

Turbo Pascal
Graphix Toolbox®

Owner~s Handbook

Version 4.0

BORLAND INTERNATIONAL, INC.
4585 scans VALLEY DRIVE

scans VALLEY, CALIFORNIA 95066

Copyright © 1987
All Rights Reserved, First Printing, 1987

Printed in U .SA

10 9 8 7 6 5 4 3 2 I

Table of Contents

Introduction ... 1
What Can You Do With the Graphix Toolbox? .. 1
Structure of This Manual .. 4
Typography ... 5
The Distribution Disk ... 5
Acknowledgments .. 6

CHAPTER 1: A Computer Graphics Primer .. 7
Pixels ... 7
Screens .. 8
Characters and Fonts .. 9
Coordinate Systems ... 9

Absolute Screen Coordinate System ... 10
World Coordinate System .. 10

Windows ... 10
Clipping .. 11

How to Use the Turbo Pascal Graphix Toolbox With Your Hardware l2
The IBM PC and True Compatibles .. 13

IBM Color Graphics Card .. 14
Hercules Monochrome Graphics Card .. 14
IBM Enhanced Graphics Adapter ... 15
IBM 3270 PC ... 15
AT&T 6300 ... 15

CHAP1'ER 2: Getting Started .. 17
Linking Turbo Pascal Craphix Routines into Your Program 17

8087 or Non-8087 Installation ... 19
Drawing Points ... 19

Drawing a Single Point .. 20
Drawing a Cluster of Points .. 20
Drawing Points Using a World Coordinate System ... 21
Erasing a Point .. 22
Summary of Point Routines ... 22

Drawing Lines ... 23
Drawing a Single Line ... 23
Drawing a "Walking Line" .. 24
Summary of Line-Drawing Routines ... 25

Drawing Squares ... 25
Summary of Square-Drawing Routines ... 26

Drawing Circles ... 26
Summary of Related Routines ... 28

Text .. 28
Displaying Machine-Dependent Text .. 28
Displaying 4x6-Pixel Text .. 30
Summary of Text-Drawing Routines ... 31

Windows .. 31
Defining a Window ; ... 32
Displaying a Drawing in a Window ... 34
Moving Windows .. 36
Another Use for Windows: the Flow Chart ... 39
Summary of Window Routines ... 43

Pie and Bar Charts .. 44
Pie Charts .. 44
Bar Charts ... 47
Summary of Pie and Bar Chart Routines .. 52

Plotting Curves .. 52
A Simple Example: Plotting a Sine Curve ... 52
The Draw Axis Procedure ... 54
Drawing a Sine Curve with Axes ... 56
Polygon Modification Routines ... 58
Finding a World to Fit a Polygon .. 61

Solving Curve-Fitting Problems .. 63
Fitting a Curve with the Spline Procedure ... 64
Modeling a Curve with the Bezier Procedure .. 66
Summary of Polygon/Curve Routines .. 70

Screens ... 70
Saving and Loading Screens .. 71
Printing Screens .. 74

Turbo Pascal Graphix Toolbox Owner's Handbook

CHAPTER 3: Technical Reference ... 79
Turbo Pascal Graphix Files ... 79

Basic System Units ... 80
Supplemental System Units ... 80
High-Level Command Unit .. 80
A Sample Turbo Pascal Graphix Toolbox Program .. 81

Constant and Type Definitions .. 82
AspectFactor [GDRIVER PAS] ... '" 82
BackgroundArray [GDRIVERPAS] ... 83
CharFile [GDRIVER.PAS] ... 83
HardwareGrafBase [GDRIVERPAS] .. 83
HeaderSizeGlb [GDRIVERPAS] .. 83
IVStepGlb [GDRIVERPAS] .. 84
MaxBackground [GDRIVERPAS] ... 84
MaxForeground [GDRIVERPAS] ... 84
MaxPiesGlb [GDRIVERPAS] .. 85
MaxPlotGlb [GDRIVERPAS] .. 85
MaxWindowsGlb [GDRIVERPAS] ... 85
MaxWorldsGlb [GDRIVERPAS] ... 85
MinBackground [GDRIVERPAS] ... 86
MinForeground [GDRIVERPAS] ... 86
PieArray [GDRIVER.PAS] ... 86
PlotArray [GDRIVER.PAS] .. 87
RamScreenGlb [GDRIVERPAS] .. 87
ScreenSizeGlb [GDRIVERPAS] ~ .. 88
StringSizeGlb [GDRIVERPAS] .. 88
WrkString [GDRIVER.PAS] .. 88
XMaxGlb [GDRIVER.PAS] .. 89
XScreenMaxGlb [GDRIVERPAS] .. 89
YMaxGlb [GDRIVER.PAS] .. 89
Quick Reference Guide to Turbo Pascal Graphix Routines 90
Procedures and Functions .. 93
BaseAddress [GDRIVER.PAS] ... 94
Bezier [GSHELL.PAS] ... 95
ClearScreen [GDRIVERPAS] ... 99
ClearWindowStack [GWINDOW.PAS] .. 100
Clip [GKERNEL.PAS] ... 101
Clipping [GKERNEL.PAS] .. 102
CopyScreen [GDRIVERPAS] .. 103
CopyWindow [GWINDOW.PAS] .. 104
DC [GDRIVER.PAS] .. 105
DefineHeader [GKERNEL.PAS] ... 106
DefineTextWindow [GKERNEL.PAS] .. 107

Table of Contents iii

DefineWindow [GKERNEL.PAS] .. 109
DefineWorld [GKERNEL.PAS] .. 110
DP [GDRIVER.PAS] ... 111
DrawAscii [GKERNEL.PAS] .1 .. ll2
DrawAxis [GSHELL.PAS] .. 113
DrawBorder [GKERNEL.PAS] .. 115
DrawCartPie [GSHELL.PAS] ... 116
DrawCircle [GKERNEL.PAS] .. 118
DrawCircleDirect [GKERNEL.PAS] ... 119
DrawCircleSegment [GSHELL.PAS] .. 120
DrawCross [GKERNEL.PAS] ... 122
DrawCrossDiag [GKERNEL.PAS] .. 123
DrawDiamond [GKERNEL.PAS] .. 124
DrawHistogram [GSHELL.PAS] .. 125
DrawLine [GKERNEL.PAS] .. 127
DrawLineClipped [GKERNEL.PAS] .. 128
DrawPoint [GKERNEL.PAS] ... 129
DrawPolarPie [GSHELL.PAS] .. 130
DrawPolygon [GSHELL.PAS] .. 132
DrawSquare [GKERNEL.PAS] .. 134
DrawSquareC [GKERNEL.PAS] ... 135
DrawStar [GKERNEL.PAS] ... 136
DrawStraight [GDRIVERPAS] .. 137
DrawText [GKERNEL.PAS] ... 138
DrawTextW [GKERNEL.PAS] ... 139
DrawWye [GKERNEL.PAS] .. 140
EnterGraphic [GDRIVERPAS] .. 141
Error [GKERNEL.PAS] ... 142
FindWorld [GSHELL.PAS] ... 143
GetAspect [GKERNEL.PAS] .. 144
GetColor [GKERNEL.PAS] .. 145
GetErrorCode [GKERNEL.PAS] ... 146
GetLineStyle [GKERNEL.PAS] ... 147
GetScreen [GKERNEL.PAS] .. 148
GetScreenAspect [GKERNEL.PAS] .. 149
GetVStep [GKERNEL.PAS] ... 150
GetWindow [GKERNEL.PAS] ... 151
GotoXY [GKERNEL.PAS] .. 152
HardCopy [GKERNEL.PAS] .. 153
HardwarePresent [GDRIVERPAS] ... 154
Hatch [GSHELL.PAS] ... 155
InitGraphic [GKERNEL.PAS] .. 156
InvertScreen [GDRIVERPAS] ... 157

iv Turbo Pascal Graphix Toolbox Owner's Handbook

InvertWindow [GWINDOW.PAS] .. 158
LeaveGraphic [GDRIVERPAS] .. 159
LoadScreen [GDRIVERPAS] .. 160
LoadWindow [GWINDOW.PAS] ... 161
LoadWindowStack [GWINDOW.PAS] ... 162
MoveHor [GWINDOW.PAS] ... 163
MoveVer [GWINDOW.PAS] .. 164
PD [GDRIVER.PAS] ... 165
PointDrawn [GKERNEL.PAS] .. 166
RedefineWindow [GKERNEL.PAS] ... 167
RemoveHeader [GKERNEL.PAS] ... 168
ResetWindows [GKERNEL.PAS] .. 169
ResetWindowStack [GWINDOW.PAS] .. 170
ResetWorlds [GKERNEL.PAS] ... 171
RestoreWindow [GWINDOW.PAS] .. 172
RotatePolygon [GSHELL.PAS] .. 173
RotatePolygonAbout [GSHELL.PAS] ... 174
SaveScreen [GDRIVERPAS] ... 175
SaveWindow [GWINDOW.PAS] ... 176
SaveWindowStack [GWINDOW.PAS] .. 177
ScalePolygon [GSHELL.PAS] .. 178
SelectScreen [GKERNEL.PAS] ... 179
SelectWindow [GKERNEL.PAS] .. 180
SelectWorld [GKERNEL.PAS] ... 181
SetAspect [GKERNEL.PAS] ... 182
SetBackground [GDRIVERPAS] ... 183
SetBackground8 [GDRIVERPAS] .. 184
SetBackgroundColor [GDRIVERPAS] ... 185
SetBreakOff [GKERNEL.PAS] .. 186
SetBreakOn [GKERNEL.PAS] .. 187
SetClippingOff [GKERNEL.PAS] ... 188
SetClippingOn [GKERNEL.PAS] ... 189
SetColorBlack [GKERNEL.PAS] ... 190
SetColorWhite [GKERNEL.PAS] ... 191
SetForegroundColor [GDRIVERPAS] .. 192
SetHeaderOff [GKERNEL.PAS] ... 193
SetHeaderOn [GKERNEL.PAS] ... 194
SetHeaderToBottom [GKERNEL.PAS] .. 195
SetHeaderToTop [GKERNEL.PAS] ... 196
SetLineStyle [GKERNEL.PAS] ... 197
SetMessageOff [GKERNEL.PAS] ... 198
SetMessageOn [GKERNEL.PAS] ... 199
SetScreenAspect [GKERNEL.PAS] .. 200

Table of Contents v

SetVStep [GKERNEL.PAS] .. 201
SetWindowModeOff [GKERNEL.PAS] .. 202
SetWindow ModeOn [GKERNEL.PAS] .. 203
Spline [GSHELL.PAS] ... 204
Store Window [GWINDOW.PAS] .. 206
SwapScreen [GDRIVERPAS] ." .. 207
TextDown [GKERNEL.PAS] , .. 208
TextLeft [GKERNEL.PAS] ... 209
TextRight [GKERNEL.PAS] , ... 210
TextUp [GKERNEL.PAS] ... 211
TranslatePolygon [GS HELL.PAS] .. 212
WindowMode [GKERNEL.PAS] .. 213
WindowSize [GWINDOW.PAS] .. 214
WindowX [GKERNEL.PAS] .. , 215
WindowY [GKERNEL.PAS] ... 216

APPENDIX A: Hardware Configurations and Compatibility Problems 217
The IBM Color Graphics Card ... 217

Color .. 218
Text .. 219

The Hercules Monochrome Graphics Card ... 219
Color ... 220
Text ... 220
Special Notes ... 221

Compatibility Issues .. 221
Screen Size ... 221
Text Placement .. 222
Color ... 224
Speed ... 225
Premature Termination .. 225

APPENDIX B: Glossary ... 227

vi Turbo Pascal Graphix Toolbox Owner's Handbook

Introduction

Welcome to the Turbo Pascal Graphix Toolbox. The procedures and functions that
make up this software package will expand your repertoire of Turbo Pascal pro­
gramming tools. With the aid of the Graphix Toolbox, you can develop high-resolu­
tion monochrome graphics for IBM PC and PC-compatible computers (using
either an IBM CGA, EGA or 3270, AT&T 6300, or a Hercules graphics card).

This manual makes extensive use of Turbo Pascal programming examples; a good
working knowledge of Turbo Pascal is assumed. If you need to brush up on your
Pascal knowledge, refer to the Turbo Pascal manual, and/or the Turbo Pascal Tutor.

What Can You Do With the Graphix Toolbox?

The Turbo Pascal Graphix Toolbox is a versatile package, designed for both simple
and complicated graphics applications. Simple procedures allow you to draw

• Points

• Lines

• Rectangles with optional shading

• Ellipses

• Circles

High-level procedures let you create the more complex graphics that are often
needed in business and scientific applications:

• Labeled pie charts

• Bar charts with programmable shading

• A variety of curves, using different linestyles and with optional smoothing

• Curve fitting

• Line and solid modeling

• Labeled coordinate axes

• Polygons of any shape, with optional rotation or translation

All your drawings can be displayed either on the full screen, or in windows that you
define. You can also draw on a RAM (virtual) screen in memory, without display,
and move the resulting images to the displayed screen when desired.

Here are some examples of the kind of drawings you'll soon be able to generate
with the Craphix Toolbox.

2

'. '" t

. ,',''' .,
,,"',/, ' 'I ' "

,1 ,1 .; .' ",

" ," .
':" .

Figure 1 A Sampler of Drawings Done with the Graphix Toolbox

Turbo Pascal Graphix Toolbox Owner's Handbook

Line 8 Colu"
L----I----I----.--·r========================~11
Ihis is a deMOnst
windo"" .. alo.i" u,,, I

windo'r:=======================~~~~
All r
windo
outsi
the
allo

Figure 2 Stacked Wirulows

JAN I 30.35

Figure 3 Variations on a Pie Chart

Introduction 3

,,,,,,",,','''''
,,',' ,,,,"

,I

,,1,1,

,'.1' I"

Figure 4 Two Curves Displayed with Coordinate Axes

Structure o/This Manual

This manual is divided into five parts:

4

• Chapter 1 provides an overview of the Turbo Pascal Craphix Toolbox. Basic
graphics terms you need to know in order to use the toolbox are defined, and
illustrations of some of the things you can draw are given. This chapter also
talks about the different hardware configurations that can run the Turbo Pas­
cal Craphix Toolbox.

• Chapter 2 gets you started on using the Turbo Pascal Craphix Toolbox. Turbo
Pascal examples for the most commonly used procedures are given, along with
the resulting drawings. You'll also see how to define and manipulate windows,
and save and print the graphic images you create.

• Chapter 3 is the technical reference part of the manual. All the constants,
types, procedures, and functions contained in the Turbo Pascal Craphix Tool­
box are described, in alphabetical order, with parameters, function, restric­
tions, and examples.

• Appendix A explains how to use the Turbo Pascal Craphix Toolbox with differ­
ent hardware configurations.

• Appendix B provides a glossary of terms used in the manual.

Turbo Pascal Graphix Toolbox Owner's Handbook

Typography

The body of this manual is printed in normal typeface. Special characters are used
for the following special purposes:

Alternate Alternate characters are used in program examples and procedure and function
declarations.

Italics Italics are used to emphasize certain concepts and termioology, such as
predefined standard identifiers, parameters, and other syntax elements.

Boldface Boldface type is used to mark reserved words, in the text as well as
in program examples.

Refer to the Turbo Pascal Reference Manual for a complete description of the
syntax, special characters, and overall appearance of the Turbo Pascal language.

The Distribution Disk

The Turbo Pascal Craphix Toolbox distribution disk contains the following:

• Installation and demonstration files

• Files containing all the procedures and functions

• All the commented program examples used in Chapter 2

The distribution disk is your only source for the Turbo Pascal Craphix Toolbox files.
The first thing you should do upon receiving the disk is to complete and mail the
License Agreement at the front of this manual. You should then make a copy of the
distribution disk. Put the original disk in a safe place, and use only the copy for
doing your work. You should never use the distribution disk for your work, since
there is a charge for a replacement copy.

After you complete the License agreement and make a backup copy of the disk,
read the README.COM file on the disk. Simply type README from the DOS
prompt, and the file will appear. It contains a list of files on the disk, as well as any
corrections, comments, or updates on the program.

Introduction 5

Acknowledgments

In this manual, references are made to several products:

• Flight Simulator is a registered trademark of Sublogic Inc.

• Hercules is a registered trademark of Hercules Computer Technology, Inc.

• IBM is a registered trademark of International Business Machines Inc.

• MS-DOS is a registered trademark of Microsoft Inc.

• Turbo Pascal is a registered trademark of Borland International Inc.

6 Turbo Pascal Graphix Toolbox Owner's Handbook

c H A p T E R 1
A Computer Graphics Primer

Before you do any drawing with the Turbo Pascal Graphix Toolbox, you will need to
understand the graphics and screen display terms used throughout this manual.
Each of these concepts is described here, followed by a list of the Turbo Pascal
Graphix procedures and functions that apply to each.

Pixels

The term pixel is an acronym for picture element. Pixels, in fact, are the basic
elements that make up a video display image. The tiny dots that combine to make
the text and graphic images you see on your computer monitor are pixels.

The Turbo Pascal Graphix Toolbox allows you to display pixels as black or white
with monochrome cards, or in any color supported by a color card.

7

Screens

A screen is the configuration of pixels that make up displayed text or graphic
images. Depending on the type of graphics card installed in your system, the
screen display will be made up of the following horizontal-by-vertical pixel dimen­
sions:

• IBM eGA 640x200

• Hercules 720x350

• AT&T 6300 640x400

• IBM 3270 720x350

• IBM EGA 640x350

Because the Hercules display is made up of a greater number of pixels, the graphic
images created are finer in grain - that is, they are higher in resolution. Because of
their higher resolution, they also take longer to draw. IBM eGA graphics images
are coarser grained, and therefore lower in resolution. The concept of resolution is
easy to understand if you think of drawings made with pencils or pens; a drawing
done with a fine-point drawing pen will be of a higher resolution, and will take
longer to draw than one done with a blunt pencil.

For standard text display - that is, the text normally displayed by your system - a
screen can also be thought of as a sequence of 80 vertical character columns that
make up the width, and 25 lines of characters that make up the height.

There are two types of screens that you can use for creating images with the
Toolbox: the screen displayed on your monitor, and a RAM (virtual) screen in
memory. You can draw on either screen, but only the monitor screen is viewable;
the RAM screen is invisible. The screen you are currently drawing on is called the
active screen. RAM screens are useful for storing complicated images that are used
often and are time consuming to redraw, or for animation, when it would be dis­
tracting to allow the computer to visibly redraw the screen.

The procedures and functions that are used to manipulate screens are

elearScreen LoadScreen

eopyScreen SaveScreen

GetScreen S electS creen

InvertScreen Swap Screen

8 Turbo Pascal Graphix Toolbox Owner's Handbook

Characters and Fonts

A character is a letter, number, or symbol that is represented on your screen by a
rectangular configuration of pixels. A sequence of characters makes up a display of
text.

There are two styles - or fonts - in which text can be displayed with the Turbo
Pascal Graphix Toolbox:

• A simple, 4x6-pixel upper- and lower-case font that is used to display window
headers, pie chart labels, or any text you wish to display in integer multiples of
4x6 pixels

• A larger, higher quality font (8x8 pixels with an IBM CGA, or the 3270, and
the AT&T 6300, and 9x14 pixels with the IBM EGA, or the 3270, and the Her­
cules monochrome card) that corresponds to the font normally used with the
particular graphics card installed in your system

Exactly how the Turbo Pascal Graphix Toolbox utilizes these two fonts will become
clear when you read the next section about coordinate systems.

The procedures and functions that affect text are

DC

DefineHeader

DefineTextWindow

DisplayChar

DrawAscii

DrawText

DrawTextW

TextDown

TextLeft

TextRight

TextUp

Coordinate Systems

A coordinate system is a method used to identify a location according to its position
relative to horizontal and vertical axes. In mathematics, usually, and in Turbo Pas­
cal Graphix Toolbox programming in particular, the horizontal axis is labeled X,
and the vertical axis Y. The exact location of, for example, a point, is determined by
the X and Y coordinates of that point - that is, its distance from the X and Y z~ro
axes.

Coordinate systems are extremely important in graphics programming, since all
screen positions for text and graphics must be specified using X and Y coordinates.
There are two types of coordinate systems that you can choose when working with
the Turbo Pascal Graphix Toolbox: absolute screen and world coordinate systems.

,
A Computer Graphics Primer 9

Absolute Screen Coordinate System

The absolute screen coordinate system refers to the entire monitor screen, and the
actual character and pixel screen positions, for plotting text and graphics; coordi­
nates [0,0] are in the upper left corner of the screen, with the X coordinates
increasing to the right, and the Y coordinates increasing downward. As mentioned
earlier, the screen can be regarded either as a configuration of pixels or as a series
of 25 lines by 80 columns.

Text is handled in two ways. The simple, 4x6-pixel font used for window headers
and footers can be plotted anywhere on the screen, and can be scaled to be any
size that is an integer multiple of 4x6 pixels (for example, 8x12). The higher quality
font is plotted according to 80x25 text column and line coordinates.

World Coordinate System

For most graphics, the absolute screen coordinate system will not easily translate
to the application's numeric values. A world coordinate system is an arbitrary coor­
dinate system that you specify to accommodate your particular application. The
numbers you use in your world coordinate system can be (and usually are) com­
pletely unrelated to pixel coordinates. In Turbo Pascal Craphix Toolbox language,
this is called defining a world.

A world coordinate system is usually used to scale images so that they fit correctly
into the windows you have defined. Mter you define the world for a given window,
any images you subsequently draw will be automatically, proportionately scaled to
fit the window.

The procedures and functions that affect worlds are

Define World

FindWorld

Windows

ResetWorlds

SelectWorld

A window is any area of the screen that you define as the drawing area. Several
windows, containing different draWings and text, can be displayed simultaneously
on the screen. Each window can be moved independently of the other windows,
placed on top of other windows, and stored to, recalled from, or erased from mem­
ory. Windows can be stored and loaded individually or in groups to and from disk.
Several windows can be stored in RAM, and qUickly copied to and from the active

10 Turbo Pascal Graphix Toolbox Owner's Handbook

screen. You can draw borders, incorporate high-quality text, and label your win­
dows with headers or footers. The window you are currently drawing in is called
the active window.

A window can be specified to be almost any size, from the whole screen to 1
vertical pixel by 8 horizontal pixels. You define a window area by specifying the X
and Y coordinates of its upper left and lower right corners, with Y coordinates
measured in I-pixel units and X coordinates measured in 8-pixel units. These coor­
dinates are called window definition coordinates. In window definition coordinates,
the point [0,0] refers to the upper left corner of the screen.

Once you're working within a window, you can redefine its world coordinate sys­
tem, thereby allowing multiple images to be displayed within one window, each
with its own coordinate system. Coordinate axes, along with lettering, can be easily
added to any drawing.

A special RAM memory area, the window stack, is set aside for temporary storage
of windows. The stack comes in handy when you have several windows that you
want to keep but don't want to display all at the same time. The stack is also used
for storing windows that would otherwise be erased when another window is
moved over them on the screen.

The procedures and functions that affect windows are

ClearWindowStack Redefine Window SetClippingOff
Clip RemoveHeader SetHeaderOn
Clipping ResetWindows SetHeaderOff
CopyWindow ResetWindowStack SetHeaderToTop

DefineHeader Restore Window SetHeaderToBottom
DefineWindow SaveWindow SetWindow ModeOff
Define World SaveWindowStack SetWindowModeOn
DrawBorder SelectWindow StoreWindow

GetWindow SelectWorld WindowSize
InvertWindow SetBackground WindowX

LoadWindow SetBackground8 WindowY
LoadWindow S tack SetClippingOn

Clipping

The Turbo Pascal Graphix Toolbox allows you to "clip" images at window bound­
aries if you wish. This feature accomplishes several purposes:

• It relieves you from having to be exact when you're draWing in a window. The
Toolbox does the nitty-gritty of keeping your work within window boundaries.

A Computer Graphics Primer II

• It lets you "zoom in" on some aspect of a drawing. For example, let's say
you've defined your world coordinate system for a window. Once you're work­
ing in the window, you can redefine the world. When the image is drawn, the
Turbo Pascal Graphix program will "zoom in" and "clip" any part of your
drawing that falls outside the window with the new coordinate system.

• It protects program memory. Drawings that stray outside screen boundaries
can encroach on other parts of memory, including parts of your application
program.

Figure 1-1 The Clipping Option Used To "Zoom In" on a Drawing

There are times when you'll choose not to clip draWings, too. For instance, you may
develop a program using the clipping option, but once the program is debugged,
and you know your drawings are within bounds, you can turn clipping off. This
speeds up the draWing process considerably. Or, if you're working strictly with
absolute coordinates, you don't need to worry about drawing outside screen bound­
aries.

How to Use the Turbo Pascal Graphix Toolbox
With Your Hardware

There are a few differences between the computer systems and graphics cards that
can run the Toolbox. In some cases, these differences require your special consider­
ation when creating Toolbox-based programs.

There are two hardware considerations to take into account if you are using the
IBM version of the Turbo Pascal Graphix Toolbox: IBM compatibility, and graphics

12 Turbo Pascal Graphix Toolbox Owner's Handbook

cards. The information below will tell you briefly what you need to know about
your particular system; more technical details about certain hardware configura­
tions can be found in Appendix A.

Th£ IBM PC and True Compatibles

The Turbo Pascal Graphix Toolbox runs on any IBM PC, PC Jr., and compatible
computer. But what exactly is a true IBM-compatible computer? There are many
computers on the market today that are billed as IBM-compatible, and to some
extent they are. However, when considering whether a computer is IBM compati­
ble, it is important to look at the specific application you are using the computer for.
In the case of the Turbo Pascal Graphix Toolbox, you must consider whether the
graphics displayed by your computer will be true to your program design.

A potential problem with some IBM compatibles is that their screen display is of a
higher resolution than the IBM screen. The Corona PC is a good example.
Although the Corona's higher resolution display can make for very high-quality
text and graphics, graphic images created with the Turbo Pascal Graphix Toolbox
will not display true-to-form on the Corona screen; because of the Corona's higher
resolution, the drawing will appear to be compressed vertically.

A good test for whether your IBM-compatible computer will run the Toolbox is to
test the Flight Simulator program (written for the IBM PC) on your system. If your
computer can run Flight Simulator, it's a good bet it will also run the Toolbox
without problems.

Compatibility is also a consideration when your program will be running on more
than one computer system. Some distortion of screen images may result when a
program designed on a computer with an IBM card is run on a computer with a
Hercules card. See Appendix A for information about how to cope with those kinds
of problems.

Following is a list of computers and graphics cards that are sure to run the Turbo
Pascal Graphix Toolbox. Next to the name of the product, the Graphix Toolbox
graphics driver that runs with that product is given in parentheses. If your com­
puter or graphics card is not on this list, give a call to Borland's technical support
staff; they'll be able to tell you whether your computer will run the Graphix Tool­
box.

AT&T PC 6300 (CGA)
AT&T (640x400) (ATT)
Columbia MBC, VP (CGA)
Compaq Portable and DeskPro (CGA)
Comway Comgraphics card (HGC)
Comway Comtronics (CGA)

A Computer Graphics Primer 13

Comway Comcolor (CGA)
HeathlZenith Z150 series (CGA)
Hercules color card (CGA)
Hercules monochrome card (HGC)
IBM Color/Graphics adapter (CGA)
IBM Enhanced Graphics adapter or EGA-compatible cards (EGA)
IBM PCjr (CGA)
IBM 3270 (3270)
Leading Edge PC (CGA)
MA Systems PC Peacock (CGA)
Panasonic S R Partner (CGA)
Paradise/USI MultiDisplay (CGA)
Paradise Modular Graphics Card (CGA)
Profit Systems M ultigraph (CGA)
QuadRAM QuadColor I,ll (CGA)
Seequa Chameleon line (CGA)
STB Graphics Plus II (CGA)
Tandy 1000 (CGA)
Tava (CGA)
Tecmar Graphics Master (CGA)
Tele Video PC (CGA)
Tseng Laboratories UltraPAK (HGC)
Vutek Color Plus (CGA)

IBM Color Graphics Card

If you have an IBM graphics card installed in your computer, your screen display is
640 pixels wide by 200 pixels tall. The SetBackgroundColor and SetForeground­
Color procedures are used to determine background and display image colors. You
can also use the SetColorWhite and SetColorBlack procedures to reverse the back­
ground and foreground colors.

Hercules Morwchrome Graphics Card

The Hercules graphics card produces a higher resolution display: 720 pixels wide
by 350 pixels tall. The background of the display will be black,· and the displayed
images will be in the color produced by your monochrome monitor.

There are some important considerations to keep in mind when you decide to run
your programs developed with a Hercules card on other systems. These and other
potential problems are discussed in Appendix A.

14 Turbo Pascal Graphix Toolbox Owner's Handbook

IBM Enhanced Graphics' Adapter

With the IBM Enhanced Graphics Adapter you get a high resolution display of 640
pixels wide by 350 pixels tall. The SetBackgroundColor and SetForegroundColor
procedures may be used to determine background and display image colors; and
the SetColorWhite and SetColorBlack procedures to reverse the background and
foreground colors.

IBM 3270 PC

The IBM 3270 PC's graphics card produces a high resolution display: 720 pixels
wide by 350 pixels tall. The SetBackgroundColor, SetForegroundColor, SetColor­
White and SetColorBlack procedures may be used to determine the background
and foreground colors.

The AT&T 6300

The AT&T 6300's graphics card gives you a high resolution display of 640 pixels
wide by 400 pixels tall.

You can use the same procedures to determine colors and color reversals.

A Computer Graphics Primer 15

16 Turbo Pascal Graphix Toolbox Owner's Handbook

c H A p T E R 2
Getting Started

Ready to start drawing? This tutorial chapter takes you on a step-by-step tour of the
Turbo Pascal Graphix Toolbox, using commented program examples for both basic
and sophisticated graphics routines. The examples build on each other, so if you
read the chapter through in order, by the end you should be ready to incorporate
the Turbo Pascal Graphix routines you need into any graphics application program.

This chapter is designed as a basic tutorial. Technical details about the Turbo
Pascal Graphix procedures used in this chapter can be found in Chapter 3. Basic
graphics concepts and terminology used in this chapter are explained in Chapter 1
and Appendix B.

Linking Turbo Pascal Graphix Routines into Your Program

To use the Turbo Pascal Graphix Toolbox, you must first incorporate the two basic
Toolbox units into your program with the Turbo Pascal uses clause. The uses clause
specifies which precompiled units will be linked into your application program. It
begins with the keyword uses followed by a list of unit names separated by
commas. You should enter the uses clause at the top of your program, just below
the program declaration and above your constant, type, and variable declarations.

17

Every Turbo Pascal Graphix program must use the following system and toolbox
units in the order given:

uses
Dos, Crt, GDriver, Printer, GKernel;

The units Dos, Crt, and Printer are Turbo Pascal standard units. The units GDriver
and GKernel are Graphix Toolbox units.

To install the toolbox for your particular graphics card, you must copy the device
driver written for your hardware (supplied on the distribution disk) onto the
GDRIVER.PAS file. This is done by invoking the Turbo Pascal Graphix batch
program Tginst. The batch program Tginst takes a command line argument that
specifies which graphics card you are installing the toolbox for. The following list
shows the command line argument you should use for particular graphics cards:

CGA - for the IBM Color graphics adapter.

EGA - for the IBM Enhanced graphics adapter.

3270 - for the IBM 3270 PC.

HGC - for the Hercules monochrome card.

ATT - for the AT&T 6300 PC.

For example, to install the toolbox for use on a Hercules monochrome card you
would type the following at the DOS prompt:

tginst HGC

N ext, before calling the Turbo Pascal Graphix routines you need for your particular
application, you must initialize the graphics system by calling the InitGraphic pro­
cedure. At the end of your program, you must call LeaveGraphic to return your
system to text mode. See Chapter 3 for detailed information about these proce­
dures.

All of the example programs in this chapter are included on the Turbo Pascal
Graphix Toolbox distribution disk, so you can try out the examples and experiment
with the calling parameters in the various procedures. Each example program is
listed under a file name of the formfilename.PAS.

Every program example consists of five basic steps:

• Include at least the two core Turbo Pascal Graphix units

• Call1nitGraphic to enter graphics mode

• Call DrawBorder to draw a border around the drawing area (optional)

• Draw your images or text

• Include a wait loop so you can view the display (optional)

• Call LeaveGraphic to return to text mode

18 Turbo Pascal Graphix Toolbox Owner's Handbook

8087 or Non-8087 Installation

The file FLOAT.lNC on the distribution diskette contains the definition for the
user-defined type Float that is used thoughout the toolbox whenever a real number
is needed. FLOAT.lNC is included in the file GDRIVER.PAS and must be present
if you want to rebuild this unit. The definition of the type Float is equivalent to
using either the standard Turbo Pascal type real or type double. The reason that we
redefine all real numbers to Float in the toolbox is to aid the user in being able to
select which real number type they want to use by simply changing the value of
the $N compiler directive in the file FLOAT.lNC to select between using the
double precision 8087 real {$N + } or the standard non-8087 real number {$N - }.
The advantage to using the double precision real number is an increase in speed
of all real number calculations due to the fact that the 8087 coprocessor is re­
quired and utilized for all floating point operations. The advantage to using the
standard Turbo Pascal six byte real number is that an 8087 chip isn't required and
you save two bytes of data space for each real number that is declared. To install
the toolbox for non-8087 support simply change the $N compiler directive in the
file FLOAT.lNC to {$N -} and then rebuild all of the toolbox units with the build
option in the compiler. To install the toolbox to utilize the 8087 math coprocessor
chip, you need to set the $N compiler directive to {$N +} in the file FLOAT.lNC
and then rebuild all of the toolbox units with the Build option in the compiler. All
real variables should be declared as type Float in programs that use the toolbox
routines.

Drawing Points

You can use the Turbo Pascal Graphix DrawPoint procedure to draw points using
either absolute screen or world coordinates. (See Chapter 1 for a definition of
coordinate systems.) The next two sections show you how to draw points using the
screen coordinate system, while the section follOWing explains how points are
drawn in world coordinates. You should read this section even if you aren't inter­
ested in drawing points, because the rest of the examples in this chapter utilize
world coordinate systems; it is important that you understand the point-drawing
examples in order to see the difference between screen and world coordinate sys­
tems.

Getting Started 19

Drawing a Single Point

Writing a program that draws a single point is the simplest thing you can do with
the Turbo Pascal Graphix Toolbox. Below is a Turbo Pascal program (DRWPNT.
PAS on the distribution disk) that draws and displays a single point.

program ExamplePoint;
uses

Dos, Crt, GDriver, Printer, GKernel;

begin
InitGraphic; { Initialize (init) the graphics system}
DrawBorder; { Draw a border around the default window}
DrawPoint(lOO, 100); { Plot a pixel at (100, 100) }
repeat until KeyPressed; { Wait until a key is pressed}
LeaveGraphic; { Leave the graphics system}

end. { ExamplePoint }

Figure 2-1 A Single Point (DRWPNT.PAS Example)

Drawing a Cluster of Points

The following program (DRWPNTS.PAS on the distribution disk) draws 1000
points, displayed randomly on the screen. For this example, let's assume you have
an IBM graphics card installed in your system.

20 Turbo Pascal Graphix Toolbox Owner's Handbook

program DrawPoints;

uses
Dos, Crt, GDriver, Printer, GKernel;

var
I : integer;

beg;n
InitGraphi c;
DrawBorder;

{ Init the system and screen}

for I := 1 to 1000 do { Draw 1000 random pOints on IBM screen}
DrawPoint(Random(XScreenMaxGlb) , Random(YMaxGlb»; { Plot random pixels on

repeat unt;l KeyPressed;
LeaveGraphic;

end. { DrawPoints }

','.: ','

",

"

", .'

,,', "

the screen }
{ Wait until a key is pressed}

,'.,'

Figure 2-2 A Cluster of Points (DRWPNTS.PAS Example)

To allow you to run your program on systems with different graphics cards, you can
write this program so that it uses a world coordinate system instead of the absolute
screen coordinate system, as described next.

Drawing Points Using a World Coordinate System

A world coordinate system lets you define the addresssing dimensions of your
drawing area, independently of the screen type and size. Once you have defined
your world, the Turbo Pascal Graphix program will scale the drawing to fit the
screen or window you are using.

Getting Started 21

The following program (WDRWPNTS.PAS on the distribution disk) is identical to
the one in the previous section, but uses a world coordinate system instead of the
absolute screen coordinate system.

program WorldDrawPoints:

uses
Dos, Crt, GDriver, Printer, GKernel:

var
I : integer:

begin
InitGraphi c:
DrawBorder:

DefineWorld(I,0,0,1000,1000):
SelectWorld(I):
SelectWindow(I);

{ Init the system and screen}

{ Define a world for drawing}
{ Select it }

for I := 1 to 1000 do { Draw 1000 random pOints on world}
DrawPoint(Random(1000), Random(1000));

repeat until KeyPressed;
LeaveGraphic;

end. { WorldDrawPoints }

{ Wait until a key is pressed}

Erasing a Point

To erase a point, change the drawing color to black and then draw the point, as
follows:

SetColorBlack;
DrawPoint(x,y);

Summary of Point Routines

• DrawPoint draws a point in world or screen coordinates.

• DP draws a point in absolute screen coordinates only.

• PD returns TRUE if a point is drawn in specified screen coordinates.

• PointDrawn returns TRUE if a point is drawn at specified world coordinates.

22 Turbo Pascal Graphix Toolbox Owner's Handbook

Drawing Lines

The DrawLine procedure allows you to draw and display lines in the current line
style (selected by the SetLineStyle procedure). The coordinates for lines drawn in
the following program examples are all calculated using world coordinate systems.

Drawing a Single Line

The following program (DRWLIN.PAS on the distribution disk) draws a line from
the upper left to the lower right corner of the screen. Endpoint coordinates are
passed to the procedure as the X and Y coordinates of the first endpoint, followed
by the X and Y coordinates of the second endpoint.

program DrawLine;

uses
Dos, Crt, GDriver, Printer, GKernel;

beg;n
InitGraphic; { Init the graphics system}
DrawBorder;
DefineWorld(l,O,O,lOOO,lOOO); { Define the world to draw in }
SelectWorld(l); { Select the world}
SelectWindow(l); { Select the window}

DrawLine(O,O,lOOO,lOOO);

repeat unt;l KeyPressed;
LeaveGraphic;

end. { DrawLine }

{ Draw the line}

{ Wait until a key is pressed}
{ Leave the graphics system}

Figure 2-3 A Line (DRWLIN.PAS Example)

Getting Started 23

Drawing a "Walking Line'"

An intriguing variation on the DrawLine procedure is the "walking line." A walking
line program generates, by increments, a series of endpoint coordinates, thereby
creating a "walking line." By changing the formula used to generate the endpoint
coordinates, a variety of shapes can be drawn. In the example that follows
(DRWLINS.PAS on the distribution disk), the first endpoint moves uniformly
across the top of the screen from left to right, while the other endpoint moves
incrementally and diagonally from the upper right to the lower left corner of the
screen.

24

program DrawLines;

uses
Dos, Crt, GDriver, Printer, GKernel;

var
1 : integer;

begin
InitGraphic;

DefineWorld(l,0,0,1000,1000);
SelectWorld(1) ;
SelectWindow(l);

SetBackground(O);
DrawBorder;

{ Init the system and screen}

{ Define a world for drawing}
{ Select it }

{ Set the background color to black}

for 1 := 1 to 20 do { Draw 20 lines}
DrawLine(I*50, 0, 1000-1*50, 1*50);

repeat until KeyPressed;
LeaveGraphic;

end. { DrawLines }

{ Wait until a key is pressed}

Figure 2-4 A Walking Line (DRWLINS.PAS Example)

Turbo Pascal Graphix Toolbox Owner's Handbook

Summary of Li'Yl£-Drawing Routi'Yl£s

• Clip clips a line at active window boundaries.

• DrawLine draws a line using world or screen coordinates.

• DrawLineClipped clips a line at screen boundaries.

• DrawStraight draws a horizontal line.

• SetLinestyle selects one of five linestyles for drawing lines.

• GetLineStyle returns the current linestyle.

Drawing Squares

The DrawSquare procedure draws rectangles in the current line style (selected by
the SetLineStyle procedure). A rectangle is defined by the coordinates of the points
at its upper left and lower right corners. A Boolean value, Fill allows you to fill the
rectangle with the current drawing color (determined by the SetForegrourulColor
procedure). The following program (DRWSQ.PAS on the distribution disk) draws
a series of consecutively larger squares around the center of the screen, with no fill.
Another example program not illustrated here (DRWHCH.PAS on the distribution
disk) draws hatched squares.

program DrawSquaresi

uses
Dos, Crt, GDriver, Printer, GKerneli

var
I : i ntegeri

beg;n
InitGraphici

DefineWorld(l,O,O,lOOO,lOOO)i
SelectWorld(1) i
SelectWindow(l)i
DrawBorderi

{ Init the system and screen}

{ Define a world for drawing}
{ Select it }

for I := 1 to 20 do { Draw 20 squares}
DrawSquare(500-I*25, 500-1*25, 500+1*25, 500+1*25, false)i

repeat unt;l KeyPressedi
LeaveGraphici

end. { DrawSquares }

Getting Started

{ Wait until a key is pressed}

25

I

lIJ I

Figure 2-5 Squares (DRWSQ.PAS Example)

Summary of Square-Drawing Routines

• DrawSquare draws a square using world coordinates.

• DrawSquareC draws a square using screen. coordinates, but clipped at the
boundaries of the active window.

• SetForegroundColor chooses the current drawing color.

• SetLinestyle chooses the line style.

Drawing Circles

Because different graphics cards produce screen displays with different vertical­
by-horizontal dimensions, and because different monitors have different screen
proportions, a correctly-proportioned circle drawn on one screen may look dis­
torted on another screen. To adjust for differences in screen proportions, Turbo
Craphix routines that deal with circles and ellipses - DrawCircle, DrawCircleSeg­
ment, DrawCartPie and DrawPolarPie - utilize the concept of the aspect ratio.

An aspect ratio is defined as the height-to-width ratio of a circle or ellipse. Turbo
Pascal Craphix circle routines allow you to vary the aspect ratio's vertical dimen­
sion by calling the SetAspect procedure. In addition, a global constant, AspectFac­
tor, sets the system-dependent aspect ratio, so that an aspect ratio of 1.0 produces a
true circle on a particular hardware screen.

26 Turbo Pascal Graphix Toolbox Owner's Handbook

The following program (DRWCIR.PAS on the distribution disk) draws a series of
circles, and varies both their radii and aspect ratios. The parameters passed to the
DrawCircle procedure specify the X and Y world coordinates of the center of the
circle; the radius corresponds to the X(horizontal) dimension of the circle.

program DrawCirc:

uses
Dos, Crt, GDriver, Printer, GKernel:

var
I : integer:
AspectLoc, Rad Float:

begin
InitGraphic: { Init the system and screen}

DefineWorld(1,0,0,1000,1000):
Sel ectWorl d (1):
SelectWindow(l):
DrawBorder;

Rad : = 1.5;
AspectLoc := GetAspect;
SetAspect(0.2);

for I := 1 to 15 do
begin

DrawCircle(500, 500, Rad);
SetAspect(0.2 + 1/10);
Rad := Rad - 0.05;

end;

SetAspect(AspectLoc);

repeat until KeyPressed;
LeaveGraphic;

end. { DrawCirc }

{ Define a world for drawing}
{ Select it }

{ Set initial radius}
{ Save default aspect ratio}
{ Init aspect ratio for this routine}

{ Draw circles}

{ Restore previous aSRect ratio}

{ Wait until a key is pressed}

Figure 2-6 Circles (DRWCIR.PAS Example)

Getting Started 27

Summary of Related Routines

• DrawCircle draws a circle or ellipse using world or screen coordinates.

• DrawCircleDirect draws a circle or ellipse using screen coordinates.

• DrawCircleSegment draws an arc of a circle.

• DrawPie draws a pie chart.

• GetAspect returns the current aspect ratio.

• Set Aspect determines the aspect ratio for a circle.

Text

As explained in Chapter 1, the Turbo Pascal Graphix Toolbox supports both a 4x6-
pixel text and a machine-dependent text. The size of machine-dependent charac­
ters is 8x8 pixels for IBM CGA and AT&T, and 9x14 pixels for Hercules, IBM EGA,
and IBM 3270.

Displaying Machine-Dependent Text

The text routines used by the Turbo Pascal Graphix Toolbox are very similar to
those used by Turbo Pascal; the screen is defined as 25 lines by 80 columns (char­
acters), and the Turbo Pascal procedures GotaXY, Write and WriteLN are sup­
ported by the Graphix Toolbox. However, there are a few considerations specific to
the Turbo Pascal Graphix text mode concerning the alignment of text with draw­
ings, and within windows. Since the size of the text font varies with the graphics
card installed, some adjustments must be made when attempting to align text with
drawings. In particular, Hercules text, which is defined on a 9-pixel horizontal
boundary, must be adjusted for the 8-pixel window boundary. See Appendix A for
technical information on text fitting.

The following program (DRWSTXT.PAS on the distribution disk) places the start
of a text string at the center of the screen, demonstrates the automatic new-line
performed by Writeln, and places the text within a filled box whose dimensions are
determined according to the world coordinate system. The coordinates for the
points at the corners of the box are computed from the character positions of the
text.

28 Turbo Pascal Graphix Toolbox Owner's Handbook

program DrawStandardText;

uses
Dos, Crt, GDriver, Printer, GKernel;

const
MaxWorldX
MaxWorldY

var
I integer;

Float = 1000.0;
Float 1000.0;

CharHeight, CharWidth Float;

beg;n
InitGraphic; { Init the graphics system}

DefineWorld(l, 0, 0, MaxWorldX, MaxWorldX); { Define the world to draw in }
SelectWorld(l); { Select the world and window}
SelectWindow(l);
DrawBorder;

GotoXY(39, 12); { Goto the center of the text screen}
Writeln('* <- This should be at the center '); { Write two lines of text}
Write('This should be on the next line');

CharWidth := MaxWorldX / 80;
CharHeight := MaxWorldY / 25;

{ Compute a character's width}
{ Compute a character's height}

DrawSquare(9*CharWidth, 7*CharHeight, { Draw box at text loc [10,8] }
(22*CharWidth)+2, (8*CharHeight)+2, true);

GotoXY(1o, 8);

Write('Text in a box');

repeat unt;l KeyPressed;
LeaveGraphic;

end. { DrawStandardText }

[ext In a boxl

hi s sholll d he on the next Ii ne

{ Position cursor}

{ Write text in it }

{ Wait until a key is pressed}
{ Leave the graphics system}

* (- This shollid he at the cente!'

Figure 2-7 Machine-Dependent Text (DRWSTXT.PAS Example)

Getting Started 29

Displaying 4x6 Pixel Text

The 4x6 pixel character set is used for window headers, and for applications that
require text that is smaller or larger than the machine-dependent text. Unlike the
machine-dependent text, the 4x6 pixel characters can be placed at any screen loca­
tion. The Scale parameter passed to the DrawText procedure specifies the size of
the characters (in integer multiples of 4x6 pixels); the larger the value of Scale, the
larger the character.

Since a character in the 4x6 pixel font is made up of only a few pixels, this text is of
a coarser quality than the machine-dependent text, even when they are scaled to
the same size.

The following example (DRWATXT.PAS on the distribution disk) uses the Draw­
Text procedure to display upper-case characters, in different positions and sizes, in
the center of the screen. The complete character set is then displayed at the upper
left corner of the screen, scaled to its smallest size.

30

program DrawAlternateText;

uses
Dos, Crt, GDriver, Printer, GKernel;

Float = 1000.0;
Float = 1000.0;

const
MaxWorldX
MaxWorldV
CharArray1 array [0 .. 25] of char = { Define an array of characters}

('A','B','C','D','E','F','G','H','I','J','K','L','M',
'N', 10 1, Ipl, IQI, 'R', lSI, 'T', lUI, lVI, IWI, lXI, lVI, IZI);

var
I : integer;
CharHeight, CharWidth Float;

begin
InitGraphic; { Init the graphics system}

DefineWorld(l, 0, 0, MaxWorldX, MaxWorldV); {Define the world to draw in }
SelectWorld(l);
SelectWindow(l);
DrawBorder;

for I := 1 to 50 do { Print Random characters in center of screen}
DrawTextW(Random(600) + 200, Random(600) + 200,

Random(5), CharArray1[Random(26)]);

DrawTextW(15, 50, 1, 'ABCDEFGHIJKLMNOPQRSTUVWXVZ '); { Type chars in corner}
DrawTextW(15, 100, 1, 'abcdefghijklmnopqrstuvwxyz');
DrawTextW(15, 150, 1, '1234567890-=\--!@#$%-&*()_');
DrawTextW(15, 200,1, I[]{}:";,.<>/?+II);

repeat until KeyPressed;
LeaveGraphic;

end. { DrawAlternateText }

{ Wait until a key is pressed}
{ Leave the graphics system}

Turbo Pascal Graphix Toolbox Owner's Handbook

A8COEFGHIJKLnMDPQRS1UU~Mi2

.bc~efjh i Jk IHnopqrstuuwxyz
1!lmmo·:\\"!~I$i.·m).tl

IlIl : ": ," () i~

Figure 2-8 4x6 Pixel Text (DRWATXT.PAS Example)

Summary of Text-Drawing Routines

For machine-dependent text:

• DC draws a character at the specified text coordinates.

• DefineTextWindow uses specified text coordinates to define a window.

• DisplayChar draws a character at the specified text coordinates.

• TextDown, TextLejt, TextRight, TextUp adjust space between window bound­
aries and text (text fitting).

For 4x6 pixel text:

• DefineHeader defines a window header.

• DrawAscii draws a character at the specified screen coordinates.

• DrawText draws a character string at the specified screen coordinates.

• DrawTextW draws a character string at the specified world coordinates.

Windows

This section tells you how to create and manipulate on-screen windows. The use of
windows allows greater flexibility in graphics applications, since you can display
several different drawings on the screen at once, using different world coordinate
systems; and you are not limited to the pixel dimensions of the window.

Getting Started 31

Defining a Window

When the Turbo Pascal Graphix Toolbox is initialized with the InitGraphic proce­
dure, the entire screen is, in effect, defined as a window whose world coordinates
correspond to the pixel dimensions of the screen. However, you can redefine any
region of the screen as a window, from an 8xI pixel (horizontal by vertical) box to
the entire screen.

Once defined, a window acts more or less independently of other windows and
even the screen. Windows can be small or large, moved around, drawn on with
reference to their own coordinate systems and boundaries, and individually
removed, stored, and retrieved.

Generally, you will want to define a new world coordinate system for every window
you define; otherwise, any drawing you do in a window will take place as if the
screen coordinate system were mapped to that window. All drawing routines­
except routines internal to the graphics system, routines for machine-dependent
text positioning such as GotoXY, and window positioning routines - can use world
coordinate systems.

To associate a world with a window, you must always call SelectWorld before
SelectWindow. If a new window is subsequently selected, the current world is
retained. Thus, to draw alternately in two windows with different worlds,
SelectWorld must be called before each SelectWindow:

repeat
SelectWorld(1) i
SelectWindow(l)i

{ Insert code to draw something in window 1
using world coordinate system 1 }

SelectWorld(4)i
SelectWindow(2)i

{ Insert code to draw something in window 2
using world coordinate system 4 }

until KeYPressedi

Besides simply defining the dimensions of your window, you can label it with a
header or footer, fill it in with a color or background pattern, or draw a border
around it in any line style. When a new window is defined or an existing window is
redefined, the header associated with that window number is destroyed. This
means that Define Window must be called before DefineHeader.

To change the dimensions of an existing window, without changing its header, use
the Redefine Window procedure.

The following example (SIMPWIND.PAS) shows you how to define a window
with a border and a header.

32 Turbo Pascal Graphix Toolbox Owner's Handbook

program SimpleWindow;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow;

begin
InitGraphic;

DrawBorder;

{ Init the graphics system}

{ Draw a border around the drawing}
{ area of the primary window}

DefineWindow(l, 10, 20, XMaxGlb-lO, YMaxGlb-20);
{ Define a window 80 pixels in from}
{ the left and right edges, and 20 }
{ from the top and bottom edges }

DefineHeader(l,'THIS IS AN EXAMPLE WINDOW'); {Give it a header}
SetHeaderOn;

DefineWorld(l,O,O,lOOO,lOOO); {Give it a world coordinate system}

~selectWindow(l);

\...p SelectWorld(l); ,£t

SetBackground(85);

DrawBorder;

repeat until KeyPressed;

LeaveGraphic;

end. { SimpleWindow }

{ Select the window}

{ Select the world}

{ Give it a grey background}

{ Draw the border }

{ Wait until a key is pressed}

{ Leave the graphics system}

lHI: r: H" hHnPLE ~IN[lO~

Figure 2-9 A Window (SIMPWIND.PAS Example)

Getting Started 33

Displaying a Drawing in a Window

Suppose you want to display the "walking line" example in a window. You can
display the example using a world coordinate system, and in any position on the
screen by following these steps:

• Define the window

• Define the world coordinate system for the window

• Select the world coordinate system

• Select the window for drawing

• Draw a border (optional)

• Display the walking lines

The following example (MULTWIND.PAS) displays the walking line example in
three different windows, each with its own coordinate system, with the drawings
clipped at window boundaries.

34

program MultipleWindows;

uses
Dos, Crt, GDriver, Printer, GKernel;

var
I : integer;

procedure DrawLines;

var
I : integer;

begin
for I := 1 to 20 do

DrawLine(1 * 50, 0, 1000 - I * 50, I * 50);
end; { DrawLines }

begin
InitGraphic; { Init the graphics system}

DrawBorder; { Draw a border around the drawing}
{ area of the primary window}
{ (the dimensions of the primary window}
{ default to the screen dimensions) }

DefineWindow(l, Trunc(XMaxGlb / 10), Trunc(YMaxGlb / 10),
Trunc(XMaxGlb / 2), Trunc(YMaxGlb / 2));

{ Define a window one tenth of the way}
{ in from the left and top edges, and half}
{ way down from the right and bottom edges}

DefineHeader(l, 'THIS IS A LARGER WORLD'); { Give it a header}

DefineWorld(l, 0, 0, 2000, 2000); { Give it a larger world coordinate system}

Turbo Pascal Graphix Toolbox Owner's Handbook

DefineWindow(2, Trunc(XMaxGlb / 3), Trunc(YMaxGlb / 3),
Trunc((XMaxGlb * 2) / 3), Trunc((YMaxGlb * 2) / 3));

{ Define a window one third of the way}
{ in from the left and top edges, and}
{ from the right and bottom edges}

DefineHeader(2, 'THIS IS A CORRECT WORLD'); { Give it a header}

DefineWorld(2, 0, 0, 1000, 1000); { Give it a correct world}
{ coordinate system}

DefineWindow(3, Trunc(XMaxGlb / 2), Trunc(YMaxGlb / 2),
Trunc((XMaxGlb * 9) / 10), Trunc((YMaxGlb * 9) / 10));

{ Define a window one half of the way}
{ in from the left and top edges, and half}
{ way down from the right and bottom edges}

DefineHeader(3, 'THIS IS A SMALLER WORLD'); { Give it a header}

DefineWorld(3, 0, 0, 500, 500); { Give it a smaller world coordinate system}

for I := 1 to 3 do
begin

SelectWindow(I);
SetHeaderOn;
Sel ectWorl d (I);
SetBackground(O);
DrawBorder;
DrawLines;

end;

repeat until KeyPressed;

LeaveGraphic;

end. { MultipleWindows }

{ Select window}
{ Set the window header on }
{ Select a world coordinate system}
{ Give the window a black background}
{ Draw a border around the window}
{ Draw lines}

{ Wait until a key is pressed}

{ Leave the graphics system}

Figure 2-10 Three Windows (MULTWIND.PAS Example)

Getting Started 35

Moving Windows

Once you've defined a window, you can move it to any position on the screen using
the Move Ver and MoveHor procedures; windows are moved by increments (multi­
ples of 8 horizontal pixels and multiples of 1 vertical pixel).

MoveHor and MoveVer work by automatically and continually refreshing the
screen images over which the window is moved. They do this by storing the dis­
played screen image to the virtual screen.

If you want to move multiple windows, things get a bit more complicated; you must
manage the windows and other screen images yoursel£ What this means is that you
must continually rebuild the virtual screen image every time you move windows. If
there are any images on the screen that you wish to keep, you must copy those
images either to the window stack with the Store Window procedure (if the images
are in a window) or to the RAM (virtual) screen with the CopyWindow or Copy­
Screen procedure (if the images are on the screen) so they can be retrieved later;
otherwise, when you move a window over those images, they will be erased, and
there will be no way to restore them.

For your windows to keep their integrity and to be moved independently, you must
keep copies of all windows on the window stack, and store all screen images you
want to keep on disk. For instance, if the screen contains two windows that you
want to display independently - that is, you want to be able to move them around
and place them on top of each other - you should do the following: using the Save­
Screen procedure, store the screen (without any windows) on disk, and store up-to­
date copies of both windows on the window stack using the Store Window proce­
dure.

Every time you draw something in a window, or change what was previously
drawn, save a copy of the window on the window stack. When you want to move a
window, save the presently displayed screen - without the window you plan to
move-to the RAM virtual screen using the Copy Screen procedure, so the non­
moving window is now also copied to the virtual screen. The virtual screen should
now contain everything that was on the displayed screen, except the window you
want to move. Now, draw the window you want to move on the screen, and use
MoveHor and Move Ver to move the window around, without destroying the fixed
images underneath.

The window stack is a RAM memory area where window images can be stored
temporarily. You might want to use the stack when, for instance, you have defined
and drawn in several windows but only want to display a few on the screen, or if
one window is obstructing another and the obstructed window needs to be dis­
played. Whole window stacks, as well as individual windows in the stack, can be
stored to and recalled from disk using the Save Window and Restore Window proce­
dures. Windows on the stack can be accessed in any order.

36 Turbo Pascal Graphix Toolbox Owner's Handbook

Windows can be restored from the stack to any location on the screen by specifying
X and Y offsets. To restore the window to its former position, use offsets of O.

If the window currently selected with the SelectWindow procedure is the same as
the one being restored from the stack, the screen coordinates of the selected win­
dow will shift to match the offset of the restored window. The selected window
does not change when any other window is restored from the stack.

Stored windows and the RAM screen are dynamically allocated on the heap using
the Turbo GetMem and FreeMem procedures. Therefore, the Mark/Release method
of memory management should not be used in your programs.

The following program (MOVEWIND.PAS) shows how to move windows about on
the screen; use the arrow keys to move the windows, and press the space bar to
stop program execution.

program MoveWindows;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow;

const
Null= #0;

var
I ; integer;
Ch ; char;

procedure DrawLines;
var

I ; integer;
begin

for I ;= 1 to 20 do

{ The null character}

DrawLine(1 * 50, 0, 1000 - I * 50, I * 50);
end; { DrawLines }

begin { MoveWindows }

InitGraphic; { Init the graphics system}

DrawBorder; { Draw a border around the drawing}
{ area of the primary window}
{ (the dimensions of the primary window}
{ default to the screen dimensions) }

DefineWindow(1, Trunc(XMaxGlb / 10), Trunc(YMaxGlb / 10),
Trunc(XMaxGlb / 2), Trunc(YMaxGlb / 2»;

{ Define a window one tenth of the way}
{ in from the left and top edges, and half}
{way down from the right and bottom edges }_

DefineHeader(1, 'THIS IS THE FIXED WINDOW '); { Give it a header}

Getting Started 37

38

DefineWorld(l, 0, 0, 1000, 1000); {Give it a world coordinate system}

DefineWindow(2, Trunc(XMaxGlb / 2), Trunc(YMaxGlb / 2),
Trunc«XMaxGlb * 9) / 10), Trunc«YMaxGlb * 9) / 10»;

{ Define a window one half of the way}
{ in from the left and top edges, and half}
{ way down from the right and bottom edges}

DefineHeader(2, 'THIS IS THE MOVEABLE WINDOW'); { Give it a header}

DefineWorld(2, 0, 0, 1000, 1000); {Give it a world coordinate system}

SelectWindow(l);
SetHeaderOn;
SelectWorld(l);
SetBackground(O);
DrawBorder;
DrawLines;
CopyScreen:

SetBreakOff;
SetMessageOff;

SelectWindow(2);
SetHeaderOn;
SelectWorld(2);
SetBackground(O);
DrawBorder;
DrawLines;

repeat
Ch: = Readkey;

{ Select fixed window}

{ Select its world}
{ Give it a black background}
{ Draw a border around the window}
{ Draw lines in it }
{ Copy it to the virtual screen}

{ Don't error when edge hit}

{ Select moveable window}

{ Select its world}
{ Give it a black background}
{ Draw a border around the window}
{ Draw lines in it }

{ Read the keystroke }

if (Ch = Null) and KeyPressed then { Test for an extended scan code }
Ch: = Readkey; { on either an IBM or Zenith ZlOO }

case Ch of
'A' , 'H'
'0' , 'K'
'C' , 'M'
'B' , , P'

end:
until Ch =

,

LeaveGraphic;

';

MoveVer(-4, true);
MoveHor(-l, true);
MoveHor(l, true);
MoveVer(4, true);

{ Up arrow }
{ Left arrow }
{ Right arrow}
{ Down arrow }

{ Space character exits program}

{ Leave the graphics system}
end. { MoveWindows }

Turbo Pascal Graphix Toolbox Owner's Handbook

Figure 2-D Moving a Window (MOVEWIND.PAS Example)

Another Use for Windows: The Flow Chart

Anything that can be contained in a rectangle can be animated using windows. The
following example (FLOWDEMO.PAS) animates a How chart by using a moving
window. The drawing of the How chart is the fixed screen image, while a window
that contains the present state of the "machine" is moved along the How chart
drawing to show how the processor modifies variables when the program executes.
The program increments a count and tests the result. If the count is not large
enough, the program increments the count and tests again. When the count is high
enough, the program is finished.

program FlowDemo;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow;

procedure FlowChartDemo;
var

Xl, Yl, X2, Y2, I, Count: integer;
Temp : WrkString;

procedure DrawArrowHor(XI, YI, X2, Y2 : integer);
{ Draw horizontal arrow with tip at point (X2, Y2) }
begin

DrawLine(XI, YI, X2, Y2);
if X2 > Xl then

begin
DrawLine(X2 - 4, Y2 - 2, X2, Y2);
DrawLine(X2 - 4, Y2 + 2, X2, Y2);

end
else

Getting Started 39

40

begin
DrawLine(X2 + 5, Y2 - 2, X2, Y2);
DrawLine(X2 + 5, Y2 + 2, X2, Y2);

end;
end; { DrawArrowHor }

procedure DrawArrowVer(X1, Y1, X2, Y2 : integer);
{ Draw vertical arrow with tip at point (X2, Y2) }
begin

DrawLine(X1, Y1, X2, Y2);
if Y2 > Yl then

begin
DrawLine(X2 - 2, Y2 - 3, X2, Y2);
DrawLine(X2 + 2, Y2 - 3, X2, Y2);

end
else

begin
DrawLine(X2 - 2, Y2 + 3, X2, Y2);
DrawLine(X2 + 2, Y2 + 3, X2, Y2);

end;
end; { DrawArrowVer }

procedure Blink(Count, Time: integer);
{ Blink the current window}
var

I : integer;
begin

for I := 1 to Count do
begin

Delay(Time) ;
InvertWindow;

end;
end; { Blink}

begin { FlowChartDemo }
DefineWindow(l, 0, 0, 79, 185);
DefineWindow(2, 12, 20, 25, 40);
DefineWindow(3, 15, 55, 22, 75);
DefineWindow(4, II, 110, 26, 130);
DefineWindow(5, 47, 90, 56, 110);

ClearScreen;
SetColorWhite;
DefineHeader(l, 'A FLOW CHART');
SetHeaderOn;
SelectWindow(l);
DrawBorder;
SetHeaderOff;

SelectWindow(2);
DrawBorder;
DrawText(125, 27, 2, 'START');
SetWindowModeOff;
DrawArrowVer(151, 40, 151, 55);
SetWindowModeOn;

{ Define the 'FLOW CHART' window}
{ Define the 'START' window}
{Define the '1=1' window}
{ Define the 'IF 1<=5' window}
{ Define the '1=1+1' window}

{ Draw the surrounding window}

{ Draw the 'START' window}

{ Draw the connecting line}

Turbo Pascal Graphix Toolbox Owner's Handbook

SelectWindow(3);
DrawBorder;
DrawText(136, 63, 2, '1=1');
SetWindowModeOff;
DrawArrowVer(151 , 75, 151, 110);
SetWindowModeOn;

SelectWindow(4);
DrawBorder;
DrawText(108, 118,2, 'IF 1<=5');
DrawStraight(215, 417, 120);
SetWindowModeOff;
DrawArrowVer(417, 120, 417, 110);
DrawArrowVer(151, 130, 151, 155);
SetWindowModeOn;
SelectWindow(l);
DrawText(300, 110, 2, 'YES');
DrawText(160, 137,2, 'NO');

SelectWindow(5);
DrawBorder;
DrawText(390, 98, 2, '1=1+1');
SetWindowModeOff;
DrawLine(417, 90, 417, 80);
DrawArrowHor(417 , 80, 151, 80):

SetAspect(1.0) ;
DrawCircle(151, 165, 25);
SelectWindow(l);
DrawText(137, 163,2, 'END');
SetWindowModeOn;
SetHeaderOn;

CopyScreen:

DefineWindow(2, IS, 21, 22, 39);
SelectWindow(2);
SetBackground(O);
DrawBorder;
InvertWindow;
Delay(1000) ;
InvertWindow;

Temp := '123456';
MoveVer(35, true);
DrawText(139, 63, 2, '1=' + Temp[l]);
Blink(30, 50);
MoveVer(55, true);

for Count := 2 to 6 do

Getting Started

{ Draw the '1=1' window}

{ Draw the connecting line}

{ Draw the 'IF 1>=5' window}

{ Draw the connecting lines}

{ Draw the '1=1+1' window}

{ Draw the connecting lines}

{ Draw the 'END' circle}

{ Make an image of this screen}
{ on the virtual RAM screen}

{ Set up the moving window}

{ Init the number array, }
{ move window over init statement, }
{ 'i ni t' it}

{ Move it down to increment loop}

{ Do increment loop}

41

42

begin
Delay(500);
MoveHor(33, true);
MoveVer(-20, true);
SetBackground(O);
DrawBorder;
DrawText(400, 98, 2, 11=1 + Temp[Count]);·
Bl ink(30, 50);
MoveVer(-20, true);
MoveHor(-33, true);
MoveVer(40, true);

end;

InvertWindow;
De 1 ay (1000) ;
MoveVer(46, true); { Move to the IENDI statement}
Blink(30, 50);

MoveHor(45, true); { Move back up to the top}
MoveVer(-136, true);
MoveHor(-45, true);
SetHeaderOn;

end; { FlowChartDemo }

begin
InitGraphic; { Init the graphics system}

FlowChartDemoj { Do the demo}

repeat until KeyPressed;

LeaveGraphic;
end. { FlowDemo }

{ Wait until a key is pressed}

{ Leave the graphics system}

Figure 2-12 A Flow Chart (FWWDEMo.PAS Example)

Turbo Pascal Graphix Toolbox Owner's Handbook

Summary of Window Routines

• ClearWindowStack deletes a window from the stack.

• Copy Screen copies the active screen onto the inactive screen.

• CopyWindow copies a window from one screen to another.

• DefineHeader defines a window header.

• Define Window defines an area of the screen as a window.

• Define World defines a world coordinate system.

• DrawBorder draws a line around the window.

• GetWindow returns the code number of the active window.

• InvertWindow inverts the color of the active window.

• wadWindow loads a window from disk to the specified world coordinates.

• wadWindowstack stores a window stack from disk to the window stack.

• Redefine Window changes the dimensions of an existing window.

• RemoveHeader removes a window header.

• ResetWindowStack erases all windows from the stack.

• ResetWindows sets all windows to the size of the physical screen.

• Save Window saves a window to disk.

• Save WindowS tack saves a window stack to disk.

• SelectWindow selects a window for drawing.

• SelectWorld selects a world coordinate system.

• SetHeaderOff and SetHeaderOn determine whether a window header is dis­
played.

• SetHeaderToBottom and SetHeaderToTop place a header at the bottom or top
ofa window.

• SetWindowModeOff and SetWindowModeOn determine whether draWing
takes place in a window or on the screen.

• Store Window stores a window on the window stack.

• WindowMode returns the window status.

• WindowSize determines whether there is room for a window on the stack.

• WindowS tack Size returns the number of free bytes on the window stack.

Getting Started 43

Pie and Bar Charts

Pie and bar charts provide a way to graphically represent numeric results that are
common to many business and statistical applications. Three high-level routines­
DrawCartPie and DrawPolarPie for pie charts, and DrawHistogram for bar
charts - do most of the work required to display information in pie and bar charts;
all you have to do is supply the numerical data. As long as you are familiar with
Turbo Pascal, the program examples used in this section can be easily tailored to a
particular application.

Pie Charts

Pie charts are used to display a series of values or percentages (the pie "slices") that
make up a total unit (the whole pie). A pie chart shows, at a glance, the relative
proportion of the whole that is represented by each value. For instance, a pie chart
format is an effective way to show a company's market share, or the results of a
scientific experiment.

The DrawCartPie and DrawPolarPie procedures not only automatically draw a pie
chart that corresponds to your input values; they can also label each pie segment
with text and/or a numeric value, as well as pull any pie segment away from the pie
for display emphasis. Although pie charts can be drawn with reference to either
world or screen coordinates, it is usually best to use world coordinates, especially if
you want your program to run correctly on different computer systems. Also, pie
charts drawn using a world coordinate system will be correctly proportioned in any
given window, regardless of the size of the window.

A pie chart is drawn by passing the following parameters:

• Coordinates of the center point of the pie

• Coordinates of the starting point of the first pie segment

• Value and optional label of each segment in an array

• Desired labeling options

• Scale of the label characters (multiples of 4x6 pixels)

A pie chart can be specified so that the starting point of the first segment of the pie
chart is referenced to either of two coordinate systems: Cartesian coordinates [X, Y],
or polar coordinates [Radius,Angle]. The Cartesian coordinate system, used by the
DrawCartPie procedure, allows the drawing to be referenced to a position located
by [X, Y] coordinates. For instance, the first pie segment can be defined by a point
relative to the center of the pie. The polar coordinate system references the pie
chart to its radius and the angle of its first segment.

44 Turbo Pascal Graphix Toolbox Owner's Handbook

It is usually easiest to use polar coordinates - that is, to think of a pie chart as a
circle with a certain radius, and with its first segment starting at a particular angle.
The DrawPolarPie procedure uses polar coordinates. Since this is the method used
most often, the DrawPolarPie procedure is used in the example program
ONE PIE. PAS.

In this example, DrawPolarPie first defines a window that is the size of the entire
screen, with a header and border. Next, the array of values and optional text labels
to be used in the creation of the pie chart are initialized. This part of the example is
normally the only part that is application-specific. The size of each pie segment is
specified by the area entry in this array. This area i~ displayed as a percentage of
the total area (determined by totalling all the other areas to be displayed in the
pie). The numbers appropriate to your application are used here, and the Draw­
PolarPie procedure displays each segment according to its percentage of the whole
pie. If you give any of the array entries a negative value, the pie drawing procedure
will move this segment outward. This feature can be used to draw attention to
important segments of the pie chart.

The Mode parameter allows you to display area values and/or text contained in
PieArray as labels. These labels are usually displayed at the end of optional label
lines. The area information is displayed exactly as passed in the array. If you don't
want to display the numeric value of the segment, the Mode parameter allows you
to display a text label only; the text is passed in the PieArray. The text label can
include any alphanumeric character or ESCape sequence (used to specify special
graphics characters). See the DrawCartPie and DrawPolarPie procedures in Chap­
ter 3 for more information about this option.

The next part of the ONEPIE.PAS example determines the position, size, and
shape of the pie to be drawn. The pie is specified by the coordinates of its center
point, and radius and starting angle. (If the example were using the DrawCartPie
procedure, the starting point would be specified by an [X,Y] position.)

The shape of the pie chart, like any other circle, is determined by its aspect ratio­
its height-to-width ratio. You can vary the shape of the pie chart by calling the
SetAspect procedure. In addition, a global constant, AspectFactor, sets the system­
dependent aspect ratio, so that an aspect ratio of 1.0 produces a true circle on a
particular hardware screen.

The parameters InRadius and OutRadius specify the inside and outside endpoints
of the radial label line. This label line relates a text and numeric label with a
particular pie segment. InRadius and OutRadius are referenced to the edge of the
pie chart. A value of 1.0 puts the endpoint on the edge of the pie chart, a value of
0.5 puts the endpoint halfway between the edge and the center, and a value of 2.0
puts the endpoint at a distance of twice the radius out from the center of the chart.
If both InRadius and OutRadius are 1.0, the label line is one dot long, coincides
with the edge of the pie chart, and, thus, for all practical purposes, is not drawn.

Getting Started 45

The final parameters, Mode and Size, specify which labels, if any, are drawn, and
their size. Mode allows four possibilities: no label, text label only, numeric label
only, and both text and numeric label. Size specifies the scale of the label charac­
ters (multiples of 4x6 pixels).

46

program OnePieDemo;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure OnePieDem;

var
Sum, Xl, Yl, Radius, Theta, InRadius, OutRadius Float;
N, Mode, Size : integer;
A : PieArray;
Back : byte;
Ch : char;

begin { OnePieDem }
ClearScreen;
SetColorWhite;
DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb);
DefineHeader(l, 'A SINGLE PIE CHART'); { Set up a window}
DefineWorld(l, 0, 0, 1000, 1000);
SelectWorld(1) ;
SelectWindow(l);
SetHeaderOn;
SetBackground(O);
DrawBorder;

N := S;
A[l] .Area := 2S;
A[2].Area := l7.S;
A[3] .Area := 9.6;
A[4].Area := 21;
A[S].Area := 3S;
A[l].Text .- 'JAN.=';
A[2].Text .- 'FEB.=';
A[3].Text .- 'MAR.=';
A[4].Text .- 'APR.=';
A[S].Text .- 'MAY=';

A[l] .Area .- -A[l] .Area;

Xl := SOO;
Y1 := SOO;

Radius := 200;
Theta := 60;

SetAs pect (1. 0) ;

InRadius := 0.7;
OutRadius := 1.2S;

Mode := 2;
Size := 2;

{ The number of pie segments}
{ Init the pie array}

{ Move the first segment outward}

{ Set the center to mid-screen}

{ Set the start of the circle}

{ Set the aspect ratio}

{ Set the ends of the label line}

{ Set to draw both lables }
{ Set to text size 2 }

Turbo Pascal Graphix Toolbox Owner's Handbook

{ Draw the pie}
DrawPolarPie(Xi, Vi, Radius, Theta, InRadius,

OutRadius, A, N, Mode, Size):
end: { OnePieDem }

begin { OnePieDemo }
InitGraphic:

OnePieDem:

repeat until KeYPressed:

LeaveGraphic:
end. { OnePieDemo }

HAV:35,OQ

APR ,:21.00

HAR,:9,60

{ Init the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

FEB,:1?,SO

Figure 2-13 A Pie Chart (ONEPIE.PAS Example)

Bar Charts

Bar charts (histograms) are used to represent the way a given set of data changes
over time. A bar chart displays a sequence of values as vertical bars, with each bar's
height in proportion to the value associated with that bar. A bar chart is auto­
matically generated by passing the array of the values to be displayed to the
DrawHistogram procedure. The resulting bars are drawn adjacent to each other
and always completely fill the width of the active window. The height of the bars is
scaled by the world coordinate system active at the time.

The demo program ONEHIST.PAS is an example of the DrawHistogram proce­
dure. This program draws ten random-length bars across a window that fills
the screen. The procedure first fills the Plot Array with ten random values. The
Plot Array is the same as that used to plot polygons, and therefore has two values in

Getting Started 47

each array element (the X position and the Y displacement). The X value in this
case is determined by the program, and the Y (vertical displacement) value is used
by DrawHistogram.

N ext, a window is defined and selected that fills the screen, and a world coordinate
system is defined and selected that will determine the vertical scaling of the bar
lengths. The X dimension specification can take any value except 0, since it is
corrected for by the DrawHistogram routine.

The Hatch parameter specifies whether the bars are to be cross-hatched with
slanting lines; HatchDen specifies the number of vertical pixels between each
hatch line. The sign of HatchDen determines the direction of hatching; if it is
negative, the first hatch line goes from lower left to upper right (positive slope);
if it is positive, the first hatch line goes from upper right to lower left (negative
slope); hatching direction alternates with each consecutive bar. In the call to
DrawHistogram, a negative value for DisplyLen indicates that bars should be
drawn from the Y zero axis (which is, in this case, at the bottom of the window). A
positive value would specify that bars are always drawn from the bottom of the
window, with negative values plotted as positive values.

48

program OneHist;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure HistoDem;
var

I, DisplyLen, HatchDen integer;
A : PlotArray;
R : Float;
Ch : char;
Hatch: boolean;

beg;n
DisplyLen := 10; { Draw 10 bars}

for I := ° to DisplyLen do
beg;n;

A[I+1, 2] := Random;
end;

{ Init the display array with random #'s }

SetColorWhite; { Set up the window for the bar chart}
SetBackground(O);
SetHeaderOn;
DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb);
DefineHeader(l, 'A RANDOM BAR CHART WITH HATCHING');
DefineWorld(l, -10, 0, 10, 1.0);
Sel ectWorl d (1) ;
SelectWindow(l);

DrawBorder;

Hatch := true;
HatchDen := 7;

{ Draw the window}

{ Enable hatching}
{ Draw hatch lines this far apart}

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawHistogram(A, -DisplyLen, Hatch, HatchDen); {Draw the bar chart}
end; { HistoDem }

begin { OneHist }
InitGraphic;

HistoDem;

repeat until KeyPressed;

LeaveGraphic;
end. { OneHist }

{ Init the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

Figure 2-14 A Bar Chart (ONEHIST.PAS Example)

The following example program (PIEHIS),O.PAS on the distribution disk) shows
both a bar and pie chart displaying the same data. An example of how to label bar
charts is also included.

program PieHisto;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure PieHistoDem;
var

Sum, Xl, Yl, X2, Y2, InRadius, OutRadius Float;
I, N : integer;
A : PieArray;
B : PlotArray;
Ch : char;
NumText : WrkString;

Getting Started 49

50

begin
N := 5:
A[l] .Area : = 25:
A[2].Area := 17.5:
A[3].Area := 9.6:
A[4] .Area := 21;
A[5].Area := 35;
A[l].Text.- 'JAN. ';
A[2] .Text .- 'FEB. ';
A[3].Text .- 'MAR. ';
A[4].Text .- 'APR. ';
A[5].Text .- 'MAY';

for I := 1 to N do
B[I, 2] : = A[I] .Area;

ClearScreen:
SetColorWhite;

{ The number of data points}
{ Init the pie array}

{ Init the histogram array}

DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb);
DefineHeader(l, 'BOTH A PIE AND A BAR CHART'): {Set up a window}
SelectWindow(l):
SetHeaderOn;
SetBackground(O);
DrawBorder;

for I := 1 to N do

begin
GotoXY(60, 4 + I);
Write(A[I]. Text, '=');
Str(A[I].Area:6:2, NumText):
Write(NumText);

end;

{ Type the info in the upper-right
corner }

{ Goto correct line}
{ Type the label info}
{ Format the numeric info}
{ Type the numeric info}

DefineWindow(2, Trunc(XMaxGlb / 10), Trunc(YMaxGlb / 10),
Trunc(XMaxGlb * 6 / 10), Trunc(YMaxGlb * 7 / 10»;

DefineHeader(2, 'A PIE CHART'); { Set up a window}
DefineWorld(2, 0, 0, 1000, 1000);
SelectWorld(2);
SelectWindow(2);
SetHeaderOn;
SetBackground(O):
DrawBorder;

A[l] .Area : = -A[l] .Area;
SetAspect (1.0):

Xl := 500;
Y1 : = 500;

X2 := 600;
Y2 := 350:

InRadius := 0.7;
OutRadius := 1.25;

{ Move the first segment outward}
{ Set the aspect ratio}

{ Set the center to mid-screen}

{ Set the start of the circle}

{ Set the ends of the label line}

DrawCartPie(X1, Y1, X2, Y2, InRadius, OutRadius, A, N, 2, 1); { Draw the pie}

Turbo Pascal Graphix Toolbox Owner's Handbook

A[l] .Area : = -A[1] .Area; { Reset the sign}

DefineWindow(3, Trunc(XMaxGlb / 2), Trunc(YMaxGlb / 2),
Trunc(XMaxGlb * 9 / 10), Trunc(YMaxGlb * 9 / 10»;

DefineHeader(3, 'A BAR CHART'); { Set up a window}
DefineWorld(3, 0, 0, 10, 60);
SelectWorld(3);
SelectWindow(3);
SetHeaderOn;
SetBackground(O);
DrawBorder;

DrawHistogram(B, N, true, 5);

for 1 := 1 to N do
begin

{ Draw the bar chart lables }

, + A[I].Text); { Draw the text} DrawTextW((10 / N) * (I - 1), 10, 1, '
Str(A[I].Area:6:2, NumText);
DrawTextW«10 / N) * (I - 1), 16, 1, ' , + NumText);

{ Format the number }
{ Draw the number }

end;
end; {PieHistoDem}

begin { PieHisto }
InitGraphic;

PieHistoDem;

repeat until KeyPressed;

LeaveGraphic;
end. { PieHisto }

{ Init the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

to TH R PIE RIID A B RK CHA~ T

AiR ,100

JAN, : 25.99
FEB, : 17,59
MAR,: 9.69
APR, : 21.99
MAY : 35,99 MA\lS~:' 1\0""""

MAt ! ~o m l' ;:::========;;;;

Getting Started

m. m. MAR iH.
2100 lUG UCI 21.00

Figure 2-15 Pie and Bar Chart Displaying Same Data
(PIEHISTo.PAS Example)

51

Summary of Pie and Bar Chart Routines

• DrawCircleSegment draws an arc of a circle with optional text and numeric
labels.

• DrawCartPie draws a pie chart using Cartesian coordinates.

• DrawPolarPie draws a pie chart using polar coordinates.

• DrawHistogram draws a bar chart.

Plotting Curoes

Any curve that is made up of a series of points, usually connected by line segments,
is called a polygon. By default (constant MaxPlotGlb), a polygon consists of a maxi­
mum of 100 points. If your application requires more points, the default for
MaxPlotGlb can be changed, or, alternatively, multiple polygons can be used to
create the final image. Because the resolution of a screen is limited, a smooth curve
can usually be made out of a small number of line segments.

A Simple Example: Plotting a Sine Curve

The following example program (ONEPOLY.PAS on the distribution disk) plots a
smooth sine curve using the DrawPolygon procedure. This example uses 30 line
segments to produce the curve. In this case, the full screen is used; on the standard
IBM graphics screen, there are approximately 20 pixels between the endpoints of
the line segments. As can be seen from the graphics display output by this pro­
gram, a smooth curve is drawn when this number of segments is used, with little
evidence of where one line segment ends and another begins.

DrawPolygon receives its input as X and Y coordinates in the array Plot Array. This
array is two dimensional- that is, each point's sequence in the curve is speCified
by the first dimension, and its X and Y values are selected by the second dimen­
sion. For example the value in the array PlotArray[5,l] would be the X position of
the 5th point, and the value in PlotArray[5,2] would be the Y position. A symbol
can be optionally placed at each vertex point on the curve. If the value used to
specify the symbol type is negative, the symbols are not connected by lines. The
size of the symbols, and whether lines are drawn from the vertices to the X axis, are
also specified by parameters passed to the procedure. See the DrawPolygon proce­
dure description in Chapter 3 for detailed information about these options. This
example simply draws a single sine curve across the screen. The array to draw is
passed to DrawPolygon (With instructions to draw from the first to last point in the

52 Turbo Pascal Graphix Toolbox Owner's Handbook

array) with no symbols at the vertices, and the curve is drawn as a series of line
segments that connect the vertices.

The PlotArray for DrawPolygon is filled by the GenerateFunction procedure. Vary­
ing the value of n in this program varies the number of vertices in the curve. You
can use the ONE POLY. PAS example to experiment with the proper number of
points needed to generate a smooth curve on your screen. In addition, you can
draw a subset of the polygon by starting and ending the drawing on any element of
this array; the indices of the desired start and end points are passed to the routine
as parameters.

program OnePolygoni

uses
Dos, Crt, GDriver, Printer, GKernel. GWindow, GShelli

procedure PolygonDemi
var

N : i ntegeri
B. A : PlotArraYi
Ch : chari
Xl. X2 : integer;

procedure GenerateFunction(var A PlotArraYi N integer)i
{ Generate a sine polygon}
var

I : integer;
Delta : Float;

begin
-Delta := 2 * Pi / (N - 1);
for I := 1 to N do
begin

A[I, 1] := (I - 1) * Delta - Pii
A[I.2] := Sin(A[I, 1])i

end;
end; {GenerateFunction}

begin
ClearScreen;

N : = 30;
GenerateFunction(A, B, N)i { Generate the polygon}

DefineWindow(1. 0. 0, XMaxGlb, YMaxGlb);
DefineHeader(l. 'SINE CURVE AS A POLYGON '); {Set up the screen}
DefineWorld(1. -Pi. -1. Pi. 1);
SelectWorld(1) i
SelectWindow(1)i
SetBackground(O)i
SetHeaderOn;
DrawBorder;

DrawPolygon(A. 1, N. 0. 0. 0);
end; {PolygonDem}

Getting Started

{ Draw the polygon}

53

begin
InitGraphic;

PolygonDem;

repeat until KeYPressedi

LeaveGraphici
end. {OnePolygon}

{ Init the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

Figure 2-16 Plotting a Smooth Curve (ONEPOLY.PAS Example)

The DrawAxis Procedure

In many graphics applications that illustrate numeric results, it is useful to display
a ruler that indicates the values of the displayed results. The DrawAxis procedure
is used to draw rulers (and accompanying X and Yaxes) along the left and bottom
edges of the area that contains the graph. The rulers are scaled to fit the active
window. DrawAxis automatically creates a new subwindow, bounded by the rulers,
where drawing will take place. The world coordinate system (defined by the
DefineWorld procedure) now fits in this subwindow.

Optional parameters passed to DrawAxis can provide a space between the rulers
and the active window boundaries. This feature can also be used to provide space
between legends or axis labels and the rulers, and/or to display multiple axes in one
window. Other options can draw a border around the subwindow, turn the display
of numeric labels and ruler tick marks on and off, draw zero X and Y axes, and
select a line style for the axes.

54 Turbo Pascal Graphix Toolbox Owner's Handbook

The rulers have a couple of characteristics you should understand if you are to use
them effectively. First, and most important, ruler markings are spaced according to
screen pixel spacing. This means that the numbers associated with the rulers are
correct with respect to the curve, but do not necessarily mark the decimal (or other
number system) locations relevant to your application. In other words, ruler labels
do not necessarily increment by one, ten, or other standard unit. In addition, with a
higher resolution screen, (such as with the Hercules card), there will be more
markings than with the same rulers drawn using a standard IBM graphics card.

The following example (ONEAXIS.PAS on the distribution disk) shows the sim­
plest use of the DrawAxis procedure. This example defines a window that fills the
whole screen, defines a world, and draws coordinate axes for the whole screen.

program OneAxis;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure OneAxisDem;
begin

ClearScreeni { Init screen}
SetColorWhite;
SetBackground(O)i

DefineHeader(l, 'LABELED AXES'); { Define the window}
SetHeaderOn;
DefineWorld(l, -10, -10, 10, 10);
SelectWindow(l);
SelectWorld(l);

DrawBorder; { Draw it }
DrawAxis(8, -7, 0, 0, 0, 0, 0, 0, true); { Draw coordinate axes}

end;

begin
InitGraphic;
OneAxisDem;
repeat until KeyPressed;
LeaveGraphici

end.

Getting Started

{ Initialize the graphics system}
{ Do the demo }
{ Wait until a key is pressed}
{ Leave the graphics system}

55

10

Q,OOI+--_________ ~---------

050

0,)5

1.00;+--..---r-...--....---r-....-"T-"T-~~~-..--,--r-....,.......,.......,......,..-
-1.00 -i).1~ -O,S! -OJ? -'l, Ii US (J.ii Hi Hi 'l,B 10 1

Figure 2-17 Labeled Axes (ONEAXIS.PAS Example)

Drawing a Sine Curve with Axes

The following example (POLYAXIS.PAS on the distribution disk) combines the
previous two examples to display sine curve inside axes that are bounded by the
screen edges.

56

program OnePolygon;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure PolygonDem;
var N : integer;

B, A : PlotArray;
Ch : char;
Xl, X2 : integer;

procedure GenerateFunction(var A, B PlotArray; N integer);
{ Generate a sine polygon}
var I : integer;

Delta : Float;
begin

Delta := 2 * Pi / (N - 1);
for I := 1 to N do
begin

A[I, 1] := (I - 1) * Delta - Pi;
A[I, 2] := Sin(A[I, 1]);

end;
end; {GenerateFunction}

Turbo Pascal Graphix Toolbox Owner's Handbook

begin
ClearScreenj

N := 30j
GenerateFunction(A, B, N)j { Generate the polygon }

DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb);
DefineHeader(l, 'SINE CURVE AS A POLYGON ');
DefineWorld(l, -Pi, -1, Pi, 1);
SelectWorld(1) ;

{ Set up the screen }

SelectWindow(I);
SetBackground(O);
SetHeaderOn;
DrawBorder;

DrawAxis(8, -8, 0, 0, 0, 0, 0, 0, false);{ Draw the axes}

DrawPolygon(A, 1, N, 0, 0, 0);
end; {PolygonDem}

beg;n
InitGraphic;

PolygonDem;

repeat unt;l KeyPressed;

LeaveGraphic;
end. { OnePolygon }

, ,_!
',' .• :'1

1

{ Draw the polygon }

{ Init the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

:IIIECURUEH;HPOl\',OII

(",>::,..,' ----------4I-------------l.
1

Figure 2-18 A Smooth Curve and Coordinate Axes (POLYAXIS.PAS Example)

Getting Started 57

Polygon Modification Routines

There are several procedures that adjust the values in the Plot Array to translate
(move), or rotate a polygon. These routines could be used for animation applica­
tions, to allow a single polygon to be used as the model for all the polygons that are
to be subsequently moved about on the screen.

The example program (MOVE POLY. PAS ~n the distribution disk) uses the
RotatePolygon and TranslatePolygon procedures to draw an arrowhead on the
screen, enable the cursor keys to rotate it, and move it forward and backward in the
direction pointed to by the arrow. To end program execution, press the space bar.

The program initializes the polygon as an arrowhead in the center of the world,
pointing towards the top of the screen. RotatePolygon rotates the polygon around
its present "center of mass." This means that the polygon rotates around itself,
rather than the origin (point [0,0]) of the coordinate system. To rotate the polygon
about the origin (or any other point), use the RotatePolygonAbout procedure.

The TranslatePolygon procedure is used to move the arrowhead in the direction it
is pointing. When the polygon is rotated, new increment values are used to trans­
late the polygon in the new direction.

To move a polygon, you must first erase the old image before redrawing the new
one. To do this, set the draWing color to black with the SetColorBlack procedure
before calling DrawPolygon with the information from the last polygon.

There are no limits on where the polygon can be moved. Since the polygon is
positioned using real coordinates, it would take a long time for this program to
move the object to the end of the real number system. However, it does not take
long to move the arrowhead off the screen. To make the program display the poly­
gon in the world correctly, and to prevent the arrow from moving off the screen and
destroying part of program memory, this program activates clipping by assigning a
negative value to the last point to be displayed when calling DrawPolygon. When
the arrowhead goes off the screen, DrawPolygon only draws the part of the line that
fits the defined world.

58

program MovePolygon;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

var
ArrowAngle : integer;
Ch : char;
Arrow: PlotArray;
CurrX, CurrY, IncrX, IncrY, Size, Speed: Float;
Arrowlncr : array[O •• 7, 1 •• 2] of Float;

Turbo Pascal Graphix Toolbox Owner's Handbook

procedure MakeArrow;
begin

Arrow[l, 1] := 0; { PlotArray init for the arrowhead}
Arrow[l, 2] : = 0;
Arrow[2, 1] : = Size;
Arrow[2, 2] := -Size;
Arrow[3, 1] . - 0;
Arrow[3, 2] : = Size;
Arrow[4, 1] := -Size;
Arrow[4, 2] : = -Size;
Arrow[5, 1] := 0;
Arrow[5, 2] := 0;

end; { MakeArrow }

procedure MakeMoveTable;
begin

ArrowIncr[O, 1] := 0; { Component velocities for radial moves}
ArrowIncr[O, 2] : = 1;
ArrowIncr[l, 1] : = -1;
ArrowIncr[l, 2] := 1;
ArrowIncr[2, 1] := -1;
ArrowIncr[2, 2] := 0;
ArrowIncr[3, 1] := -1;
ArrowIncr[3, 2] := -1;
ArrowIncr[4, 1] := 0;
ArrowIncr[4, 2] := -1;
ArrowIncr[5, 1] := 1;
ArrowIncr[5, 2] := -1;
ArrowIncr[6, 1] := 1;
ArrowIncr[6, 2] := 0;
ArrowIncr[7, 1] := 1;
ArrowIncr[7, 2] := 1;

end; { MakeMoveTable }

procedure MoveForward; { Routine to move polygon forward}
begin

SetColorBlack; { Draw over old polygon to erase it }
DrawPolygon(Arrow, 1, -5, 0, 0, 0);
CurrX := CurrX + IncrX; { Move to new position}
CurrY := CurrY + IncrY;
TranslatePolygon(Arrow, 5, IncrX, IncrY);
SetColorWhite; { Draw polygon in new position}
DrawPolygon(Arrow, 1, -5, 0, 0, 0);

end; {MoveForward}

procedure MoveBack; { Routine to move polygon back}
begin

SetColorBlack; { Same as above}
DrawPol ygon (Arrow, 1, -5, 0, 0, 0);
CurrX := CurrX - IncrX;
CurrY := CurrY - IncrY;
TranslatePolygon(Arrow, 5, -IncrX, -IncrY);
SetColorWhite; ,
DrawPolygon(Arrow, 1, -5, 0, 0, 0);

end; {MoveBack}

Getting Started 59

procedure TurnLeft; { Rotate polygon counterclockwise}
begin

SetColorBlack; { Erase old polygon}
DrawPolygon(Arrow, 1, -5, 0, 0, 0);
RotatePolygon(Arrow, 5, 45); { Rotate it 45 degrees}
ArrowAngle := ArrowAngle + 1;
;f ArrowAngle > 7 then

ArrowAngle := 0;
IncrX := Speed * ArrowIncr[ArrowAngle, 1];. {Get new velocity}
Incry := Speed * ArrowIncr[ArrowAngle, 2];
SetColorWhite; { Draw rotated polygon}
DrawPolygon(Arrow, 1, -5, 0, 0, 0);

end; {Turn Left}

procedure TurnRight; { Rotate polygon clockwise}
beg;n

SetColorBlack; { Same as above}
DrawPolygon(Arrow, 1, -5, 0, 0, 0);
RotatePolygon(Arrow, 5, -45);
ArrowAngle := ArrowAngle - 1;
;f ArrowAngle < 0 then

ArrowAngle := 7;
IncrX := Speed * ArrowIncr[ArrowAngle, 1];
Incry := Speed * ArrowIncr[ArrowAngle, 2];
SetColorWhite;
DrawPolygon(Arrow, 1, -5, 0, 0, 0);

'end; {TurnRight}

60

beg;n
InitGraphi c; { Init the graphics system}

DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb);

DefineWorld(l, -1000, -1000, 1000, 1000); { Give it a world coordinate system}

Se 1 ectWorl d (1) ;
SelectWindow(1) ;
SetBackground(O);

Size := 100;
Speed := 30;
CurrX := 0;
CurrY := 0;
ArrowAngl e : = 0;
IncrX := 0;
IncrY := Speed;

MakeArrow;
MakeMoveTable;
DrawPolygon(Arrow, 1, 5, 0, 0, 0);

{ Select its world}
{ Select window}
{ Give it a black background}

{ Make the arrowhead }
{ Make the move table}
{ Draw it pointing up }

Turbo Pascal Graphix Toolbox Owner's Handbook

repeat
Ch: = ReadKey; { Read the keystroke }

;f (Ch = #0) and KeyPressed then {Test for an extended scan code }
Ch: = ReadKey; { on either an IBM or Zenith ZIOO }

case Ch of
'A' , 'H' MoveForward;
'0' , , K' TurnLeft;
'C' , 'M' TurnRight;
'B', , P' MoveBack;

end;
unt;l Ch =

, '. ,

LeaveGraphic;
end. { MovePolygon }

Finding a World to Fit a Polygon

{ Up arrow }
{ Left arrow }
{ Right arrow}
{ Down arrow }

{ Space character exits program}

{ Leave the graphics system}

In many applications that involve curves, the final form of the graph that is to be
displayed is not known until the program is run. In these cases, the FilulWorld
procedure can be used to find the world coordinate system that will exactly fit the
curve, or that is a specified percentage larger than the curve. FilulWorld ensures
that the area in which your curve is displayed is of the proper dimensions for your
application. This procedure, in conjunction with the DrawAt:is and DrawPolygol1
procedures, can produce a tailormade graphic presentation.

The FilulWorld procedure always sets up a world with its lowest coordinates at the
upper left corner of the window. The following code can be used after a call to
FilulWorld to turn the world coordinate system upside down:

w;th World[l] do {integer I is the world being changed}
begin
Temp:=Yl; {Temp is a real varia~le}
Y1: =Y2;
Y2:=Temp;

end;

This must be done before selecting the world! (You can also flip the coordinate
system horizontally by swapping the X coordinates Xl and X2.)

Note: World coordinates in earlier versions of the Turbo Pascal Graphix Toolbox
defined the Y axis using the Cartesian coordinate system. If you have a program
written for an earlier version, you must switch the two Y parameters in each
instance of DefineWorld, so that, for example,

DefineWorld(WorldNumber,Xl,Yl,X2,Y2);

becomes

DefineWorld(WorldNumber,Xl,Y2,X2,Yl);

Getting Started 61

The following program (FINDWRLD.PAS on the distribution disk) demonstrates
FindWorld and some of the more advanced features of the DrawPolygon and
DrawAxis routines. This program draws five random points on the screen with star
symbols at each of the vertices, and axis rulers to show the scale of the numbers.

62

program FindWorld;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure FindWorldDem;
var

X : Float;
Ox, Dy, I, N, Lines, Scale integer;
Xl, Y1, X2, Y2 : integer;
B, A : PlotArray;

begin
DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb); { Define windows as whole screen}
DefineWindow(2, 0, 0, XMaxGlb, YMaxGlb);
DefineWorld(l, 0, 0, 1000, 1000); { Give a world to the screen}

DefineHeader(2, 'A FOUND WORLD');
SelectWindow(2); I

SetHeaderOn;

N : = 10;
for I := 1 to N do
begin

A[I, 1] := I - 1;
A[I, 2] := random - 0.5;

end;

FindWorld(2, A, N, 1, 1.08);

SelectWindow(2);
DrawBorder;

Ox := -8;
Dy := 7;
Xl : = 3;
Yl := 5;
X2 := 25;
Y2 := 10;
Li nes : = 0;
Scale := 0;

{ Window where curve will go }

{ Fill polygon array}

{ Make world 2 the right size}

{ Select it and draw border}

{ Draw axis inset from window edge}

SetLineStyle(O); { Draw curve as solid line}
DrawAxis(Dx, Dy, Xl, Y1, X2, Y2, Lines, Scale, false);
DrawPolygon(A, 1, N, 7, 2, 0);

SelectWorld(l) ;
SelectWindow(l) ;

{ Select outside window}

DrawTextW(730, 450, 1, ~['7@2 The data'); {Print legend}
DrawTextW(730, 550, 1, '-- The curve');

end; {FindWorldDem}

Turbo Pascal Graphix Toolbox Owner's Handbook

begin
InitGraphic;

FindWorldDem;

repeat until KeyPressed;

LeaveGraphic;
end. { FindWorld }

{ Initialize the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

The special features of the DrawAxis procedure are used to make a border around
the drawing, and inset it from the edges of the active window. The inset feature can
be used to make room for labels and legends, and to allow multiple drawings in one
window.

1.50 UO UO 6.00 7.50

Figure 2-19 Finding a Worldfor a Polygon (FINDWRLD.PAS Example)

Solving Curve-Fitting Problems

This section introduces you to the Spline and Bezier procedures. Both these proce­
dures use polynomials to create curves. However, they are used for different rea­
sons: the Spline procedure is used for fitting smooth curves to a given configuration
of points, while Bezier is used to find the points that will create a desired curve.
The Spline procedure is appropriate for many curve-fitting applications (for exam­
ple, creating a smooth curve that intersects a set of experimental data), while
Bezier is the procedure to use for line modeling and generating curves of arbitrary
shape.

Getting Started 63

Fitting a Curve with the Spline Procedure

The curve produced by the FINDWRLD.PAS example is quite jagged; this is
because the data points are connected by straight lines. The Spline procedure
allows you to take the same set of points and find a smooth curve to fit that configu­
ration of points. The general method used to find the function that will produce
such a curve is called interpolation; using interpolation, you can generate the
"missing" points that will smooth the curve.

The simplest way to interpolate a given set of points with a curve is the follow­
ing: given n points [Xl,Yl],[X2,Y2],[X3,Y3] ... [Xn,Yn], we can interpolate the points
with the n'th degree polynomial:

(x-x2) ... (x-xJ (x-x)(x-x) ... (x-xJ
p (x) = Yl + Y2-----:....-~---.....:.:.....

n (Xl - x2) ... (Xl - XJ (X2 - Xl)(X2 - X3) ... (X2 - XJ

(X -X) ... (X -X
n
_)

+ ... + yn --~---...::.......::--
(X

n
- X) ... (X

n
- x

n
_)

This polynomial is known as the Lagrange Interpolating Polynomial, and it gener­
ates an exact curve that will pass through all the points. However, there is a prob­
lem inherent in this method of interpolation: it requires a formula with the same
number of elements as the number of points to be intersected. Interpolating 90
points, for example, will yield a polynomial of degree 90, which is quite unwieldy.

A second, simpler approach to the problem is to make a separate curve in each
interval [xj_I,Xj], so that the curves meet with no jaggedness or irregularity. In other
words, the function consists of pieces of polynomials that are patched together. The
method used is known as "Cubic Splines". Using this method, 3rd degree polyno­
mials are used in each interval and patched together to form a "smooth" curve.

The Turbo Pascal Graphix Spline procedure uses this technique to interpolate the
points that make up the curve. To produce the curve, the initial set of points is
passed to the Spline procedure in the Plot Array, along with information about
where to start and stop the interpolation, and a second PlotArray to receive the
points of the smooth curve.

The following example (INTERP.PAS on the distribution disk) is essentially identi­
cal to the FINDWRLD.PAS example, except that an additional interpolated curve
is plotted. Since the points are plotted at random, running the program several
times will give you a good feel for how splines behave.

64 Turbo Pascal Graphix Toolbox Owner's Handbook

program Interpolate:

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell:

procedure SplineDem:
var

X, Temp: Float:
Dx, Dy, I, N, M, Lines, Scale integer:
Xl, Y1, X2, Y2 : integer:
B, A : PlotArray:

beg;n
DefineWindow(l, 0, 0, XMaxGlb, YMaxGlb}: { Define both windows as whole screen}
DefineWindow(2, 0, 0, XMaxGlb, YMaxGlb}:
DefineWorld(l, 0, 0, 1000, 1000): {Give a world to the screen}

DefineHeader(2, 'A spline interpolation'): { Window where curves will go }
SetHeaderOn:

N : = 12:
for I := 1 to N do
beg;n

A[I, 1] := I - 1:
A[I, 2] := random - 0.5;

end;

{ Fill polygon array}

M := 50: { Generate spline with 50 points}
Spl ine(A, N, A[2, 1], A[N - 1, 1], B, M):
FindWorld(2, B, M, 1, 1.08): { Make world 2 the right size}

SelectWindow(2): { Select i~ and draw border}
DrawBorder:

Dx := -8: { Draw axis inset from window edge}
Dy := 7:
Xl . - 3:
Y1 .- 5:
X2 .- 25:
Y2 .- 10:
Li nes : = 0:
Scale := 0:

SetLineStyle(l): { Draw initial curve as dotted line}
DrawAxis(Dx, Dy, Xl, Y1, X2, Y2, Lines, Scale, false):
DrawPolygon(A, 2, N - 1, 7, 2, 0): {Don't draw the endpoints}

SetLineStyle(O): { Draw interpolated curve as solid line}
DrawAxis(O, 0, Xl, Y1, X2, Y2, 0, 0, false):
DrawPolygon(B, 1, -M, 0, 0, 0): { Spline is not good on endpoints}

SelectWorld(l): { Select outside window}
SelectWindow(l):

DrawTextW(730, 400, 1, -['7@2 The data'): { Print legend}
DrawTextW(730, 500, 1,' The initial polygon'):
DrawTextW(730, 600, 1, ' ___ The interpolated values'}:

end; {SplineDem}

Getting Started 65

begin
InitGraphic;

SplineDem;

repeat until KeyPressed;

LeaveGraphic;
end. { Interpolate}

{ Init the graphics system}

{ Do the demo }

{ Wait until a key is pressed}

{ Leave the graphics system}

* The d,ll

The initi,l polyJon

•• The intel'pol,tedv,lue!

us UO US 0.70 O.H

Figure 2-20 Finding a Srrwoth Curve with Cubic Splines
(INTERP.PAS Example)

Modeling a Curve with the Bezier Procedure

The Bezier procedure uses polynomials to solve the opposite problem that the
Spline procedure handles: finding a set of points that will generate a predeter­
mined curve. Bezier polynomials are defined by a given set of guiding (control)
points. With the Bezier procedure, you continually redefine these control points so
that they "pull on" the curve until it is of the desired shape. Once the guiding
points are defined, if you have some talent for mathematics, you can easily find the
equations for the corresponding Bezier polynomials that will draw the curve - that
is, the algebraic formula for the curve drawn by this procedure. In addition, you
can then use these points of the solution to plot the curves as polygons in other
windows, using different coordinate systems, or on other screens on different com­
puter systems.

66 Turbo Pascal Graphix Toolbox Owner's Handbook

The Bezier polynomial takes the following form:

m

p,,(t) = L Gi

m l (1- tt- i
Xi

i=O

m

Py(t) = L Gi

m ti (l-tt- i Yi

i=O

where Ci is the number of combinations of m objects taken i at a time.
m

The following example (BEZIDEMO.PAS on the distribution disk) shows you how
to use a set of control points to generate a desired curve. This technique is
extremely useful for line modeling and some architectural applications. To illus­
trate the flexibility of the Bezier procedure, run this example program and try to
make it loop twice.

program BeziOemo;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure ClearToEol;
{ Procedure to clear to end of line}
var

I : integer;
begin

for I := 1 to 80 do
Write (I ');

end; { ClearToEol }

procedure ReadInput(var S : WrkString);
const

Cr = #13;
Bs = #8;

var
Count: integer;
Ch : char;

begin
Count := 0;
S := ";
repeat

Ch := ReadKey;
case Ch of

Bs : begin

Getting Started

if Count > 0 then
begin

Write(Ch);
ClrEol;
Delete(S, Length(S), 1);
Oec(Count);

end;
end;

67

68

else
if Ch <> Cr then
begin

Write(Ch);
S := S + Ch:
Count := Count + 1;

end;
end;

until Ch = Cr;
end; { ReadInput }

procedure BezierDem;

var
Result, I, MaxControlPoints, MaxIntPoints integer:
DummyX, DummyY : Float;
A, B : PlotArray;
Break: boolean;
DummyS, Temp2, Temp: WrkString;

begin
MaxControlPoints := 7;
MaxIntPoints := 15;

{ Initialize everything}

AU, 1] := 1: A[2, 1] .- 1.5: A[3, 1] := 2: A[4, 1] := 2.5;
A[5, 1] := 3; A[6, 1] := 4; A[7, 1] := 5; A[I, 2] := 2;
A[2, 2] . - 1.5; A[3, 2] . - 1; A[4, 2] := 2.5; A[5, 2] := 4;
A[6, 2] := 4.5: A[7, 2] := 5:

ClearScreen; { Set up screen}
SetColorWhite:
DefineWorld(I, 0, 0, 6.33, 7.0): { Set world so rulers are good}
SelectWorld(I):
DefineWindow(I, 0, 0, XMaxGlb, 17 * YMaxGlb div 20);
SelectWindow(I);
SetBackground(O);
DrawBorder;
DrawAxis(7, -7, 0, 0, 0, 0, 0, 0, false);

Break := false; { Init exit flag}

repeat
SetLinestyle(I); { Draw polygon between pOints}
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false):
DrawPolygon(A, I, MaxControlPoints, 4, 2, 0);

Bezier(A, MaxControlPoints, B, MaxIntPoints); {Do bezier operation}

SetLinestyle(O): { Plot it }
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false):
DrawPolygon(B, I, MaxIntPoints, 0, 0, 0);

repeat
GotoXY(1, 24):
ClearToEol;
GotoXY(I, 25):
ClearToEol;
GotoXY (1, 23):
ClearToEol:

{ Clear out old text}

Turbo Pascal Graphix Toolbox Owner's Handbook

GotoXY(l, 23)j { Get point to change}
Write('Enter the number of the point to change (0 to quit) ')j
GotoXY(55, 23)j
Readlnput(Temp)j
Val (Temp, I, Result)j

unt;l I ;n [O •. MaxControlPoints]j

;f I > ° then
beg;n

repeat
GotoXY(l, 24)j { Get new values for x and y }
Write('Old position: [', A[I,1]:4:2, ',', A[I,2]:4:2, ']')j
GotoXY(40, 24)j
Write(' New position x: ')j
GotoXY(60, 24)j
Readlnput(DummyS)j
wh;le DummyS[l] = ' , do

Del ete (DummyS , 1, l)j
Temp := DummySj
GotoXY(40, 25)j
Write(' New position y: ')j
GotoXY(60, 25)j
Readlnput(DummyS)j
whHe DummyS [1] = ' , do

Delete(DummyS, 1, l)j
Temp2 := DummySj
Val (Temp, DummyX, Result)j
Val (Temp2, DummyY, Result)j

unt;l «DummyX >= XIWldGlb) and (DummyX <= X2WldGlb» and
«DummyY >= YIWldGlb) and (DummyY <= Y2WldGlb»j

SetLinestyle(l)j { Erase old curve}
SetColorBlackj
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false)j
DrawPolygon(A, 1, MaxControlPoints, 4, 2, O)j
SetLinestyle(O)j
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false)j
DrawPolygon(B, 1, MaxlntPoints, 0, 0, O)~
A[I, 1] : = DummyXj
A[I, 2] := DummYYj
SetColorWhitej

end
else

Break := truej { Done}
untH Breakj

endj { BezierDem }

beg;n
InitGraphi Cj

BezierDemj

LeaveGraphicj
end. { BeziDemo }

Getting Started

{ Initialize the graphics system}

{ Do the demo }

{ Leave the graphics system}

69

o .OU+-...,.--r-.....,......,.--,~~~...,--,-...,...~---r-,....-.,..-..,.......,.--r-.....,.--i
0.00 1.00 2.00 3.00 uo 5.00 '-00

Figure 2-21 Finding Points to Fit a Snwoth Curve of Predetermined Shape
(BEZIDEMo.PAS Example)

Summary of Polygon/Curve Routines

• Bezier computes a smooth curve of predetermined shape from a set of control
points.

• DrawAxis draws X and Y axes with ruler markings.

• DrawPolygon draws a polygon.

• FindWorld finds a world coordinate system to fit a given polygon.

• RotatePolygon rotates a polygon about its center of gravity.

• RotatePolygonAbout rotates a polygon about a given point.

• Spline computes a smooth curve from a set of control points.

• TranslatePolygon moves a polygon vertically and horizontally.

Screens

There are two types of screens available for drawing with the Turbo Pascal Graphix
Toolbox: the displayed screen and a RAM (virtual) screen in memory. Turbo Pascal
Graphix routines allow you to save and load either of these screens to and from
disk, and restore them when you need them. You can also send images from either
screen to your printer, and swap the contents of one screen with the contents of the
other.

70 Turbo Pascal Graphix Toolbox Owner's Handbook

Saving and Loading Screens

Use the Save Screen procedure to store the active screen as a file on disk. The single
string parameter passed to the routine specifies the file name in which to save the
screen contents. If a file with the same name already exists, it is overwritten. When
you want to display the screen again, LoadScreen retrieves the screen from the file
specified by its file name. .

Both Save Screen and LoadScreen use a format that is screen-type-specific; this
means that a screen saved or loaded in a system with one graphics card may not
keep its integrity if you attempt to retrieve or save it later on a system with another
graphics card. This is also true with the LoadWindowStack and StoreWindowStack
procedures; window stacks are not necessarily compatible between different ver­
sions of the Turbo Pascal Graphix Toolbox. However, there is no incompatibility
between individual windows; you can safely store or load a window using the
LoadWindow and Store Window procedures from one graphics screen type to
another with no problems.

The following program example (SCREENIO.PAS on the distribution disk) dem­
onstrates saving and loading a screen; included in this example is a routine that
draws a Sierpinski curve. This screen image is stored to disk as file DEMO,
the screen is cleared, and the image is read back to the screen. SaveWindow/
LoadWindow and SaveWindowStack/LoadWindowStack are contained in the tool­
box unit GWindow. If you use GWindow, you can test this example by substituting
their names for the Save Screen and LoadScreen procedures, and making sure the
data you want to save and load is available.

program ScreenIO;

uses
Dos, Crt, GDriver, Printer, GKernel;

procedure Sierpinski;
const

N = 5;
var

I, H, X, Y, XO, YO integer;
Sec: boolean;

procedure Plot;
beg;n

DrawLine(X, Y, XO, YO);
XO := X;
YO := Y;

end;

procedure B(I:integer); forward;

procedure C(I:integer): forward:

procedure D(I:integer); forward;

Getting Started

{ Draw a line}

{ Forward references for recursion}

71

72

procedure A(I : integer);
begin

if I > 0 then
begin

A(I - 1);
X := X + H;
y := Y - H;
Plot;
S(I - 1);
X := X + 2 * H;
Plot;
D(I - 1);
X : = X + H;
Y := Y + H;
Plot;
A(I - 1);

end;
end; {A}

procedure B;
begin

if I > 0 then
begin

B(I - 1);
X := X - H;
Y : = Y - H;
Plot;
C(I - 1);
Y := Y - 2 * H;
Plot;
A(I - 1);
X := X + H;
Y := Y - H;
Plot;
Bel - 1);

end;
end; {S}

procedure C;
begin

if I > 0 then
begin

CeI - 1);
X := X - H;
Y := Y + H;
Plot;
D(I - 1);
X := X - 2 * H;
Plot;
S(I - 1);
X := X - H;
Y :=Y - H;
Plot;
C(I - 1);

end;
end; {C}

{ First recursive procedure}

{ Second recursive procedure}

{ Third recursive procedure}

Turbo Pascal Graphix Toolbox Owner's Handbook

procedure D; { Last recursive procedure}
begin

if 1 > 0 then
begin

D(I - 1};
X := X + H;
Y := Y + H;
Plot;
A(I - 1};
Y := Y + 2 * H;
Plot;
C(l - 1};
X := X - H;
Y : = Y + H;
Plot;
D(I - 1};

end;
end; {D}

procedure Dolt; { Sierpinski main procedure}
begin

1 := 3;
H := 16;
XO := 30;
YO := 240;
repeat

1 := 1 + 1;
XO := XO - H
H := H div 2
YO := YO t H
X := XO;
Y := YO;
A(I - 1};
X := X + H;
Y := Y - H;
Plot;
B(I - 1};
X := X - H;
Y := Y - H;
Plot;
C(I - 1};
X := X - H;
Y := Y + H;
Plot;
D{I - 1};
X := X + H;
Y := Y + H;
Plot;

until 1 = N;
end; {Dolt}

begin
SetHeaderOn;
DefineWorld(1, -3, -3, 258, 258};
SelectWorld{1} ;
SelectWindow{1} ;
DrawBorder;
Dolt;

end; {Sierpinski}

Getting Started 73

begin
InitGraphic; { Init the graphics system}

DefineHeader(l, 'DEMONSTRATE SCREEN SAVE AND READ TO/FROM DISK');

SetHeaderOn;

Sierpinski;

SaveScreen('DEMO.PIC');

C1earScreen;

Del ay(1000);

LoadScreen('DEMO.PIC');

repeat until KeyPressed;

C1 earScreen;

LeaveGraphic;
end. { ScreenIO }

Printing Screens

{ Give it a header}

{ Do the curve }

{ Save the screen to disk}

{ Clear the screen}

{ Delay so that hard disk or RAM disk
users can see the action}

{ Retrieve it from disk}

{ Wait until a key is pressed}

{ Leave the graphics system}

There are two ways to print screen images. You can either use the Turbo Pascal
Graphix HardCopy procedure, or the existing screen printing facility of your com­
puter.

The HardCopy procedure prints screen images on any printer compatible with the
Epson MX, RX, or FX series. Depending on the printer used, several width for­
mats are available. These range from 640 points to 1920 points across the page.
Since the standard IBM color graphics screen is 640 pixels wide, one screen will
exactly fit across the page if the printer is able to print in the lowest resolution
mode.

Some printers do not support all the available modes. For instance, the standard
IBM, Epson MX-BO-compatible printer will only print in the 960-points-per-line
mode (mode 1). If you select any other mode for this printer, it will never enter
graphics mode and attempt to print the graphics screen in text characters.

Because of the different resolutions that are possible with HardCopy, the horizon­
tal-to-vertical proportions (aspect ratio) of some images may be different on the
screen than when the images are printed. Experiment with your printer and the
resolution modes available to it to find what works best for you.

There is another way to print screen images using an IBM-compatible printer.
First, install the graphics print routine that comes with the computer. Usually, this

74 Turbo Pascal Graphix Toolbox Owner's Handbook

is done by running the system program GRAPHICS.COM that is on the MS-DOS
system disk. Then, when you want to print a screen image, simply press the PrtSc
key; on some keyboards, you must also press the Shift key.

There are a couple of advantages to using this program for printing screens. One is
that it works on all Epson-like printers, and another is that it prints the image
down the page rather than across it. The screen image fills the whole sheet, and the
aspect ratio of the image is very close to that of the screen. Since the image is so
large, fine details of the drawing look sharp and clear.

The following example program (SCRNPRNT.PAS on the distribution disk) prints
out the screen image used in the SCREENIO.PAS example.

program ScreenIO;

uses
Dos, Crt, GDriver, Printer, GKernel;

procedure Sierpinski;
const

N = 5;
var

I, H, X, Y, XO, YO : integer;
Sec : boolean;

procedure Plot;
begin

DrawLine(X, Y, XO, YO);
XO := Xi
YO := Y:

end:

procedure B(I:integer); forward;

procedure C(I:integer); forward;

procedure D(I:integer): forward;

procedure A(I : integer);
begin

;f I > 0 then
begin

A(I - 1);
X := X + H:
Y := Y - H:
Plot:
B(I - I):
X := X + 2 * H:
Plot:
D(I - I):
X : = X + H;
Y := Y + H;
Plot:
A(I - I):

end:
end; {A}

Getting Started

{ Draw a line}

{ Forward references for recursion}

{ First recursive procedure}

75

76

procedure B;
begin

if I > 0 then
begin

B(I - 1);
X := X - H;
y := Y - H;
Plot;
C(I - 1);
y := Y - 2 * H;
Plot;
A(I - 1);
X := X + H;
Y : = Y - H;
Plot;
B(I - 1);

end;
end; {B}

procedure C;
begin

if I > 0 then
begin

C(I - 1);
X := X - H:
Y := Y + H:
Plot;
D(I - I):
X := X - 2 * H:
Plot;
B(I - 1);
X := X - H:
Y : = Y - H: '
Plot;
C(I - 1);

end;
end; {C}

procedure D;
begin

if I > 0 then
begin

D(I - 1);
X := X + H;
Y := Y + H;
Plot;
A(I - 1);
Y := Y + 2 * H;
Plot;
C(I - 1);
X := X - H;
Y := Y + H;
Plot;
D(I - 1);

end;
end; {D}

{ Second recursive procedure}

{ Third recursive procedure}

{ Last recursive procedure}

Turbo Pascal Graphix Toolbox Owner's Handbook

procedure Dolt; { Sierpinski main procedure}
begin

I : = 3;
H : = 16;
XO := 30;
YO := 240;
repeat

I := I + 1;
XO := XO - H
H := H div 2
YO := YO + H
X := XO;
Y := YO;
A(I - 1);
X := X + H;
Y := Y - H;
Plot;
S(I - 1);
X := X - H;
Y := Y - H;
Plot;
C(I - 1);
X := X - H;
Y := Y + H;
Plot;
D(I - 1);
X := X + H;
Y := Y + H;
Plot;

unt;1 I = N;
end; {Dolt}

begin
SetHeaderOn;
DefineWorld(l, -3, -3, 258, 258);
SelectWorld(I);
SelectWindow(I);
DrawSorder;
Dolt;

end; {Sierpinski}

begin
InitGraphic; { Init the graphics system}

DefineHeader(l, 'DEMONSTRATE SCREEN PRINTING'); { Give it a header}

SetHeaderOn;

Sierpinski;

HardCopy(false, 1);

repeat until KeYPressed;

LeaveGraphic;
end. { ScreenIO }

Getting Started

{ Do the curve }

{ Print it }

{ Wait until a key is pressed}

{ Leave the graphics system}

77

78 Turbo Pascal Graphix Toolbox Owner's Handbook

c H A p T E R 3
Technical Reference

This chapter provides detailed information about all the routines contained in the
Turbo Pascal Graphix Toolbox. The first section gives an overview of the modular
units that you'll need to link into your graphics application programs, along with a
sample program. The following section defines and describes the constants and
types used in the Turbo Pascal Graphix procedures, the third section provides a
quick reference guide to Turbo Pascal Graphix routines, and the final section
describes all the functions and procedures contained in the package.

Turbo Pascal Graphix Files

Turbo Pascal Graphix Toolbox is supplied on the distribution disk as an assortment
of Turbo Pascal units that you will need to "use" in your application program.
These files are organized as modules to allow you to choose only the units you need
for compilation into your final program.

The Turbo Pascal Graphix distribution disk will contain some files that are specific
to your graphics card or computer system. Such files are named by a filename with
a .DVR extension. For example, GRAFCGA.DVR is the IBM Color Graphics
Adapter device driver. You must copy the GRAFXXX.DVR file written for your
hardware (supplied on the distribution disk) onto the GDRIVER.PAS file before
you attempt to run a graphix toolbox program. This is done by invoking the Turbo

79

Pascal Graphix batch program (see "Getting Started" in Chapter 2.) Failure to do
so may cause malfunctioning of Turbo Pascal Graphix programs.

Basic System Units

The following files must be used in all Turbo Pascal Graphix applications, since
they contain the global variable declarations, drawing primitives, and system rou­
tines that are necessary for drawing.

GDRIVERPAS Variables and routines for basic drawing, and for loading and
storing screens

GKERNEL.PAS Primitives for control and initialization of the Turbo Pascal
Graphix Toolbox

Supplemental System Units

These files are necessary for applications that use windows, text, or error messages.
The only unit that you have to use yourself is the GWINDOW.PAS unit; the other
files listed here will be used by your application automatically if they 'are needed.

GWINDOW.PAS Routines for moving, loading and storing windows

8X8.FON High-resolution font for IBM

14X9.FON High-resolution font for Hercules, AT&T, IBM EGA, IBM
3270

4X6.FON Turbo Pascal Graphix font

ERROR.MSG Error message text

High-Level Command Unit

The high-level routines are necessary for more complex graphics applications. All
of the high-level routines utilize the procedures contained in the basic system
units; you must therefore use those units in order to utilize the high-level proce­
dures.

80 Turbo Pascal Graphix Toolbox Owner's Handbook

The high-level routines are contained in the unit GSHELL.PAS which includes
the following:

• procedures for finding a world coordinate system to fit a polygon

• procedures that draw coordinate axes and labels

• procedures for drawing polygons

• procedures that rotate, scale, and translate polygons

• procedures that do spline smoothing on polygons

• procedures that do Bezier interpolations on polygons

• procedures that fill (hatch) bars in bar charts.

• procedures that draw bar charts

• procedures that draw and label circle segments

• procedures that draw and label pie charts

A Sample Turbo Pascal Graphix Toolbox Program

This sample program demonstrates the essential elements of a Turbo Pascal
Graphix Toolbox program.

program simple;

uses
Dos, Crt, GDriver, Printer, GKernel;

I ni tGraphi c:
DrawBorder;

{initialize the graphics system}
{draw a border around the drawing}
{area of the active window}
{(the dimensions of the active window}
{default to 640x200 points)}

DrawLine(lO, 10,600, 180);
DrawSquare(10,10,600,180,false);
DrawLine(-100,-20,750,320);

{draw a line}
{draw a square}
{draw a line to demonstrate}
{clipping}

repeat unt;l KeyPressed;
LeaveGraphic;

end.

Technical Reference

{hold screen until key is pressed}
{leave the graphics system}

81

Constant and Type Definitions

This section defines and describes, in alphabetical order, the constants and types
used in Turbo Pascal Graphix Toolbox routines. Each constant or type is first
defined, then described in detail as it applies to various procedures and functions.
The Turbo Pascal Graphix file that contains the constant or type is given in
brackets next to the constant or type name.

To customize your application, you can change some of the constants and types by
altering the GDRIVER.PAS file; however, this should be done with great care, and
only after you have made certain that you thoroughly understand the Turbo Pascal
Graphix Toolbox program. Otherwise, a system crash or other unpredictable disas­
ters could occur.

AspectFactor [GDRIVERPAS]

Declaration const AspectFactor = (depends on system);

Purpose AspectFactor is used to adjustthe aspect ratio (horizontal-to-verti­
cal ratio) of a circle or ellipse so that a true circle is drawn on a
particular physical screen using a particular graphics board. With­
out this adjustment, a circle may be drawn in a distorted way-too
tall or too wide. This is because the horizontal-to-vertical ratio
varies on different monitors.

Remarks

Remarks

82

The graphics system multiplies the aspect ratio for a given circle or
ellipse by the value of AspectFactor (which varies with the particu­
lar hardware screen installed) to create the desired shape. Multiply­
ing AspectFactor by a constant creates ellipses with the same width,
but with different heights. AspectFactor X 1 creates a true circle on
any screen, while AspectFactor X 2 gives an ellipse that is twice as
tall as it was, and AspectFactor + 2 gives one that is half as tall as it
was. Varying the aspect ratio varies the height of the drawn figure
while keeping the width constant. Thus, if three circles are drawn
with aspect ratios of AspectFactor + 2, AspectFactor, and Aspect­
Factor X 2, respectively, the three figures will be tangent to each
other at their leftmost and rightmost points, but not at their top and
bottom points.

This constant should not be altered, since it is specific to the
graphics hardware in your system.

Turbo Pascal Graphix Toolbox Owner's Handbook

BackgroundArray [GDRlVERPASj

Declaration type BackgroundArray = array [0 .. 7] of byte;

Purpose BackgroundArray is used by the SetBackground8 procedure to pass
the specified 8x8 bit pattern for filling a window background.

CharFile [GDRlVERPASj

Declaration const CharFile: string[StringSizeGlb] = '4x6.font';

CharFile contains the file name of the 4x6 pixel font file. Purpose

Remarks You can change this constant by altering either the TYPEDEF.SYS
file or the main program before you call the InitGraphic procedure.

HardwareGrafBase [GDRlVERPASj

Declaration const HardwareGrafBase:word = (depends on system);

Purpose HardwareGrafBase defines the hardware segment address of
graphics memory for a particular machine or graphics board.

HeaderSizeGlb [GDRlVERPASj

Declaration const HeaderSi zeGl b = 10;

Purpose HeaderSizeGlb defines the vertical dimension, in pixels, of window
headers. Its value must be greater than or equal to 6.

Remarks The total vertical drawing area available in a given window is
reduced by the size of its header.

Technical Reference 83

NStepGlb [GDRIVERPASj

Declaration const IVStepGl b = (depends on system);

Purpose IVStepGlb specifies the initial value of VStep, the step size (incre­
ment) by which windows are moved vertically.

Remarks IVStep is used by the Turbo Pascal Graphix program to speed the
vertical movement of large windows. Its value varies according to
the particular hardware installed. See the Move Ver and SetVStep
procedures.

MaxBackground [GDRIVERPASj

Declaration const MaxBackground:word = (depends on system);

Purpose MaxBackground is a value that specifies the maximum number of
available background ("black") colors for a particular hardware con­
figuration: 0 or 15 for IBM versions and 0 for Hercules.

Remarks This constant should not be changed, since it is specific to the
graphics hardware installed.

MaxForeground [GDRIVERPASj

Declaration

Purpose

Remarks

84

const MaxForeground:word = (depends on system);

MaxForeground is a value that specifies the maximum number of
available foreground ("white") drawing colors for a particular hard­
ware configuration: 15 for IBM (except the PCjr version, which
allows only black or white) and~r Hercules.

This constant should not be changed, since it is specific to the
graphics hardware installed.

It is illegal to set the foreground and background colors to the same
value. See the SetBackgroundColor and SetForegroundColor proce­
dures for more information.

Turbo Pascal Graphix Toolbox Owner's Handbook

MaxPiesGlb [GDRlVERPAS]

Declaration const MaxPi esGl b = 10;

Purpose MaxPiesGlb specifies the maximum number of sections allowed in a
pie chart.

MaxPlotGlb [GDRlVERPAS]

Declaration const MaxPl otG 1 b = 100;

Purpose MaxPlotGlb defines the maximum number of points in a PlotArray.

Remarks PlotArray is used to store the vertices of polygons. Bezier, DrawHis­
togram, DrawPolygon, FindWorld, RotatePolygon, Scale Polygon,
Spline, and TranslatePolygon make use of the MaxPlotGlb constant.

MaxWindowsGlb [GDRlVERPAS]

Declaration const MaxWi ndowsGl b = 16;

Purpose Max WindowsGlb specifies the maximum number of defined win­
dows.

MaxWorldsGlb [GDRIVERPAS]

Declaration const MaxWorl dsGl b = 4;

Purpose Max WorldsGlb specifies the maximum number of world coordinate
systems that can be defined.

Remarks Only one world coordinate system can be used at one time.

Technical Reference 85

MinBackground [GDRIVERPASj

Declaration const MinBackground:word = (depends on system);

Purpose MinBackground specifies the minimum value for the background
("black") color for a particular graphics card: 0 for IBM and 0 for
Hercules.

Remarks This constant should not be changed, since it is specific to the
graphics hardware installed.

MinForeground [GDRIVERPASj

Declaration const MinForeground:word = (depends on system);

Purpose MinForeground specifies the minimum value for the foreground
("white") drawing color for a particular graphics card: 1 for IBM and
1 for Hercules.

Remarks This constant should not be changed, since it is specific to the
graphics hardware installed.

PieArray [GDRIVERPASj

Declaration type PieArray = array [l..MaxPiesGlb] of PieType;

Purpose PieArray is used to pass the definition of a pie chart to the
DrawCartPie and DrawPolarPie procedures; each element of the
array defines a single section of the pie. The two fields in the array
are Area (a real number), and Text (a string).

Remarks The maximum number of pie sections is determined by the Max­
PiesGlb constant.

86 Turbo Pascal Graphix Toolbox Owner's Handbook

Plot Array [GDRIVERPASj

Declaration type PlotArray = array [1. .MaxPlotGlb, 1 .. 2] of Float;

Purpose PlotArray specifies the vertices of a given polygon, and is used to
pass polygons to a procedure.

Remarks In the Turbo Pascal Graphix Toolbox, the term polygon can mean
any ordered collection of points, possibly (but not necessarily) con­
nected by lines. Thus, a sampling of a sine wave can be called a
polygon, though a smooth sine wave with an infinite number of
points cannot. The data structure simply contains points. Poly[i,l] is
the i'th X coordinate, and Poly[i,2] is the i'th Y coordinate. The
maximum number of points in a polygon is determined by the con­
stant MaxPlotGlb.

PlotArray is used by Bezier, DrawHistogram, DrawPolygon, Find­
World, RotatePolygon, ScalePolygon, Spline, and TranslatePolygon.

RamScreenGlb [GDRIVERPASj

Declaration const RamScreenGl b: boo 1 ean = true;

Purpose RamScreenGlb determines whether or not a RAM (virtual) screen
is allocated for drawing.

Remarks A RAM screen takes up a large chunk of memory (as defined by the
constant ScreenSizeGlb, in bytes) but it enables you to do many
things, such as two-screen animation and smooth window move­
ment over a background (see the MoveWindow procedure).

Some hardware configurations allocate dedicated memory for RAM
screens; in those cases, RamScreenGlb will always be TRUE. See
Appendix A for further information.

Technical Reference 87

ScreenSizeGlb [GDRNERPASj

Declaration const ScreenSizeGl b = (depends on system);

Purpose ScreenSizeGlb specifies the size of the screen (in bytes divided by
2) for a particular hardware configuration.

Remarks This constant should not be altered, since it is specific to the size of
the physical screen in your computer; any change to this constant
may cause a system crash or unnecessary memory allocation.

StringSizeGlb [GDRNERPASj

Declaration const StringSizeGl b = 80;

Purpose StringSizeGlb specifies the maximum string length of the type
WrkString.

Remarks This constant is used by any procedure that requires a text string.

WrkString [GDRNERPASj

Declaration type WrkString = string[StringSizeGlb];

Purpose WrkString is the string type used by Turbo Pascal Graphix proce­
dures that either require string parameters, or use strings internally.

Remarks The DefineHeader and DrawText procedures use WrkString as their
principle parameter.

88 Turbo Pascal Graphix Toolbox Owner's Handbook

XMaxGlb [GDRIVERPAS]

Declaration const XMaxGlb = (depends on system);

Purpose XMaxGlb specifies the width of the screen in bytes, less 1; that is,
the maximum value of an X (horizontal) window definition coordi­
nate. The maximum screen width is XMaxGlb X 8 + 7.

Remarks This constant should not be changed, since it is specific to the par­
ticular hardware configuration.

The DefineWindow procedure uses XMaxGlb to check whether a
window is being defined within the physical screen.

XScreenMaxGlb [GDRIVERPAS]

Declaration const XScreenMaxGl b = (XMaxGl b*8+ 7)

Purpose XScreenMaxGlb specifies the maximum width of the screen for a
particular hardware configuration.

Remarks This constant should not be changed, since it is specific to the par­
ticular hardware configuration.

YMaxGlb [GDRIVERPAS]

Declaration const YMaxGl b = (depends on sys tern) ;

Purpose YMaxGlb specifies the height of the screen in pixels; that is, the
maximum value of a Y (vertical) absolute screen coordinate.

Remarks This constant should not be changed, since it is specific to the par­
ticular hardware configuration.

The Define Window procedure uses YMaxGlb to check whether a
window is being defined within the physical screen.

Technical Reference 89

Quick Reference Guide to Turbo Pascal Graphix Routines

In the following list, the Turbo Pascal Graphix Toolbox routines are grouped by
function into six sections: Initialization and Error, Screens, Windows, Color and
Drawing, Text, and Internal. Since the list is designed to help you find routines
according to their logical use, and since some routines logically relate to more than
one function, a few routines appear in more than one section. The declaration for
each routine is listed, followed by its page number.

Initialization and Error

procedure InitGraphi c; .. 156
procedure EnterGraphi c; ... 141
procedure LeaveGraphi c;•••....•..•............. 159
procedure Error(Proc, Code: integer); ... 142
function GetErrorCode:byte; ... 146
procedure SetBreakOff; .. 186
procedure SetBreakOn; ...•....•.....••......•.•........•.....•••.....••...•....•.•....••................•... 187
procedure SetMessageOff; ... 198
procedure SetMessageOn; ... 199
procedure SetVStep(Step:word); .. 201
function HardwarePresent:boolean; .. 154

Screens

procedure SelectScreen(I:word); ... 179
procedure LoadScreen(FileName:WrkString); .. 160
procedure ClearScreen; .. 99
procedure CopyScreen;••...•.•.•.•••..• 103
procedure SaveScreen(FileName:WrkString); .. 175
function GetScreen:byte; .. 148
function GetScreenAspect:Float; ... 149
procedure InvertScreen; ... 157
procedure SwapScreen;•.••.....• •.......•....•............•......• •......•..... 207
procedure HardCopy(Inverse:boolean; Mode:byte); ... 153

Windows

procedure SetWi ndowModeOn; 203
procedure SetWi ndowModeOff; ..•..• •...... .••...•. •........••..••...•. 202
function WindowMode:boolean; .. 213
procedure DefineWindow(I,XLow,YLow,XHi,YHi:integer); ..•...•••....•...........•••.......•... 109
procedure Redefi neWi ndow(I, XLow, YLow, XHi , YHi : integer) ; ...•...•......••.. 167
procedure DefineTextWindow(I,Left,Up,Right,Down,Border:integer); 107
procedure Defi neWorl d (I: integer; XLow, YLow, XHi , YHi : Float); .•.....••......•........•....... 110
procedure Se 1 ectWorl d (I: integer); ...•••......••... .•...•... •...•• .••... ...•.••.•..••..... 181
procedure Se 1 ectWi ndow(I: integer);•.••• •..... •••.... .•.•.•.. 180
function GetWindow:integer; ... 151
procedure SetCl i ppi ngOn; .•..•..•••.•....•......••••..... •.......•.........•..... 189
procedure SetCl i pp i ngOff; .••.....•••••.....••. •.....••••.....•••..•••......•. ... 188
function Clip(var X1,Yl,X2,Y2:integer):boolean; .•..•.•••.•.•.••.•.•..••••.......•.•.....••.. 101
function Clipping:boolean; ... 102
procedure SetBackground(Pattern:byte); ...••••..•..••••.....•••.•.•..••..•...•.•....•.•.....•••.... 183
procedure SetBackground8 (Pattern: BackgroundArray) ; ••.•..•.••.•................... 184
procedure Defi neHeader(I: i nteger;Hdr:WrkStri ng); •••...•••••••.••••.•....••..•..•••.....•••... 106
procedure SetHeaderOn; ••••••....•••••..••••••...••••.....••••..•.••••....•••....•••........•.•.....••..... 194

90 Turbo Pascal Graphix Toolbox Owner's Handbook

procedure SetHeaderOff;•••.....••..•••....•••....•.••..••••.•.•....•.••.•.•••..•••....••••..••••...••• 193
procedure SetHeaderToTop; .. 196
procedure SetHeaderToBottom; ... 195
procedure DrawBorder; .. 115
procedure RemoveHeader (I: integer); .•.... .•....••. 168
function GetVStep:word; ... 150
procedure MoveHor(Delta:integer;FillOut:boolean); .. 163
procedure MoveVer(Del ta: integer; Fi 110ut :bool ean); .. 164
procedure I nvertWi ndow; •.•.. 158
procedure CopyWindow(From,To:byte;X1,Y1:integer); .. 104
function Wi ndowSi ze(Nr: integer) :word; .. 214
procedure StoreWi ndow (Wi ndow: integer); 206
procedure RestoreWi ndow(I, Del taX, Del taY: integer); .. 172
procedure SaveWindow(I:integer;FileName:WrkString); ... J76
procedure SaveWi ndowStaek(Fi 1 eName:WrkStri ng); .. ';177
procedure loadWi ndow(I, X, Y: integer; Fil eName:WrkString); ;",;:};{)1
procedure loadWindowStaek(FileName:WrkString); .. 162
procedure Cl earWi ndowStack (Nr: integer); ... 100
procedure ResetWi ndowStack; ... 170
procedure ResetWi ndows; 169
procedure ResetWorlds; .. 171
function WindowX(X:Float):integer; ... 215
function WindowY(Y:Float):integer; ... 216

Color and Drawing

procedure SetBackgroundColor(Color:word); .. 185
procedure SetForegroundCol or(Col or:word); .. 192
procedure SetColorWhite; ... 191
procedure SetColorBlaek; ... 190
function GetColor:word; ... 145
procedure DrawPoi nt (X, Y: Float); ... 129
function PointDrawn(X, Y:Float) :boolean; ... 166
procedure SetlineStyle(lS:word); ... 197
function GetlineStyle:word; ... 147
procedure DrawLine(X1,Y1,X2,Y2:Float); .. 127
procedure Drawl i neC 1 i pped (X I, Y I, X2 , Y2 : integer); 128
procedure DrawStraight(X1,X2, Y:word); .. 137
procedure DrawSquare(X1,Y1,X2,Y2:Float;Fill:boolean); 134
procedure DrawSquareC(X1,Y1,X2,Y2:integer;Fill:boolean); 135
procedure Hatch(X1,Y1,X2,Y2:Float;Delta:integer); .. 155
procedure SetAspeet (Aspect: Float); .. 182
procedure SetScreenAspeet (Aspect: Float); ... 200
function GetAspeet:Float; .. 144
funct ion GetSereenAspeet: Float; 149
procedure DrawCirele(X,Y,R:Float); .. 118
procedure DrawCireleDireet(X,Y,R:integer;Clip:boolean); 119
procedure DrawCireleSegment(XCenter,YCenter:Float;var

XStart,YStart:Float;Inner,Outer,Angle,Area:Float;
Text:WrkString;Option,Seale:byte); ... 120

procedure DrawCartPie(XCenter,YCenter,XStart,YStart, Inner,Outer: Float;
A:PieArray;N,Option,Seale:integer); .. 116

procedure DrawPolarPie(XCenter,YCenter,Radius,Angle, Inner,Outer: Float;
A: Pi eArray; N, Option, Seal e:integer); .. 130

procedure DrawAxis(XDensity,YDensity,left,Top,Right,Bottom:integer;
XAxis,YAxis:integer;Arrows:boolean); .. 113

procedure DrawHistogram(A:PlotArray;N:integer;Hatching:boolean;
HatehStyle:integer); .. 125

Technical Reference 91

procedure DrawPolygon(A:PlotArray:
First,Last,Code,Seale,Lines:integer): ... 132

procedure FindWorld(I:integer:A:PlotArray:
N:integer:SealeX,SealeY:Float): •• 143

procedure SealePolygon(var A:PlotArray:N:integer:XFaetor,YFaetor:Float): ••••••••• 178
procedure RotatePolygon (var A: Pl otArray:N: i nteger:Angle: Float): ••••••••••••••••••••••• 173
procedure RotatePolygonAbout (A: Pl otArray:N: integer;Angl e,X, Y: Float); ••••••••••••••• 174
procedure TranslatePolygon(var A:PlotArray;N:integer;

DeltaX,DeltaY:Float): •..•••••.•••••••.••••••••••••••••.••••••••••••••••••••••••••••••••••••• 212
procedure Spline(A:PlotArray:N:integer:X1,Xm:Float;var B:PlotArray;

M: integer): •••••.•••••.••••••...•••••••••••.••••••••••••••••••••••.•.•••••••••••••••••••••••••••• 204
procedure Bezier(A:PlotArray;N:integer;var B:PlotArray:M:integer): 95

Text

procedure DrawText (X, Y ,Scale: i nteger:Text:WrkStri ng); 138
procedure DrawTextW(X,Y,Seale:F1oat:Text:WrkString); 139
procedure DrawAseii(var X,Y:integer:Size,Ch:byte): .. 112
procedure DefineHeader(I:integer:Hdr:WrkString): ... 106
procedure Defi neTextWi ndow(I, Left, Up, Ri ght, Down, Border: integer) ; 107
function TextDown(TY,Boundary:;nteger):integer; ... 208
function TextLeft (TX, Boundary:; nteger): integer: ... 209
funct ion TextRi ght (TX, Bounda ry: integer) : integer: ••••••• .•••••• .••• 210
function TextUp(TY ,Boundary:integer) :integer; .. 211

Internal

function BaseAddress(Y:word) :word: ... 94
procedure DC(C:byte); .. 105
procedure DP(X, Y:word): ... 111
procedure DrawCross(X,Y,Seale:integer); ... 122
procedure DrawCrossDiag(X,Y,Seale:integer): ... 123
procedure DrawDi amond (X, Y ,Sea 1 e: integer): .. 124
procedure DrawStar(X,Y,Seale:integer): .. 136
procedure DrawWye(X, Y ,Seale:integer): .. 140
procedure GotoXY(X, Y:word): ... 152
function HardwarePresent:boolean; .. 154
function PD(X, Y:word) :boolean; ... 165

92 Turbo Pascal Graphix Toolbox Owner's Handbook

Procedures and Functions

This section defines and describes, in alphabetical order, all the procedures and
functions contained in the Turbo Pascal Graphix Toolbox. The call-up for each
procedure or function is given, followed by a detailed description of its function.
Remarks, restrictions, and examples are given where appropriate, as well as cross­
referencing to related procedures and functions. The Turbo Pascal Graphix file that
contains the procedure or function is given iD:. brackets next to the name of the
procedure or function.

Refer to page 82 for a description of the constants and types used in these proce­
dures and functions.

Technical Reference 93

BaseAddress [GDRIVERPAS]

Declaration function BaseAddress(Y:word) :word:

Usage BaseAddress(Y);

Parameters Y : a screen line (O ... YMaxGlb)

Function BaseAddress calculates the offset of screen line Y in memory.

Remarks This function is for internal use by the graphics system.

Restrictions None

Example I: =BaseAddress (5):

94

I is the offset at the start of screen line 5 (the sixth line on the
screen).

FillChar(Mem[GrafBase:BaseAddress(9)],XMaxGlb,O):

sets the lOth screen line to "black."

Turbo Pascal Graphix Toolbox Owner's Handbook

Bezier [GSHELL.PASj

Declaration procedure Bezier(A: PlotArray: N: integer:
var B:PlotArray:M:integef):

Usage Bezier(A,N ,B,M);

Parameters A: array of X and Y control points

Function

N: number of control points

B: array of resultant Bezier-function base points

M: desired number of base points in resultant Bezier polynomial
curve

Bezier computes a Bezier polynomial curve from an array, A, that
contains N control points. The resultant array, B, is filled with M
base points that constitute a parametric curve. The curve passes
through the first and last control points, and passes as close as possi­
ble to each of the other points.

A Bezier function is defined by a set of control points (X and Y
values). Within this defined interval, the Bezier function calculates
the resultant base points.

Remarks Bezier polynomials are often used when a smooth curve of some
particular form is needed. Increasing the value of M smooths the
curve, but slows down the computing process.

The specific attributes of Bezier functions and their applications in
graphic design are discussed in the book, Principles of Computer
Graphics, by W. Newmann and R Sproul.

Restrictions The maximum values for Nand M are determined by the constant
MaxPlotGlb, specified in the GDRIVERPAS file. The default value
of MaxPlotGlb is 100.

See Also DrawPolygon
Rotate Polygon
ScalePolygon
Tran slate Polygon

Example This example, called BEZIDEMO.PAS on the Turbo Pascal
Graphix distribution disk, uses seven control points to draw a
curve. Fifteen base points (shown as a dotted line) are generated
by this procedure. The positions of the points and the value of M
can be changed interactively.

Technical Reference 95

96

program BeziDemo;

uses
Dos, Crt, GDriver, Printer, GKernel, GWindow, GShell;

procedure ClearToEol;
{ Procedure to clear to end of line}
var

I : integer;
begin

for I := 1 to 80 do
Write (I I);

end; { ClearToEol }

procedure ReadInput(var S WrkString);
const

Cr = #13;
Bs = #8;

var
Count
Ch

begin

integer;
char;

Count .- 0;
S := I I;

repeat
Ch : = ReadKey;
case Ch of

Bs : begin

else

if Count > 0 then
begin

Write(Ch);
Cl rEol;
Delete(S, Length(S), 1);
Dec(Count);

end;
end;

;f Ch <> Cr then
begin

Write(Ch);
S := S + Chi
Count .- Count + 1;

end;
end;

until Ch = Cr;
end; { ReadInput }

procedure BezierDem;

var
Result, I, MaxControlPoints, MaxIntPoints integer;
DummyX, DummyY : Float;
A, B : PlotArray;
Break: boolean;
DummyS, Temp2, Temp WrkString;

Turbo Pascal Graphix Toolbox Owner's Handbook

begin
MaxControlPoints := 7: { Initialize everything}
MaxIntPoints := 15:

A[l, 1] . - I: A[2, 1] . - 1.5: A[3, 1] := 2: A[4, 1] := 2.5:
A[5, 1] := 3: A[6, 1] := 4: A[7, 1] := 5: A[l, 2] . - 2:
A[2, 2] . - 1.5; A[3, 2] . - I: A[4, 2] := 2.5: A[5, 2] := 4:
A[6, 2] := 4.5: A[7, 2] := 5:

ClearScreen: { Set up screen}
SetColorWhite:
DefineWorld(l, 0, 0, 6.33, 7.0): {Set world so rulers are good}
SelectWorld(1) :

Technical Reference

DefineWindow(l, 0, 0, XMaxGlb, 17 * YMaxGlb div 20):
SelectWindow(l):
SetBackground(O):
DrawBorder:
DrawAxis(7, -7, 0, 0, 0, 0, 0, 0, false):

Break := false: { Init exit flag}

repeat
SetLinestyle(l): { Draw polygon between points}
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false):
DrawPolygon(A, I, MaxControlPoints, 4, 2, 0);

Bezier(A, MaxControlPoints, B, MaxIntPoints): {Do bezier }
{ operation}

SetLinestyle(O): { Plot it }
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false):
DrawPolygon(B, I, MaxIntPoints, 0, 0, 0):

repeat
GotoXY(l, 24): { Clear out old text}
ClearToEol:
GotoXY (1, 25):
ClearToEol:
GotoXY (1, 23):
ClearToEol:
GotoXY(l, 23): { Get point to change}
Write('Enter the number of the pOint to change (0 to quit) '):
GotoXY(55, 23);
ReadInput(Temp):
Val (Temp, I, Result):

unt;l I ;n [O •. MaxControlPoints]:

;f I > 0 then
beg;n

repeat
GotoXY(l, 24): { Get new values for x and y }
Write('Old position: [', A[I,l]:4:2, ',', A[I,2]:4:2, ']'):
GotoXY(40, 24):
Write(' New positi on x: ') :
GotoXY(60, 24):
ReadInput(DummyS):

97

98

while DummyS[I] = I I do
Delete(DummyS, 1, 1);

Temp := DummyS;
GotoXY(40, 25);
Write (I New pos it ion y: ') ;
GotoXY(60, 25);
Readlnput(DummyS);
while DummyS[I] = I I do

Delete(DummyS, 1, 1);
Temp2 := DummyS;
Val (Temp, DummyX, Result);
Val(Temp2, DummyY, Result);

until ((DummyX >= XIWldGlb) and (DummyX <= X2WldGlb» and
((DummyY >= YIWldGlb) and (DummyY <= Y2WldGlb»;

SetLinestyle(I); { E~ase old curve}
SetColorBlack;
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false);
DrawPolygon(A, 1, MaxControlPoints, 4, 2, 0);
SetLinestyle(O);
DrawAxis(O, 0, 0, 0, 0, 0, 0, 0, false);
DrawPolygon(B, 1, MaxlntPoints, 0, 0, 0);
A[I, 1] := DummyX;
A[I, 2] : = DummyY:
SetColorWhite;

end
else

Break := true; { Done}
until Break;

end; { BezierDem }

begin
InitGraphic;

BezierDem;

LeaveGraphic;
end. { BeziDemo }

{ Initialize the graphics system}

{ Do the demo }

{ Leave the graphics system}

Turbo Pascal Graphix Toolbox Owner's Handbook

ClearScreen [GDRIVERPAS]

Declaration procedure ClearScreen;

Usage ClearScreen;

Function ClearScreen erases the screen that is currently in use (the active
screen).

Remarks Initialization is not performed by this procedure; see InitGraphic.

Restrictions None

See Also InitGraphic

~xample program ClearScreenExample;

uses
Dos, Crt, GDriver, Printer, GKernel;

beg;n
DrawLine(1,1,200,200);
DrawLine(1,200,200,1);
gotoxy(50,12);
write('Hit return to clear screen: ');
readln;
ClearScreen;
gotoxy(lO,25);
wri te ('Hit return to end: ');
readln;

end.

Technical Reference 99

ClearWindowStack [GWlNDOW.PASJ

Declaration procedure C1 earWi ndowStack (Nr: integer):

Usage ClearWindowStack(N r};

Parameters Nr: index of window to be erased [l.MaxWindowsGlb]

Function ClearWindowStack deletes a designated window, Nr, from the win­
dow stack. If there is no window entry at the given index, the opera­
tion is not performed.

Remarks A call to Restore Window cannot restore a window erased using this
routine.

Restrictions The value of Nr must lie between 1 and the constant MaxWindows­
Glb (defined in the GDRIVER.PAS file).

See Also ResetWindowStack

Example

100

Restore Window
StoreWindow

C1earWindowStack(7):

removes the window stack entry (if there is one) for window 7.

Turbo Pascal Graphix Toolbox Owner's Handbook

Clip [GKERNEL.PASj

I)eclaration funct;on Clip(var Xl,Yl,X2,Y2:integer):boolean;

Usage Clip(Xl,Yl,X2,Y2);

Parameters Xl, Y 1 : coordinates of starting point of line

X2, Y2 ; coordinates of end point of line

boolean: if FALSE, line lies outside window

Function

Remarks

Clip clips a line to fit the active window, and determines whether or
not the full length of a line is drawn. The four integer variables rep­
resent absolute screen coordinates. Clip adjusts them as follows: if a
line is drawn from [Xl, Y l] to [X2, Y2], any part of the line that lies
outside the active window is removed. The resulting coordinates
describe a line that is entirely contained by the active window. The
boolean function value is TRUE if the adjusted coordinates still
represent a line, and FALSE if the entire line is clipped away.

Although this function is mainly for internal use, it can also be
useful when you are working with window mode off (SetWindow­
ModeOJj) , to ensure that drawings remain within the physical
screen.

Restrictions Since the four integer parameters are modified by Clip, they must
be variables; they cannot be expressions.

See Also Clipping

Example

SetClippingOff
SetClippingOn
SetWindow ModeOff
SetWindowModeOn

;f Clip(Xl,Yl,X2,Y2) then DrawLine(Xl,Yl,X2,Y2);

draws only the part of the line that falls within the active window.

B:=Clip(Xl,Yl,X2,Y2);

adjusts [Xl,Yl] and [X2,Y2] so that the line between them is
entirely contained by the active window; sets B to TRUE if any part
of the original line remains.

Technical Reference 101

Clipping [GKERNEL.PAS]

Declaration funct i on Cl i ppi ng : boo 1 ean:

Usage Clipping;

Function Clipping returns the clipping status: TRUE when clipping is
enabled with the SetClippingOn procedure; FALSE when clipping
is disabled with the SetClippingOff procedure.

Restrictions None

See Also Clip
SetClippingOn
SetClippingOff

Example B:=Clipping:

sets B to TRUE if clipping is enabled, FALSE if not.

W2 Turbo Pascal Graphix Toolbox Owner's Handbook

CopyScreen [GDRIVERPASj

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure CopyScreeni

CopyScreen;

Copy Screen copies the active screen onto the inactive screen.

If the active screen is the RAM screen, this procedure copies it to
the displayed screen. Copy Screen is often used to save a window
background when another window is being moved over the back­
ground. See Chapter 2, page 36 for detailed information about mov­
ing windows.

In order to use this procedure, there must be an available RAM
screen in memory, that is, the constant RamScreenGlb must be
TRUE in the GDRIVERPAS file.

LoadScreen
Save Screen
SelectScreen
SetBackground
Swap Screen

CopyScreeni

copies the active screen onto the inactive screen.

Technical Reference 103

CopyWindow [GWlNDOW.PAS]

Declaration procedure CopyWi ndow(From, To: byte; Xl, VI: integer} i

Usage CopyWindow(From,To,X1,Y1);

Parameters From: screen from which window is copied
To : screen window is to be copied onto

Xl, Y I : window definition coordinates where window is copied

Function Copy Window copies the contents of the active window to and from
the RAM screen and the displayed screen. A value of 1 for To or
From designates the displayed screen, while a value of 2 for To or
From designates the RAM screen. The window is copied to the
screen location specified by window definition coordinates [XI,YI].

Remarks CopyWindow copies images from the area enclosed by the active
window in the specified screen. This may have surprising results if
the wrong screen is specified!

See page 36 for complete information about moving windows.

Restrictions To use CopyWindow, there must be an available RAM screen in
memory, that is, the constant RamScreenGlb is TRUE (defined in
the GDRIVER.PAS file).

See Also LoadWindow

Example

104

SelectWindow

CopyWindow(I,2,IO,20}i

copies the active window from the displayed screen to the RAM
screen, placing the upper left corner of the window at window defi­
nition coordinates [10,20] (screen coordinates [80,20]).

CopyWindow(I,I,50,5}i

copies the active window from its current position on the dis­
played screen to window definition coordinates [50,5] (screen coor­
dinates [400,5]) on the displayed screen.

Turbo Pascal Graphix Toolbox Owner's Handbook

DC [GDRlVERPAS]

Declaration

Usage

Parameter

Function

Remarks

Restrictions

See Also

Example

procedure OC(C:byte);

DC(C);

C: ASCII code of drawn character

DC draws the character whose ASCII code is C at text coordinates
[XTextGlb, YTextGlb] (internal variables) in the font used by the par­
ticular hardware configuration installed.

DC is for internal use by the graphics system. It does not advance
the cursor.

None

DefineTextWindow
TextDown
TextLeft
TextRight
TextUp

OC(32);

displays character 32 (space) at the current cursor position on
the active screen, without moving the cursor.

Technical Reference 105

DefineHeader [GKERNEL.PASj

I>eclaration procedure DefineHeader(I:integer; Hdr:WrkString);

Usage I>efineHeader (I,Hdr);

Parameters [: index of window for which header is defined
[l..MaxWindowsGlb]

Hdr: string term for window header

Function DefineHeader defines a window header, Hdr, for a given window, [.
The procedure defines the text that makes up the header, but has no
effect on the display; the header is not displayed or altered until
procedure DrawBorder is called. The header is then centered hori­
zontally either on the top or the bottom of the window, depending
on whether the last call was to SetHeaderToTop or SetHeaderTo­
Bottom.

Restrictions Window headers can only be drawn with the 4x6-pixel character
set.

See Also

Example

106

The value of [must lie between 1 and the constant Max­
WindowsGlb (defined in GI> RIVE R. PAS file).

I>rawBorder
RemoveHeader
SetHeaderOff
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

DefineHeader(l,'*** Edit window ***');

defines the header of window 1 to be *** Edit window ***,
without affecting the display of the header.

Turbo Pascal Graphix Toolbox Owner's Handbook

DefineTextWindow [GKERNELPAS I

Declaration procedure DefineTextWi ndow(I, Left,Up,Ri ght,Down,
Border:integer)i

Usage DefineTextWindow(I,Left, U p,Right,Down,Border);

Parameters I : index of window

ujt : X coordinate of left edge of machine-dependent text

Up : Y coordinate of upper edge of machine-dependent text

Right : X coordinate of right edge of machine-dependent text

Down : Y coordinate of bottom edge of machine-dependent text

Border : desired number of pixels between text and window bound-
aries

Function DefineTextWindow uses the given text <:oordinates (uft, Up, Right,
Down, and Border) and the number of pixels, Border, that you want
between the text and all four edges of the window, to define a win­
dow. The window defined will allow for a uniform space between
the text and the window edges.

Remarks DefineTextWindow is used to fit and align text within a window. It
is particularly useful with the Hercules version of the Turbo Pascal
Graphix Toolbox, since Hercules text is defined on 9-pixel bound­
aries, while windows are defined on 8-pixel boundaries; this one­
pixel offset can create alignment problems.

If you wish to vary the space between your text and any of the four
window edges, use the Textujt, TextRight, TextUp, and TextDown
functions to define the space individually for each window edge.

Restrictions If you define a 4x6 pixel header for your window, the placement of
the machine-dependent text will be thrown off by the size of the
header; in this case, use the four functions mentioned to realign text
within the window.

Note that the horizontal border values are only approximate, since
they are restricted to window defintion coordinates, and are
adjusted outward if necessary.

See Also DefineHeader
DefineWindow
TextDown
TextLeft
TextRight
TextUp

Te(:hnical Reference 107

Example

108

DefineTextWindow(3,2,2,79,24,4);

defines window 3 so that it encloses text coordinates from [2,2] to
[79,24], with a border of at least 4 pixels between the text and all
edges.

Turbo Pascal Graphix Toolbox Owner's Handbook

De}ineWindow [GKEHNELPASj

Declaration procedure Oefi neWi ndow(l ,Xlow, Ylow,XHi, YHi: integer) i

Usage DefineWindow(I,XLow,XHi,YHi);

Parameters I : index of window [l..MaxWindowsGlb]

XLow : X value of upper left window position [O .. XMaxGlb]

YLow : Y value of upper left window position [O .. YMaxGlb]

XHi : X value of lower right window position [l..XMaxGlb]

YHi : Y value of lower right window position [O .. YMaxGlb]

Function Define Window defines a region of the screen as a window, I. The
window is defined as a rectangle with the upper left corner at
[XLow,YLow] and the lower right corner at [XHi,YHi].

Remarks The X coordinates of a window are defined in 8-pixel chunks; that
is, windows are placed on byte boundaries in memory. If Define­
Window is called with parameters (1,10,10,19,19), the defined win­
dow is 10 pixels tall and 80 pixels wide.

Restrictions The value of I must be between 1 and MaxWindowsGlb (as defined
in the GDRIVER.PAS file), all coordinates must lie within the
physical screen, and the Low coordinates must be lower in numeric
value than the Hi coordinates; otherwise, an error will occur.

See Also Redefine Window
SelectWindow

Example OefineWindow(4,5,5,lO,lO)i

defines window 4, with upper left corner at window definition
coordinates [5,5] and lower right corner at [10,10] (screen coordi­
nates [40,5] and [87,10]).

OefineWindow(2,O,O,XMaxGlb div 2,YMaxGlb div 2)i

defines window 2 as the upper left quarter of the screen.

Technical Reference 109

DefineWorld [GKERNEL.PASj

Declaration procedure Defi neWorl d(I: integer; XLow, YLow,XHi, YHi : Float};

Usage DefineWorld(I,XLow,YLow,XHi,YHi);

Parameters I : index of world to be defined [l...MaxWorldsGlb]

XLow : X coordinate of upper left vertex

YLow : Y coordinate of upper left vertex

XHi : X coordinate of lower right vertex

YHi : Y coordinate of lower right vertex

Function Define World defines a world coordinate system, delineated by the
rectangle formed by the vertices [XLow,YLow] and [XHi,YHi].
World coordinates therefore range from [XLow,YLow] to [XHi,YHi].

Remarks The world coordinate system is not enabled until SelectWorld is
called.

Restrictions The world's index value, I, must lie between 1 and MaxWorldsGlb
(as defined in the GDRIVER.PAS file), and the Low coordinates
must be lower in numeric value than their respective Hi coordi­
nates; otherwise, an error will occur.

See Also Define Window
SelectWindow
SelectWorld

~xample DefineWorld(1,O,-1,2*Pi,1};

110

defines a world suitable for displaying one cycle of the sine func­
tion.

Turbo Pascal Graphix Toolbox Owner's Handbook

DP [GDRIVERPASj

Declaration procedure OP(X. Y:word);

Usage DP(X,Y);

Parameters X,Y: coordinates of drawn point

Function DP draws a point at screen coordinates [X, Y].

Remarks This procedure is primarily for internal use of the graphics system.

Restrictions Since no clipping is performed by this procedure, it is important to
specify valid X and Y parameters; ,.otherwise, program memory may
be encroached upon, or the system may crash.

See Also DrawPoint

Example OP(2. 3);

draws a point at screen coordinates [2,3] on the active screen in
the current drawing color.

Te.chnical Reference III

Draw Ascii [GKERNEL.PAS]

I)eclaration procedure DrawAscii(var X,Y:integer; Size,Ch:byte);

Usage I)rawAscii(X,Y,Size,Ch);

Parameters X, Y : coordinates of drawn character

Size : size of character

Ch : ASCII value of character

Function DrawAscii draws a single character with ASCII value Ch at screen
coordinates [X,Y]. The 4x6-pixel character set is used. The character
is drawn with its upper left corner at screen coordinates (X, Y - (2 X

Size) + 1). Each point of the character is drawn as a Size-by-Size
box, so the character is multiplied by Size in both directions. X is
changed to X + (6 X Size), so that another call to DrawAscii using
the same X and Y variables would draw the next character one posi­
tion to the right (with a 2 X Size blank space between the charac­
ters).

Remarks The character is clipped at the boundaries of the active window if
clipping is enabled with SetClippingOn. The character would be
displayed to the right, and both above and below coordinates [X,Y].

Restrictions None

See Also Define Header
DrawText
DrawTextW

Example DrawAscii(20,40,25,ord('W'));

112

draws a very large (100x150 pixel) W at screen coordinates
[20,40]. Modifies X so that if another character of that size were
drawn, it would be placed directly after the first character.

Turbo Pascal Graphix Toolbox Owner's Handbook

Draw Axis [GSHELL.PASj

I>eclaration procedure DrawAxis(XDensity,YDensity,Left,Top,Right,Bottom:
integer;XAxis,YAxis:integer;Arrows:boolean);

Usage I>raw Axis(XI>ensity, YI>ensity, Left, Top, Right,Bottom,XAxis,
YAxis,Arrows);

Parameters XDensity : density of tick marks on X ruler (- 9 to 9)

Function

YDensity : density of tick marks on Y ruler (- 9 to 9)

Left : distance of drawing area from left edge of window

Top : distance of drawing area from top edge of window

Right : distance of drawing area from right edge of window

Bottom : distance of drawing area from bottom edge of window

XAxis : line style of horizontal axis

YAxis : line style of vertical axis

Arrows : if TRUE, arrow symbols drawn at ends of axes; if
FALSE, arrows not drawn

DrawAxis draws X and Y axes with ruler markings in the active
window, to provide coordinate reference information for plots and
drawings. This procedure can optionally define the world draWing
area to be smaller than a window, draw a line around the drawing
area, provide automatically labeled rulers for X and Y axes with
variable tick mark density, and coordinate axes in various line
styles.

The parameters Left, Top, Right, and Bottom move the draWing area
in from the edges of the active window. If these parameters are all
equal to 0, the drawing area is the entire window. XDensity and
YDensity select how close together tick marks are drawn on the
rulers, from - 9 to 9. The sign of the Density parameters is ignored,
except that if one of the Density parameters is negative and the
other positive, a line is drawn around the drawing area. The XAxis
and YAxis parameters specify the line styles of the horizontal and
vertical axes. If either is negative in value, the corresponding axis is
not drawn. The line styles correspond to those used to select line
styles in the DrawLine procedure.

Technical Reference 113

Restrictions Moving the drawing area in from the edges of the active window is
subject to the following conditions:

1. It only affects procedures DrawHistogram and DrawPolygon.

2. It is disabled after one call to either DiawHistogram or
DrawPolygon.

3. A new procedure called ResetAxis has been added to the
AXIS.HGH module. ResetAxis sets the global variable Axis­
Glb to TRUE. A typical calling sequence for plotting several
curves on a common axis frame would now be:

DrawAxis(••.); { Define axis frame. }
DrawPolygon(•••); {Plot first curve. }

"1~ GSJ.JElL.fA-s -ResetAxis; {Reset the axis. }
DrawPolygon(•••); {Plot second curve. }
ResetAxis; { Reset the axis. }
DrawHistogram(•••); { Plot third curve. }

Example

114

DrawAxis(2,2,O,O,O,O,O,O,false);

draws solid axes that extend to the edges of the active window,
with arrows on their ends. Numbers on the axes are displayed very
far apart.

DrawAxis(9,-l,l,4,l,4,l,-l,true);

draws a dashed horizontal axis with an arrow on the end, and
with numbers displayed very close together. Axis is drawn in an
area that is smaller than the active window by 8 pixels on the right
and left and 4 pixels on the top and bottom. A border is drawn
around the drawing area.

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawBorder [GKERNEL.PAS]

Declaration procedure DrawBorder;

Usage DrawBorder;

Function DrawBorder draws a border around the active window in the cur­
rent drawing color and line style.

Remarks If a header has been defined for the active window with the
DefineHeader procedure, DrawBorder positions the header on the
upper edge of the window if SetHeaderToTop has been called, or on
the lower edge of the window if SetHeaderToBottom has been
called. A header reduces the available drawing area in the window;
if no header is defined, the whole window is used as the drawing
area.

DrawBorder does not erase the active window. If you need to erase
the window background, use SetBackground (set to 0).

Restrictions If the header is too long to fit within the window, it is not drawn.
(Header length X 6) must be less than the width of the window in
pixels, - 2.

See Also DefineHeader

Example

DrawS quare
SetBackground
SetHeaderOff
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

DrawBorder;

draws a border around the active window, along with a header or
footer if one was previously defined with the DefineHeader proce­
dure.

Technical Reference 115

DrawCartPie [GSHELLPAS]

Declaration

Usage

Parameters

procedure DrawCartPie(XCenter,YCenter,XStart,YStart,
Inner,Outer:FloatiA:PieArraYi N,Option,
Scale:integeri

DrawCartPie(XCenter,YCenter,XStart,YStart,Inner,Outer,
A,N, Option, Scale);

XCenter,YCenter: world coordinates of center point of circle

XStart, YStart

Inner

Outer

A

N

Option
Option = 0
Option = 1
Option =2
Option=3

Scale

world coordinates of starting point of first cir­
cle segment

inner radius of label line in radius units

outer radius of label line in radius units

pie chart array

number of circle segments

labeling options
no label
text label only
text and numeric label
numeric label only

multiplier for specifying size of label

Data Format Pie chart data is passed to the procedure as an array of the follow­
ing form:

Function

116

type PieType=record

end;

Area:Floati
Text:wrkstringi

PieArray=array [l •• MaxPiesGlb] of PieTypei

DrawCartPie draws a pie chart, referenced to the X and Y coordi­
nates of the starting point of the first pie segment, with optional
text or numeric labels. Each segment's area and label are passed to
the procedure in the PieArray, A, which defines the pie chart to be
drawn.

DrawCartPie first determines each segment's proportion of the
whole pie chart, then draws and labels the segments. Each seg­
ment's percentage of the pie chart is determined by totaling the
areas of all segments, then displaying each segment's area as a
percentage of the total area. Since this computation of percentage
is not affected by the absolute values of the areas, any number

Turbo Pascal Graphix Toolbox Owner's Handbook

Remarks

See Also

Example

system can be used for specifying the areas. A negative value for
area causes the pie segment to move out radially and be displayed
separately from the rest of the pie chart.

A line is drawn from each pie segment, starting at a distance of
Inner away from the center segment and ending at a distance of
Outer. A text and/or numeric label can be drawn at the end of each
segment line in the 4x6-pixel character set. Inner and Outer spec­
ify the inner and outer radii that the radial label line is to traverse,
with 1 being on the circle itself Option specifies whether the area
value and/or text is displayed; a value of 0 designates no label, 1
specifies text label only, 2, text arid numeric label, and 3, numeric
label only. Scale specifies the size of the characters that make up
the label.

Pie segments are drawn in a clockwise direction. Any part of the
pie chart that lies outside the window boundaries is clipped if
clipping is enabled with the SetClippingOn procedure.

Note that the aspect ratio is applied to pie charts. The aspect ratio
must be set to 1 with the SetAspect procedure to ensure a circular
pie chart.

To draw a pie chart with reference to its radius and the angle of its
first segment, use DrawPolarPi segment, use DrawPolarPie.

DrawCircleSegment
Draw Polar Pie
PieArray (type)
SetAspect

DrawCartPie(lOO,lOO,125,lOO,1.1,1.4,SalesFigures,9,2,1);

draws a pie chart, with 9 sections, from the SalesFigures array.
The starting point of the first pie segment is at [l25,100]. Both
numeric and text labels are attached to the pie with short lines.
Labels are drawn in 4x6-pixel characters without scaling.

Technical Reference 117

DrawCircle [GKERNELPAS I

Declaration procedure DrawCi rc 1 e (X, Y, R: Float) ;

Usage DrawCircle(X,Y,R);

Parameters X, Y: coordinates of point at center of circle or ellipse

R : radius of circle or ellipse

Function DrawCircle draws circles and ellipses. The circle or ellipse is drawn
with its radius measured in the horizontal (X) direction, and wifu
Radius X Aspect in the vertical (Y) direction. ':

Remarks The horizontal-to-vertical ratio (aspect ratio) is set with the proCe­
dure SetAspect. Small aspects produce ellipses stretched horizon­
tally, and large aspects produce vertical ellipses, while an aspect of
1 draws a true circle.

Restrictions If SetWindowModeOn has been called, the value of the radius must
be divided by 100, that is, a radius value of 0.1 gives a circle with a
radi~s of 10.

If SetWindowModeOff has been called, then the radius value you
specify is the radius you get, that is, a radius value of 10 gives a
circle with radius 10.

See Also AspectFactor (constant)
DrawCircleDirect
DrawCircleSegment
SetAspect

Example

118

DrawCircle(20,40,15)

draws a circle whose center point is at coordinates [20,40] with a
radius of 15.

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawCircleDirect [GKERNEL.PASj

I>eclaration procedure DrawCircleDirect(X,Y,R:integer; Clip:boolean);

Usage I>rawCircleDirect(X,Y,R,Clip);

Parameters X, Y: screen coordinates of point at center of circle or ellipse

R radius of circle or ellipse

Clip: enables/disables clipping

Function DrawCircleDirect draws a circle or ellipse, with the radius mea­
sured in X units of the screen. If Clip is TRUE, the circle is clipped
at window boundaries; if FALSE, the circle is not clipped.

Remarks This procedure is used for fast circle drawing. It should be used
with caution, since it could cause drawing outside the physical
screen. DrawCircle should be used in applications where speed of
operations is not crucial.

Restrictions None

See Also DrawCircle
SetAspect

Example DrawCircleDirect(lOO,lOO,lOO,true);

draws a circle at screen coordinates [100,100] with a radius of 100
pixels, ~ clipping at window boundaries.

wrrtr

Technical Reference 119

DrawCircleSegment [GSHELL.PAS 1

I>eclaration procedure DrawCircleSegment(XCenter,YCenter:Floativar XStart,
YStart:FloatiInner,Outer,Angle,Area:FloatiText:
WrkStringiOption,Scale:byte)i

Usage I>rawCircleSegment(XCenter,YCenter,XStart, YStart,Inner,Outer,
Angle,Area, Text, Option, Scale);

Parameters XCenter, YCenter: coordinates of point at center of circle

Function

120

XStart, YStart

Inner

Outer

Angle

Area

Text

Option
Option=O
Option = 1
Option=2
Option =3

Scale

coordinates of starting point of segment

inner radius of label line in radius units

outer radius of label line in radius units

angle of segment in degrees

numeric label corresponding to segment

text label corresponding to segment

display options
no label
text label only
text and numeric label
numeric label only

multiplier used to determine the size of label

DrawCircleSegment draws an arc of a circle with optional text and
numeric labels. The center of the circle is at coordinates [XCenter,
YCenter] (world coordinates), and the starting point of the arc is at
coordinates [XStart, YStart]. The angle of the arc is passed directly
in degrees. A line segment pointing outwards from the arc is drawn
starting at a distance Inner away from the arc, and continuing to a
distance Outer. After the segment is drawn, the coordinates of the
endpoint are passed back through the starting position variables.

Text and/or numeric labels can be added. A radial label line can be
drawn from the center of the circle segment outward to any loca­
tion; its inside starting point is specHied by Inner and its outside
radius by Outer. Inner and Outer are scaled radius values: a value of
1 specifies a point on the circle segment, 0.5 a point halfway
between the circle segment and its center, and a value of 2 indicates
a point one radius distance outside the circle segment. A value of 1
for both inner and outer radii effectively disables the line so it does
not appear. The outer radius determines where the label is to be
placed. The Option parameter specifies whether to type text and/or

Turbo Pascal Graphix Toolbox Owner's Handbook

numerics as the label; a value of 0 specifies no label, 1 specifies text
label only, and 2, both text and numeric label. Labels are drawn in
the 4x6-pixel character set. Scale determines the size of the charac­
ters in the label.

Remarks If part of the segment lies outside the defined window boundaries
and SetClippingOn has been called, the segment is clipped at win­
dow boundaries.

The aspect ratio is used by this procedure; see the SetAspect proce­
dure.

Restrictions If Inner or Outer is equal to 0, the label line is not drawn.

See Also AspectFactor (constant)
DrawCartPie
DrawCircle
DrawCircleDirect
DrawPolarPie
SetAspect

Example DrawCircleSegment(X,Y,ArcX,ArcY,1.1,1.4,30,2300, 'Capital
gains: $1,2,1)

draws an arc starting at [ArcX,Arc Y] that extends 30 degrees
counterclockwise, centered around coordinates [X,Y]. A line is
added with label saying Capital gains: $2300 in 4x6-pixel charac­
ters.

Technical Reference 121

DrawCross [GKERNELPASJ

Declaration procedure DrawCross (X, Y, Sea 1 e: integer) ;

Usage DrawCross(X,Y,Scale);

Parameters X, Y : coordinates of point at center of cross

Scale : multiplier for specifying size of cross

Function DrawCross draws a cross (+) at coordinates [X,Y]. The size of the
cross is approximately 2*Scale X 2*Scale.

Remarks This procedure is primarily for internal use of the graphics system;
it is used by DrawPolygon to mark lines.

Restrictions None

See Also DrawCrossDiag

Example

DrawDiamond
DrawS tar
DrawWye

DrawCross(137,42,5);

draws a cross at screen coordinates [137,42].

122 Turbo Pascal Graphix Toolbox Owner's Handbook

DrawCrossDiag [GKERNELPAS]

Declaration procedure DrawCrossDi ag(X, Y ,Seal e: integer):

Usage DrawCrossDiag(X,Y,Scale);

Parameters X, Y : coordinates of point at center of cross

Scale : multiplier for specifying size of cross

Function DrawCrossDiag draws a diagonal cross (x) at coordinates [X, Y]. The
size of the diagonal cross is approximately 2*Scale x 2*Scale.

Remarks This procedure is primarily for internal use of the graphics system;
it is used by DrawPolygon to mark lines.

Restrictions None

See Also DrawCross

Example

DrawDiamond
DrawStar
DrawWye

DrawCrossDiag(89,70,8);

draws a diagonal cross at screen coordinates [89,70].

Technical Reference 123

DrawDiamond [GKERNEL.PASj

I)eclaration procedure DrawDiamond(X,Y,Scale:integer)i

Usage I)rawl)iamond(X,Y,Scale);

Parameters X, Y : coordinates of point at center of diamond

Scale : multiplier for specifying size of diamond

Function DrawDiamond draws a diamond (0) at coordinates [X, Y]. The size
of the diamond is approximately 2*Scale X 2*Scale.

Remarks This procedure is primarily for internal use of the graphics system;
it is used by DrawPolygon to mark lines.

Restrictions None

~xample DrawDiamond(470,40,4)i

draws a diamond at screen coordinates [470,40].

124 Turbo Pascal Graphix Toolbox Owner's Handbook

DrawHistogram [GSHELL.PASj

Declaration

Usage

Parameters

procedure DrawHistogram(A:PlotArray; N:integer;
Hatching:boolean; HatchStyle:integer);

Draw Histogram(A,N ,Hatching,HatchStyle);

A : array of bar chart

N : number of bars in chart

Hatching : enable or disable hatching

HatchStyle : density of hatching
negative value = positive slope direction
positive value = negative slope direction

Data Format Bar chart data is passed in an array of the type PlotArray, with the
following form:

A[i,l] = not used
A[i,2] = height of the i'th bar (Y value)

Function DrawHistogram can create many types of bar charts with different
hatchings and an optional axis display.

DrawHistogram draws a bar chart from an array, A, of real number
values, [MaxPlotGlb,2]. DrawHistogram uses the [i,2] elements of
the array to determine the height of each bar. The array is some­
what compatible with a polygon array, in that the Y axis compo­
nents are displayed with constant increments in the X dimension.
DrawHistogram calculates these increments from the window dis­
play width and the number of elements in the array to be dis­
played. The height of the histogram bars are scaled using the
world coordinate system active at the time. The bars can be dis­
played in two modes: they can either be drawn from the bottom of
the display area, or from the Y axis. When N, which specifies the
number of bars in the chart, is positive, the bars are drawn from
the bottom of the display area, and the absolute value function is
applied. This forces all values to be positive, and thus prevents
negative values from overwriting the ruler display when it is near
the Yaxis. When N is negative, bars are drawn from the Yaxis, and
the actual positive and negative values are used.

If Hatching is TRUE, each bar is hatched. The density and direc­
tion of the hatch lines is determined by Hatch Style . The value of
HatchStyle determines the number of pixels between hatch lines;
a value of 1 gives solid bars with no hatching, with increasing
values widening the space between bars. The sign of the

Technical Reference 125

Remarks

Restrictions

See Also

Example

126

HatchStyle value determines the initial direction of hatching;
hatching direction alternates with each consecutive bar. If
HatchStyle is negative, the initial hatch line is drawn with a posi­
tive slope; if HatchStyle is positive, it is drawn with negative slope.

The active window is entirely filled horizontally with the bar chart.

The number of bars is limited by the constant MaxPlotGlb, as
defined in the GDRIVERPAS file.

MaxPlotGlb (constant)

DrawHistogram(BarChartPoints,-40,true,6)i

draws a bar chart with 40 bars in the active window. The bars
may go up or down from the (invisible) horizontal axis, and they
are hatched sparsely.

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawLine [GKERNELPAS]

Declaration procedure DrawLi ne (Xl, Y1, X2, Y2: Float) ;

Usage DrawLine(Xl,Yl,X2,Y2);

Parameters Xl, Yl : coordinates of starting point of line

X2, Y2 : coordinates of end point of line

Function DrawLine draws a line from [Xl,Yl] to [X2,Y2] in the line style
selected by the SetLinestyle procedure.

Remarks The line is drawn in world coordinates unless the window mode is
disabled with the SetWindowMo de Off procedure, in which case the
line is drawn in absolute screen coordinates. With window mode
enabled, any part of the line that lies outside the window bound­
aries is clipped.

See Also DrawStraight
SetLinestyle

Restrictions None

Example Drawl i ne (40,107.5,99,50)

draws a line between world coordinates [40,107.5] and [99,50].

Technical Reference 127

DrawLineClipped [GKERNEL.PASj

I>eclaration procedure DrawlineClipped{X1,Y1,X2,Y2:integer):

Usage I>raw LineClipped(X1, Y1,X2, Y2);

Parameters Xl, Y 1 : coordinates of starting point of line

X2, Y2 : coordinates of end point of line

Function DrawLineClipped is a special procedure used to draw a line safely
when the window mode is disabled with the SetWindowModeOff
procedure. The line is drawn in absolute screen coordinates.

Remarks This procedure clips a line at the active window boundaries, regard-
less of whether window mode is on or off.

Restrictions None

See Also I>rawLine

Example Drawl i neCl i pped (I, 1,199,199):

draws a line between screen coordinates [1,1] and [199,199].

128 Turbo Pascal Graphix Toolbox Owner's Handbook

DrawPoint [GKERNEL.PASj

Declaration procedure DrawPoi nt (X, Y: Fl oat);

Usage DrawPoint(X,y);

Parameters X,Y : coordinates of point

Function DrawPoint draws or redraws a point at coordinates [X, Y]. If window
mode is enabled with the SetWindowModeOn procedure, the point
is drawn in the active window in world coordinates and is scaled
accordingly; if window mode is disabled with the SetWindow­
ModeOff procedure, the point is drawn in absolute screen coordi­
nates.

Remarks If clipping is enabled with the SetClippingOn procedure, the point
is clipped (not displayed) if it lies outside the active window bound-
aries.

See Also SetColorBlack
SetColorWhite

Restrictions None

~xarnple DrawPoint(35.9,50.2)

draws a point at world coordinates [35.9,50.2]'

For Phi:=O To 359 Do
DrawPoint(Phi,Sin(Phi*Pi/180»;

draws one cycle of a sine wave, with the world coordinate system
defined by coordinates [0, -1] and [359,1].

Technical Reference 129

DrawPolarPie [GSHELLPASj

Declaration

Usage

Parameters

procedure DrawPolarPie(XCenter,YCenter,Radius,Angle,
Inner,Outer:FloatiA:PieArraYi N,Option,
Scale:integeri

DrawPolar Pie(XCenter, YCenter, Radius ,Angle, Inner, Outer,
A,N ,Option, Scale);

XCenter,YCenter: world coordinates of center point of circle

Radius

Angle

Inner

Outer

A

N

Option
Option = 0
Option = 1
Option=2
Option =3

Scale

radius of pie

angle of first pie segment (in degrees)

inner radius of label line in radius units

outer radius of label line in radius units

: pie chart array

: number of circle segments

labeling options
no label
text label only
text and numeric label
numeric label only

multiplier for specifying size of label

Data Format Pie chart data is passed to the procedure as an array of the follow­
ing form:

Function

130

type PieType=record
Area:Floati
Text:wrkstringi

end;
PieArray=array [l •. MaxPiesGlb] of PieTypei

DrawPolarPie draws a pie chart, referenced to its radius and the
angle of its first segment, with optional text or numeric labels.
Each segment's area and label are passed to the procedure in the
PieArray, A, which defines the pie chart to be drawn.

DrawPolarPie first determines each segment's proportion of the
whole pie chart, then draws and labels the segments. Each seg­
ment's percentage of the pie chart is determined by totaling the
areas of all segments, then displaying each segment's area as a
percentage of the total area. Since this computation of percentage
is not affected by the absolute values of the areas, any number
system can be used for specifying the areas. A negative value for

Turbo Pascal Graphix Toolbox Owner's Handbook

Remarks

See Also

Example

area causes the pie segment to move out radially and be displayed
separately from the rest of the pie chart.

A line is drawn from each pie segment, starting at a distance of
Inner away from the center segment and ending at a distance of
Outer. A text and/or numeric label can be drawn at the end of each
segment line in the 4x6-pixel character set. Inner and Outer spec­
ify the inner and outer radii that the radial label line is to traverse,
with 1 being on the circle itself Option specifies whether the area
value and/or text is displayed; a value of 0 designates no label, 1
specifies text label only, and 2, text and numeric label. Scale
specifies the size of the characters that make up the label.

Pie segments are drawn in a clockwise direction. Any part of the
pie chart that lies outside the window boundaries is clipped if
clipping is enabled with the SetClippingOn procedure.

Note that the aspect ratio is applied to pie charts. The aspect ratio
must be set to 1 with the Set Aspect procedure to ensure a circular
pie chart.

To draw a pie chart in reference to the starting point (X and Y coor­
dinates) of its first segment, use DrawCartPie.

DrawCartPie
DrawCircleSegment
PieArray (type)
SetAspect

DrawPolarPie(lOO,lOO,50,45,1.1,1.4,SalesFigures,9,2,1);

draws a pie chart, with 9 sections, from the Sales Figures array.
Its radius is 50, and its first segment has a 45 degree angle. Both
numeric and text labels are attached to the pie with short lines.
Labels are drawn in 4x6-pixel characters without scaling.

Technical Reference 131

DrawPolygon [GSHELLPAS J

Declaration

Usage

Parameters

procedure DrawPolygon(A:PlotArray; First,Last,Code,Scale,
Lines:integer);

DrawPolygon(A,First,Last, Code,Scale,Lines);

A : polygon vertex array (see data format)

First : array index of first vertex to plot

Last : array index of last vertex to plot

Code: code of a graphic symbol

Scale: multiplier for specifying size of symbol (scaling)

Lines : choice of bar presentation

Data Format The coordinates of the points of a polygon are passed in the global
array Plot Array. The data type Plot Array is defined as follows:

Function

132

type PlotArray = array [1 .• MaxPlotGlb,1 .• 2] of Float;

MaxPlotGlb is a constant that gives the maximum number of ver­
tices (pOints) of a polygon. This number is preset to 100, but may
be changed to any number by editing the GDRIVER.PAS file.

The coordinates of the points must be presented in the following
manner:

A[i,l] = X coordinate of the i'th point
A[i,2] = Y coordinate of the i'th point

DrawPolygon draws a polygon using line segments with variable
attributes and vertex symbols. The polygon is drawn in the active
window in the current drawing color and line style.

First and Last define the range of the array, A. When Last is nega­
tive, all draWings are clipped. This is useful after rotations, moves,
scaling, or after the world coordinate system has been changed.
When Last is positive, only symbols are clipped, and drawing
takes places faster than in the full clipping mode.

First specifies the array index of the first vertex to plot. If any of
the following conditions are not fulfilled, an error occurs.

First < abs(Last)
First> 0
abs(Last) - First ~ 2

Code specifies the code for a graphics symbol. If Code is a negative
value, only symbols are displayed at vertices; if it is positive, sym-

Turbo Pascal Graphix Toolbox Owner's Handbook

Remarks

Restrictions

See Also

Example

boIs are displayed at vertices, and the vertices are connected with
lines in the line style chosen by the SetLinestyle procedure. The
following list shows the available symbols, along with their codes.

Code Symbol

0 line
1 (+)
2 (x)
3 (0)
4 (-)
5 (0)
6 (Y)
7 (*)
8 (0)
9 (.)
>9 line

Scale determines the size of the symbol; its value must always be
greater than 1.

Line determines whether or not vertical lines are drawn from the
axis to the vertices. Options are:

Line < 0 : lines are drawn from Y-zero-axis to each vertex

Line = 0 : no lines

Line > 0 : lines are drawn up from bottom of display area to each
vertex

To draw coordinate axes for the polygon, call DrawAxis before call­
ing DrawPolygon.

None

PlotArray (type)

DrawPolygon(Points,lO,30,8,l,O);

draws the lOth through 30th points of the Points array. Points are
displayed as small circles, and are connected by lines drawn in the
current line style.

Technical Reference 133

DrawSquare [GKERNEL.PASj

I>eclaration procedure DrawSquare(Xl,Yl,X2,Y2:Float; Fill:boolean);

Usage I>rawSquare(Xl,Yl,X2,Y2,Fill);

Parameters Xl, Yl : world coordinates of point at upper left corner of rectangle

X2, Y2: world coordinates of point at lower right comer of rectan­
gle

Fill enables/disables filling of rectangle

Function DrawSquare draws a rectangle, with point [Xl,Yl] as the upper left
corner and point [X2, Y2] as the lower right corner. The rectangle is
drawn in the line style selected by the SetLineStyle procedure.
When Fill is TRUE, the rectangle is filled with the current drawing
color.

Remarks To fill a square with a background pattern, define the square as a
window and use SetBackgrourul or SetBackgrourul8.

Restrictions None

See Also I>raw Line
I>rawStraight
SetForegroundColor
SetLinestyle

Example DrawSquare (2,3,50,90, true);

134

draws a solid rectangle defined by world coordinates [2,3]
through [50,90].

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawSquareC [GKERNEL.PASj

I>eclaration procedure DrawSquareC(Xl,Yl.X2,Y2:integer: Fill:boolean);

Parameters Xl, Y 1: screen coordinates of point at upper left comer of rectan-
gle

X2, Y2: screen coordinates of point at lower right comer of rectan­
gle

Fill enables/disables filling of rectangle

Function DrawSquareC draws a rectangle, with coordinate [Xl, Yl] at the
upper left corner and coordinate [X2, Y2] at the lower right corner of
the rectangle. The rectangle is drawn in screen coordinates, but is
clipped at the boundaries of the active window. .

Remarks This procedure is used internally by the DrawBorder procedure.

Restrictions None

See Also I>rawSquare

]Example DrawSquareC(2,3,50,90,false):

draws the part of the square (defined by screen coordinates [2, 3]
and [50, 90]) that fits in the active window.

Technical Reference 135

DrawStar [GKERNEL.PASj

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

136

procedure DrawStar(X,Y,Scale:integer);

DrawS tar(X,Y, Scale);

X, Y : coordinates of center point of star

Scale : multiplier for determining size of star

DrawStar draws a six-pointed star (*) at coordinates [X, Y]. The size
of the star is approximately 2*Scale X 2*Scale (in pixels).

This procedure is mainly for internal use by the graphics system; it
is used by DrawPolygon for marking lines.

None

DrawCross
DrawCrossDiag
DrawDiamond
DrawWye

DrawStar(400,130,30);

draws a large star at screen coordinates [400, 130].

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawStraight [GDRIVERPAS]

Declaration procedure OrawStrai ght (Xl, X2, Y :word) ;

Usage DrawStraight(Xl,X2,Y);

Parameters Xl: X screen coordinate of starting point of line

X2 : X screen coordinate of end point of line

Function

Remarks

Restrictions

See Also

Example

Y : Y screen coordinate of line

DrawStraight draws a horizontal line from [Xl, Y] to [X2, Y] in abso­
lute screen coordinates; no clipping is performed.

Although DrawLi.tne can accomplish the same function as Draw­
Straight, this procedure performs the task of drawing horizontal
lines much faster. DrawStraight is useful for speedy filling of
squares. The line is always drawn in line style 0 (See SetLinestyle).

None

DrawLine
SetLinestyle

OrawStraight(23,502,IOO);

draws a long horizontal line between screen coordinates [23,100]
and [502,100].

Technical Reference 137

DrawText [GKERNEL.PAS]

Declaration procedure DrawText{X,Y,Scale:integer: Text:WrkString):

Usage DrawText(X,Y,Scale,Text);

Parameters X, Y : coordinates of point at beginning of character string

Scale: multiplier for specifying character size

Function

Text : character string

DrawText draws the given string, Text, beginning at screen coordi­
nates [X,Y]. The procedure uses the 4x6-pixel character set
multiplied both vertically and horizontally by Scale. If an ESCape
(character 27 decimal) is in the string, a particular symbol is drawn
according to the next character in the string.

There are eight possible symbols, corresponding to the sequences
ESC 1 through ESC 8:

1= +
2= X

3=0
4=.
5=0
6='Y'
7=*
8=0

The symbols are drawn to the same scale as the text. The ESCape
sequence can also be given in the form ESC n @ s, where n is a
number between 1 and 8 and s is an integer value. In this case,
ESC n designates which symbol to draw, while s specifies the scale
of the symbol. For instance, the sequence ESC 1 @ 5 would draw a
cross with a scale of 5.

Remarks Text is clipped at active window boundaries if SetClippingOn has
been called.

Restrictions None

See Also DrawTextW

Example DrawText{lOO,lOO,2, 'Some text'):

138

draws the character string Some text beginning at screen coordi­
nates [100,100], in 8x12-pixel characters.

DrawText{250,19,3,'This is a diamond: '+Chr(27)+'5':

draws the character string This is a diamond <> beginning at
screen coordinates [250, 19] in 12x18-pixel characters.

Turbo Pascal Graphix Toolbox Owner's Handbook

DrawTextW [GKERNELPASJ

I>eclaration procedure DrawTextW{X,Y,Scale:Float: Text:WrkString):

Usage I>rawTextW(X,Y,Scale,Text);

Parameters X, Y : world coordinates of point at beginning of character string

Scale : multiplier for specifying character size

Text : character string

Function DrawTextW draws the given string, beginning at world coordinates
[X, Y]. The procedure uses the 4x6-pixel character set multiplied
both vertically and horizontally by Scale. If an ESCape (character
27 decimal) is in the string, a particular symbol is drawn according
to the next character in the string.

Remarks See DrawText for possible ESC sequence symbols.

Restrictions None

See Also I>isplayChar
I>rawText

Example DrawTextW{5.7,19.02,3,'This text starts at
(5.7,19.02) in world coordinates '):

draws the character string beginning at world coordinates
(5.7,19.02) in the active window.

Technical Reference 139

DrawWye [GKERNEL.PASj

Declaration procedure DrawWye (X, Y , Sea 1 e: ; nteger) ;

Usage DrawWye(X,Y,Scale);

Parameters X, Y : coordinates of center point of Y symbol

Scale : multiplier for specifying size of symbol

Function DrawWye draws a Y-shaped symbol at coordinates [X,Y]. The size
of the Y is approximately 2*Scale X 2*Scale.

Remarks This procedure is mainly for internal use by the graphics system; it
is used by DrawPolygon for marking lines.

Restrictions None

See Also DrawCross
DrawCrossDiag
DrawDiamond
DrawStar

Example DrawWye(50,90,4);

draws a Y-shaped figure at screen coordinates [50, 90].

140 Turbo Pascal Graphix Toolbox Owner's Handbook

EnterGraphic [GDRIVERPASj

Declaration procedure EnterGraph; c;

Usage EnterGraphic;

Function EnterGraphic turns the graphics mode on and clears the screen.
This procedure is normally called to reactivate the graphics mode
after Leave Graphic has been called.

Remarks EnterGraphic does not initialize the graphics system; to do that,
InitGraphic must be called. EnterGraphic also loads the system­
dependent (higher quality) character set the first time it is called,
and sets ConOutPtr to point to DisplayChar.

After EnterGraphic is called, "black" will be true black and "white"
will be true white, regardless of the graphics card installed. A call to
SetBackgroundColor or SetF oregroundColor, followed by a call to
EnterGraphic, will cancel the colors set by the SetColor procedures
and set them to true black and white.

Restrictions None

See Also InitGraphic
LeaveGraphic

Example EnterGraph; c;

clears the screen, sets the colors to true black and white, and
turns graphics mode on.

Technical Reference 141

Error [GKERNELPASJ

Declaration procedure Error(Proc, Code: integer) ;

Usage Error(Proc, Code);

Parameters Proc: address of procedure where error was detected

Code : error code

Function Error is called when an error is discovered by one of the Turbo
Graphix procedures; the address of the procedure and an error code

Remarks

are given. Ifbreak mode is enabled with the SetBreakOn procedure?.-_ f'lO
an error will halt the program and an error message and ~of
the addresses of the procedures in the calling sequence that caused
the error are displayed. If break mode is disabled with the Set­
BreakOff procedure, the Error procedure stores the error code for
later examination when the GetErrorCode function is called. If
message mode is enabled with the SetMessageOn procedure, a mes-
sage is displayed, regardless of SetBreakOn/Ojf.

Error messages are displayed on line 25 of the screen. If Set­
BreakOn has been called, a list of addresses is displayed. The first
address given is the location of the call to Error. If the compiler
Option Find is used on the program, the compiler will display the
statement Error(p,c) for the graphics procedure where the error was
detected. The next number is the address of the statement that
called the procedure that found the error. Each successive number
is the caller of the previous procedure. The last number points out
the line in the main program that started the fatal calling sequence.

Restrictions None

See Also GetErrorCode

Example

142

SetBreakOff
SetBreakOn
SetMessageOff
SetMessageOn

Error{2,3);

signals error code 3 in procedure 2.

Turbo Pascal Graphix Toolbox Owner's Handbook

FindWorld [GSHELL.PAS]

Declaration procedure FindWorld(I:integer; A:PlotArray; N:integer;
ScaleX,ScaleY:Float};

Usage FindWorld (I,A,N ,ScaleX, Scale Y);

Parameters I : index of world

A : polygon array

N : number of vertices in polygon array

ScaleX: additional scaling factor in X direction

Scale Y : additional scaling factor in Y direction

Function FindWorld determines a world coordinate system for a polygon. The
procedure finds the maximum and minimum X and Y values used to
draw a polygon, and then defines a world that either exactly
encloses the polygon, or that is larger or smaller by some chosen
percentage (ScaleX and SealeY). FindWorld automatically executes
DefineWorld and SelectWorld procedures after it determines the
appropriate world coordinate system.

The I parameter selects the index of the world that is to be modi­
fied. The selected polygon, A, is passed in the PlotArray, with N
specifying the number of vertices in the polygon. The X and Y
dimensions can be multipled by ScaleX and SealeY, respectively, to
adjust the scaling of the world dimensions; this allows extra space
around the polygon or changes its proportions. If no extra scaling is
desired, ScaleX and SealeY should be set to 1.

Remarks For a more complete description of the data structure for polygons
of the type Plot Array, refer to the description for DrawPolygon.

Restrictions None

See Also DefineWorld

Example

DrawPolygon
PlotArray (type)
SelectWorld

FindWorld(l,Diagram,30,l,2};

sets a world coordinate system 1, so that the 30-point polygon
Diagram exactly fits the world horizontally, and half fills it verti­
cally.

Technical Reference 143

GetAspect [GKERNEL.PAS]

Declaration

Usage

Function

Remarks

See Also

Restrictions

Example

144

function GetAspect:Float;

GetAspect;

Get Aspect returns the current value of the aspect ratio.

See SetAspect for complete information on the aspect ratio.

AspectFactor (constant)
GetScreenAspect
SetAspect
SetScreenAspect

None

R:=GetAspect;

R gets the current aspect ratio.

Turbo Pascal Graphix Toolbox Owner's Handbook

GetColor [GKERNELPAS]

Declaration function GetColor:word;

Usage GetColor;

Function GetColor returns the drawing color: 0 if the current color is "black",
and 255 if it is "white".

Remarks "Black" and "white" can be any color available to the particular
graphics card installed. For more information on hardware configu­
ration, see Chapter 1 and Appendix A.

See Also SetBackgroundColor
SetColor Black
SetColorWhite
SetForegroundColor

Restrictions None

Example I : =GetCo lor;

1 is 0 if the current drawing color is black, or 255 if the current
drawing color is white.

Technical Reference 145

GetErrorCode [GKERNELPAS]

Declaration

Usage

Function

~ ,n+pll!!lf"I
function GetErrorCode:~:y

GetErrorCode;

GetErrorCode returns the error code of the most recent error, or
- 1 if no error occurred. A call to GetErrorCode resets the error
code to -1.

The error codes are

-1 : No error

o : Error msg missing

1 : Font file missing

2 : Index out of range

3 : Coordinates out of range

4 : Too few array elements

5 : Error opening file

6 : Out of window memory

7 : Value(s} out of range

Remarks GetErrorCode should be called after the use of any routine that
could cause the errors listed here.

Restrictions The procedure or function that caused the error cannot be deter­
mined with this routine; see SetBreakOn.

See Also Error
SetBreakOff
SetBreakOn
SetMessageOff
SetMessageOn

~xample If GetErrorCode < >-1 Then ShutDown;

executes procedure ShutDown if any graphics error has occurred.

146 Turbo Pascal Graphix Toolbox Owner's Handbook

GetLineStyle [GKERNELPASj

Declaration function GetLi neStyl e:word;

Usage GetLineStyle;

Function GetLineStyle returns the current line style (selected by SetLine-
Style), an integer from 0 to 4, or 256 to 511.

Restrictions None

See Also SetLineStyle

Example I: =GetL i neStyl e;

I gets a value in the ranges 0 . .4 and 256 .. 511, representing the
current line style.

Technical Reference 147

GetScreen [GKERNEL.PAS]

Declaration funct 1 on GetScreen: byte;

Usage GetScreen;

Function GetScreen returns the code corresponding to the RAM (virtual) or
displayed screen currently in use (active): code 1 if the displayed
screen is active, or 2 if the RAM screen is active.

Restrictions None

See Also SelectScreen

Example I : =GetSc reen;

I is 1 if the displayed screen is the active screen, or 2 if the RAM
screen is active.

148 Turbo Pascal Graphix Toolbox Owner's Handbook

Declaration

Usage

Function

Remarks

See Also

Restrictions

Example

function GetScreenAspect:Float;

GetScreenAspect;

GetScreenAspect returns the current pixel value of the aspect ratio.

See Set Aspect for complete information on the aspect ratio.

AspectFactor (constant)
GetAspect
SetAspect
SetScreenAspect

None

R:=GetScreenAspect;

R gets the current aspect ratio, in pixels.

Technical Reference 149

GetVStep [GKERNEL.PAS]

Declaration function GetVStep:word;

Usage GetVStep;

Function GetVStep returns the current value of the step (single increment)
for vertical window movement.

Remarks See SetVStep for explanation of step.

Restrictions None

See Also SetVStep

Example I: =GetVStep;

I is the current vertical step value.

150 Turbo Pascal Graphix Toolbox Owner's Handbook

GetWindow [GKERNELPASj

Declaration

Usage

Function

Restrictions

See Also

Example

function GetWindow:integer;

GetWindow;

GetWindow returns the code number of the active window
(selected by SelectWindow).

None

SelectWindow

I:=GetWindow;

I is the code number of the active window.

Technical Reference 151

GotoXY [GKERNELPASJ

Declaration procedure GotoXY(X, Y:word);

Usage GotoXY(X,Y);

Parameters X, Y : coordinates of character

Function GotoXY positions the text cursor (invisible cursor that determines
where next character is to be drawn) at coordinates [X, YJ.

Remarks This procedure tells DisplayChar where to draw the next character,
and thereby augments Turbo's normal GotoXY procedure.

Restrictions None

See Also DC

Example GotoXY(1,20);

causes the cursor to be positioned at the first character on screen
line 20.

152 Turbo Pascal Graphix Toolbox Owner's Handbook

HardCopy [GKERNEL.PAS]

Declaration procedure HardCopy(Inverse:boolean;Mode:byte);

Usage HardCopy(Inverse,Mode);

Parameters Inverse: enables/disables reverse video printout

Mode : specifies print mode

Function HardCopy supplies a printed copy of the active screen. If Inverse is
TRUE, the image is printed with black and white reversed. Mode
specifies the density of the printed image. Seven modes are avail­
able:

Remarks

Restrictions

See Also

Example

0,4,5 = 640 points/line (Epson mode 4)

1 = 960 points/line (Epson mode 1)

2 = 960 pOints/line (Epson mode 2)

3 = 1920 points/line (Epson mode 3)

6 = 720 points/line (Epson mode 6)

This procedure can be used with Epson printers of series MX, RX,
and FX. Pre-FX series printer can be used, but with Mode 1 only.
See the Epson printer manuals for more information.

Non-Epson printers are not supported.

Epson printer manuals
SelectScreen

HardCopy(false,3);

causes the active screen to be printed in Epson graphics mode 3.

Technical Reference 153

HardwarePresent [GDRlVERPASJ

Declaration function HardwarePresent: boo 1 ean;

Usage HardwarePresent;

Function HardwarePresent checks whether or not the necessary graphics
hardware is installed in the system (i.e., IBM Color graphics
adapter for IBM version, Hercules card for Hercules version, and so
on) and returns TRUE iffound. If HardwarePresent is FALSE, an
error occurs.

Remarks

Restrictions

See Also

Example

154

This is an internal function called by InitGraphic.

This function is useful in a program that uses graphics mode only
for certain presentations. If HardwarePresent is FALSE, those
graphic presentations are not available.

If InitGraphic is called when HardwarePresent is FALSE, the pro­
gram is terminated.

InitGraphic

If Not HardwarePresent Then
Writeln('No graphics board detected in your computer. Make
another selection ');

Else
Begin
{DO Graphics}

End;

Turbo Pascal Graphix Toolbox Owner's Handbook

Hatch [GSHELL.PASj

Declaration procedure Hatch (Xl, Y1, X2, Y2: Fl oat: De 1 ta: integer) :

Usage Hatch(Xl,Yl,X2,Y2,Delta);

Parameters Xl, Y 1 : coordinates of point at upper left corner of rectangle to be

Function

Remarks

Restrictions

See Also

Example

hatched

X2, Y2: coordinates of point at lower right corner of rectangle to be
hatched

Delta : distance between hatch lines

Hatch shades a rectangular area of the screen defined by world
coordinates [Xl,Yl] and [X2,Y2]. The hatch pattern is formed with
diagonal lines separated by a distance of Delta. A Delta value of 1
gives solid hatching (no space between lines), a Delta value of 2
gives 50% filled space, a value of 3 gives 33-1/3% filled space, and
so on. If Delta is positive, the lines are drawn from the upper left to
the lower right; if Delta is negative, the lines are drawn from the
lower left to the upper right.

If window mode is disabled with the SetWindowModeOff proce­
dure, the rectangle is drawn in absolute screen coordinates.

None

DrawSquare

Hatch(5,5,30,17,4):

hatches part of the active window, defined by coordinates [5, 5]
and [30, 17], with diagonal lines that fill 1/4 of the given area.

Technical Reference 155

InitGraphic [GKERNEL.PAS]

Declaration procedure In; tGraphi Ci

Usage InitGraphic;

Function InitGraphic initializes the Turbo Graphix Toolbox. It must be called
before any other graphics procedure or function, but may only be
called once within a program. InitGraphic selects the displayed
screen as the active screen and erases it. All windows and worlds
are initialized. In addition, InitGraphic performs these functions:

• Checks for the presence of appropriate graphics hardware

• Reads in the error messages file

• Reads in the 4x6-pixel character set

• Allocates the RAM screen if RamScreenGlb is TRUE in the
GDRIVERPAS file

• Sets aspect ratio to machine-dependent default

• Sets vertical window move step (increment) to machine-depend­
ent default

InitGraphic calls the follOWing procedures:
EnterGraphic;
HardwarePresent;
SelectWindow (1);
SelectWorld (1);
SelectScreen (1);
SetAspect (AspectFactor);
SetBackgroundColor (MinBackground);
SetBreakOn;
SetClippingOn;
SetColorWhite;
SetForegroundColor (MaxForeground);
SetHeaderOff;
SetHeaderToTop;
SetLineStyle (0);
SetMessageOn;
SetWindowModeOn;

Restrictions InitGraphic can be called only once within a program.

See Also EnterGraphic
LeaveGraphic

Example InitGraphici

initializes the graphics system and turns on graphics mode.

156 Turbo Pascal Graphix Toolbox Owner's Handbook

InvertScreen [GDRlVERPASj

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure InvertScreen;

InvertScreen;

InvertScreen inverts the screen display by changing pixels from
black to white or white to black.

"Black" and "white" can be any color available to the particular
graphics card installed in your system. See Chapter 1 and Appendix
A for more information on hardware configuration.

None

InvertWindow

InvertScreen;

changes each pixel on the active screen from "black" to "white",
or from "white" to "black."

Technical Reference 157

InvenWindow [GWINDOW.PAS I

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

158

procedure InvertWindow;

InvertWindow;

InvertWindow inverts the active window display by changing pixels
from black to white or white to black.

"Black" and "white" can be any color available to the particular
graphics card installed in your system. See Chapter 1 and Appendix
A for more information on hardware configuration.

None

InvertScreen

InvertWindow;

changes each pixel on the active window from "black" to "white,"
or from "white" to "black."

Turbo Pascal Graphix Toolbox Owner's Handbook

LeaveGraphic [GDRlVERPASj

Declaration

Usage

Function

Restrictions

See Also

Example

procedure leaveGraphic;

LeaveGraphic;

LeaveGraphic turns the graphics mode off and returns the system to
text mode (which was active before InitGraphic was called).

None

EnterGraphic
InitGraphic

LeaveGraphic;

turns graphics mode off and text mode on.

Technical Reference 159

LaadScreen [GDRlVERPASJ

Declaration procedure LoadScreen (Fi 1 eName: WrkSt ri n9) :

Usage LoadScreen(FileName);

Parameters FileName: screen file name (as saved on disk)

Function LoadScreen opens the file containing a graphics screen, named
FileName, and reads the screen onto the active RAM or displayed
screen.

Restrictions Screens saved with one version of the Turbo Pascal Graphix Toolbox
are not necessarily compatible with any other version. See Appen­
dix A for more on system compatibility.

See Also SaveScreen
Store Screen

~xample LoadScreen('SCREEN.l l
):

loads the contents of the file SCREEN.l into the active screen.

160 Turbo Pascal Graphix Toolbox Owner's Handbook

LaadWindow [GWINDOW.PAS]

I)eclaration procedure LoadWindow(I,X,Y:integer:FileName:WrkString):

Usage LoadWindow(I,X,Y,FileName);

Parameters I : index of window to be loaded

X, Y : world coordinates of point where window is loaded

FileName : window file name (as stored on disk)

Function LoadWirulow loads a window, I, named by FileName, to position
[X,Y] (world coordinates). If X or Y is negative, the previous (saved)
X or Y coordinate value is used (Le., the negative value is ignored.)
The window is loaded into the active window, thereby erasing the
contents of the old window.

Remarks FileName can include both the filename and an extension, and a
disk drive declaration (e.g., b: filename.xxx). Windows saved with
different versions of the Turbo Pascal Graphix Toolbox are compati­
ble. However, this is not the case for the LoadScreen procedure.

Restrictions If a negative value is given for X or Y, the previous (saved) value for
that coordinate is used.

See Also LoadScreen

Example

Save Screen
SaveWindow

LoadWindow(3,-1,20, 'WINDOW.3'):

loads the contents of the file WINDOW.3 into window 3, using
the X position previously stored in the file, and the new Y position
(20).

Technical Reference 161

LoadWindowStack [GWINDOW.PASJ

I>eclaration procedure LoadWindowStack(FileName:WrkString)i

Usage LoadWindowStack(FileName);

Parameters FileName: filename of window stack (as stored on disk)

Function LoadWindowStack stores a window stack, named FileName, from
disk to window memory. This procedure automatically searches for
two files, FileName. STK (file containing the stack) and FileName.
PTR (a pointer file); therefore, you should not add an extension to
FileName.

Remarks When loading a window stack from a floppy or hard disk, the entire
contents of the existing window stack are destroyed.

Restrictions Window stacks saved by different versions of the Turbo Pascal
Graphix Toolbox will not necessarily be compatible. See Appendix
A for more information on compatibility between systems.

See Also LoadWindow

Example

162

SaveWindow
SaveWindowStack

LoadWindowStack('STACK');

loads a window stack from the files STACKSTK and STACK.PTR.

Turbo Pascal Graphix Toolbox Owner's Handbook

MoveHor [GWlNDOW.PASj

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

procedure MoveHor(Delta:integer:FillOut:boolean):

MoveHor(Delta,FillOut);

Delta : distance window is moved

FillOut : enable/disable copy from RAM screen

MoveHor moves the active window horizontally by Delta steps (8
pixels per step). If FillOut is FALSE, the area that used to be under
the window is filled with the opposite of the current color; if FillOut
is TRUE, and there is a RAM screen allocated (RamScreenGlb is
TRUE in GDRIVERPAS), the area is filled with the corresponding
area of the inactive screen. Thus, to move a window over a back­
ground, the background must be stored in the inactive screen (with
Copy Screen) before the window to be moved is drawn on the active
screen. The background is then copied from the inactive screen as
the window moves.

None

MoveVer
SetBackground

MoveHor(-7,false);

moves the active window by 7 X window definition coordinates
(56 pixels) to the left, filling the former location of the window with
the opposite of the current drawing color.

Technical Reference 163

MoveVer [GWlNDOW.PASJ

I>eclaration procedure MoveVer(Delta:integer;FillOut:boolean);

Usage MoveVer(I>elta, FillOut);

Parameters Delta : distance window is moved

FillOut : enable/disable copy from RAM screen

Function MoveVer moves the current window vertically by Delta steps (1
pixel per step). If FillOut is FALSE, the area that used to be under
the window is filled with the opposite of the current color; if FiliOut
is TRUE, and there is a RAM screen allocated (RamScreenGlb is
TRUE in GDRIVERPAS file), the area is filled with the corre­
sponding area of the inactive screen. Thus, to move a window over a
background, the background must be stored to the inactive screen
(with CopyScreen) before the window to be moved is drawn on the
active screen. The background is then copied from the inactive
screen as the window moves.

Remarks SetVStep can be called to specify the number of pixels to move a
window vertically at one time; this will speed the vertical move­
ment of the window. For example, if Delta is 10 and VStep is 3, the
window will move 3 times by 3, then once by 1, for a total move of
10 pixels (in the time a 4-pixel move would take without the use of
SetVStep).

Restrictions None

See Also MoveHor

Example MoveVer(20, true);

164

moves the active window 20 pixels toward the bottom of the
screen, filling the former location of the window with the contents
of the same location on the inactive screen.

Turbo Pascal Graphix Toolbox Owner's Handbook

PD [GDRIVERPAS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

function PD(X,Y:word):booleani

PD(X,Y);

X, Y: screen coordinates of point

PD checks whether a point has been drawn at screen coordinates
[X, Y]. PD returns TRUE if a point exists at [X, Y] in the current
drawing color; otherwise, it refurns FALSE.

None

DrawPoint
PointDrawn

B:=PD(5,5)i

B is TRUE if the point at screen coordinates [5,5] is set to the
current draWing color.

PointCount:=O
for x:=o to XScreenMaxGlb do

for Y:=O to YMaxGlb do
;f PD(X,Y) then PointCount:=PointCounttli

This program counts the number of points on the screen.

Technical Reference 165

PointDrawn [GKERNELPASj

Declaration function Poi ntDrawn (X, Y:Float) :boolean;

Usage PointDrawn(X,Y);

Parameters X, Y: world coordinates of point

Function PointDrawn checks whether or not a point has been drawn at world
coordinates [X,Y]. PointDrawn returns TRUE if a point exists at
[X,Y] in the current drawing color; otherwise, it returns FALSE.

Restrictions None

See Also Draw Point
PD

Exanaple B:=PointDrawn (12.3,17.8)

166

B is TRUE if the point at world coordinates [12.3, 17.8] is set in
the current drawing color.

Turbo Pascal Graphix Toolbox Owner's Handbook

RedefineWindow [GKERNELPAS]

Declaration procedure RedefineWindow(I, XLow, YLow,XHi, YHi: integer);

Usage RedefineWindow(I,XLow,XHi,YHi);

Parameters I : index of window [l..MaxWindowsGlb]

XLow : X value of upper left window position [O .. XMaxGlb]

YLow : Y value of upper left window position [O .. YMaxGlb]

XHi : X value of lower right window position [l..XMaxGlb]

YHi : Yvalue of lower right window position [O .. YMaxGlb]

Function Redefine \\'indow redefines the dimensions of an existing window, I.
The window is defined as a rectangle with the upper left corner at
[XLow, YLow] and the lower right corner at [XHi, YHi]. The previ­
ously defined window header is not affected by Redefine Window.

Remarks The X coordinates of a window are defined in 8-pixel chunks; that
is, windows are placed on byte boundaries in memory. If Redefine­
Window is called with parameters (1, 10, 10, 19, 19), the defined
window is 10 pixels tall and 80 pixels wide.

Restrictions The value of I must be between 1 and MaxWindowsGlb (as defined
in the GDRIVERPAS file), all coordinates must lie within the
physical screen, and the Low coordinates must be lower in numeric
value than the Hi coordinates; otherwise, an error will occur.

See Also DefineWindow
SelectWindow

Example RedefineWindow(4,5,5,lO,lO)i

redefines window 4, with upper left corner at window definition
coordinates [5, 5] and lower right corner at [10, 10] (screen coordi­
nates [40,5] and [87, 10]).

RedefineWindow(2,O,O,XMaxGlb div 2,YMaxGlb div 2);

redefines window 2 as the upper left quarter of the screen.

Technical Reference 167

BemoveHeadN [GKERNELPAS]

Declaration procedure RemoveHeader(I: 1 nteger);

Usage RemoveHeader{I);

Parameters I : index for window

Function RenwveHeader removes the header from window 1. As with
DefineHeader, this procedure has no effect on the display of the
header; the header is erased only when DrawBorder is called again.

Remarks Once the header is removed, the drawing area of the window will
include the part of the window that had been occupied by the
header.

Restrictions None

See Also DefineHeader

Example

168

DrawBorder
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

RemoveHeader(8);

removes the header of window 8, so that a subsequent call to
DrawBorder will not draw the header.

Turbo Pascal Graphix Toolbox Owner's Handbook

ResetWindows [GKERNEL.PAS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure ResetWindowsi

ResetWindows;

ResetWindows sets all windows to the size of the screen, selects
Window 1 (see the SelectWindow procedure), and removes all
headers. This procedure does not affect the current screen display,
but further drawings will be scaled according to absolute screen
coordinates.

This procedure resets windows in the same way as InitGraphic.

None

InitGraphic
ResetWindowStack
ResetWorlds
SelectWindow

ResetWindowsi

sets all windows to the size of the screen.

Technical Reference 169

ResetWindowStack [GWlNDOW.PAS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

170

procedure ResetWindowStack;

ResetWindowStack;

ResetWindowStack erases all windows contained in memory. All
windows saved in the window stack are discarded, and all the space
allocated for the window stack becomes available for the storage of
new windows.

This procedure initializes the window stack in the same way as
InitGraphic. It is especially useful for long programs that require
several different drawing environments.

Windows saved in the window stack are dynamically allocated with
Turbo Pascal's GetMem and FreeMem procedures. Because of this,
the Mark/Release method of memory management must not be
used.

None

InitGraphic
ResetWindows
ResetWorlds
Restore Window
Store Window

ResetWindowStack;

discards any windows saved on the window stack.

Turbo Pascal Graphix Toolbox Owner's Handbook

ResetWorlds [GKERNELPAS]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure ResetWorlds;

ResetWorlds;

ResetWorlds sets all worlds to the size of the physical screen and
selects World 1. (See the SelectWorld procedure.) Further drawings
will be scaled to absolute screen coordinates.

This procedure resets worlds in the same way as InitGraphic.

None

InitGraphic
ResetWindows
ResetWindowStack
SelectWorld

ResetWorlds;

sets all worlds to the size of the screen.

Technical Reference 171

RestoreWinJow [GWINDOW.PAS]

Declaration procedure RestoreWindow{I, DeltaX, Del taY: integer);

Usage Restore Window(I , DeltaX, DeltaY);

Parameters I : index of window [l..MaxWindowsGlb]

DeltaX : X offset

DeltaY : Yoffset

Function RestoreWindow takes a window, I, that was stored in the window
stack with the Store Window procedure and places it on the screen.
If I is negative, the restored window is then discarded from the
window stack. If no saved window is available under the given
index number, an error will occur. The DeltaX and Delta Y parame­
ters give the X and Y offsets used to position the window on the
screen. A value of 0 for both DeltaX and DeltaY positions the win­
dow in the same place it was when it was saved with· Store Window.
A value of 1 for both DeltaX and DeltaY moves the window horizon­
tally by 8 pixels and vertically by 1 pixel.

Restrictions The value of I must lie between 1 and the constant Max­
WindowsGlb (defined in GDRIVER.PAS file).

See Also ClearWindowStack

Example

172

LoadWindow
StoreWindow

RestoreWindow{4,lO,O);

restores the saved copy of window 4 to the active screen, at its
previous Y position but 10 X window definition coordinates (80
pixels) to the right of its previous X position.

Turbo Pascal Graphix Toolbox Owner's Handbook

BotatePolygon [GSHELLPASj

Declaration procedure RotatePolygon(A:PlotArray; N:integer; Angle:Float);

Usage RotatePolygon(A,N,Angle);

Parameters A : polygon array to be rotated

Function

Remarks

Restrictions

See Also

Example

N : number of polygon vertices

Angle : rotation angle in degrees

RotatePolygon rotates a polygon A, containing N vertices, around its
center of gravity in a counterclockwise direction by Angle degrees.
The center of gravity is calculated with the assumption that each
vertex has equal weight.

When displaying a rotated polygon using DrawPolygon, the number
of vertices should be given as a negative value; this guarantees that
the polygon will be clipped at window boundaries.

Use RotatePolygonAbout to rotate a polygon about an arbitrary
point.

None

DrawPolygon
RotatePolygonAbout
ScalePolygon
Translate Polygon

RotatePolygon(Image,45,37.5);

changes the values of the 45 coordinate pairs in Image so that the
polygon is rotated 37.5 degrees clockwise about its center of gravity.

Technical Reference 173

RotatePolygonAbout [GSHELL.PAS]

Declaration procedure RotatePo 1 ygonAbout (A: Pl otArraYi N:; ntegeri
Angle,X,Y:Float)i

Usage RotatePolygonAbout(A,N ,Angle,X,Y);

Parameters A : polygon array to be rotated

Function

Remarks

Restrictions

See Also

Example

174

N : number of polygon vertices

Angle : rotation angle in degrees

X, Y : world coordinates of point around which polygon is rotated

RotatePolygonAbout rotates a polygon A containing N vertices about
an arbitrary point [X, Y], in a counterclockwise direction by Angle
degrees.

When displaying a rotated polygon with DrawPolygon, the number
of vertices should be given as a negative value, to ensure clipping at
window boundaries.

None

DrawPolygon
RotatePolygon
S cale Polygon
Translate Polygon

RotatePolygonAbout(Image,45,37.5,30.5,99)i

changes the values of the 45 coordinate pairs in Image so that the
polygon is rotated 37.5 degrees clockwise about world coordinates
[30.5,99].

Turbo Pascal Graphix Toolbox Owner's Handbook

SaveScreen [GDRIVERPASJ

Declaration procedure SaveScreen (Fi 1 eName: WrkSt ri ng) ;

Usage SaveScreen(FileName);

Parameters FileName: file name of screen (as saved on disk)

Function SaveScreen stores a displayed or RAM screen on a floppy or hard
disk. If a file with name FileName already exists, it is overwritten.

Restrictions Screens saved with one version of the Turbo Pascal Graphix Toolbox
are not necessarily compatible with any other version.

See Also LoadScreen

Example

LoadWindow
SaveWindow

SaveScreen('PRETTY.PIC ');

saves the active screen in a file called PRETTY.PIC.

Technical Reference 175

SaveWi~ [GWlNDOW.PASj

I>eclaration procedure SaveWindow(I:integer;FileName:WrkString);

Usage Save Window(I,FileN arne);

Parameters I : index of window to be saved

FileName : file name of window

Function SaveWindow creates a file named by FileName, and saves window I
in it. FileName can include an extension and a disk drive declara­
tion (e.g., a:FileName.xxx). If a file named FileName already exists,
it is overwritten. The size and position of the window are saved in
the file, and are used when the window is loaded with Load­
Window, though the position can be changed if positive values are
given for the X and Y coordinates when LoadWindow is called.

Remarks Windows saved with different versions of the Turbo Pascal Craphix
Toolbox will be compatible.

Restrictions None

See Also Load Screen
LoadWindow
SaveScreen

Example SaveWindow(15, 'MENU.WIN');

saves window 15 in a file called MENU. WIN.

176 Turbo Pascal Graphix Toolbox Owner's Handbook

SaveWindowStack [GWlNDOW.PASj

Declaration procedure SaveWindowStack(FileName:WrkString) i

Usage SaveWindowStack{FileName);

Parameters FileName : file name of window stack

Function Save Window Stack stores a window stack on a floppy or hard disk.
The contents of the stack include all defined and stored windows.
The procedure automatically creates two files with extensions,
FileName.STK (window stack) and FileName.PTR (pointer file). For
this reason, you should not specify an extension for FileName,
although a disk drive declaration can be specified. If a file with
name FileName exists, it is overwritten.

Restrictions Window stacks saved by different versions of the Turbo Pascal
Graphix Toolbox will not necessarily be compatible.

See Also LoadWindow

Example

LoadWindow S tack
SaveWindow

SaveWindowStack ('WSTACK')i

saves any windows that are currently stored in the window stack
in two disk files, WSTACKSTK and WSTACKPTR.

Technical Reference 177

ScalePolygan [GSHELLPAS J

Declaration procedure ScalePolygon{var A:PlotArray: N:integer:
XFactor,YFactor:Float):

Usage ScalePolygon(A,N ,XFactor, YFactor);

Parameters A : polygon array

N : number of polygon vertices

XFactor: multiplication factor (scaling) in X direction

YFactor : multiplication factor (scaling) in Y direction

Function Scale Polygon scales the lines that make up a polygon A by a propor­
tional amount (XFactor and YFactor) in both horizontal (X) and ver­
tical (Y) directions. The X coordinate of each of the N vertices is
multiplied by XFactor, and the Y coordinate by YFactor.

Remarks When drawing a scaled polygon using DrawPolygon, the number of
vertices should be given as a negative value, to ensure clipping at
window boundaries.

Restrictions None

See Also DrawPolygon
RotatePolygon
RotatePolygonAbout
TranslatePolygon

~xample ScalePolygon{Image,35,2,O.5):

178

changes the values of the 35 coordinate pairs in Image so that the
polygon is stretched to twice its former width, and compressed to
half its former height.

Turbo Pascal Graphix Toolbox Owner's Handbook

SelectScreen [GKERNELPAS J

Declaration procedure Sel ectScreen (I :word);

Usage SelectScreen(I);

Parameters I : displayed or RAM screen

Function SelectScreen selects either the displayed or RAM screen for draw­
ing. If I is 1, the displayed screen is selected. If I is 2, the RAM
screen is selected.

Remarks The constant RamScreenGlb, defined in GDRIVERPAS, must be
set to TRUE (the default) to enable a RAM screen.

Restrictions Drawing is not visible on the RAM screen unless it is first copied to
the displayed screen with Copy Screen or SwapScreen.

See Also Copy S creen
GetScreen
SwapScreen

Example SelectScreen(l);

selects the displayed screen for subsequent drawing.

Technical Reference 179

SelectWindow [GKERNEL.PAS]

Declaration procedure Sel ectWi ndow(l: integer);

Usage SelectWindow(I);

Parameters I : index of selected window ([l..MaxWindowsGlb])

Function SelectWindow selects a window I for drawing. All subsequent draw­
ing and window commands will refer to the selected window.

Remarks If clipping is enabled with the SetClippingOn procedure, drawing is
limited to the area inside the window.

Restrictions The value of I must lie between 1 and the constant Max­
WindowsGlb (defined in GDRIVERPAS file).

See Also

Example

180

If a world is to be associated with a window, SelectWorld must be
called before SelectWindow.

DefineWindow
SelectWorld

SelectWindow(5);

selects window 5 for subsequent operations.

Turbo Pascal Graphix Toolbox Owner's Handbook

SelectWorld [GKERNEL.PAS I

Declaration procedure Se 1 ectWor 1 d (I : integer) i

Usage SelectWorld(I);

Parameters I : index of selected world ([l..MaxWorldsGlb])

Function SelectWorld selects a world coordinate system, I, for the drawing
commands that follow. This procedure must be followed by Select­
Window to associate the world with a window.

Restrictions The value of I must lie between 1 and the constant MaxWorldsGlb
(defined in GDRIVERPAS file).

See Also DefineWindow

Example

DefineWorld
FindWorld
SelectWindow

SelectWorld(3)i
SelectWindow(4)i

selects window 4, with world coordinate system 3, for subsequent
operations.

Technical Reference 181

SetAspect [GKERNEL.PASj

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

182

procedure SetAspect(Aspect:Float);

SetAspect(Aspect);

Aspect : aspect ratio for circle

Set Aspect sets the value of the aspect ratio for drawing circles and
ellipses. The default value for Aspect is the constant AspectFactor,
defined in the GDRIVERPAS file. SetAspect(l) draws a true circle
on any screen.

The aspect ratio determines the shape of circles and ellipses.
Changing the aspect ratio changes how tall a circle is. A machine­
dependent constant, AspectFactor, specifies a ratio that should give
a true circle for a particular physical screen. Drawing the same
circle with aspect ratios of AspectFactor + 2, AspectFactor, and
AspectFactor X 2 will give three figures of the same width, but
each twice as tall as the previous figure.

None

AspectFactor (constant)
DrawCartPie
DrawCircleSegment
DrawPolarPie
GetAspect
GetScreenAspect
SetScreenAspect

SetAspect(1) ;

causes circles to be correctly proportioned on any screen.

Turbo Pascal Graphix Toolbox Owner's Handbook

SetBackground [GDRIVERPASJ

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure SetBackground(Pattern:byte);

SetBackground(Pattern);

Pattern: bit pattern used for background (0 to 255)

SetBackground determines the background pattern of the active
window. There are 256 possible patterns, represented by the value
of Pattern. Shading patterns consist of an 8-bit word repeated across
each horizontal line to fill the window. The lowest (1) bit of the
pattern is the rightmost pixel on the screen, and the highest (l28) is
the leftmost.

A Pattern value of 0 creates a completely black background (which
erases the contents of the window), while a value of 255 creates a
white background.

None

DrawS quare

SetBackground(17);

fills the active window with the pattern represented by the num­
ber 17: 00010001 binary (that is, lout of every 4 points are drawn).

Technical Reference 183

SetBackground8 [GDRlVERPAS]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

184

procedure SetBackground8(Pattern:BackgroundArray);

SetBackground8(Pattern);

Pattern : 8-byte background pattern

SetBackground fills the active window with the specified bit pat­
tern, Pattern. The BackgroundArray is an array of 8 bytes. The low­
est 3 bits of the screen line number are used to determine which
byte of the array to use; i.e., the 0 array element is used on screen
lines whose Y coordinates divide evenly by 8: for a screen line, Yi,
array [Yi mod 8]. The lowest (1) bit of each byte of pattern is the
rightmost, and the highest (128) is the leftmost pixel on the screen.

None

SetBackground

For 1:=0 To 7 Do BackgroundPattern [1]:=1*1;
SetBackground8(BackgroundPattern);

This program fills the active window with the pattern below:

+--------+
o 1 1
1 1 *1
4 1 * 1

1~ 1 ** *1
25 1 ** *1
36 1 * * 1
49 1 ** *1

+--------+

Turbo Pascal Graphix Toolbox Owner's Handbook

SetBackgroundColor [GDRlVERPASj

Declaration procedure SetBackgroundColor(Color:word);

Usage SetBackgroundColor(Color);

Parameters Color : background color

Function SetBackgroundColor chooses the background color ("black") from
the colors available to your particular graphics card. Its value lies
between the constants MinBackground and MaxBackground
(defined in the GDRIVERPAS file).

Remarks InitGraphic and EnterGraphic always reset colors to true black and
white.

Restrictions For IBM versions, the value of SetBackgroundColor must be 0 (true
black) for the IBM color graphics adapter and the 3270 PC, or can
be between 1 and 15 for the PCjr or Enhanced Graphics Adapter;
the value of SetForegroundColor can be between 1 and 15. For Her­
cules, SetBackgroundColor and SetForegroundColor must both be 0,
always black and white (or green or amber depending on the moni­
tor). Changing the colors changes the current display, and may have
other system-dependent consequences; see Appendix A for more
information.

See Also Appendix A
SetForegroundColor

Example SetBackgroundColor (4);

sets the color "black" to whatever color 4 represents for the par­
ticular graphics card installed. Any "black" images currently dis­
played immediately change to color 4.

Technical Reference 185

SetBreakOff[GKERNEL.PAS]

Declaration procedure SetBreakOff;

Usage SetBreakOff;

Function SetBreakOff turns break mode' off. When break mode is enabled
with the SetBreakOn procedure, system errors cause the program to
halt. With break mode off, the program proceeds, and it is up to the
programmer to check for errors.

Remarks The default state is break mode on.

GetErrorCode returns the code of the last error, or - 1 if no error
has occurred since the last call to GetErrorCode. If a second error
happens before the first is cleared, the first error code is lost. See
Error for discussion.

Restrictions None

See Also Error
GetErrorCode
SetBreakOn
SetMessageOff
SetMessageOn

Example SetBreakOff;

causes the program to continue in the event of a graphics error.

186 Turbo Pascal Graphix Toolbox Owner's Handbook

SetBreakOn [GKERNEL.PAS]

Declaration procedure SetBreakOni

Usage SetBreakOn;

Function SetBreakOn turns break mode on. When an error occurs, the pro­
gram halts and the error routine takes control of the program. The
program counter value where the error occurred and an error code
are displayed if SetMessageOn is enabled.

Remarks The default state is break mode on. To allow a program to continue
when an error occurs, SetBreakOjf must be called.

Restrictions None

See Also Error
GetErrorCode
SetBreakOff
SetMessageOff
SetMessageOn

Example SetBreakOni

causes graphics errors to abort the program.

Technical Reference 187

SetClippingOff [GKERNEL.PAS I

Declaration procedure SetCl i ppi ngOff;

Usage SetClippingOff;

Function SetClippingModeOjf turns clipping mode off. All images are' drawn
in their entirety, regardless of window boundaries.

Remarks The default state is clipping mode on.

SetClippingOjf causes drawing to take place somewhat faster; how­
ever, this procedure should be used with caution, since an attempt
to draw outside window boundaries using invalid coordinates can
cause a system crash and/or overwriting of program memory.

Restrictions None

See Also Clip
Clipping
SetClippingOn
SetWindowModeOff
SetWindow ModeOn

Example SetClippingOff;

allows drawings to spill over the boundaries of the active window.

188 Turbo Pascal Graphix Toolbox Owner's Handbook

SetClippingOn [GKERNEL.PAS]

Declaration procedure SetC 1 i pp i ngOn;

Usage SetClippingOn;

Function SetClippingOn turns clipping mode on. If part of a drawing falls
outside the boundaries of the active window, it is not drawn.

Remarks The default state is clipping mode on.

Drawing takes place somewhat slower in this mode than with Set­
ClippingOff', but it is the safer procedure to use, since drawings are
prevented from encroaching on program or data memory.

Restrictions None

See Also Clip
Clipping
SetClippingOff
SetWindowModeOff
SetWindowModeOn

Example SetCl i ppi ngOn;

causes any part of a drawing that strays outside window bound­
aries to be clipped.

Technical Reference 189

SetColorBlack [GKERNELPAS]

Declaration procedure SetColorBlack;

Usage SetColorBlack;

Function SetColorBlack selects "black" as the current drawing color. All fur­
ther text and graphics will be drawn in "black" until a call to Set­
ColorWhite.

Remarks Default drawing color is white.

"Black" can be any background color supported by your graphics
card, except true white; see SetForegroundColor.

You may want to use the SetBackground procedure to fill a window
with a non-black pattern before drawing in "black".

When SetColorBlack has been called, the PointDrawn function will
return TRUE if the specified point is drawn in black.

Restrictions For systems with color graphics cards, the color substituted for
"black" cannot be true white.

See Also DrawPoint

Example

190

GetColor
PointDrawn
SetBackground
SetBackgroundColor
SetColorWhite
SetForegroundColor

SetColorBlack;

causes subsequent images to be drawn in "black" (the back­
ground color).

Turbo Pascal Graphix Toolbox Owner's Handbook

SetColorWhite [GKERNEL.PASj

Declaration procedure Set Co 1 orWh i te;

Usage SetColorWhite;

Function SetColorWhite selects "white" as the current drawing color. All fur­
ther text and graphics will be drawn in "white" until a call to Set­
ColorBlack.

Remarks Default drawing color is white.

"White" can be any foreground color supported by your graphics
card, except true black; see SetForegroundColor.

You may want to use SetBackground to fill a window with a non­
white pattern before drawing in white.

When SetColorWhite has been called, the PointDrawn function
returns TRUE when the specified point is drawn in white.

Restrictions On systems with color graphics cards, the color represented by
"white" cannot be true black.

See Also DrawPoint

Example

GetColor
PointDrawn
SetBackground
SetBackgroundColor
SetColor Black
SetForegroundColor'

SetCo 1 orWhite;

causes subsequent images to be drawn in "white" (the foreground
color).

Technical Reference 191

SetForegroundColor [GDRIVERPAS]

Declaration procedure SetForegroundCol or(Col or:word);

Usage SetForegroundColor(Color);

Parameters Color: color of displayed text and graphics

Function SetForegroundColor selects the drawing color from the colors avail­
able to your particular graphics card. Its value lies between
the constants MinForeground and MaxForeground (defined in
GDRIVERPAS).

Remarks InitGraphic and EnterGraphic always reset colors to true black and
white.

See the discussion under SetBackgroundColor for more informa­
tion.

Restrictions See SetBackgroundColor.

See Also SetBackgroundColor
SetColorBlack
SetColorWhite

Example SetForegroundColor(9);

192

sets the color "white" as whatever color 9 represents on the par­
ticular graphics card installed. Any "white" images currently dis­
played immediately change to color 9.

Turbo Pascal Graphix Toolbox Owner's Handbook

SetHeatkrOff [GKERNEL.PASj

Declaration procedure SetHeaderOff;

Usage SetHeaderOff;

Function SetHeaderOff suppresses the display of window headers and footers
until a call to SetHeaderOn. This means that DrawBorder will not
display any header or footer unless SetHeaderOn has been called.

Remarks The default state is header mode off.

Windows currently displayed on the screen are not affected by
SetHeaderOff.

See DefineHeader for how to define headers.

Restrictions None

See Also DefineHeader

Example,

DrawBorder
Remove Header
SetHeaderOn
SetHeaderToBottom
SetHeaderToTop

SetHeaderOff;

subsequent calls to DrawBorder will not draw a header for any
window, even if a header is defined.

Technical Reference 193

SetH'eaderOn [GKERNEL.PAS]

Declaration procedure SetHeaderOn;

Usage SetHeaderOn;

Function SetHeaderOn allows window headers and footers to be displayed
when DrawBorder is called.

Remarks Default state is header mode off.

SetHeaderOn does not affect windows currently displayed on the
screen.

See DefineHeader for how to define window headers.

Restrictions None

See Also DefineHeader

Example

194

DrawBorder
RemoveHeader
SetHeaderOff
SetHeaderToBottom
SetHeaderToTop

SetHeaderOni

subsequent calls to DrawBorder will draw a header for any win­
dow for which a header is defined.

Turbo Pascal Graphix Toolbox Owner's Handbook

SetHeaderToBottom [GKERNEL.PAS]

Declaration procedure SetHeaderToBottom;

Usage SetHeaderToBottom;

Function SetHeaderToBottom displays all headers at the bottom edge of win­
dows, i.e., as footers, when DrawBorder is called.

Remarks Headers are displayed at the top qf windows by default.

Restrictions

See Also

Example

This procedure does not affect windows currently displayed on the
screen.

See DefineHeader for how to define window headers.

None

DefineHeader
DrawBorder
Remove Header
SetHeaderOff
SetHeaderOn
SetHeaderToTop

SetHeaderToBottom;

subsequent calls to DrawBorder will draw window headers at the
bottom of windows.

Technical Reference 195

SetHeaderToTop [GKERNEL.PAS J

Declaration procedure SetHeaderToTopi

Usage 8etHeaderToTop;

Function SetHeaderTo Top allows window headers to be drawn at the top
edge of windows when DrawBorder is called.

Remarks Headers are displayed at the top of windows by default. '

Restrictions

See Also

Example

196

SetHeaderTo Top does not affect windows currently displayed on the
screen.

See Defi11£Header for how to define window headers.

None

DefineHeader
DrawBorder
Remove Header
SetHeaderOff
SetHeaderOn
SetHeaderToBottom

SetHeaderToToPi

subsequent calls to DrawBorder will draw window headers at the
top of windows.

Turbo Pascal Graphix Toolbox Owner's Handbook

SetLineStyle [GKERNEL.PAS J

Declaration procedure SetLineStyle(LS:word) i

Usage SetLineStyle(LS};

Parameters LS : one of five possible line styles

Function SetLineStyle selects one of five available line styles for drawing
lines; custom patterns can also be designed. Patterns consist of
eight repeating pixels. The five predefined patterns are

0: **************** (unbroken line)
1: * * * * (dotted line)
2: ***** ***** (dashed line)
3: *** * *** * (dash-dot-dash-dot)
4: *** *** *** *** (short dashes)

Any integer value larger than 4 is interpreted according to the mod­
ulo function; that is, the high-order byte of the integer is discarded,
and the remaining 8 bits specify the pattern to be repeated. The
lowest bit comes first. Thus, a linestyle of 100 decimal is 01100100
binary, for a linestyle of

** * ** * ** * ** * ** *

Remarks GetLineStyle returns the line style as a value of 0 to 4 for the
predefined patterns, and 256 + pattern for custom patterns.

Restrictions None

See Also GetLineStyle

Example SetL i neStyl e (1) i

sets the line style to pattern 1, a dotted line.

SetLineStyle(117)i

sets the line style to the bit pattern represented by decimal 117,
binary 01110101, as follows:

*** * * *** * *

Technical Reference 197

SetMessageOff [GKERNEL.PAS J

Declaration procedure SetMessageOff;

Usage SetMessageOff;

Function SetMessageOff suppresses the display of complete error messages.
However, if break mode is enabled with the SetBreakOn procedure,
a brief, non-explanatory message is displayed. The following table
shows how error messages are handled by SetMessageOff and Set­
MessageOn, in conjunction with SetBreakOn and SetBreakOjf.

SetMessageOn SetMessageOff

SetBreakOn Enabled Complete error message
including traceback
displayed; halts

"Graphics error ", proc,
code displayed; program
halts.

SetBreakOff Enabled Complete error message
displayed on line 24;
program continues with
no traceback.

No message; program
continues.

Remarks The default state is message mode on.

The reason a brief message is displayed with SetMessageOff is so
that, if you sell a program written with the Turbo Pascal Graphix
Toolbox, your end users can provide you with information about the
cause of an error.

Restrictions None

See Also Error

Example

198

GetErrorCode
SetBreakOff
SetBreakOn

SetMessageOff;

if break mode is off, errors will not cause error messages to be
displayed. If break mode is on, only a brief error message is dis­
played before the program is aborted.

Turbo Pascal Graphix Toolbox Owner's Handbook

SetMessageOn [GKERNEL.PASj

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure SetMessageOn;

SetMessageOn;

SetMessageOn allows complete error messages to be displayed,
whether break mode is enabled or not. See the table under Set­
MessageOjJ for an explanation of how error messages are handled
by the SetMessageprocedures.

Default state is message mode on.

None

Error
GetErrorCode
SetBreakOff
SetBreakOn
SetMessageOff

SetMessageOn;

If break mode is off, errors will cause error messages to be dis­
played on screen line 24. If break mode is on, error messages will
include the name of the procedure and the nature of the error, along

witha!§Ce;

Technical Reference 199

SetScreenAspect [GKERNELPAS]

Declaration procedure SetScreenAspect (Aspect: Float) ;

Usage SetScreenAspect(Aspect);

Parameters Aspect : aspect ratio for circle, in pixels

Function SetScreenAspect sets the value of the aspect ratio, in pixels, for
drawing circles and ellipses. SetScreenAspect(l) makes a circle or
ellipse that is equal in pixel width and height.

Remarks This procedure is used for applications in which you need to create
a circle or ellipse that is proportional in terms of pixels. Note that
such a circle is not necessarily correctly proportioned when viewed
on the screen; a certain number of consecutive pixels displayed hor­
izontally is quite a bit shorter in length than the same number verti­
cally. An aspect ratio of about 0.6 often gives a truer circle on the
screen. Use Set Aspect to draw visually proportioned circles on a
particular screen.

Restrictions None

See Also AspectFactor (constant)
DrawCartPie
DrawCircleSegment
DrawPolar Pie
GetAspect
GetScreenAspect
SetAspect

Example SetScreenAspect (1) ;

causes circles to have the same number of vertical as horizontal
pixels.

200 Turbo Pascal Graphix Toolbox Owner's Handbook

SetVStep [GKERNEL.PAS]

Declaration procedure SetVStep(Step:word);

Usage SetVStep(Step};

Parameters Step : number of vertical pixels moved by a window at one time

Function SetVStep specifies the vertical distance, in pixels, that a window
moves at one time. Step can b~ any integer value larger than O.
Small Step values cause smooth, slower window movement, while
larger values cause faster, but somewhat jerkier movement.

Remarks The default value for VStep depends on the resolution produced by
the particular graphics card installed in your system. This default
value is set by the constant IVStep in GDRIVERPAS. See Appen­
dix A for more information on hardware configurations.

If a window is moved a distance that is not a multiple of the current
VStep value, it is moved by multiples of VStep towards its destina­
tion, then one final, variable-length Step to reach its destination.
See MoveVer.

Restrictions The value for Step must be a positive integer.

See Also Appendix A
MoveVer

Example SetVStep(12);

causes vertical window movement (with the MoveVer procedure)
to take place in 12-pixel increments.

Technical Reference 201

SetWinJowModeOff [GKERNEL.PAS I

Declaration procedure SetWi ndowModeOff;

Usage SetWindowModeOff;

Function SetWindowModeOff allows drawing to take place on the screen, in
absolute screen coordinates, rather than in a window. Drawings are
not clipped at window boundaries unless clipping is enabled with
the SetClippingOn procedure.

Remarks Default state is window mode on.

Restrictions

See Also

Example

202

Since no clipping is performed when SetWindowModeOffhas been
called, drawing takes place somewhat faster. However, this proce­
dure should be used with caution, since invalid coordinates can
cause draWing to encroach on program memory or crash the system.

None

Define Window
SelectWindow
SetClippingOff
SetClippingOn
SetWindowModeOn

SetWindowModeOff;

turns window mode off, so that subsequent coordinates are calcu­
lated as screen coordinates, with no clipping at window boundaries.

Turbo Pascal Graphix Toolbox Owner's Handbook

SetWindowModeOn [GKERNELPAS]

Declaration procedure SetWi ndowModeOn;

Usage SetWindowModeOn;

Function SetWindowModeOn allows you to draw in a window, in world coor­
dinates. Drawings are clipped at the active window boundaries if
clipping is enabled with the SetClippingOn procedure.

Remarks Default state is window mode on.

Although drawing takes place somewhat slower with window mode
on, SetWindowModeOn is the safer procedure to use, since clipping
at window boundaries is possible and program memory therefore
protected.

Restrictions None

See Also DefineWindow
SelectWindow
SetClippingOff
SetClippingOn
SetWindowModeOff

Example SetWi ndowModeOn;

turns window mode on, so that world coordinate systems can be
used, and drawings can be clipped at window boundaries.

Technical Reference 203

Spline [GSHELL.PASj

I>eclaration procedure Spline(A:PlotArray; N:integer; Xl,XM:Float;
var B:PlotArray; M:integer);

Usage Spline(A,N ,Xl,XM,B,M);

Parameters A : polygon array (base points)

N : number of base points

Function

204

Xl :~value from which interpolation begins
A-~7~A""

XM : ~of value where interpolation ends

B : resultant spline polygon array (to be filled with calculated
spline)

M : number of points to calculate in spline array

When polygons are plotted with a few data points, the connection of
these points sometimes results in a vague, angular representation of
the true curve. One way to resolve this problem is to evaluate addi­
tional base points to smooth the graph plot. However, the calcula­
tion time involved in this method may be prohibitive.

The spline functions use smoothing polynomials to generate addi­
tional base points. Spline functions are stable in all parts of the
definition interval and, unlike many other polynomials, they do not
tend to have strong oscillations.

The Spline procedure calculates smoothed curves from correspond­
ing data. The number and density of the interpolated points created
by the spline function is arbitrary.

To use the Spline procedure, first pass a Plot Array and the number
of points in the array (N). Xl and XM specify the starting and end­
ing points, respectively, for the interpolation. The PlotArray B
receives the resultant interpolated curve. The calculated base
points are evenly spaced between the starting and ending points of
the input curve.

The spline function is calculated with the following formula:

(x-x)· .. (x-x) (x-x)(x-x) ... (x-x)
p (x) = YI 2 n + Y2)

n (Xl - x2) ••• (Xl - XJ (X2 - XI)(X2 - X3) ••• (X2 - Xn

(x-x) ... (X-Xn_)
+ ... + yn --"-----~-

(Xn - x) ... (Xn - Xn_)

Turbo Pascal Graphix Toolbox Owner's Handbook

Restrictions For the base points of the interpolation the following conditions
apply:

Example

Xl ~ X2 XN-1SXM

. X2/N - 1 represents the second/second to the last point of the
polygon. The interpolation may only be carried out within that
interval.

Spline(RoughCurve,lO,S.7,213,SmootherCurve,50);

interpolates a smoothed 50-point curve from the given 10-point
curve, over the X range of 5.7 to 213.

Technical Reference 205

StoreWindow [GWlNDOW.PASJ

Declaration procedure StoreWi ndow (Wi ndow: integer) i

Usage StoreWindow(Window);

Parameters Window: index of window to be saved [l .. MaxWindowsGlb]

Function Store Window saves a given window in the window stack. The pro­
cedure checks the window memory to see if sufficient space is avail­
able to store the window. If space is not available, an error occurs
and the window is not stored. If a previously stored window and the
active window share the same index number, the active window
overwrites the stored window.

Remarks Storing a window does not affect the screen display.

Stored windows are dynamically allocated on the heap with Turbo
Pascal's GetMem and FreeMem procedures. Windows are always
allocated in multiples of 1K (1024) bytes. Because the StoreWindow
and Restore Window procedures use GetMem and FreeMem, your
program must not use the Mark/Release method of memory man­
agement.

Turbo Pascal's built-in function, MaxAvail can be used to determine
whether a window will fit on the stack. MaxAvail returns the size of
the largest chunk of free memory on the stack. By comparing
MaxAvail to WindowSize, which returns the amount of memory
required by a particular window, you can tell if there is sufficient
room on the stack for the window; that is,

if MaxAvail > WindowSize(i) then ok

Restrictions The value for Window must lie between 1 and the constant Max­
WindowsGlb (defined in the GDRIVERPAS file). If an illegal win­
dow number is given for Window, or if the stack is out of space, an
error occurs.

See Also

Example

206

Restore Window
WindowSize

StoreWindow(12)i

causes window 12 to be copied to the window stack for later
retrieval.

Turbo Pascal Graphix Toolbox Owner's Handbook

SwapScreen [GDRlVERPASj

Declaration procedure SwapScreen;

Usage SwapScreen;

Function SwapScreen exchanges the contents of the displayed screen with
the contents of the RAM screen.

Remarks The active screen is not changed-by SwapScreen. This means that, if
you are drawing on one screen and call SwapScreen while you are
still drawing, the part of the drawing that is complete is moved to
the inactive screen, but subsequent drawing takes place on the
active screen.

Restrictions This procedure can only be used if a RAM screen is allocated, i.e.,
RamScreenGlb is TRUE (defined in GDRIVER.PAS file).

See Also CopyScreen

Example

LoadScreen
Save Screen
SelectScreen

SwapScreen;

swaps the contents of the displayed and RAM screens.

Technical Reference 207

TextDown [GKERNEL.PASj

Declaration function TextDown (TV, Boundary: integer) : integer;

Usage TextDown{TY,Boundary);

Parameters IT : Y coordinate of given machine-dependent text that is to
be within a window

Boundary : desired number of pixels between text and bottom edge
of window

Function TextDown uses the given Y text coordinate, IT, and the number of
pixels, Boundary, that you want to have between the text and the
bottom edge of the window, to calculate a Y window definition coor­
dinate. The function then returns the Y coordinate of the bottom
edge of a window that is at least Boundary pixels below the bottom
edge of text coordinate IT. 1'10. V'rl q 0-'" 7<?.f! d f /All IV 00 v..;

Remarks Along with TextLeft, TextRight, and TextUp, this function is used to
fit and align text within a window. It is particularly useful with the
Hercules version of the Turbo Pascal Graphix Toolbox, since Her­
cules text is defined on 9-pixel boundaries, while windows are
defined on 8-pixel boundaries; this I-pixel offset can cause align­
ment problems. If you want a uniform space between your text and
all four window boundaries, use the DefineTextWindow procedure.
See Appendix A for more information.

Restrictions None

See Also Appendix A
DefineTextWindow
TextLeft
TextRight
TextUp

Example I:=TextDown(16,2);

sets I to the Y screen coordinate at the bottom of row 16, with a
boundary of 2 pixels between the text and the window.

208 Turbo Pascal Graphix Toolbox Owner's Handbook

TextLeft [GKERNEL.PASj

I>eclaration function TextLeft(TX, Boundary:integer):integer:

Usage Text Left(TX, Boundary);

Parameters TX : X coordinate of given machine-dependent text that is to
be inside a window

Boundary : desired number of pixels between text and left edge of
window

Function TextLeft uses the given X text coordinate, TX, and the number of
pixels, Boundary, that you want to have between the text and the
left edge of the window, to calculate an X window definition coordi­
nate. The function then returns the X coordinate of the left edge of a
window that is at least Boundary pixels to the left of the left edge of
text coordinate TX. 1'1 Ct 1/'1 ("t. 1~8()'/4-r· GlJ ~ 'E of' WI Nt) () 4-'

Remarks Along with TextDown, TextRight, and TextUp, this function is used
to fit and align text within a window. It is particularly useful with
the Hercules version of the Turbo Pascal Graphix Toolbox, since
Hercules text is defined on 9-pixel boundaries, while windows are
defined on 8-pixel boundaries; this I-pixel offset can create align­
ment problems. If you want a uniform space between your text and
all four window boundaries, use the DefineTextWindow procedure.
See Appendix A for more information.

Restrictions None

See Also Appendix A
DefineTextWindow
TextDown
TextRight
TextUp

Example I:=TextLeft(LeftMargin,O):

sets I to the X screen coordinate that corresponds to the left edge
of column LeftMargin.

Technical Reference 209

TextRight [GKERNEL.PAS]

Declaration funct 1 on TextRi ght (TX, Boundary: integer) : integer;

Usage TextRight{TX,Boundary);

Parameters TX : X coordinate of given machine-dependent text that is to
be inside a window

Boundary : desired number of pixels between text and right edge of
window

Function TextRight uses the given X text coordinate, TX, and the number of
pixels, Boundary, that you want to have between the text and the
right edge of the window, to calculate an X window definition coor­
dinate. The function then returns the X coordinate of the right edge
of a window that is at least Boundary pixels to the right of the right
edge of text coordinate TX. no ~V'~ rtt a<f J.. eff tJ d'1f

Remarks Along with TextDown, Textl£ft and TextUp, this function is used to
fit and align text within a window. It is particularly useful with the
Hercules version of the Turbo Pascal Craphix Toolbox, since Her­
cules text is defined on 9-pixel boundaries, while windows are
defined on 8-pixel boundaries; this I-pixel offset can create align­
,ment problems. If you want a uniform space between your text and
all four window boundaries, use the DefineTextWindow procedure.
See Appendix A for more information.

Restrictions None

See Also Appendix A
DefineTextWindow
TextDown
TextLeft
TextUp

Example J:=TextRight(68,1);

sets] to the X screen coordinate that is at least 1 pixel to the right
of column 68.

210 Turbo Pascal Graphix Toolbox Owner's Handbook

TextUp [GKERNEL.PASj

Declaration function TextUp(TY, Boundary: integer): integer;

Usage TextUp(TY,Boundary);

Parameters IT : Y coordinate of given machine-dependent text that is to
be within a window

Boundary : desired number of pixels between text and top edge of
window

Function TextUp uses the given Y text coordinate, IT, and the number of
pixels, Boundary, that you want to have between the text and the
top edge of the window, to calculate a Y window definition coordi­
nate. The function then returns the Y coordinate of the upper edge
of a window that is at least Boundary pixels above the top edge of
text coordinate IT. l'1 elf'" 0/ I vt CL +- b () ftd fA) ~ d .?,p

Remarks Along with Textl£ft, TextRight, and TextDown, this function is used
to fit and align text within a window. It is particularly useful with
the Hercules version of the Turbo Pascal Graphix Toolbox, since
Hercules text is defined on .9-pixel boundaries, while windows are
defined on 8-pixel boundaries; this I-pixel offset can create align­
ment problems. If you want a uniform space between your text and
all four window boundaries, use the DefineTextWirulow procedure.
See Appendix A for more information.

Restrictions None

See Also Appendix A
DefineTextWindow
TextDown
Text Left
TextRight

Example U:=TextUp(TopLine,HeaderSize);

sets U to the Y screen coordinate that is HeaderSize pixels above
row TopLine.

Technical Reference 211

TranslatePolygon [GSHELL.PAS]

I)eclaration procedure TranslatePolygon(var A:PlotArray; N:integer;
DeltaX,DeltaY:Float);

Usage TranslatePolygon(A,N ,l)eltaX,l)elta Y);

Parameters A : polygon array

N : number of polygon vertices

DeltaX: displacement in X direction

DeltaY : displacement in Y direction

Function TranslatePolygon moves all polygon line endpoints by adding X and
Y displacements, thus moving the entire polygon both vertically by
DeltaX and horizontally by Delta Y.

Remarks When drawing a translated polygon using DrawPolygon, the num­
ber of vertices should be passed as a negative value, so that Draw­
Polygon clips the polygon at window boundaries.

Restrictions None

See Also I)raw Polygon
RotatePolygon
ScalePolygon

Example Transl atePol ygon (Image, 73, 25, -19 .8)

212

changes the values of the 73 coordinate pairs in Image so that the
polygon is moved 25 X units to the right, and 19.8 Y units towards
the top of the screen.

Turbo Pascal Graphix Toolbox Owner's Handbook

WindowMode [GKERNEL.PASj

Declaration

Usage

Function

Restrictions

See Also

Example

function WindowMode:boolean;

Window Mode; ~ .. •
V

WindowMode returns the window status: TRUE if Window-
ModeOn has been called, FALSE if WindowModeOfJ has been
called.

None

SetWindow ModeOff
SetWindowModeOn

B:=WindowMode;

B is TRUE if window mode is currently enabled.

Technical Reference 213

WindowSize [GWlNDOW.PASJ

Declaration funct;on Wi ndowSi ze (Nr: integer) :wordi

Usage WindowSize(Nr);

Parameters Nr : index of window [l..MaxWindowsGlb]

Function Window Size calculates the size of a window in bytes. In a window
stack operation, this size is compared to the available window stack
space to see if there is sufficient room for the window in the stack; if
not, an error occurs.

The formula used for this calculation is:

WindowSize: = (Y2 - Yl + 1) (X2 - XlJ + I)

The value returned is rounded up to the nearest 1,024 to match
with the amount of space the window will consume if it is saved ,on
the window stack. [Xl,Yl] are the coordinates of the left upper cor­
ner of the window, and [X2, Y2] are the coordinates of the right
lower corner of the window.

Restrictions The value of Nr must lie between 1 and the constant MaxWindows­
Glb (defined in the GDRIVER.PAS file).

See Also ClearWindowStack

Example

214

Restore Window
Store Window

I:=WindowSize(3);

I contains the number of bytes needed to store window 3 in the
window stack.

Turbo Pascal Graphix Toolbox Owner's Handbook

WindowX [GKERNELPASj

Declaration function WindowX(X:F1oat) :integerj

Usage WindowX(X);

Parameters X : X world coordinate

Function WindowX translates an X world coordinate into an absolute screen
coordinate and returns this value.

Restrictions None

See Also DefineWorld

Example

DefineWindow
SelectWindow
SelectWorld

X:=WindowX(Xl)j

converts the world coordinate Xl to a screen coordinate and
stores the value in X.

Technical Reference 215

Window¥ [GKERNEL.PASj

Declaration function WindowY(Y:Float) :integer;

Usage WindowY(Y);

Parameters Y : Y world coordinate

Function Window Y translates a Y coordinate from world coordinate to abso­
lute screen coordinates, and returns this value.

Restrictions None

Example Y: =Wi ndowY (Yl) ;

216

converts world coordinate Yl to a screen coordinate and stores
the value in Y.

Turbo Pascal Graphix Toolbox Owner's Handbook

A p p E N D x A
Hardware Configurations

and Compatibility Problems

This section describes three of the hardware configurations that support the Turbo
Pascal Graphix Toolbox. Problems or considerations specific to the IBM and Her­
cules implementations are first discussed separately; a detailed discussion about
compatibility between different hardware configurations follows.

Complete information about the constants, types, procedures and functions men­
tioned in this appendix can be found in Chapter 3.

Tire IBM Color Graphics Card

The IBM Color Graphics card supports a hardware environment with the following
general characteristics:

• Screen is 640 pixels wide by 200 pixels tall.

• Default step (increment) for vertical window movement (as defined in the
constant IVStep) is 2 pixels.

• A RAM screen is enabled (constant RamScreenGlb = TRUE) and is placed in
normal RAM.

217

Constants take the following default values with the IBM card:

AspectFactor
I1ardware(;rafBase
IVStep
MaxBackground
MaxForeground
MinBackground

* depends on version

Colar

= 0.44
= $B800
=2
= *
= 15
= 0

MinForeground
RamScreen(;lb
ScreenSize(;lb
XMax(;lb
XScreenMax(;lb
YMax(;lb

=0
= TRUE
= 8191
= 79
= 639
= 199

The different IBM versions of the Turbo Pascal (;raphix Toolbox allow either one
background color, true black (constants MinBackground and MaxBackground are
both 0), or up to fifteen background colors (MinBackground = 0, MaxBack­
ground = 15); fifteen foreground colors are available (MinForeground = 1, Max­
Foreground = 15), except with the PCjr, which allows only black or white for the
foreground color. MaxForeground is the default value, set both by the InitGraphic
and EnterGraphic procedures. The following table lists the colors for the IBM
Co!or/(;raphics Adapter (C(;A), the PCjr, the Enhanced (;raphics Adapter (E(;A),
and the 3270 Pc.

Foreground Colors

CGA PCjr EGA 3270 PC

0 Black Black Black Black
1 Blue White Blue Blue
2 Green Black Green Green
3 Cyan White Cyan Turquoise
4 Red Black Red Red
5 Magenta White Magenta Pink
6 Brown Black Brown Yellow
7 Light gray White Light gray White
8 Dark gray Black Dark gray Black
9 Light blue White Light blue Blue

10 Light green Black Light green Green
11 Light cyan White Light cyan Turquoise
12 Light red Black Light red Red
13 Light magenta White Light magenta Pink
14 Yellow Black Yellow Yellow
15 White White White White

218 Turbo Pascal Graphix Toolbox Owner's Handbook

Background Colors

CGA PCjr EGA 3270 PC

0 Black Black Black Black
1 Black Blue Blue Black
2 Black Green Green Black
3 Black Cyan Cyan Black
4 Black Red Red Black
5 Black Magenta Magenta Black
6 Black Brown Brown Black
7 Black Light gray L'tght gray Black
8 Black Dark gray Dark gray Black
9 Black Light blue Light blue Black

10 Black Light green Light green Black
11 Black Light cyan Light cyan Black
12 Black Light red Light red Black
13 Black Light magenta Light magenta Black
14 Black Yellow Yellow Black
15 Black White White Black

Text

In addition to the standard 4x6-pixel font used by Turbo Pascal Graphix, the IBM
card allows higher quality text characters to be drawn in the normal IBM Color/
graphics adapter font. These characters take the form of 8x8-pixel cells, and can
only be drawn at X and Y coordinates that are multiples of 8 pixels. Since windows
are also defined on 8-pixel horizontal boundaries, the higher quality text can be
aligned exactly with windows.

Text can be moved vertically to any screen position using the window movement
procedure MoveVer. Unlike the 4x6-pixel font, IBM text is never clipped at win­
dow boundaries.

The Hercules Mooochrome Graphics Card

The Hercules Monochrome Graphics card supports a hardware environment with
the following general characteristics:

• Screen is 720 pixels wide by 350 pixels tall.

• Default step (increment) for vertical window movement is 5 pixels (as speci­
fied by the constant IVStep).

Hardware Configurations and Compatibility Problems 219

• A RAM screen is allocated (constant RamScreenGlb = TRUE). The RAM
screen can be placed in normal RAM (default) or on the Hercules card itself,
as determined by the initialized variable RamScreenlnCard in the
GRAPHIX.HGC file. If RamScreenlnCard is TRUE, the RAM screen is on
the Hercules card; if FALSE, it is in normal RAM. If you change Ram­
ScreenlnCard to TRUE, your Hercules card must be placed in the "full" con­
figuration.

Constants take the following values with the Hercules card:

AspectFactor
HardwareGrafBase
IVStep
MaxBackground
MaxForeground
MinBackground
MinForeground

= -0.6667
= $BOOO
= 5
= 0
= 1
=0
= 1

RamScreenGlb = TRUE
*RamScreenInCard = FALSE

ScreenSizeGlb = 16383
XMaxGlb = 89
XScreenMaxGlb = 719
YMaxGlb = 349

* Specific to the Hercules implementation I IV G R I>r ~ H G (!, D Ij ~

Color

The Hercules card does not support color. Neither background nor foreground
color can be changed; both MinBackground and MaxBackground are set to 0
(black) and both Min Foreground and MaxForeground are set to 1 (white).

Text

In addition to the standard 4x6-pixel font used by Turbo Pascal Graphix to draw
window headers and footers, the Hercules card allows higher quality text charac­
ters to be drawn on the screen in the normal Hercules font. These characters take
the form of9x14 pixel cells, can only be drawn at text coordinates that start at [0,0],
and move in steps (increments) of 9 horizontal pixels by 14 vertical pixels. Using
the window movement procedures MoveHor and Move Ver, you can move text to
any desired screen location. However, because Hercules horizontal text coordi­
nates are at multiples of 9 pixels, and window definition coordinates are at multi­
ples of 8, care must be taken when attempting to draw text inside a window; the
alignment of text with the window may be slightly skewed due to the repeating 1-
pixel offset of text.

Unlike the 4x6-pixel Turbo Pascal Graphix font, Hercules text is never clipped at
window boundaries.

220 Turbo Pascal Graphix Toolbox Owner's Handbook

Special Notes

Though the Hercules card normally has a resolution of 720x348, through special
programming, the Hercules version of the Turbo Pascal Craphix Toolbox changes
the resolution to 720x352; the last two vertical pixels are ignored by the program,
thus giving a resolution of 720x350. There are a few monitors that may not be able
to display this higher resolution. If your monitor loses its horizontal hold when you
use Turbo Pascal Craphix, you must change two constants in CDRIVER.PAS:
YMaxGlb should be changed from 349 to 347, and VRowsGlb should be changed
from $58 to $57. Be sure to change both constants.

With the Hercules card, if a program terminates while in graphics mode, part of
the current graphic display will remain on the screen, and part will be erased. This
is because MS-DOS does not understand that the computer is in graphics mode,
and will try to use the Hercules card as if it were in text mode. To prevent this, you
must use the DOS command MODE MONO or run the program HFIX.COM (on
the Turbo Pascal Graphix Toolbox distribution disk).

Suppose your program terminates due to an I/O or runtime error. In this case, you
will probably want to see the error message, so you should use HFIX.COM, which
displays the error message, rather than MODE MONO, which clears the screen.
However, part of the error message may scroll off the screen. One way to capture
the error message before it disappears is to use the Shift-PrtSc sequence. DOS will
then display the text screen even though there is also a graphics display.

Compatibility Issues

This section discusses the problems involved with writing a program for more than
one version of the Turbo Pascal Graphix Toolbox, and offers suggestions for resolv­
ing those problems.

Screen Size

Probably the biggest problem involved with writing programs for different Turbo
Pascal Craphix versions is that the graphics cards support different screen sizes.
This is especially troublesome for drawings that use absolute screen coordinates.
You could define a window and display the drawing using world coordinates, which
partially resolves the problem; however, the placement of the window itself
depends on the resolution of the screen. For instance, on the IBM Color/Graphics
Adapter, a window with its upper left comer at [20, 50] and lower right corner at

Hardware Configurations and Compatibility Problems 221

[60, 150] is a centered window that is approximately 1/4 the size of the screen. On
the Hercules card, the same window would be placed slightly further to the left on
the screen, and significantly closer to the top, and would take up only about 1/8 of
the screen.

One solution to this problem would be to use the global constants XMaxGlb and
YMaxGlb to standardize the placement of the window. The statement

DefineWindow(I,XMaxGlb Diy 4,YMaxGlb Diy 4,XMaxGlb*3 Diy 4,
YMaxGlb*3 Diy 4);

would define a centered window that takes up approximately 1/4 of the screen,
regardless of the actual screen size.

Text Placement

Another potential compatibility problem is text placement. Although the 4x6-pixel
text can be placed at any screen coordinates with the DrawText procedure, or at
any world coordinates with the DrawTextW procedure, recreating the same text on
different screens is difficult. This is because the size of the characters may also
have to be adjusted. The machine-dependent font is correctly proportioned for the
graphics card in use, though it can be difficult to place. For example, suppose, on
the IBM Color adapter version, that a window is to be defined that will enclose
text coordinates [10,2] through [20, 4]. The following statement shows one way to
define that window:

DefineWindow(I,(XMaxGlb*10) Diy 80, (YMaxGlb*2) Diy 25,
(XMaxGlb*20) Diy 80, (YMaxGlb*4) Diy 25);

This statement is equivalent to

or

or

DefineWindow(I,(79*10) Diy 80,(199*2) Diy 25,(79*20) Diy 80,
(199*4) Diy 25);

DefineWindow(I,(790) Diy 80,(398) Diy 25,(1580) Diy 80,
(796) Diy 25);

DefineWindow(I,9,15,19,31);

The screen coordinates above are (72, 15, 159, 31) (the X screen coordinate is
greater by 7 because it includes the entire byte at that coordinate).

222 Turbo Pascal Graphix Toolbox Owner's Handbook

On the IBM version, text is drawn at every 8 pixels in both directions, so the
screen coordinates to use for a window that includes text coordinates [10, 2]
through [20, 4] are (80, 16, 167, 39). If (XMaxGlb + 1) and (YMaxGlb + 1) were used
in the first statement,

DefineWindow(l,«XMaxGlb+l)*lO) Div 80, «YMaxGlb+l)*2) Div 25,
«XMaxGlb+l)*20) Div 80, «YMaxGlb+l)*4) Div 25);

the resulting window would be at screen coordinates (80, 16, 167, 32), which would
align the text more exactly with the window. Adding 7 to the final Y coordinate
makes it exact:

DefineWindow(l,«XMaxGlb+l)*lO) Div 80, «YMaxGlb+l)*2) Div 25,
«XMaxGlb+l)*20) Div 80, «YMaxGlb+l)*4) Div 25 + 7);

However, if the last statement is used on the Hercules card, the final coordinates
come out as (88, 28, 183, 63), which is close to the correct (90, 28, 188, 64) - but not
close enough. Text drawn in that window would spill over the right and bottom
edges of the window. But the correct window (90, 28, 188, 64) is an illegal window!
The first X coordinate, 90, is not a multiple of 8, and the second, 188, is not 1 less
than a multiple of 8.

Because of the complexity involved in choosing a window to fit text, four functions
are provided that choose window definition coordinates based on text coordinates.
Each function is given a text coordinate and a minimum boundary value. The
function returns a window definition coordinate that will contain the given text
coordinate and provide a border of at least the boundary pixel value. The border
cannot always be exact because of the difference between text coordinates and
byte-at-a-time window coordinates on some machines.

The four functions are

TextLeft(TX,Boundary:integer):integer;

Returns X window coordinate that is at least Boundary pixels to the left of
the left edge of text coordinate TX

TextRight(TX,Boundary:integer):integer;

Returns X window coordinate that is at least Boundary pixels to the right of
the right edge of text coordinate TX

TextUp(TY,Boundary:integer):integer;

Returns Y window coordinate that is at least Boundary pixels above the top
edge of text coordinate TY.

TextDown(TY,Boundary:integer):integer;

Returns Y window coordinate that is at least Boundary pixels below the
bottom edge of text coordinate TX

Hardware Configurations and Compatibility Problems 223

There are two functions for each direction because the font size is not known to the
user program, so the addition of the actual width of the character to its upper
lefthand corner coordinate must be done by the system.

Returning to the original example, to define that window enclosing text coordi­
nates [10,2] through [20,4] and give a border of at least 1 pixel on all sides, we use

DefineWindow(1,TextLeft(lO,1),TextUp(2,1),TextRight(20,1),TextDown(4,1»;

In addition to the four functions, the procedure

DefineTextWindow(I,Left,Up,Right,Down,Border:integer);

can also be used to adjust a window to text coordinates. This procedure is a more
convenient way to solve the alignment problem, since all parameters are defined in
one routine; however, it is less flexible, since the size of the border between text
and window boundaries must be the same for all four directions.

Color

The color capabilities of the various Turbo Pascal Graphix Toolbox versions range
from absolute monochrome (black and white only) to a choice of 16 colors each for
the foreground and background. It is very difficult to use the color capabilities in a
machine-independent way. The range of colors available is known to the user pro­
gram, but the actual colors associated with the numbers are not. If two different
colors are arbitrarily chosen for foreground and background, there is no way to
ensure against, for instance, the choice of blue for foreground and aquamarine for
background!

In addition, the consequences of changing the current color vary from machine to
machine. On some machines, there may be a considerable delay while pixel colors
are being changed. On others, the color may be changed by simply reprogramming
the display controller to interpret the same bit patterns as different colors.

Also, on some machines, changing both foreground and background to t~e same
color may destroy the graphic image currently being displayed.

Because of these considerations, it is recommended that programs that are to be
used with several versions of the Turbo Pascal Graphix Toolbox be written for true
black and white.

224 Turbo Pascal Graphix Toolbox Owner's Handbook

Speed

The speed of the Turbo Pascal Graphix Toolbox varies widely on different
machines. The variance is not simple; from one machine to the next, one operation
may be twice as fast, and another be about the same speed. You should therefore
make no assumptions about speed or timing when you are writing a program that is
to run on several machines.

Premature Termination

On some machines, if a program ends while still in graphics mode, the computer
may behave erratically. For instance, if a program written for the Hercules
graphics card version ends without a call to Leave Graphic , DOS does not know
that the screen is in graphics mode, and acts as if it is in text mode.

Included on the Turbo Pascal Graphix Toolbox distribution disk is a program,
HFIX.COM, to be used to reorient your system after a program terminates
improperly. You are free to distribute HFIX.COM with any program you write.

Hardware Configurations and Compatibility Problems 225

226 Turbo Pascal Graphix Toolbox Owner's Handbook

A p p E N o x B
Glossary

absolute screen coordinate system: Coordinate system that uses the entire screen
area to plot the pixel location of text or graphics; coordinate [0,0] is in the upper left
corner of the screen.

absolute value: The value of a positive or negative number when the sign has
been removed. For example, the absolute value of both - 2 and + 2 is 2.

active window: The displayed or RAM (virtual) window in which drawing is cur­
rently taking place.

active screen: The displayed or virtual screen in which drawing is currently taking
place.

aspect ratio: The horizontal-to-vertical ratio of a circle or ellipse. Used by the
Turbo Pascal Graphix Toolbox to proportion circles and pie charts.

background: The screen surface and color on which drawing is taking place. See
foreground.

bar chart: A graph consisting of vertical or horizontal bars with lengths propor­
tioned according to specified quantities.

base point: Any of the points that constitute a graph or curve.

Bezier function: Function that uses an array of control points to construct a para­
metric, polynomial curve of a predetermined shape.

227

Cartesian coordinate system: A method used to plot an object's location accord­
ing to its horizontal-by-vertical position. This position is referenced to horizontal
(X) and vertical (Y) axes.

clipping: Turbo Pascal Graphix Toolbox function that keeps graphic images within
window or screen boundaries by preventing any part of the drawing that falls
outside the window or screen from being displayed.

control point: Any of the points used to plot a graph. Used by the Turbo Pascal
Graphix Toolbox to construct curves.

coordinate system: A method used to plot an object's location according to its
horizontal-by-vertical position. See absolute screen coordinate system and world
coordinate system.

displayed screen: The visible screen displayed on your computer monitor. See
RAM screen.

flow chart: A graphic representation of a sequence of consecutive events or opera­
tions. The Turbo Pascal Graphix Toolbox uses a sequence of moving windows to
represent a How chart.

font: Either of two sets of characters used by the Turbo Pascal Graphix Toolbox.
Window headers, and text that must be in multiples of 4x6 pixels, are displayed in
the standard 4x6-pixel text font. All other text is displayed in a machine-dependent,
higher resolution text font-8x8-pixels for the IBM card, 9x14 pixels for the Her­
cules card, and 8x9 pixels for the Zenith card.

foreground: The color used to display text and draw graphic images. See back­
ground.

graphics mode: Mode of computer operation in which graphics symbols and
drawings are displayed. See text mode.

header: A user-defined text label, displayed in the Turbo Pascal Graphix standard
4x6-pixel font, that is placed either at the top or bottom edge of a window.

histogram: A graphic representation of a frequency distribution that takes the
form of a bar chart.

inactive screen: The RAM or displayed screen that is not currently being used for
drawing.

include directive: Program comment of the form {$I filename. ext} that instructs
the compiler to read the program contained in filename.

interpolation: Method of determining the value of a function that is between
known values, using a procedure or algorithm. See spline function.

228 Turbo Pascal Graphix Toolbox Owner's Handbook

machine-dependent text: Text that corresponds to the font used by the particular
graphics card installed in your system. Text is 8x8-pixels for the IBM card, 8x9
pixels for the Zenith card, and 9x14-pixels for the Hercules card. Machine-depend­
ent text is of a higher resolution than the standard, 4x6-pixel text used by the Turbo
Pascal Graphix Toolbox to display window headers. See font.

modeling: Method used to find the points (and the corresponding function) that
will represent a predetermined line, curve, or solid shape. See Bezier function.

origin: In any coordinate system, point [0,0], i.e. the point where the coordinate
axes intersect.

pie chart: A circular chart used to represent the relative sizes of several quantities
that make up a whole unit. The pie chart is divided into sections by radial lines,
with each section proportional in angle and area to the quantity it represents.

pixels: Abbreviation for picture elements. The tiny dots that together make up a
graphics or text screen display. Pixels are the basic units of measure used by coor­
dinate systems to plot the location of screen objects.

polar coordinate system: Method used to plot a pie chart in reference to its radius
and the angle of its first segment.

polygon: A figure that encloses a collection of points, possibly (but not necessarily)
connected by line segments.

RAM (virtual) screen: A screen that is stored in RAM memory. It is identical in
size and shape to the displayed screen, but any drawing that takes place on it is
invisible.

resolution: The quality and accuracy of detail of a displayed image. Resolution
depends on the number of pixels within a given area of the screen; the more pixels
there are, the higher the resolution.

scaling: Ability of the Turbo Pascal Graphix Toolbox to reduce or enlarge an image
to fit in a given window according to the world coordinate system specified by the
user.

screen coordinate system: See absolute screen coordinate system.

spline function: Polynomial function that smooths a curve by calculating and gen­
erating additional base points.

step: The increment by which a text character, window, or graphic image moves at
one time.

text mode: Computer mode in which only characters are manipulated and dis­
played. See graphics mode.

vertex: The point where the sides of an angle intersect.

virtual screen: See RAM screen.

Glossary 229

window: An area of the screen specified by the user for drawing. Can range in size
between I vertical pixel by 8 horizontal pixels and the entire screen.

window definition coordinates: The two sets of X and Y coordinates that define
the upper left and lower right corners of a window. Windows are defined on 8-bit
horizontal by I-bit vertical boundaries, so that each X window definition coordi­
nate represents one 8-pixel horizontal unit, and each Y coordinate represents one
I-pixel vertical unit.

window stack: RAM area in which windows can be temporarily stored.

world coordinate system: A user-defined coordinate system that is used to scale
drawings within a given window. World X (horizontal) and Y (vertical) coordinates
do not necessarily correspond to actual pixel locations, but can be assigned any
values that suit the application. A world is enclosed by the X (horizontal) and Y
(vertical) coordinates of the upper left and lower right corners of the drawing area.

zero axes: The horizontal (X) and vertical (Y) axes used to plot the location of a
screen object.

230 Turbo Pascal Graphix Toolbox Owner's Handbook

Index

231

A

Animation, 37-39
AspectFactor, 26, 45, 82, 118, 144, 149,

182
Aspect ratio, See Circle drawing

B

Background}uya~ 83
Barcharts,44,47--52
BaseAddress, 94
Bezier, 63, 66-70, 95-98

C

CharFile,83
Circle drawing, 26-27, 118

aspect ratio, 26, 45, 82, 144, 149, 182
screen coordinates, 119

Clear Screen, 99
ClearWindowStack, 100
Clip, 101
Clipping, 11-l2, 58-61, 101-102, 128,

188-189
Color, 217-220, 224

background,84,86,185
drawing, 84, 86, 145,190-192
reverse video, 157-158
See also IBM Color graphics card

Compatibility between
different systems, 221-225

ConOutPtr, 141
Constants, 82-88

altering, 82
Coordinate axes, 54--55, 113
Coordinate systems, 9

absolute screen, 10, 202, 216
cartesian, 44
polar, 44
world, 9-10, 32

Copy Screen, 36,103
CopyWindow, 36, 104
Curves

D

bezier, 66, 95-98
fitting, 63-70
plotting, 52-63
spline interpolation, 64-66

DC, 105
DefineHeader, 1-6, 115
DefineTextWindow, 107
Define Window, 109

232

Define World, 110
DP,111
DrawAscii, 112
DrawAxis, 54--55, 113
DrawBorder,115
DrawCartPie, 44-45, 116
DrawCircle, 26, 118
DrawCircleDirect, 119
DrawCircleSegment, l20
DrawCross, l22
DrawCrossDiag, l23
DrawDiamond, l24
DrawHistogram, 44-45, 47--51, l25
DrawLine, 22-24, l27
DrawLineClipped,128
Draw Point, 19-22, l29
DrawPolarPie, 44-47,130-131
DrawPolygon, 132-133
DrawSquare, 134
DrawSquareC, 135
DrawStar, 136
DrawStraight, 137
DrawText, 29-30, 138
DrawTextW, 139
DrawWye, 140

E

EnterGraphic, 141
Error, 142
Error processing, 142, 146, 154, 186-187,

198-199,221

F

FindWorld, 61-63, 143
Flow charts, 39-42, 143

G

GetAspect, 144
GetColor, 145
GetErrorCode, 146
GetLineStyle, 147
GetScreen, 148
GetScreenAspect, 149
GetVStep, 150
GetWindow, 151
GotoXY, 152
GotoXYTurbo, 153

H

HardCopy, 74, 153
Hardware configurations, l2-14, 217-225

Turbo Pascal Graphix Toolbox Owner's Handbook

HardwareGrafBase,83
HardwarePresent, 154
Hatch,155
HeaderSizeGlb, 83
Hercules monochrome graphics card, 1, 8,

14,55,84,86,185,219-221
High-level command files, 2, 80

I

IBM color graphics card, 1,8, 14, 55, 84,
86,219

IBM Enhanced Graphics Adapter, 14
InitGraphic, 19, 32, 156
Initialization, 19, 141, 156
InvertScreen, 157
InvertWindow, 158
IVStepGlb,84

L

LeaveGraphic, 19, 159
Line drawing,

clipped, 22-24
horizontal, 137
line style, 147, 197

LoadScreen, 71-73, 160
LoadWindow, 161
LoadWindowStack, 71,162

C

MaxBackground, 84
MaxForeground,84
MaxPiesGlb, 84
MaxPlotGlb, 84
MaxWindowsGlb, 84
MaxWorldsGlb, 84, 110
MinBackground,86
MinForeground,86
Modeling, 63, 66-70, 95-98
MoveHor, 36, 163
MoveVer, 36, 164

P

PD,165
PieArray, 45, 86
Pie charts, 44-47, 85-86, 116, 120, 130
Pixels, defined, 7
PlotArray, 47, 52, 64, 87, 125, 132
Point drawing, 19-22, 129, 190

absolute screen coordinates, 19, 105,
165

world coordinates, 21-22, 166

Index

PointDrawn, 166
Polygon

clipping, 58-61
defining world for, 61-63, 143
drawing, 52, 87, 132
MaxPlotGlb, 85
moving, 58-61,173,174,212
PlotArray, 87
rotating, 58-61, 173, 174, 212
scaling, 178
translating (See Polygon, moving)

Premature termination, 225
Printing, 153
Procedures and functions, 93-216

R

RamScreenGlb, 87
Rectangle drawing, 25, 134

clipped, 135
hatched, 155

RedefineWindow,32,167
RemoveHeader, 168
ResetWindows, 170
ResetWindowStack, 169
ResetWorlds, 171
Resolution, 8
RestoreWindow, 172
RotatePolygon, 58-61, 173
RotatePolygonAbout, 58, 174

S

SaveScreen, 71-74, 175
SaveWindow, 176
SaveWindowStack, 71, 177
Scale Polygon, 178
Screen

active, 8, 148
clearing, 99
copying, 103
displayed, 2, 8
loading, 71-74, 175
printing, 74,153
RAM, 2, 8, 87, 217, 220
saving, 71-74, 175
selecting for drawing, 179
size, 8, 88-89, 217, 220
swapping, 207

ScreenSizeGlb, 88
SelectScreen, 179
SelectWindow, 180
SelectWorld, 181
SetAspect, 26, 45, 182

233

SetBackground, 183
SetBackground8, 184
SetBackgroundColor, 185
SetBreakOff, 186
SetBreakOn, 187
SetClippingOff, 188
SetClippingOn, 189
SetColor Black, 190
SetColorWhite, 191
SetForegroundColor, 25, 192
SetHeaderOff, 193
SetHeaderOn, 194
SetHeaderToBottom, 115, 195
SetHeaderToTop, 115, 196
SetLineStyle, 2325, 197
SetMessageOff, 198
SetMessageOn, 199
SetScreenAspect, 200
SetVStep, 201
SetWindowModeOff,202
SetWindowModeOn, 203
Spline, 63-66,204
Square drawing See Rectangle drawing
StoreWindow, 36, 206
Strings, 88
StringSizeGlb, 88
Swap Screen, 207

T

Text, 28-31
Hercules, 28, 107, 220
IBM,218
machine-dependent, 8-10,28, 31, 88,

105,107,112,138-139,152,208-211,
220

pixels, 9-10, 30, 32, 83, 106, 112,
138-139

TextDown, 208
TextLeft, 209
TextRight, 210
TextUp,211
TranslatePolygon, 58-61, 212
Turbo Pascal Graphix files

using, 17, 79
Tutorial, 17-78
Types, 82-89

U

Uses clauses 17

234

W

Window
active, 151
background pattern, 83, 183-184
border, 115
copying, 104
defining, 10,32, 85,109
fitting text, 28, 107, 208-211, 220
How charts, 39
heade~ 83, 106, 115, 168, 193-196
initialization, 170
loading, 161
mode, 202-203
moving, 36, 84, 150, 163-164, 201, 206,
214

saving, 176
selecting for draWing, 180
size, 32, 89, 214
stack, 11, 36, 100, 16\2, 169, 177, 206,
214

storing, 172, 206
WindowMode, 213
WindowSize, 214
WindowX, 215
WindowY, 216
World, 203, 215, 216

defining, 85, 110
selecting, 181
for polygons, 61-63
initialization, 171

WrkString, 88

X

XMaxGlb,89
XScreenMaxGlb, 89

y

YMaxGlb,89

Turbo Pascal Graphix Toolbox Owner's Handbook

Borland
Software

Or~
BORLAND
INTERNATIONAL 4585 Scotts Val/ey Drive, Scotts Valley, CA 95066

AvaJlable at better dealers nationwide.
To order by credit card, call (800) 255-8008; CA (800) 742-1133;
CANADA (800) 237-1136.

.II'~.'PI ® TIE lEI"" IJ.J J;II ... J : "MIllER
Whether you're running WordStar,® Lotus,® dBASE,®

or any other program, SideKick puts al/ these desktop
accessories at your fingertips-Instantly!

A lull-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages
long.

A Phone Directory for names, addresses,
and telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3.8

From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through
2099.

Appointment Calendar to remind you
of important meetings and appointments.

A full-featured Calculator ideal for
business use. It also performs decimal
to hexadecimal to binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the
SideKick Notepad you'll notice data that's been imported
directly from the Lotus screen. In the upper right you can
see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all
or any part of the display screen (even an area
overlaid by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also
the least expensive."

-Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $84.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, PCir and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk
drive. A Hayes-compatible modem, IBM PCir internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borland Inlernational, Inc. dBASE is a registered trademark of
Ashlon-Tate. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp.
AT&T is a registered trademark of American Telephone & Telegraph Company. Lotus and 1-2-3 are
registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro
International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc.
Copyright 1987 Borland International BOR0060C

RAM-resident
Increased productivity for IBM~PCs or compatibles

SuperKey's simple macros are electronic shortcuts to success.
By letting you reduce a lengthy paragraph into a single keystroke

01 your choice, SuperKey eliminates repetition.

SuperKey turns 1,000 keystrokes into 1!
Super Key can record lengthy keystroke sequences and play them back at the touch of a single key.
Instantly. Like magic.

In fact, with Super Key's simple macros, you can turn "Dear Customer: Thank you for your inquiry.
We are pleased to let you know that shipment will be made within 24 hours. Sincerely," into the
one keystroke of your choice!

SuperKey keeps your confidential files-confidential!
Without encryption, your files are open secrets. Anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).

With Super Key you can encrypt any file, even while running another program. As long as you keep
the password secret, only you can decode your file correctly. Super Key also implements the U.S.
government Data Encryption Standard (DES).

~ RAM resident-accepts new macro files ~ Keyboard buffer increases 16 character
even while running other programs keyboard "type-ahead" buffer to 128

~ Pull-down menus characters

~ Superfast file encryption ~ Real-time delay causes macro playback

~ Choice of two encryption schemes to pause for specified interval

~ On-line context-sensitive help ~ Transparent display macros allow

~ One-finger mode reduces key creation of menus on top of application

commands to single keystroke
programs

~ Screen OFF/ON blanks out and restores ~ Data entry and format control using

screen to protect against "burn in" "fixed" or "variable" fields
~ Command stack recalls last 256

~ Partial or complete reorganization of characters entered keyboard

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, and true compatibles. PC-DOS (MS-DOS)
2.0 or greater. 128K RAM. One disk drive.

Super Key is a registered trademark of Borland International, Inc. IBM, XT, AT, and PCjr are
registered trademarks of International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp. BOR 0062C

If you use an IBM® PC, you need

T U R B 0

Lightning®
Turbo Lightning teams up
with the Random House
Concise Word List to
check your spelling as
you type!

Turbo Lightning, using the
BO,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a
"beep." At the touch of a key,
Turbo Lightning opens a
window on top of your
application program and
suggests the correct spelling.
Just press one key and the
misspelled word is instantly
replaced with the correct word.

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you
choose just the right word from
a list of alternates, so you
don't say the same thing the
same way every time. Once
Turbo Lightning opens the
Thesaurus window, you see a
list of alternate words; select
the word you want, press
ENTER and your new word will
instantly replace the original
word. Pure magic!

If you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

The Turbo Lightning Proofreader

The Turbo Lightning Thesaurus

Suggested Retail Price: $99.95 (not copy protected)

You can teach Turbo
Lightning new words

You can teach your new Turbo
Lightning your name, business
associates' names, street
names, addresses, correct
capitalizations, and any
specialized words you use
frequently. Teach Turbo
Lightning once, and it
knows forever.

Turbo Lightning is the
engine that powers
Borland's Turbo Lightning
Library'"

Turbo Lightning brings
electronic power to the
Random House Concise Word
List and Random House
Thesaurus. They're at your
fingertips-even while you're
running other programs. Turbo
Lightning will also "drive"
soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works. You
get a head start with this
first volume in the Turbo
Lightning Library.

Minimum system configuration: IBM PC, XT, AT, PCjr, and true compatibles with 2 floppy disk drives. PC-DDS (MS-DOS) 2.0 or greater.
256K RAM. Hard disk recommended.

BORLAND
I N T E R NA T ION A L

Turbo Lightning and Turbo Lightning Library are registered trademarks 01 Borland International, Inc.
IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp. Random
House is a registered trademark of Random House, tnc. Copyright 1987 Borland tnternationat

BOR 0070B

Your Development Toolbox and Technical Reference Manual for Thrbo Lightning®

L I G H T N I N G

Lightning Word Wizard includes complete, commented Turbo
Pascal® source code and all the technical information you'll

need to understand and work with Turbo Lightning's "engine."
More than 20 fully documented Turbo Pascal procedures

reveal powerful Turbo Lightning engine calls. Harness the full power
of the complete and authoritative Random 'House® Concise

Word List and Random House Thesaurus.

Turbo Lightning's "Reference
Manual"
Developers can use the versatile on-line
examples to harness Turbo Lightning's
power to do rapid word searches. Lightning
Word Wizard is the forerunner of the data­
base access systems that will incorporate
and engineer the Turbo Lightning Library®
of electronic reference works.

The ultimate collection of word
games and crossword solvers!
The excitement, challenge, competition,
and education of four games and three
solver utilities-puzzles, scrambles, spell­
searches, synonym-seekings, hidden words,
crossword solutions, and more. You and
your friends (up to four people total) can
set the difficulty level and contest the high­
speed smarts of Lightning Word Wizard!

Turbo Lightning-Critics' Choice
"Lightning's good enough to make programmers and users cheer, executives of other
software companies weep." Jim Seymour, PC Week

"The real future of Lightning clearly lies not with the spelling checker -and thesaurus currently
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles

"This newest product from Borland has it all." Don Roy, Computing Nowl

Minimum system configuration: tBM PC, XT, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC-DOS (MS-DOS) 2.0
or greater. Turbo Lightning software required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

Suggested Retail Price: $69.95
(not copy protected)

Turbo Pascal. Turbo Lightning and Turbo Lightning Library are registered trademarks and Lightning Word Wizard is a trademark of Borland International, Inc. Random
House is a registered tradeMark of Random House, Inc. IBM, XT, AT, and PCjr are registered trademarks of International BUSiness Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. C~yright 1967 Borland International BOR0087B

1'£11 £1 ® lIE IA1AIA'E
~,-~ ,~ : _ANASEI

The high-performance database manager
that's so advanced it's easy to use!

Lets you organize, analyze and report information faster than ever before! If you manage mailing lists,
customer files, or even your company's budgets-Reflex is the database manager for you!

Reflex is the acclaimed, high-performance database manager you've been waiting for. Reflex extends
database management with business graphics. Because a picture is often worth a 1000 words, Reflex
lets you extract critical information buried in mountains of data. With Reflex, when you look, you see.

The REPORT VIEW allows you to generate everything from mailing labels to sophisticated reports.
You can use database files created with Reflex or transferred from Lotus 1-2-3,@ dBASE,@ PFS: File,@
and other applications.

Reflex: The Critics' Choice

" ... if you use a PC, you should know about Reflex ... may be the best bargain in software today."
Jerry Pournelle, BYTE

"Everyone agrees that Reflex is the best-looking database they've ever seen."
Adam B. Green, InloWorld

"The next generation of software has officially arrived." Peter Norton, PC Week

Reflex: don't use your PC without it!
Join hundreds of thousands of enthusiastic Reflex users and experience the power and ease of use of
Borland's award-winning Reflex.

Suggested Retail Price: $149.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, and true compatibles. 384K RAM minimum. IBM Color Graphics Adapter, Hercules
Monochrome Graphics CArd, or equivalent. PC-DOS (MS-DOS) 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE,
or PFS: File optional.

Reflex is a trademark of Borland/Analytica tnc. Lotus 1-2-3 is a registered trademark of Lotus
Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
registered trademark of Software Publishing Corporation IBM, Xl, AT. and IBM Color Graphics
Adapter are registered trademarks of International Business Machines Corporation. Hercules
Graphics Card is a trademark of Hercules Computer Technology. MS-DOS is a registered
trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0066C

BEILEl"E """"".
Includes 22 Uinstant templates" covering a broad range of

business applications (listed below). Also shows you how to
customize databases, graphs, cross tabs, and reports. It's an invaluable

analytical too/ and an important addition to another one of
our best sellers, Reflex: The Database Manager.

Fast-start tutorial examples:
Learn Reflex® as you work with practical business applications. The Reflex Workshop Disk supplies
databases and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.
22 practical business applications:
Workshop's 22 "instant templates" give you a wide range of analytical tools:

Administration
• Scheduling Appointments
• Planning Conference Facilities
• Managing a Project
• Creating a Mailing System
• Managing Employment Applications

Sales and Marketing
• Researching Store Check Inventory
• Tracking Sales Leads
• Summarizing Sales Trends
• Analyzing Trends

Production and Operations
• Summarizing Repair Turnaround

• Tracking Manufacturing Quality Assurance
• Analyzing Product Costs

Accounting and Financial Planning
• Tracking Petty Cash
• Entering Purchase Orders
• Organizing Outgoing Purchase Orders
• Analyzing Accounts Receivable
• Maintaining Letters of Credit
• Reporting Business Expenses
• Managing Debits and Credits
• Examining Leased Inventory Trends
• Tracking Fixed Assets
• Planning Commercial Real Estate Investment

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex:
The Workshop will help you quickly become an expert database analyst.

Minimum system configuration: IBM PC, AT, and XT, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. Requires Reflex:
The Database Manager, and IBM Color Graphics Adapter, Hercules Monochrome Graphics Card or equivalent.

Suggested Retail Price: $69.95
(not copy protected)

Ref:ex is a registered trademark and Reflex: The Workshop is a trademark of Borland/Analytica, Inc. IBM, AT, and XT are registered trademarks of International Business
Machines Corp. Hercules is a trademark of Hercules Computer Technology. MS-DOS is a registered trademark of Microsoft Corp. Copyright 1987 Borland International

BOR 0088B

TURBB PASCAL ®

VEIBII' 4.1

Turbo Pascal 4.0 has all the features
Thrbo Pascal 4.0 has all the features of Thrbo
Pascal 3.0, plus an amazing compilation speed of
27,000 lines per minute, * support for programs
larger than 64K, a library of powerful standard
units, separate compilation, and much more.

The single-pass, native code compiler offers
improved code generation, smart linking to remove
unused code from your programs, built-in project
management, separate compilation using units, out­
put screen saved in a window, MAP files for use
with standard debuggers, a command-line version
of the compiler and MAKE utility, and built-in sup­
por~ for 8087/80287/80387 math coprocessors.

All these advanced features, plus the integrated
programming environment, online help, and
Borland's famous pull-down menus, make Thrbo
Pascal 4.0 the high-speed, high-performance devel­
opment tool every programmer hopes for.

Built-in editor
An improved, full-screen editor for editing, compil­
ing, and finding and correcting errors from inside
the integrated development environment. Supports
25, 43, and 50 lines per screen, tabs, colors, and
new command installation.

Interactive error detection
The compiler instantly locates errors, automatically
activates the editor, and shows you the location of
the error in the source code.

Pick Jist
Lets you pick a file from a list of the last eight files
loaded into the editor and opens it at the exact spot
where you last edited the file. It even remembers
your last search string and search options.

Free MicroCalc spreadsheet
A new and improved version of the full-fledged
spreadsheet included on your Thrbo Pascal disk,
absolutely free! You get the complete, revised
source code, ready to compile and run.

Compatibility with Turbo Pascal 3.0
A conversion program and compatibility units help
you convert all your 3.0 programs to 4.0.

Other Technical Features:
o Several powerful standard units (System Dos,

Crt, and Graph)
o Device-independent graphics support for CGA,

MCGA, EGA, VGA, Hercules, AT&T 6300, and
IBM 3270 PC

o Extended data types, including Longlnt
o Optional range- and stack-checking; short-circuit

Boolean expression evaluation
o Support for inline statements, inline macros, and

powerful assembly language interface
o Faster software-only floating point; toggle switch

for 80x87 support including Single, Double,
Extended, and Comp IEEE reals (with numeric
coprocessor)

o Automatic execution of initialization and exit
code for each unit

o Nested include files up to 8 levels deep, includ-
ing main module and units

o Operating system calls and interrupts
o Interrupt procedure support for ISRs
o Variable and value typecasting
o Shell to DOS transfer
Minimum system requirements: For the IBM PS/2N and the IBM- and
Compaq· families of personal computers and all 100% compatibles. Inte­
grated environment: 384K; command line: 256K; one floppy drive.
*Run on an 8MHz IBM AT

Suggested retail price $99.95
(not copy protected)
All Borland products are trademarks or registered trademarks of Borland International. Inc.
Other brand and product names are trademarks or registered trademarks of their respective
holders. Copyright 01987 Borland International. Inc. BOR 0506

.',B AI' 'ErElRIIIIBRAIY

r1 unsurpassed collection of TURBO
lSCAL TOOLS that make you the
(pert, now upgraded to Version 4.0!

,rbo Pascal Tutor:
For both the novice programmer and the profes­
mal. Everything you need to write a simple pro­
am or handle advanced concepts like using
sembly language routines with your Turbo Pascal
ograms. The programmer's guide covers the fine
ints of Turbo Pascal programming with lots of
amples; and on accompanying disk gives you all
~ source code. A real education for just $69.95!

lrbo Pascal Editor 'lbolbox:
Everything you need to build your own custom
<:t editor or word processor including easy-to­
stall modules, source code and plenty of know­
IW. Includes all the popular features like word­
'ap, auto indent, find/replace. Just $99.95!

Irbo Pascal Database 'lbolbox:
A complete library of Pascal procedures that let
u sort and search your data and build powerful
Iplications. Includes Turbo Access files that use
t- trees to organize and search your data, and
rbo Sort to sort it. GINST even gets your pro­
ams up and running on other terminals! Includes
free database that you can use as is or modify to
·it your needs. Just $99.95!

Turbo Pascal Graphix 'lbolbox:
Gives you all the high-resolution graphics and

graphic window management capabilities you need,
with tools to draw and hatch pie charts, bar charts,
circles, rectangles and a full range of geometric
shapes. Save and restore graphic images to and
from disk, plot precise curves, and create anima­
tion. * All for just $99.95!

Turbo Pascal GameWorks:
Secrets and strategies of the masters with easy­

to-understand examples tliat teach you how to
quickly create your own computer games using
Turbo Pascal. For instant excitement, play the three
great computer games included on disk-Turbo
Chess, Turbo Bridge and Turbo Go-Moku. They're
all compiled and ready to run. Just $99.95!

Turbo Pascal Numerical
Methods'lbolbox:

All the state-of-the-art applied mathematical
tools you'll ever need. A collection of Turbo Pascal
mathematical routines and programs and ten inde­
pendent modules that you can easily adapt to dif­
ferent programs. Gives you the kind of mathemati­
cal routines IMSL@ and NAG libraries provide for
FORTRAN. Complete with sample programs and
source code for each module. All for just $99.95!

Buy them separately or get The
Developer's Library, which includes
all six, for just $395 suggested retail
price! Not copy protected!

System Requirements: For the IBM PS/2" and the IBM" and Compaq"
families of personal computers and all 100% compatibles.
Operating System: PC-DOS (MS-DOS) 2.0 or later.
*'JlJrbo Pascal Graphix Tho/box also requires one of the following
graphics adapters: CGA. EGA. Hercules. or IBM 3270.

All Borland products are trademarks or registered trademarks of Borland International, Inc.
Borland Turbo Toolbox" products. Other brand and product name are trademarks or regis'
tered trademarks oftheir respective holders. Copyright 01987 Borland International. Inc.

BOR0486

TURBO

the natural language of ArtifIciaIlnteIgence

Turbo Prolog brings fifth-generation supercomputer
power to your IBM®PCI

Turbo Prolog takes
programming into a new,
natural, and logical
environment
With Turbo Prolog,
because of its natural,
logical· approach, both
people new to programming
and professional programmers
can build powerful applica­
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.
Turbo Prolog is a declarative language which
uses deductive reasoning to solve
programming problems.

Turbo Prolog's development system
includes:
o A complete Prolog compiler that is a variation

of the Clocksin and Mellish Edinburgh
standard Prolog.

o A full-screen interactive editor.
o Support for both graphic and text windows.
o All the tools that let you build your own

expert systems and AI applications with
unprecedented ease.

== =- ~ BORLAND
====~ ~ I N T ERN A T ION A L

Turbo Prolog provides
a fully integrated pro­
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.
You get the
complete Turbo
Prolog programming
system
You get the 200-page
manual you're holding,
software that includes
the lightning-fast Turbo
Prolog six-pass

compiler and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database de-s+Qnec
and developed around U.S. geography.
You can modify it or use it "as is. ")

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PCjr
and true compatibles. PC-DOS (MS· DOS) 2.0 or later. 384K RAM
minimum.

Suggested Retail Price: $99.95
(not copy protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of Borland Intemational, Inc.
IBM, AT, XT, and PCjr are registered trademarks of International Business Machines Corp. MS-DOS is a
registered trademark of Microsoft Corp. Copyright 1987 Borland International BOR 0016C

Enhances Turbo Prolog with more than 80 tools
and over 8,000 lines 01 source code

Turbo Prolog, the natural language of Artificial Intelligence, is the
most popular AI package in the world with more than 100,000 users.

Our new Turbo Prolog Toolbox extends its possibilities.

The Turbo Prolog Toolbox enhances Turbo Prolog-our 5th-generation computer programming
language that brings supercomputer power to your IBM PC and compatibles-with its more than 80
tools and over 8,000 lines of source code that can be incorporated into your programs, quite easily.

Turbo Prolog Toolbox features include:
& Business graphics generation: boxes, circles, ellipses, bar charts, pie charts, scaled graphics
& Complete communications package: supports XModem protocol
& File transfers from Reflex,~ dBASE III,~ Lotus 1-2-3,~ Symphony~
& A unique parser generator: construct your own compiler or query language
& Sophisticated user -interface design tools
& 40 example programs
& Easy-to-use screen editor: design your screen layout and liD
& Calculated fields definition
& Over 8,000 lines of source code you can incorporate into your own programs

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT or true compatibles. PC-DOS (MS-DOS) 2.0 or later. Requires Turbo Prolog 1.10
or higher. Dual-floppy disk drive or hard disk. 512K.

Turbo Prolog Toolbox and Turbo Prolog are trademarks of Borland International, Inc. Reflex
is a registered trademark of Borland/Analytica, Inc. dBASE III is a registered trademark of
Ashton-Tate. Lotus 1-2-3 and Symphony are registered trademarks of Lotus Development
Corp. IBM, XT, and AT are registered trademarks of International Business Machines Corp.
MS-DOS is a registered trademark of Microsoft Corp. BOA 0240

'BRIIIIABIC@
The high-speed BASIC you've been waiting lor!

You probably know us for our Turbo Pasca/~ and Turbo Prolog.8 Well, we've done
it again! We've created Turbo Basic, because BASIC doesn't have to be slow.

If BASIC taught you how to walk, Turbo Basic will teach you how to run!
With Turbo Basic, your only speed is "Full Speed Ahead"! Turbo Basic is a complete development envir-
0nment with an amazingly fast compiler, an interactive editor and a trace debugging system. And because
Turbo Basic is also compatible with BASICA, chances are that you already know how to use Turbo Basic.

Turbo Basic ends the basic confusion
There's now one standard: Turbo Basic. And because Turbo Basic is a Borland product, the price is right,
the quality is there, and the power is at your fingertips. Turbo Basic is part of the fast-growing Borland
family of programming languages we call the "Turbo Family." And hundreds of thousands of users are
already using Borland's languages. So, welcome to a whole new generation of smart PC users!

Free spreadsheet included with source code!
Yes, we've included MicroCalc,'" our sample spreadsheet, complete with source code. So you can get
started right away with a "real program." You can compile and run it "as is," or modify it.

A technical look at Turbo Basic
B Full recursion supported
B Standard IEEE floating-point format
B Floating-point support, with full 8087 copro­

cessor integration. Software emulation if no
8087 present

B Program size limited only by available
memory (no 64K limitation)

B EGA, CGA, MCGA and VGA support
B Full integration of the compiler, editor, and

executable program, with separate windows
for editing, messages, tracing, and execution

B Compile and run-time errors place you in
source code where error occurred

B Access to local, static and global variables
B New long integer (32-bit) data type
~ Full 80-bit precision
~ Pull-down menus
~ Full window management

Suggested Retail Price: $99.9S (not copy protected)
Minimum system configuration: IBM PC, AT, XT, PS/2 or true compatibles. 320K. One floppy drive. PC-DOS (MS-DOS) 2.0 or later.

Turbo Basic, Turbo Prolog and Turbo Pascal are registered trademarks and MicroCalc is a trade­
mark of Borland International, Inc. Other brand and product names are trademarks or registered
trademarks of their respective holders.
Copyright 1987 Borland International BOR 0265B

rlllill IABIC@
DATABASE TlllllBIII"

With the Turbo Basic Database Toolbox you can build your own
powerful, professional-quality database programs. And like all other

Borland Toolboxes, it's advanced enough for professional
programmers yet easy enough for beginners.

Three ready-to-use modules
The Toolbox enhances your program­

ming with three problem-solving
modules:
Turbo Access quickly locates, inserts,
or deletes records in a database using
B+ trees-the fastest method for finding
and retrieving database information.
(Source code is included.)
Turbo Sort uses the Quicksort
method to sort data on single items
or on multiple keys. Features virtual
memory management for sorting large
data files. (Commented source code
is on disk.)
TRAINER is a demonstration program
that graphically displays how B+ trees
work. You can key in sample records and
see a visual index of B+ trees being
built.

Free sample database
Included is a free sample database

with source code. Just compile it. and it's
ready to go to work for you-you can
use it as is or customize it. You can
search the database by keywords or
numbers, update records, or add and
delete them, as needed.

Saves you time and money
If you're a professional programmer

writing software for databases or other
applications where search-and-sort capa­
bilities are important, we can save you
time and money. Instead of writing the
same tedious but essential routines over
and over again, you can simply include
any of the Toolbox's modules
in your own compiled programs.

Technical Features
@ Maximum number of files open: 15 files, @ Maximum number of records: +2 billion

or 7 data sets @ Maximum field size: 32K
@ Maximum file size: 32 Mb @ Maximum key size: 128 bytes
@ Maximum record size: 32K @ Maximum number of keys: +2 billion

Suggested Retail Price: $99.95 (not copy protected)

Minimum system requirements: For the IBM PS/2 and the IBM@ and Compaq@ families of personal computers and all 100% compatibles, running
Turbo Basic 1.0. PC-DOS (MS-DOS®) 2.0 or later. Memory: 640K.

All Borland products are registered trademarks or trademarks of Borland
International, Inc. or Borland/Analytica, Inc. A Borland Turbo Toolbox pro­
duct. Other brand and product names are trademarks or registered trade­
marks of their respective holders. Copyright 1987 Borland International.

BOR 0384A

Includes Iree
MicroCalc spreadsheet

with source code

A complete interactive development environment
With Turbo C, you can expect what only Borland delivers:
Quality, Speed, Po~er and Price. And with its compilation
speed of more than 1000 lines a minute, Turbo C makes

everything else look like an exercise in slow motion.

Turbo C: The C compiler for both amateurs and professionals
If you're just beginning and you've "kinda wanted to learn e," now's your chance to do it the easy way.
Turbo e's got everything to get you going. If you're already programming in e, switching to Turbo e will
considerably increase your productivity and help make your programs both smalier and faster.

Turbo C: a complete interactive development environment
Like Turbo Pascale and Turbo Prolog,'" Turbo e comes with an interactive editor that will show
you syntax errors right in your source code. Developing, debugging, and running a Turbo e
program is a snap!

Technical Specifications
&' Compiler: One-pass compiler generating native in- [iV' Development Environment: A powerful "Make" is

line code, linkable object modules and assembler. included so that managing Turbo C program
The object module format is compatible with the development is easy. Borland's fast "Turbo
PC-DOS linker. Supports small, medium, compact, Linker" is also included. Also includes pull-down
large, and huge memory model libraries. Can mix menus and windows. Can run from the environ-
models with near and far pointers. Includes ment or generate an executable file.
floating point emulator (utilizes 8087/80287 if [iV' Links with relocatable object modules created
installed). using Borland's Turbo Prolog into a

&' Interactive Editor: The system includes a powerful, r:-v' single program.
interactive full-screen text editor. If the compiler ~ ANSI C compatible. .
detects an error, the editor automatically positions ~ Start-up routme ~ource ~ode Included ..
the cursor appropriately in the source code. ~ Both. co~mand line and Integrated environment

versions Included.

"Sie"e" benchmark (25 iterations)

Turbo C Microsofte C Lattice C

Compile time 3.89 16.37 13.90

Compile and link time 9.94 29.06 27.79

Execution time 5.11 9.51 13.79

Object code size 214 297 301

Price $99.95 $450.00 $500.00

Benchmark run on a 6 Mhz IBM AT using Turbo eversion 1.0 and the Turbo Linker version 1.0; Microsoft eversion 4.0 and the
MS overlay linker version 3.51; Lattice eversion 3.1 and the MS object linker version 3.05.

Suggested Retail Price: $99.95* (not copy protected) "Introductory offer good through July 1. 1987.

Minimum system configuration: IBM PC, XT, AT and true compatibles. PC-DOS (MS-DOS) 2.0 or later. One floppy drive. 320K.

Turbo C and Turbo Pascal are registered trademarks and Turbo Prolog is a trademark of Borland
International. Inc. Microsoft C and MS-DOS ere registered trademarks of Microsoft Corp. Lattice C
is a registered trademark of Lattice. Inc. IBM. Xl. and AT are registered trademarks of International
Business Machines Corp. BOR 0243

EIIIEIA: "E B'frEB~
The solution to your most complex

equations-in seconds!
If you're a scientist, engineer, financial analyst, student, teacher, or any other professional working with
equations, Eureka: The Solver can do your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimization problems, plots functions, generates reports, and
saves an incredible amount of time. Even if you're not a computer specialist, Eureka can help you
solve your real-world mathematical problems fast, without having to learn numerical approximation
techniques. Using Borland's famous pull-down menu design and context-sensitive help screens, Eureka
is easy to learn and easy to use-as simple as a hand-held calculator.

X + exp(X) = 10 solved instantly instead 01 eventually!
Imagine you have to "solve for X," where X + exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's going to take a lot of time guessing at "X." With Eureka,
there's no guessing, no dancing in the dark-you get the right answer, right now. (PS: X = 2.0705799,
and Eureka solved that one in .4 of a second!)

How to use Eureka: The Solver
It's easy.
1. Enter your equation into the

full-screen editor
2. Select the "Solve" command
3. Look at the answer
4. You're done

Some 01 Eureka's key leatures
You can key in:
~ A formula or formulas
~ A series of equations-and solve for

all variables
~ Constraints (like X has to be

< or = 2):
~ A function to plot
~ Unit conversions
~ Maximization and minimization problems
~ Interest Rate/Present Value calculations
~ Variables we call "What happens?," like

You can then tell Eureka to
• Evaluate your solution
• Plot a graph
• Generate a report, then send the output

to your printer, disk file or screen
• Or all of the above

Eureka: The Solver includes
~ A full-screen editor
~ Pull-down menus
~ Context-sensitive Help
~ On-screen calculator
~ Automatic 8087 math co-processor

chip support
~ Powerful financial functions
~ Built-in and user-defined math and

financial functions
~ Ability to generate reports complete with

plots and lists
"What happens if I change this variable to
21 and that variable to 27?"

~ Polynomial finder
~ Inequality solutions

Minimum system configuration: IBM PC, AT, XT, PS/2, Portable,
3270 and irue compatibles. PC-DOS (MS-DOS) 2.0 and
later. 384K.

Suggested Retail Price: $167.00
(not copy protected)

Eureka: The Solver is a trademark of Borland International, Inc. IBM, AT, and XT are registered
trademarks of International Business Machines Corp. MS-DOS is a registered trademark of
Microsoft Corp. Copyright 1987 Borland International BOR 0221 B

.11I'£I'.fll® THE IEB"," IJ.J I~ .IIJ : "WIlIl Release 2.0
Macintosh™

The most complete and comprehensive collection of
desk accessories available for your Macintosh!

Thousands of users already know that SideKick is the best collection of desk accessories available
for the Macintosh. With our new Release 2.0, the best just got better.

We've just added two powerful high-performance tools to SideKick-Outlook"': The Outliner
and MacPlan'": The Spreadsheet. They work in perfect harmony with each other and while you
run other programs!

Outlook: The Outliner
• It's the desk accessory with more power than a stand-alone outliner
• A great desktop publishing tool, Outlook lets you incorporate both text and graphics

into your outlines
• Works hand-in-hand with MacPlan
• Allows you to work on several outlines at the same time

MacPlan: The Spreadsheet
• Integrates spreadsheets and graphs
• Does both formulas and straight numbers
• Graph types include bar charts, stacked bar charts, pie charts and line graphs
• Includes 12 example templates free!
• Pastes graphics and data right into Outlook creating professional memos and reports, complete

with headers and footers.

SideKick: The Desktop Organizer,
Release 2.0 now includes

~ Outlook: The Outliner
~ MacPlan: The Spreadsheet
~ Mini word processor
~ Calendar
~ Phone Log
~ Analog clock
~ Alarm system
~ Calculator
~ Report generator
~ Telecommunications (new version now

supports XModem file transfer protocol)

• 13.6715 Sa~s~
Q 15.94~ Sa~sB

II 29.61'i5 TotalR~vfnues

m em

• !N; Expmses
D O.31'S1a Labor

II] <I.669a MatEf'ia'l$:

EI 6.219iJ(Ntrhtad

I] 11.1B'JiS TolalExpensK

El ""
• 18.43'£ Hetproril

MacPlan does both spreadsheets and business
graphs. Paste them into your Outlook files and

generate professional reports.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system configurations: Macintosh 512K or Macintosh Plus with one disk drive. One BOOK or two 400K drives are recommended.
With one 400K drive, a limited number of desk accessories will be installable per disk.

SideKick is a registered trademark and Outlook and MacPlan are trademarks of Borland
International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple
Computer, Inc. Copyright 19B7 Borland International BOR 0069D

REIIEX® PIUS: ~'£::IABASE
l,ri.',,1 ™

All the Power & Flexibility of a Relational Database Made Easy!
Reflex Plus: The Database Manager is the first relational database that's

easy to learn, powerful, and aimed at your needs. Reflex Plus is
not a mere file organizer, nor is it a monstrously complicated behemoth

aimed solely at consultants. Reflex Plus is the only relational database
aimed at your needs and time constraints.

Reflex Plus accomplishes this by taking full advantage of the
Macintosh's superior graphic ability while still giving users what
they want: unlimited flexibility in creating databases, accessing
data, and producing reports.

What puts the plus into Reflex Plus?
Borland listens to its customers and has added the most­

asked-for features and improvements to Reflex Plus.

High-powered features of Reflex Plus:
g Multiple entry forms for the same database.
g Entry for more than one database in a single entry form.
g Your choice of having an entry form that shows one record

at a time, or one that shows all the records at once.
g Calculated fields in entry forms.
g Display-only fields.
g Default (but editable) fields.
g New functions like GROUPBY, which lets you easily show

records grouped by values in common.
g A selection of useful templates.
g Larger record size. (You can now choose record sizes of

1000, 2000, or 4000 characters.)

Check out these Reflex Plus features:
g
g

g

Visual database design.
A "what you see is what you get" design capability both
for entry forms and reports.
Compatible with all Macintoshes with at least 512K,
including ihe SE", and Macintosh 11."

The heart of Reflex Plus is in its special functions with
which you create formulas. With over 50 function words to
choose from, you are given all the power of programming with­
out struggling with complex syntax. Reflex Plus functions are
straightforward and can handle all types of data.

Armed with these functions, you create formulas that
sort, search, calculate, quantify, qualify-you name it. And if
you don't feel up to writing the formula yourself, Reflex Plus
will do it for you. Using the FormulaBuild dialog box, you can
master even the most complicated formula.

Display grouped data. Reflex Plus gives you unlimited
flexibility when you want to display your data grouped in mean­
ingful ways.

Flexible entry forms. Most databases have a data entry
form, and that's that. Reflex Plus lets you design your own (but
if you don't want to bother, Reflex Plus will make one for you).
Here are just some of the options available in your entry forms:

&' View all records at once.
g View one record at a time.
&' Enter data into many databases at once.
&' Use calculated fields.
&' Default values in fields, display-only values, and lots more.
Convenience and Ease
&' Preset entry forms. Let Reflex Plus create an entry

form for you.
&' Preset reports. Let Reflex Plus create a table-style

report for you.
&' Paste Formula command. Let Reflex Plus guide you

through the steps of creating formulas for power searching
and data manipulation.

&' On-line help facility. Reflex Plus has an extensive on­
screen, context-sensitive help feature.

&' Paste Choice command. This command lets you paste
in fields that duplicate all the attributes of another field. A
great time saver. The command also lets you build formu­
las by painting and clicking.

&' Auto-save. You'll never lose data again with Reflex
Plus's auto-save feature.

Database specifications: Maximum Single field length 4072 bytes. Maximum fields per record: 254. Maximum record length 4080 bytes
Maximum records per file: limited only by disk capacity. Maximum number of linked database files: 200. Maximum number of open windows:
15. Maximum number of files that can be used by a report: no limit.

Suggested Retail Price: $279.00 (not copy protected)

Minimum system requirements: Runs on any Macintosh with at feast 512K memory Minimum setup is one SOaK (double-sided) disk drive or two 400K (single-sided)
drives. Works with the Hierarchical File System. Switcher. and most hard disks. Supports printing on the ImageWriter and the LaserWriter

Reflex is a registered trademark of Borland/Analytica. Inc. Other brand and pro­
duct names are trademarks or registered trademarks of their respective
holders. COPYright 1987 Borland International BOR 0149A

The ultimate Pascal development environment

Borland's new Turbo Pascal for th,e Mac is so incredibly fast that it can
compile 1,420 lines of source code in the 7.1 seconds it took you to read this!

And reading the rest of this takes about 5 minutes, which is plenty of time for Turbo Pascal for the Mac
to compile at least 60,000 more lines of source code!

Turbo Pascal for the Mac does both Windows and "Units H

The separate compilation of routines offered by Turbo Pascal for the Mac creates modules called "Units,"
which can be linked to any Turbo Pascal program. This "modular pathway" gives you "pieces" which can
then be integrated into larger programs. You get a more efficient use of memory and a reduction in the
time it takes to develop large programs.

Turbo Pascal for the Mac is so compatible with Lisa@ that they should be living together
Routines from Macintosh Programmer's Workshop Pascal and Inside Macintosh can be compiled and run
with only the subtlest changes. Turbo Pascal for the Mac is also compatible with the Hierarchical File
System of the Macintosh.

The 27-second Guide to Turbo Pascal for the Mac
• Compilation speed of more than 12,000 lines

per minute
• "Unit" structure lets you create programs in

modular form
• Multiple editing windows-up to 8 at once

Workshop Pascal (with minimal changes)
• Compatibility with Hierarchical File System of

your Mac
• Ability to define default volume and folder names

used in compiler directives
• Compilation options include compiling to disk or

memory, or compile and run
• Search and change features in the editor speed up

and simplify alteration of routines
• No need to switch between programs to compile

or run a program
• Ability to use all available Macintosh memory

without limit
• Streamlined development and debugging • "Units" included to call all the routines provided by
• Compatibility with Macintosh Programmer's Macintosh Toolbox

Suggested Retail Price: $99.95* (not copy protected)
'Introductory price expires July 1. 1987

Minimum system configuration: Macintosh 512K or Macintosh Plus with one disk drive.

Turbo Pascal and SideKick are registered trademarks 01 Borland International, Inc, and Reflex is a
registered trademark 01 Borland/ Analytica, Inc, Macintosh is a trademark 01 Mcintosh Laboratories, Inc, licensed
to Apple Computer with its express permission, Lisa is a registered trademark of Apple Computer, Inc, Inside
Macintosh is a copyright of Apple Computer, Inc,
Copyright 1987 Borland International BOR 0167A

rURBII PABCAl®

lillI'
From the folks who created Turbo Pascal. Borland's new
Turbo Pascal Tutor is everything you need to start pro­
gramming in Turbo Pascal on the MacintoshtM It takes

you from the bare basics to advanced programming in a
simple, easy-to-understand fashion.

No gimmicks. It's all here.

The manual, the Tutor application, and 30 sample
programs provide a step-by-step tutorial in three
phases: programming in Pascal, programming on
the Macintosh, and programming in Turbo Pascal
on the Macintosh. Here's how the manual is set
up:

Turbo Pascal for the Absolute Novice
delivers the basics-a concise history of Pascal,
key terminology, your first program.

A Programmer's Guide to Turbo Pascal
covers Pascal speCifics-program structure,
procedures and functions, arrays, strings, and so
on. We've also included Turbo Typist, a textbook
sample program.

Advanced Programming
takes you a step higher into stacks, queues,
binary trees, linked structures, writing large pro­
grams, and more.

Using the Power of the Macintosh
discusses the revolutionary hardware and soft-
ware features of this machine. It introduces the
600-plus utility routines in the Apple Toolbox.

Programming the Macintosh in Turbo Pascal
shows you how to create true Macintosh pro-
grams that use graphics, pull-down menus, dia-
log boxes, and so on. Finally, MacTypist, a com­
plete stand-alone application featuring animated
graphics, builds on Turbo Typist and demon-
strates what you can do with all the knowledge
you've just acquired.

The disk contains the source code for all the
sample programs, including Turbo Typist, MacTy­
pist, and Turbo Tutor. The Tutor's split screen lets
you run a procedure and view its source code
simultaneously. After running it, you can take a
test on the procedure. If you're stuck for an
answer, a Hint option steers you in the right
direction.

Macintosh topics included are
@' memory management @' menus
@' resources and resource files @' desk accessory support
@' QuickDraw @' dialogs
@' events @' File Manager
@' windows @' debugging
@' controls

Suggested Retail Price: $69.95

Minimum system requirements: Any Macintosh with at least 512K of RAM. Requires Turbo Pascal.

~-::o BORLAND ~_ INTERNATIONAL
Turbo Pascal and Turbo Tutor are registered trademarks ot Bortand tnternationat. tnc. Other brand and product names
are trademarks or reglSiered trademarks ot their respective hotders Copyrignt 1987 Bortand tnternational BaR 0381

EUREKA: ll1E Bllf'ER~
If you're a scientist, engineer, financial analyst, student, teacher, or any

other professional working with equations, Eureka: The Solver can do
your Algebra, Trigonometry and Calculus problems in a snap.

Eureka also handles maximization and minimiza­
tion problems, plots functions, generates reports,
and saves an incredible amount of time. Even if
you're not a computer specialist, Eureka can help
you solve your real-world mathematical problems
fast, without having to learn numerical approximation
techniques. Eureka is easy to learn and easy to
use-as simple as a hand-held calculator.

x + exp(X) = 10 solved instantly instead
of eventually!

Imagine you have to solve for X, where X +
exp(X) = 10, and you don't have Eureka: The Solver.
What you do have is a problem, because it's gOing
to take a lot of time guessing at X. With Eureka,
there's no guessing, no dancing in the dark-
you get the right answer, right now. (PS: X =
2.0705799, and Eureka solved that one in less than
5 seconds!)

Some of Eureka's key features
You can key in:
@ A formula or formulas
@ A series of equations-and solve for

all variables
@ Constraints (like X must be < or = 2)
@ Functions to plot
@ Unit conversions
@ Maximization and minimization problems
@ Interest Rate/Present Value calculations
@ Variables we call "What happens?," like

"What happens if I change this variable to
21 and that variable to 27?"

How to use Eureka: The Solver
It's easy.
1. Enter your equation into a problem

text window
2. Select the "Solve" command
3. Look at the answer
4. You're done

You can then tell Eureka to:
• Verify the solutions
• Draw a graph
• Zoom in on interesting areas of the graph
• Generate a report and send the output to

your printer or disk file
• Or all of the above

Eureka: The Solver includes:
@ Calculator+ desk accessory
@ Powerful financial functions
@ Built-in and user -defined functions
@ Reports: generate and save them as

MacWrite'· files-complete with graphs
and lists-or as Text Only files

@ Polynomial root finder
@ Inequality constraints
@ Logging: keep an up-to-the-minute record

of your work
@ Macintosh'· text editor
@ On-screen Help system

Suggested Retail Price: $195.00 (not copy protected)
Minimum system configuration: Macintosh 512K, Macintosh Plus, SE, or II with one aOOK disk drive or two 400K disk drives.

Eureka: The Solver is a trademark of Borland International, Inc. Macintosh is
a trademark of Mcintosh Laboratory, Inc. licensed to Apple Computer, Inc.
Copyright 1987 Borland International BOR 0415

,,,., PASCAl '"l'"TM
1I'.EBICAl.E1111'

Turbo Pascal Numerical Methods Toolbox for the Macintosh
implements the latest high-level mathematical methods to solve

common scientific and engineering problems. Fast.

So every time you need to calculate an integral, work with Fourier transforms, or incorporate any of
the classical numerical analysis tools into your programs, you don't have to reinvent the wheel, because
the Numerical Methods Toolbox is a complete collection of Turbo Pascal routines and programs that
gives you applied state-of-the-art math tools. It also includes two graphics demo programs that use
least-square and Fast Fourier Transform routines to give you the picture along with the numbers.

The Turbo Pascal Numerical Methods Toolbox is a must if you're involved with any type of scientific or
engineering computing on the Macintosh. Because it comes with complete source code, you have total
control of your application at all times.

What Numerical Methods Toolbox will do lor you:

• Find solutions to equations • Differential equations
• Interpolations • Least-squares approximations
• Calculus: numerical derivatives and integrals • Fourier transforms
• Matrix operations: inversions. determinants. and eigenvalues • Graphics

Five free ways to look at Least-Squares Fit!
As well as a free demo of Fast Fourier Transforms, you also get the Least-Squares Fit in

five different forms-which gives you five different methods of fitting curves to a collection
of data points. You instantly get the picture! The five different forms are

1. Power 4. 5-term Fourier
2. Exponential 5. 5-term
3. Logarithm Poynomial

They're all ready to compile and run as is.

Suggested Retail Price: $99.95 (not copy protected)
Minimum system requirements: Macintosh 512K. Macintosh Plus. SE. or II. with one BOOK disk drive (or two 400K)

All Borland products are trademarks or registered trademarks of Borland International.
Inc. or Borland/ Analytica, Inc. Macintosh is a trademark licensed to Apple Computer,
Inc. Copyright 19B7 Borland International. A Borland Turbo liJo/box product

BOR 0419

Borland -
Software
OBD.B:a fODAY

I In I To Orde~ ,.-... , California
By Credit call

I Card, ' ... ,' (800)
I (~:g) 742-1133
I 255-8008 In Canada call

(800) 237-1136

High-resolution graphics for your IBM- PS/2; PC, AT,· XT,· PC jre and true
compatibles. Comes complete with graphics window management.

E"en if you're new to Turbo Pascal programming, the Turbo Pascal
Graphix Toolbox will get you started immediately. It's a collection
of tools that will get you right into the fascinating world of high­

resolution business graphics, including graphics window manage­
ment. You get immediate, satisfying results. And we keep Royalty out
of American business because you don't pay any-ellen if you distrib­
ute your own compiled programs that include all or part of the Turbo
Pascal Graphix Toolbox procedures.

The Toolbox Includes

• Commented source code on disk.
• Tools for drawing simple graphics.
• Tools for drawing complex graphics,

including curves with optional
smoothing.

• Routines that let you store and re­
store graphic images to and from
disk.

• Tools allowing you to send screen
images to Epson· -compatible
printers.

• Full graphics window management
• Two different font styles for graphic

labeling
• Choice of line-drawing styles
• Routines that will let you quickly plot

functions and model experimental
data.

• Routines that are structured into
Pascal units so you don't have to
recompile the toolbox code every­
time you use it.

"While most people only talk about low-cost personal computer software, Borland
has been doing something about it. And Borland provides good technical support
as part of the price."

John Markoll & Paul Freiberger, syndicated columnists.

If you eller plan to create Turbo Pascal programs that make use of
business graphics or scientific graphics, you need the Turbo Pascal
Graphix Toolbox.

Minimum system requirements: For the IBM PS/2-, and the IBM· and Compaq· lamilies of personal
computers and all 100% compatibles. Turbo Pascal 4.0 or later. 256K RAM minimum. Two disk drives and
an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), IBM 3270 PC, ATT 6300,
or Hercules Graphics Card or compatible.

All Borland producls are trademarks or registered Irademarks 01 Borland International, Inc. A Borland Turbo Too/bolt pro­
ducl Other brand and product names are Irademarks or regislered trademarks of their respeclive holders.
Copyright e1987 Borland International, Inc. BOR 0455

