file buffer # - When executed, the indicated sector is
read from mass storage to the specified string. The string MUST be dimensioned

to 256 characters, or an error will result. The first sector in any file is
sector zero. The file buffer number referenced must have been previously
declared with an OPEN FILE statement. The entire sector will be read without
regard to any existing file markers, including the EOF marker.

DIM AS$[256]
RSECTOR A$,0,1 ! Reads the first sector of the file.

WSECTOR [string],sector#,file buffer# - This is the complement of RSECTOR. The

entire sector will be re-written using the named string. The rules are the same

as RSECTOR.

WSECTOR A$,0,1 ! Writes to the first record of AS$.

DISK FREE A,B,MSUS$ or DISC FREE A,B,MSUS$ - This returns two values to the

specified variables. The first variable receives the total number of available

sectors on the specified disk. The second variable receives the largest

contiguous block of sectors from the indicated MSUS. (A and B are variables

used for example only). If there are no null files then the total number of

sectors equals the largest block. This is the first instance I have encountered

where duplicate syntax is supplied to cover both the accepted and “corrupt"”

spelling of the word "disk".
DISK FREE TOTAL_SECTORS, LARGEST_BLOCK, ":D700"

DISP TOTAL_SECTORS

298
DISP LARGEST BLOCK
277 -

PAGE 4 NENSSOS - Issue Number 8

MSUSS(".VOLUME") - Returns the address of the specified volume.

MSUSS(™".VOL")

:D700

VOLS(msus) - This keyword returns the name of the volume present in the

referenced drive.

CATS(numeric reference) - This keyword allows the programmer to access the

directory of the disk in the current drive and to treat the entries as elements

in a string array. It returns a string with the first ten characters indicating

the name of the entry, then four characters for file type, then four more for

"file sector length', and then four more indicating the total number of

records. eg:

CATS(3)
FILENAME DATA02560012

WPROT?(MSUS) - When executed, the disk in the currently declared drive 1is

checked for the presence of a write protect tab. 1=WRITE PROTECTED, O0=NO TAB

PRESENT . This 1is a much simpler method for checking 1if a disk 1s write

protected than using ON ERROR declarations to trap write protect errors.

Here is a short program that illustrates the direct sector read command.

Of course, all the statements may be executed in 'calculator' mode too.

10 DIM A$[256] ! FOR OUR SECTORS
20 OPEN FILE CATS$(1),1
30 RSECTOR A$,0,1
40 DISP A$
50 END

With these keywords under our belt, a brief digression seems in order. It

may be useful to know how the HP BASIC system stores and retrieves mass storage

data. Here then is a brief explanation.

When an ordinary file buffer writes to a file under BASIC system control,

it must always mark the contents of a file with markers to enable the CPU to
determine how to treat retrieved data. A numeric value in mass storage is in

coded binary form, and always occupies 8 bytes. The first character 1is a

CONTROL 'C' ,which you may recognize as a lowercase n with a bar over it. The
seven bytes which make up the number follow, with the most significant byte to

the left.

When writing strings to a file, the BASIC system marks strings with a

specific marker format. The string is preceded by CHR$(223) and is followed by

two bytes, least significant byte first. These, when decoded, are the length of

the string.

The end-of-file marker is CHR$(239), and is easily recognized visually in a

file,thanks to the 86/87's nice crt display set. The system makes no
distinction in the file between individual data and data arrays.

Because FILE/80BIN stores numbers, it too must code numbers for inclusion
in files. It uses a format which is similar to the one that the BASIC system

uses, but which is incompatible without additional bit manipulation. Here 1is
the keyword pair which accomplishes this.

RCHR$("string representation of a real number”) - This returns a 9 byte string.
The first byte is CHR$(2l). The second byte tells the system where to put the

radix. The next six bytes are the real number in Binary coded Decimal (BCD)

format, where each byte conveys two ‘nibbles' of numeric BCD data. The last

character is always a ‘l' or '0'. A 'l' indicates that the originally

referenced string was a number. Zero = no number here.

RCHRS ("1234.5678")

PAGE & NENSBSOS - lssue Number 8
RNUM("RCHR$ ") - When executed with the first 8 characters of a string generatedby RCHRS, it returns a real number.

The FILE/80BIN program has a similar capability for strings. 1In this case,the task is performed by an INTEGER character string conversion. Here's how:

ICH2$ (INTEGER) - The integer value must be a number from O to 65534. A stringis returned, most significant bit first, whose bits represent the originalnumber. Numbers greater than 65534 will generate two bytes of CHR$(255).
ICH2S (18512)
HP

INUM2 (string) ~ Complement of ICH2S. This returns an integer from the 2bytes. If more than 2 bytes are contained in the string, only the first twowill be decoded. If only one character 1is present, a null CHRS(0) is assumed to
precede it.

INUM2 ("HP")

18512

ICHRS (string expression of a number, length of output string) - This returns a
string representation of léfiétfi specified by the second number. The bits of the
string expression represent the binary value of the numeric reference, and only
integers are allowed. Note that the last character of the string will be 'l1' or
'0' for "number true or false”, and that the first bit of the first byte 1is the
sign bit (set = positive number, 0 = negative number).

ICHR$ ("79999999999999",6) ! Largest number that can be converted

INUM("string reference”) - This returns a numeric value of the string. Theconversion algorithm allows negative as well as positive values. If the first
character is MASKed, then the natural binary value of the bits of the string
will be converted to a positive number. If the mask bit is not set, the number
is interpreted as a negative integer. In either case, the first bit is not partof the actual conversion process, but the other 7 bits of the leading character
are. Maximum string length for conversion is 7 bytes.

INUM("HP")
-14256

H$="HP" @ MASK HS$
INUM (HS)
18640

Unfortunately, though by design, HP did not choose to duplicate functionsembodied in their BASIC . This makes the commands slightly more diificult to to
use. To read the length of the first string in a file, you might key in the
following :

10 pS=POS (SECTORS$,CHRS$ (223))
20 STRING_LENGTH=INUM2(REVS(SECTORS[pS+1,pS+2]))

I have not touched on the following set of keywords.

SORT BUFFER IS SORT PARMS PTRARRAY IS REMOVE BLANKS
MAKEHEAP SORTHEAP SIFT GIVEBACK
SET BUFFCOL REVERSE

These are the implementation of a combined array/bubble sorter.

SORT BUFFER IS |string reference] - Use the largest string you can handle.——— ————

DIMensioning the string reference at 65534 1s desirable. This is the bubble
column.

PTRARRAY Is L a one or 2 dimensional arrazl = This 1is the POINTER ARRAY.

NENSSOS - Issue Number 8 PAGE 7

I have not had the time to investigate thoroughly this group of keywords,

so for now I can only suggest that the hardy among you investigate further, and

share your results. Perhaps in a subsequent issue, I will be able to complete

the guide started here.

Briefly, here are other keywords supplied by some of the short binaries in

the Personal Productivity Pac:

BIN15 : CHAINA LOADA

BIN25 : DISK FREE (DISC FREE) CATS() MSUSS VOLS$() PRTIS DTYPE

This group of keywords are the same as those supplied by FILE/80BIN. In

addition, the following are added.

EXTEND# (BUFF#,NUMRECS) - This keyword allows you to add to the number of

records in the LAST file on the present disk. If buffer# 1 1is ASSIGNed to

“"TEST" then to add 9 more records to the TEST file, execute:

EXTEND# 1,9

EXTEND LAST FILE - Similar to EXTEND#.

MAY I HAVE (BUFFNO,DESIRED # OF RECS) - Returns a one (yes) or zero (no),

depending on the number of free records.

MAY I HAVE (1,8)
1

The BIN43 program supplies some extra string manipulation tools:

REV$ - This allows you to reverse the order of the characters in the referenced

string.

AS$S="ABCD"
DISP REP$ (AS)
DCBA

REP$ (string$,freps) -This is the same as the keyword RPT$ supplied by by UTIL/1

and the AP ROM. For the record:

REPS$ ("X",4)
XXXX

TRIM$ (STRINGS) - This function allows the removal of leading and trailing

blanks in the string.
BS=TRIMS (AS)

SCOPY (string$) — Screen copy function. AREAD revisited, but improved.

If you happen to have a copy of the new MIKSAM ROM manual in your

possession (HP manual 00087-90614), you have a pretty reasonable syntax guide to

the keywords supplied by "STEVIE". STEVIE, by the way, 1s a product of the

PEACHTREE group produced for HP. The ROM implementation is almost the same as

the STEVIE binary.
BIN24 is the driver for the Basic word processor program WORD/80. This

binary was designed to be a little tricky to use, as it 1is initiated by the

command "BIN24START". When executed, the program takes control of all keys

including RESET. If you are simply “hacking” this can make it a difficult

program to adopt. Once mastered, it offers very flexible control of the screen

and keyboard. The exit command is "BIN24EXIT". A simple method for testing

various keywords is to program the entry command and then an ON TIMER# branch to

a line to execute the exit statement. This program is illustrated throughout

the FILE/80 program listing.

