
Language (Series

r rhe BYTE
Book Of
Pascal

Blaise W Liffick, Editor

J

The authors of the programs provided with this book have ‘^^refullv re¬

viewed them to ensure their performance
described in the book. Neither the authors nor BYTE Publications inc,
however, make any warranties whatever concerning the programs, and assurne

n”onsibility or liabiiity of any kind for errors in the Se
consequences of any such errors. The programs are the sole
authors and have been registered with the United States Copyright Office.

CoDvrieht © 1979 BYTE Pubiications Inc. All Rights '^e^erved^ortions

of thirbSc were previously Copyright© 1977 1^78 or 1979 by B^E ub
lications Inc. BYTE and PAPERBYTE are Trademarks of BYTE Publications

Inc No part of this book may be translated or reproduced in any form with¬

out the prior written consent of BYTE Publications Inc.

Library of Congress Cataloging in Publication Data

Main entry under title:

The BYTE Book of Pascal.

(Language series)
A collection of articles from BYTE Magazine.
1 Pascal (computer program language) I. Liffick,

Blaise W. 11. BYTE. Ml. Series: Language series

(Peterborough, N. H.) ^^nco
QA76.73.P2B18 001.6*424 79-22958

ISBN 0-07-037823-1

Printed in the United States of America

TABLE OF CONTENTS

introduction

COMMENTS

UCSD Pascal: A (Nearly) Machine Independent Software System

Ken Bowles [BYTE Magazine May 1978)

In Praise of Pascal .

David Mundie (BYTE Magazine August 1978)

Comments on Pascal, Learning How to Program, and Small Systems

Gary Ford (BYTE Magazine May 1978)

Is Pascal the Next BASIC?.

Car! Helmers (BYTE Magazine December 1977)

Concerning Pascal: A Homebrew Compiler Project

Stephen P Smith (BYTE Magazine April 1978)

A Proposed Pascal Compiler.

Kin-Man Chung, Herbert Yuen (BYTE Magazine August 1978]

ABOUT THE LANGUAGE

Pascal, A Structurally Strong Language -

Stephen R Alpert (BYTE Magazine August 1978)

Compilation and Pascal on the New Microprocessors . -

Charles H Forsyth, Randall J Howard (BYTE Magazine August 1978)

Pascal versus BASIC: An Exercise.

Allan M Schwartz (BYTE Magazine August 1978)

Pascal versus COBOL: Where Pascal Gets Down to Business

Ken Bowles (BYTE Magazine August 1978)

51

'^"'Tiny" Pascal Compiler

Part 1: The P-Code Interpreter (BYTE Magazine September 1978). 59

Part 2: The P-Compiler (BYTE Magazine October 1978). . 71

Part 3: P-Code to 8080 Conversion (BYTE Magazine November 1978) 81

Kin-Man Chung and Herbert Yuen

ill

"Tiny'' Pascal in 8080 Assembly Language

Dr B Gregory Louis

91

APPLICATIONS

WADUZITDO: How to Write a Language in 256 Words or Less

Larry Kheriaty (BYTE Magazine September 1978)

Part 1: An Essay on Human and Computer Chess Skill (BYTE Magazine October 1978).^ ^ ^

Part 2: Chess 0.5 (BYTE Magazine November 1978).

Part 3: Chess 0.5 (continued) (BYTE Magazine .143

Part 4: Thoughts on Strategy (BYTE Magazine January 1979).

Peter W Frey and Larry A Atkin .

An APL Interpreter in Pascal .
Alan Kaniss, Vincent DiChristofarO; John Santini

.163
A Pascal Print Utility Program .

Carl Helmers

An Automatic Metric Conversion Program

David A Mundie

189

.197
A Computer-Assisted Dieting Program .

David A Mundie

APPENDICES

A Listing 1: Pascal Run Time Routines.
Listing 2: PCode to 8080 Assembly Language Translator

203

214

B Listingl:

Listing 2;

Listing 3:

Listing 4:

Listing 5:

Listing 6:

A Sample Compilation in ''Tiny'' Pascal.

8080 Run Time Routines for Pascal Object Code

P-code to 8080 Translator Routines .

P-code Interpreter .
Pascal to P-code Interpreter.

Sample Codes for DEOUL OSEQ and MOVE Routines

221
235

241

252

265

287

C An APL Interpreter in Pascal.
291

AUTHOR'S DIRECTORY
333

INTRODUCTION

This book is part of the "Language Series" of BYTE Books. It is a collection of the

best articles from past issues of BYTE magazine, the leading technical journal in the

microcomputer field. The language under discussion is a relatively new computer pro¬

gramming language, Pascal. Until recently, Pascal has only enjoyed a large following

in the academic community, and only more recently has it been practical to use this

language with microcomputers. But the curious thing about Pascal is its ability to win

nearly instant converts; so, while Pascal may be one of the newest computer

languages, especially in the field of microcomputers, it is also one of the fastest grow¬

ing in use and acceptance.
The purpose of this book is twofold. First, for those uninitiated, the articles contain¬

ed in this book can serve as a general introduction to Pascal, providing the background

information necessary for a potential user. The Comments section itself is a general

discussion of the properties, merits, and applicability of Pascal. It includes reprints

from the "Languages Forum" of BYTE magazine, an ongoing dialogue among the

magazine^s knowledgeable readers. The Forum is intended as an interactive dialogue

about the design and implementation of languages for personal computing. In addi¬

tion, an editorial by Carl Helmers, one of the industry's leading proponents of Pascal,

rounds this section out as a beginning point for those unfamiliar with the language.

Second, for those requiring a more in depth study of the merits of the language and

its possible implementation, there are two sections, About the Language and Applica¬

tions.
About the Language provides insights into the usefulness of Pascal by comparing it

to BASIC and COBOL. Also, a detailed look at some possible implementations of the

language helps define the scope of the impact on the industry. This includes listings of

a Pascal to p-code compiler written in both Pascal and BASIC, and two listings in the

appendices: one a p-code to 8080 assembly language conversion program in BASIC;

the second a "tiny" Pascal compiler and p-code interpreter written in 8080 assembly

language.
The final section is Applications and, as the name implies, includes several applica¬

tion and system programs written in Pascal. For general applications there is an

automatic metric conversion program, nontrivial implementation of a chess program,

and an implementation of a print utility program. In the area of system software there

is the choice of two language implementations: one is a minimum implementation of a

language, written in less than 256 words (it has surprising usefulness); the other is an

APL interpreter.

So, this book provides not only a general introduction to the Pascal language, but is
also a tremendous resource for software; two versions of a Pascal compiler, one writ¬
ten in BASIC and the other in 8080 assembly language; a p-code interpreter written in
both Pascal and 8080 asembly language; a chess playing program; and an APL inter¬

preter.
Finally, a note about how the articles in this book were updated. We have been very

careful to make corrections to articles where an error has been made in the original ar¬

ticle. However, because many of these articles are reprinted from back issues of BYTE

magazine, some of the information contained in them is out of date. This information

is flagged in the form of footnotes within the article, and includes such items as page

references and the availablity of UCSD Pascal. All footnotes throughout this book can

be taken as current as of 1 July 1979.

Blaise W. Liffick
Editor

V

Consistency — or a Lack Thereof • • •

Notes by C Helmers

Readers will note a lack of con¬
sistency in the typography of various
articles on Pascal.

One area of questionable typo¬
graphy is a bit nebulous and less sub¬
ject to editorial fiat when "camera
ready" type is received from authors:
the style of representation of Pascal
program listings. The ideal style is of
course that used by Niklaus Wirth in
his book Algorithms + Data Struc¬
tures = Programs, published by Pren¬
tice-Hall in 1976. This style uses bold
face type in lowercase for representa¬
tion of the Pascal language keywords.
It uses italics for the representation of
specific variable names, procedure
names and literal values which are
part of the program. In articles by
authors Ken Bowles [page 51), Charles
Forsyth and Randall Howard (page 33),
and Allan Schwartz [page 41) this nota¬
tion was used. But in two of these
cases, the authors supplied camera
ready typeset copy along with the
articles involved, in order to minimize
potential errors due to keystroking.
Since two of these were typeset at
BYTE, and the other two were typeset
with different type specifications on
different machines, there is naturally a
different aesthetic flavor to the /istings

in these articles. A close variant of this
form is seen in the listings of David
Mundie's article [page 7) where bold
fact type and normal type are mixed in
the listing.

There is yet another variation on the
graphics used to represent Pascal pro¬
grams, provided by the listings accom¬
panying Stephen Alpert's article [page
27). Here, the camera ready listing was
supplied by the author as printed on
an uppercase line printer, so keywords
are indistinguishable from program
details on the basis of typography
alone.

What can we conclude about this
inconsistency? Our goal at BYTE is to
asymptotically approach the notation
of Pascal programs in the bold face
and italic form whenever we do the ac¬
tual typesetting of a //sting. The italic
and the bold face typography pro¬
vides an excellent contrast to normal
type when elements of a program are
mentioned within text. But when a
manuscript comes with a usable
camera ready listing of a Pascal pro¬
gram, such details of aesthetics must
take second place to the goal of mini¬
mizing errors of transcription: it is far
better to use a camera ready image
derived from a machine produced list¬
ing than to key in a program manually
in order to create a typeset form of the
listing. .. .CH

Comments

Languages Forum

UCSD PASCAL:

A (Nearly) Machine Independent

Software System (for Microcomputers and

Minicomputers)

Kenneth L Bowles

Overview

This article describes a complete inter¬
active software system which can operate
virtually without change on many different
microcomputers and minicomputers. Because
the semiconductor industry is evolving new
equipment very fast, it is becoming a practi¬
cal necessity to have machine independent
software to prevent rapid obsolescence of
large application programs. The software
described here has been developed at the
University of California San Diego (UCSD),
and is available to anyone for a $200 sub¬
scription fee. This article presents an appeal
to readers of BYTE for help to bring about a
true community-wide software system for
business, educational and other professional
users of small computer systems. Help is
needed from the user community, since the

manufacturers have so far avoided stan¬
dardizing software except as regards some
aspects of programming languages. For
single user microcomputers, it appears to
be far more practical to standardize the
entire software system than the language
processor alone!

The Software System

UCSD Pascal is a complete ini
^y^tem for small compul

' °^Ter5 many features normally foi
n medium and large scale machir

tin?' minimal
comni?^ niicrocomputers c

8 bit bytes o

for lie versions are now
EouZ based on thr
Equipment LSI-11 or other PDP-

cessors, and on the 8080 and Z-80 micro¬

processors. Having first been sent to users
in August 1977, the system is in use on
approximately 60 mainframes using these

processors (as of mid February 1978), and
the list of both users and processors has
started to grow rapidly. Versions not yet
supported by the Project are operating,
or nearly operating, on four other pro¬
cessors (General Automation 440, Uniyac
V75, Nanodata QM-1, National Semicon¬
ductor PACE). The UCSD Pascal Project
is discussing arrangements with various
manufacturers whereby supported versions
can be released for most other popular
microprocessors, and additional inquiries

would be welcomed.
The system is written almost entirely in

the Pascal programming language, ex¬

tended for system programming and for disk

based interactive applications. Far more than
a simple compiler for Pascal, it should be
viewed as a complete and fully integrated

system which is self-maintaining, and gen¬
erally independent of software from any
other source. The system operates in a small
pseudomachine (interpreter) which can be

written in the native machine language of
conventional processors, or can be micro¬
programmed on machines which provide
that capability. The object code processed

by the Pascal pseudomachine is com¬
pressed relative to conventional object code,
and consumes roughly one third to one half
as much space as the native object code of
most present day processors. A feature to be

implemented soon will allow mixing Pascal
pseudocode routines, for efficient use of
memory, with native code routines, for fast
processing.

The system is the product of a growing
project team, and is evolving rapidly in an
upward compatible way. As of early 1978,
the system represents the equivalent of about

15 full-time years of programming and
design effort Major components of the
system currently being distributed include

tha fnilnwine:

• Single user operating system.

• Pascal Compiler. Standard Pascal
plus extensions for strings, disk files,
graphics, system programming (busi¬

ness oriented extensions are planned).
• Editors. High performance screen

oriented editor for program develop¬
ment and word processing, line oriented

editor for hard copy devices.
• FHe Manager. General purpose utility

for maintaining a library of disk files

(usually floppy disks).
• Debugger. Single statement and break¬

point processing, access to program

variables.
• Utilities. Programs for printing, com¬

municating, accessing disks written
under DEC’S RT11 system, diagnosing

disk faults, desk calculator, etc...
m BASIC language compiler. Imple¬

mented for those who insist on using
BASIC, but may wish to write power¬

ful subroutines in Pascal. (The com¬
piler works, but subroutine binding is

not yet ready.)

Major components now operating, but

not quite ready for general distribution,

include the following:

• CAI Package. AdapUtion of the major
Computer Assisted Instruction package

developed at University of California
Irvine; includes automated materials
for an introductory Pascal program¬

ming course.
• Assemblers. For the PDP-11, 8080

and Z-80, these are written in Pascal
for machine independence, but gen¬
erate native code for those processors.

• TREEMETA. A metacompiler devel¬

oped at UC Irvine.

The UCSD Pascal Project

The Project is one of the principal activi¬

ties of the Institute for Information Systems,
an embryonic “organized research unit
concerned with interdisciplinary studies, and
with related instructional and public service
activities. The main objectives of the Project

include the following:

• Machine Independence. To foster the
widespread use of machine indepen¬

dent software systems, particularly for

small computers, as a means to avoid
software obsolescence. A major premise
of the project is that applications soft¬

ware can best be made truly porUble
by making the entire operating system

and support software portable to a
new processor at the cost of only a

small effort (eventually: one to three
programmer months; currently: about

six months).
• Pascal. To promote the widespread

use of standard Pascal, and stan¬
dardized extensions, as (the basis of) a

general purpose programming language,

both for writing system programs such
as operating systems and compilers,

and for applications software in educa¬
tion, research and business data pro¬

cessing.
• Software Exchange. To foster the

development of a national or inter¬
national marketplace within which
authors of computer based course
materials, and other applications soft¬
ware, may receive reasonable royalties
to compensate them for their work. As
an initial step, the Project will operate
a Software/Courseware Exchange,

using Tele-Mail techniques, for users
of the UCSD Pascal Software

System.
• Mass Education. To demonstrate that it

is practical to improve the quality of
mass education at the college level
(and adult training in technical topics),
while simultaneously reducing costs,

through the use of microcomputer

based course materials.
• Research and De\'elopment. To provide

facilities, a team working environment

above critical size, and salary support
for students and faculty members who
wish to conduct research or develop¬
ment projects in software engineering

and many related fields of study.

Hardware Configuration

The UCSD Pascal system has been

designed to run as a single user interactive
system with superior response characteristics

when one or more floppy disks are used for
secondary storage. Wherever possible, single
character commands are used, and prompting
messages remind the user of the significance
of the various commands that are available

in different contexts. While the system has
proven that machine independence of a com¬

plex software system is practical, there are
of course practical limits to the range o
characteristics that can be accommodated o
the host machine. The major characteristics

of a typical system needed to run UC

Pascal include the following:

• Main memory. 56 K bytes (48 K
will do, but only for compiling small

programs).
• Word Size. 8 bit bytes, 16 bit words

(hardware or simulated).
• Secondary Storage. Standard 8 inch

floppy disk (the major system program
files occupy roughly 70 K bytes).

• Console Display. 9600 bps ASCII
terminal with x-y cursor addressing
works best (slower CRTs or hard copy
terminals can be handled, but less

effectively).
• Keyboard. Uses ASCII keys for CR,

ESC, ETX, BS, DEL and four posi¬
tioning arrows (up, down, left, right).

In addition, the system is being used to drive
a variety of printers such as the Diablo
HYTYPE and Printronix 300, and for com¬
municating via standard asynchronous lines.

Compatibility with Other Software Systems

In Project discussions with manufacturers

of computers, on which the UCSD Pascal
System might potentially be run, the most
frequently asked question is: “How much

effort will it take to adapt Pascal to run
under my software system?” This question
is understandable in view of the approach
generally taken by the computer industry
when a new language is to be installed on a
machine produced in quantity. Unfor¬

tunately, this question misses the main point
the Project is trying to make regarding trans¬
portable software. The effort needed to con¬
vert the Pascal compiler to run under the
operating system of manufacturer “X” will
generally be far greater than the effort to

make the entire UCSD Pascal system run
on that manufacturer's hardware. In the

interest of promoting software transportabil¬
ity, the Project will generally not agree to
adapt just the compiler to run under another
operating system.

Pascal Language Extensions

Like many others who use Pascal a
the basis for writing large system programs
the Project has found it necessary to extern
the language. The most notable extension
have to do with strings of characters, fo
t^atural reading and writing from and to inter
active fiies^ and for tools needed in writin

^ A concerted effort has beei

p/ ^1 '^plement all of the “standard
asca language as defined in Pasa

Report^ by Kathleen jense

York * (Springer Verlag, Ne>
and Heidelberg, 1975). (Howevei

UCSD Pascal still lacks the ability to
allow procedure and function names to be
passed as parameters.) The Project is making

an effort to serve as coordinator among
several large industrial firms which are pre¬
paring to use extended versions of Pascal
for major programming projects. It Is hoped
that a consensus will emerge from this effort
on extensions to the language for system

programming. UCSD Pascal implements
integers in two’s complement form in 16
bit words, and real numbers in a 32 bit
field. Since neither form is suitable for
large integers or for business applications,
it is planned to add the facility to handle
fixed decimal numbers whose precision may
be declared by the programmer.

Speed of Execution

Although the system is entirely inter¬
pretive, as currently implemented, execu¬

tion speed is fast enough to permit highly
interactive programs to be run on micro¬
computers. For example, compilation speed

ranges from 600 to 700 lines per minute on
the DEC LSI-11, or on an 8085 with a 3 MHz

clock.

Availability

Copies of the system may be obtained by
writing to UCSD Pascal Project, Mail-
drop C-021, La Jolla CA 92093. The system
is available at a subscription fee of $200,
made payable to “Regents of the University
of California,” which pays for materials,

handling, and a limited amount of direct
assistance to users. Those who wish to
order the system should send details de¬
scribing the system on which they wish it to

run, or should request an order blank from
the project. The system is copyrighted, but
rights are granted to educational institutions

and to bonafide computer clubs to make
additional copies for their own noncommer¬

cial uses. A copy of the latest package of

printed user manuals (about 250 pages) is
available at a charge of $15, again made
payable to the Regents of the University

of California.
Though plans are in motion to convert

the system to run on many different pro¬
cessors and configurations, the only systems

currently supported use LSI-11, 8080 or
Z-80 microprocessors with at least 48 K

bytes of main memory, and IBM 3740 com¬
patible standard floppy disk drive(s). For
8080 and Z-80 users, the method of adapting
the system to run on new hardware is similar
to that used by Digital Research Inc in
distributing the CP/M operating system; and
the Project will distribute a conversion
package similar to theirs. Versions of the sys-

As of this writing
(1 July 1979), SofTech
Microsystems Inc (94
Black Mountain Rd,
Building 3, San Diego
CA 92126) is the sole
licensee of the UCSD
Pascal system. Ques¬
tions about prices and
availability of the sys¬
tem can be directed to
the above address.

Also, note that
UCSD Pascal is a
trademark of the

Regents of the Uni¬
versity of California.

5

tem for other microprocessors are not likely

to be ready for release until October 1978 at

the earliest. Release on floppy disks other
than those compatible with the 3740 format
will depend upon availability of hardware to

the Project
In addition to the main software system,

educational materials are available separately
for an introductory course on problem solv¬
ing and programming using Pascal. A

textbook (Microcomputer) Problem Solving

Using Pascal is available from Springer
Verlag Publishers, 175 Fifth Av, New York
NY 10010 ($9.80). The Project can supply
a set of automated quizzes designed for use

with the textbook in a self-paced course

of study.

Help from the User Community

Readers can help by letting their favorite

hardware vendors know that they want
UCSD Pascal to be available in machine
independent form. The Project has noted
an increasing number of manufacturers who
report that customers are requesting
Pascal, and this has a real influence on

their business decisions. Readers can also
help by joining the international Pascal

Users' Group (send $4 c/o Andy Mickel,
227 EX, 208 SE Union St, University of
Minnesota, Minneapolis MN 55455) and
pressing PUG to establish a technical board
to oversee UCSD Pascal as a community

project."

Note on the Pascal User's Group

As of July h the Pascal
User's Group (PUG) has over 3300
members in 47 countries. Those in¬

terested in Joining can contact Andy
Mickel at the University of Minnesota
Computer Center, 227 Ex Engr, Univer¬
sity of Minnesota, Minneapolis MN
55455, (612) 376-7290. The Pascal
Newsletter is published four times a
year on a July to June schedule, with a
subscription fee of $6 per year. All
issues for the current year are sent

with a new subscription, and back

issues are available.

6

1

Languages Forum

In Praise of Pascal
I

David A Mundie

As has been pointed out in these pages

before, personal computing will never
achieve its full potential as long as our
state of the art machines are hobbled down
with a language as far from state of the art
as BASIC Is. Some have argued for designing
a special high level language for micro¬
processors, but I personally fail to see why
we don't just implement Pascal and be
done with it. I would like to look briefly
at the language itself and try to explain why
it seems the logical choice to me.

I am an applications programmer with no
theoretical interest in computing whatso¬

ever. What I like about Pascal is not the
theory of its design, though that seems
sound enough, but rather the fact that it
lets me formulate my problems in my own

terms. In Pascal more than in any other
language I know, I can remain on the ab¬
stract, algorithmic level where, as a human
being, I function best. Because of this
pragmatic bias, much of what follows will
be an informal discussion appealing to the
reader's intuitions rather than a technical
demonstration. I shall use BASIC for com¬
parative purposes, since it is the tyrant in
the field.

I find Pascal easy to use because it
allows me to define new data types which
express my data meaningfully. It provides
control structures with which I can express
what I want done to my data clearly and
naturally. Pascal allows and encourages

to formulate my thinking in a structured
Way. Let us examine these three aspects of
Pascal in reverse order.

Program Structure

^ resolutely struc

into program is struc

Which “es it'f It a name and specific

parameters. Roughly speaking, a block
consists of a definition part, in which
constants, types, variables, and subroutines
are defined, and an action part, which con¬
tains the algorithm of the block. This
rigorous separation of data definition and

algorithm expression is partly responsible,
it seems to me, for the greater legibility of
Pascal compared to ALGOL.

Subroutines are themselves block struc¬
tured and may thus be nested within one
another. This allows the declaration of
"local” variables and subprograms, meaning
that storage may be allocated efficiently;
yet it is easy to guard against unwanted side

effects.
What does all this mean for the practicing

programmer? The answer may perhaps best
be seen in the light of a claim recently re¬
peated by David Higgins in the October
1977 BYTE ("Structured Program Design,”

page 146). Higgins presents the now well
established arguments in favor of structured
programming, but goes on to contend that
once a program is designed in a structured
way, using for example Warnier-Orr dia¬
grams, “it does not matter what program¬
ming language you code it in.” This assertion
seems pretty improbable on the face of it,
and if true it would be a powerful argument

against Pascal. I think that a rapid ex¬
amination of two test cases will show it to
be quite unjustified.

Let us take our test cases from the "bug”
program which Higgins uses as his own
example. Higgins would haye us break the
program down into three parts, as expressed

in the following Warnier-Orr diagram:

i begin program
bug program < games (1,g)

t end program

Nothing in the BASIC listing which accom¬
panies the article even remotely suggests

7

this overall algorithm. Look at what we

might have in an equivalent Pascal

program:

program bug;
begin

beginprogram;

games;
endprogram

end.

Need I point out that to all intents and pur¬

poses the Pascal program is the Warnier-
Orr diagram, with only a few notational

differences such as the replacement of the

BEGIN TURN

ROLL* "I”
(0.11

o

ROLL" •2‘

(0,11

o

ROLL* ''S''
(0,1)

ROLL = "4‘
(0.11

o

ROLL - ”5"
(0.1)

o

ROLL *= •e *

(0.11

ROLL THE DIE

HAS BODY

(0,11

^ , HAS6LEGS

(l) L 10.1)

HAS BODY r
(0,1) •< SKIP

<
{

{

SKIP

GIVE PLAYER A BODY

SKIP

GIVE PLAYER A NECK

{
{

SKIP

GIVE PLAYER A HEAD

< SKIP

GIVE PLAYER AN ANTENNA

{

<

GIVE PLAYER ATAIL

SKIP

GIVE PLAYER 1 LEG

Figure I: Warnier-Orr diagram for subprogram ‘*turn” of the bug program.
This is dear, but note how much bulkier it is than the Pascal program in

fisting 2. The Warnier-Orr diagram won’t even run on a computer.

brace by the symbols begin and end? Are we

really asked to believe that this one to one
correspondence between the problem and

the program does nothing to simplify the
programming task? On the contrary, it

simplifies matters enormously.
Considerations of space prevent me from

giving the rival BASIC and Pascal versions
in full. Another striking example is pre¬
sented in figure 1 and listings 1 and 2,
which show the Warnier-Orr diagram for the
“turn” subprogram, Higgins' coding of the

subprogram in BASIC, and the Pascal
equivalent Higgins calls his BASIC coding
“simple and straightforward.” Tastes differ

but that is a phrase I would have reserved

for the Pascal version. Higgins has had to
fake truly structured programming in a
language which fights his efforts every step
of the way, and the results are tortured

and confusing. In contrast, the Pascal
coding is, once again, a nearly perfect
reflection of the Warnier*Orr diagram, so

much so, in fact, that most Pascal users
will probably feel, as I do, that the diagrams
are a useless intermediary step, less clear
and bulkier than the program itself. The
intent of the Pascal program segment is
so transparent that in my opinion it could
almost be understood by a complete pro¬

gramming novice.
Before leaving the topic of program struc¬

ture, we should perhaps remark that Pascal
subprograms (procedures and functions)
bear names, not numbers, virtually elimina¬
ting the need for the comments which
pepper any well documented BASIC listing.

Furthermore, because Pascal subprograms
can have parameters, the programmer is
encouraged to use a single subprogram for
a single task. Higgins has written separate
subprograms for each body part, whereas

for a Pascal user it is virtually impossible
to resist the temptation of passing the
arrays body, neck, head, etc, to a single

procedure “give” as parameters.

Algorithm Expression

Program structure alone does not explain

the relative clarity of the Pascal listing
in listing 2. We may also use that listing to
illustrate the tools which Pascal provides

for expressing algorithms.
Logical operators: Pascal provides

logical operators (and, or, and not) which
are so painfully lacking in BASIC and with¬
out which expressing an algorithm is so
clumsy. The use of the operator and in the
turn subprogram is a good example; or the

reader may want to express “if (x=1)
({y>2)and(z=3)) then..in BASIC.

Conditional statements: Pascal's if
structure groups statements with the condi-

8

tions for their execution. The if statement is Data Definition
of the form:

if<expre$sion>
then <statem8n t_ 1 >
els«<statement_2>

The expression is evaluated as being either
true or false. If it is true statement_l is
performed; otherwise statement_2 is per¬
formed. Suppose the expression is: X=1.
In English the if statement translates to:

if X equals 1 then perform state-
ment_1; else perform statement_2.

Pascal offers a very flexible case state¬

ment which is remotely related to the com¬
puted GOTO statement to be found in some
BASICS. It is much more powerful because,
among other things, selector values need
not be contiguous, and actions are grouped
with the conditions for their execution.

A good example of the case statement’s
clarity is to be found in the procedure
“turn,” where the action taken depends

on the value of roll.
Repetitive statements: BASIC provides

only one repetitive control structure: the
FOR statement. But there are innumerable
situations where we do not know ahead of
time how many times a given action is to

Now that we have seen how much easier
it is to express what one wants done to data
in Pascal than in BASIC, let us turn to
the wonderful data types which Pascal
makes available for manipulation. Data types

are the programmer’s buffer between his
abstract formulation of an algorithm and the

messy realm of bit level details where that
algorithm will eventually be executed,

Pascal makes defining new types a trivial
task. Once a new data type is defined, it
is in effect indistinguishable from a pre¬
defined type and may be used in any way a
predefined type may be. We leave BASIC
behind at this point, since that language
has no facilities for creating new types.

The bug program was too simple to
provide examples of data structuring, so
we shall have to turn elsewhere. Being a
birdwatcher, I shall replace the traditional
“Christmas card list” example by a bird data
bank. I can do no more than skim the sur¬
face, so I ask the reader’s indulgence if some
of the listings are not fully explained. I

am not trying to teach Pascal, but merely
to spark intuitions.

Pascal distinguishes between simple

be repeated. In such cases BASIC users have
two choices. One is to set up a dummy

FOR statement with a jump out of it when
a certain condition is met: whence the
ubiquitous “FOR 1=1 TO 9999” statements
in BASIC programming. This is bad because
it seriously disguises the intention of the

algorithm. One’s natural expectation is for
such a loop to be executed 9999 times, but
that is not the case. The other solution is
for the programmer to fake an appropriate
control structure with GOTOs or condi¬
tional jumps. That is what Higgins has done
in his program to express the fact that the
computer and the human take turns until
the game is over:

210 REM TURNS {1,T)
220 LET EGAM = 0
230 GOSUB 390
240 IF EGAM = 0 THEN 230
250 REM END GAME
260 GOSUB 1150

This is no doubt the best one can do in
BASIC, but just consider how much more
elegant the Pascal version is;

rspeat turns until endofgame

^his is typical of the way in which
^scal s control structures make al-

gorithm expression a source of joy rather
an a contortionist exercise. In addition to

we repeat statement, Pascal offers a

IK r ^ ^or the case when an action
true*^ ^ f^peated as long as a condition is

490 REM TURN SUBROUTINE
500 REM PLAY=1 ^»LAYERS TURN-PLAY=2K:0MPUTERS TURN
510 REM ROLL DIE
520 LET ROLL = FIX@(((RND{0))*6.0))+1
530 PRINT:“ROLL IS A^’.ROLL
540 IF ROLL = 1 THEN IF BODY(PLAY)#l THEN GOSUB 690 ELSEiELSE;
550 IF ROLL = I THEN 650
560 IF ROLL = 2 THEN IF BODY(PLAY) = 1 THEN IF NECK(PLAY)#1 THEN GOSUB 760
570 IF ROLL»2 THEN 650
580 IF ROLL=3 THEN IF BODY(PLAY)=l THEN IF NECK(PLAY)=1

THEN IF HEAD(PLAY)#1 THEN GOSUB 820
590 IF ROLLsS THEN 650
600 IF ROLL = 4 THEN IF HEAD(PLAY)=*1 THEN IF ANTE(PLAY)#2

THEN GOSUB 880
610 IF ROLL=4 THEN 650
620 IF ROLL » 5 THEN IF BODY(PLAY)sl THEN IF TAIL(PLAY)#1 THEN GOSUB 940
630 IF ROLL=5 THEN 650
640 IF ROLL = 6 THEN IF BODY(PLAY)=l THEN IF LEGS(PLAY)#6 THEN GOSUB 1000
650 LETA=3
660 RETURN

Listing 1: BAS/C fisting for Warnier-Orr diagram in figure 1, This is the best
one can do in BASIC, but is stiU a far cry from the clarity of the Pascal

listing.

procedure turn;
begin roli:-trunc(randonn(1

case roll of
^6)+1; writelnl'roll is a',rol

1
2
3
4
5
6

end
end;

if (body [player] ^Dthen giveibody);
if (body [player] -1)and(neck[player]) then give(neck);
if (neck [player] =1}and(head[player] ^1) then give(head);
if(head[player] =1)and(ante[player] ^^2} then give(ante);
if (body [player] »1)and(tail[player] #1} then give(tail);
if (body [player] =1)and(leg5[player] ^6) then give(legs)

Listing 2: The Pascal listing equivalent to listing 1. Note the dear affinity
between the listing and the Warnier-Orr diagram. Notice that arrays are In¬
dexed using square brackets.

9

and structured types. Let us examine each

in turn. ,
Simple types: These are the basic build¬

ing blocks of which any structured type,
no matter how complex, is ultimately com¬
posed. In addition to integer, real, and

character types, Pascal offers two addi¬
tional simple types which as far as I'm con¬
cerned come close to exhausting the simple
types needed in a general purpose language.

The first is the defined scalar type, and is
defined by simply listing the values which
a variable of the new type may take on.
Suppose 1 need a data type for the various

habitats in which a bird may appear. In

Pascal 1 write:

type h = (ocean,rivers,fields,suburbs,forests,
mountains)

A variable of type h may take on any of
the values listed. This means that while
programming 1 may continue to think in
terms of habitats, and am not forced to
descend from that abstract level and think
in integers, as 1 would have to do in BASIC.
This also makes for virtually self-explanato^
programs. Compare 'MF HABlTAT-3
THEN. .with the much more transparent

“if habitat=fieldsthen-”
The second simple data type is the

Boolean, and is extremely useful in pro¬
gramming since one is constantly control¬
ling program flow with Boolean expressions.

Boolean variables take on the values true
and false. Languages without such variables
must make do with integers, which muddles
things since one’s natural expectation is for
integers to count something. The Pascal
user may simply write “if good then... ,
which is the way we think; the BASIC
programmer must write “IF GOOD - 1
THEN. . which is alien to the way we

think.
A large part of Pascal’s elegance comes

from the fact that in most contexts these

simple or scalar types may be used indif¬
ferently. Thus for example the type h as
defined above could be used as the index

variable in a for statement:

for habitat := ocean to mountains do

or in a case statement, or as the index type

of an array:

if foundin [fields! then

Furthermore, functions may return any
scalar type: we have already seen the func¬
tion “endofgame" which returns a Boolean

value.
Structured types; In addition to the

simple types, Pascal offers five different
structuring methods: arrays, records, sets,
files, and pointers. These different methods
may be combined in virtually limitless

ways. One may have files of arrays, pointers
to records, arrays of sets, pointers to files
of arrays of records, and so on. This extreme
flexibility of data structuring methods is
one of Pascal’s most exciting features.
The type array should be familiar, but let
us look briefly at the other four structured

types.
Sets: Each bird in my hypothetical data

bank has associated with it a set of habitats
in which the bird may be found. Having
defined the type h as above, all 1 need to do
to set up a variable habitats which will be a

set of different habitats is to write:

var habitats: set of h

When constructing the entry for the robin, 1 will write:

habitats := [fields,suburbs]

thus;toigning to the robin the set of habitats
containing the two elements fields and
suburbs. When going on a trip to the moun¬
tains, I can test whether mountains are in a
given bird’s set of habitats by the following

simple test;

If mountains in habitats then

Imagine trying to do this in BASIC. Pascal
provides a variety of set operators which
allow set manipulation in all its generality.

Records: Let us imagine that each entry
in my data bank will contain the bird’s
name, its length, and a set of habitats where
it may be found. The entry cannot be an
array, since components of arrays must all
be of the same type. The appropriate data

type is the record, defined in Pascal as

follows:

type bird- record
name: string;
length: real;
habitats: set of h

end

This is a simple and logical way of grouping
data of different types into a meaningful

whole. Given variables robin and redbreast
of type bird, a simple assignment statement

will set one equal to the other:

robin := redbreast

To test whether a robin is more than 20 cm

long, we would have:

if robin,Ieng1h>20 then

and so on. These are simple examples, but
they suffice to illustrate the flexibility of

the record type.
Files: Now let us suppose that I have

600 entries of type bird in my data bank,
and want to make a list of all the birds
whose length is greater than 20 cm. It is
pointless and wasteful to keep all oU
records in memory for such a task, a

10

Figure 2: A linked list of records of type
'"bird” with addition of the pointer field
'‘next” Deleting the third record is a simple
matter of changing a pointer field, as shown

by the dotted line.

really need is to store them in mass storage

and read them in one at a time. In Pascal
what I do is declare a file of records as

follows;

var fb: file of bird

Now, supposing the file to have been written,
all I need to perform the task is:

reset!fb) ;
repeat if fbt.length>20

then writeln(fbt.name) ; getffb)
until eof(fb}

Reset positions the file at its beginning; get
advances it one record; fbt is the buffer
variable containing the current record; and
the writein statement prints the bird’s name.
The Boolean function eof tests for the end
of the file.

Pointers; Finally, let us suppose that I
wish to update the data bank by deleting a
bird. It is of course possible to do this by
storing all the records in an array, but this
•s clumsy and inefficient, since all the
records following the deleted record would

ive to be shifted one position. List proc-
essing provides a much better solution. The
records are linked together into a list by

serting a pointer field “next” into each
®cord. Each record will then “point” to

the record following it In the list. Deleting
a record becomes the simple matter of
changing a single pointer value as illustrated
in figure 2. Given the pointer “current”
pointing to the item just before the one to

be deleted, the following simple statement

will do the trick:

currentt.next := currentt.nextf.next

Adding a new record is only slightly more

complicated.
Let me repeat that these simple examples

are not meant to do more than provide a

brief glimpse of the marvels of Pascal’s
structured types. For full explanations
the reader is referred to the texts in the
references.

Conclusion

Rapid though it has been, I hope that this

survey of Pascal will have brought out
some of the features which make it vastly
superior to BASIC. BASIC offers an ab¬
solutely minimal set of features and expects
you either to devise makeshift solutions or
to design a new version of the language
when they are inadequate. No wonder there
are so many different versions of BASIC.
Pascal offers a somewhat wider selection
of features, but avoids the pitfall of trying to
include every feature known to humanity.

Pascal is a simple and streamlined
language: the Pascal Report defining
the language is a mere 32 pages long. Yet

Pascal’s designers seem to have chosen
just those features which the user needs to
expand the language when the need arises,
so that it is a genuinely general-purpose
language suited to a wide variety of prob¬
lems. It is this combination of simplicity
and power which seems to me to make

Pascal the natural choice for a standard
microprocessor language."

REFERENCES

• Bowles, Ken, Microprocessor Problem Solving
Using Pascal, Springer-Verlag, New York, 1977.

• Jensen, Kathleen and Wirth, Niklaus, Pascal:
User Manual and Report, Springer Study Edi¬
tion (2nd edition), Springer-Verlag, New York.

• Micke], Andy, Pascal News, University Com¬
puter Center, 227 Experimental Eng, 208 SE
Union St., University of Minnesota, Minneapo¬
lis, MN.

Languages Forum

Comments on Pascal,
Learning How to Program,
and Small Systems

Gary A Ford

The editorial in the December 1977

BYTE^ asked if Pascal is the next BASIC.
Implicit in this question is the suggestion
that personal computing needs a widely used
programming language. Ostensiblyj this will
facilitate exchange of software, and thus

help eliminate the existing software vacuum
for personal computer systems. Should
Pascal be the language used to begin to
fill this void? To answer this question, we

should look at the history of Pascal to
see for what purposes it was developed.

Wirth states two principal goals for
Pascal: "to make available a language
suitable to teach programming as a systema¬
tic discipline based on certain fundamental
concepts clearly and naturally reflected by
the language/’ and “to develop imple¬
mentations of this language which are both
reliable and efficient on presently available
computers" (emphasis added).

With regard to the first of these goals,
Wirth contends that “the language in which
the student is taught to express his ideas
profoundly influences his habits of thought
and invention." My experience shows that
this is a remarkably accurate statement. I
have taught computer science to university
undergraduates for several years, and recent¬
ly taught several intermediate level courses
to students with a variety of programming
backgrounds. The students had all had two
or three quarters of formal computer science
courses at the same university during the
previous year, and all were familiar with the

computers. However, some had learned
to program in BASIC, some in FORTRAN,

Fnp ^ structured variant of
M Ran which included, among other

matures, two varieties of if-then-else, five
rieties of iterative statements, two varieties

P=09 17 of thh edition.

of multiple branch structures, and a simple
but powerful procedure facility. The struc¬
tured FORTRAN programmers proved to be

significantly better performers in the inter¬
mediate level courses in all ways. They were
much quicker to understand new algorithms,
new data structures, and new applications.

They were superior in applying this know¬
ledge to new problems, which can, in part,
be attributed to the fact that they were not
thinking in the narrow terms required in
BASIC and FORTRAN. They wrote better
programs in assembly language, perhaps
again because they could think in structured
programming terms. They also, not unex¬

pectedly, learned Pascal (which was
taught in conjunction with a data struc¬
tures course) much faster than the other

students. In fact, some of the BASIC and
FORTRAN programmers never did make
the transition to Pascal; they wrote
Pascal programs that looked like line by

line translations of BASIC and FORTRAN
programs. An informal follow-up of some
of these students in more advanced courses
showed that the BASIC and FORTRAN
group continued to lag behind, especially
in courses in analysis of algorithms and

design of large systems.
Of course, this was not a controlled

experiment, so the conclusions cannot be
supported scientifically. However, I believe

it is true that since so much of computer
science involves abilities to analyze, to or¬
ganize, and to plan, the thinking process
taught in a first programming course, which

in turn depends on the language used, has an
enormous impact on the development of

computer scientists.

Thus, Pascal sounds like a good lan¬
guage for beginners (ie; many of today’s
computer hobbyists). There are other
reasons for supporting the spread of
Pascal, including, for example, its out-

standing data structuring facilities. Sorne
problems are easily stated and solved in
terms of such structures as sets, lists,
sequences, trees, or groups of disparate
items. Pascal allows the programmer

to define and to deal directly with such
structures, whereas BASIC and FORTRAN
force the programmer to disguise these
structures as arrays. Of course, obscuring

the original ideas often leads to obscure

program logic.
With regard to Wirth’s second goal

for Pascal, we suddenly have a problem.

The personal computer systems of today
are quite different from the “presently
available computers'’ Wirth had in mind
ten years ago. Therefore, some language

features that are desirable for present
personal computer systems are absent

from Pascal. Perhaps the most important
of these features are in the category of
access to peripheral devices and processor

hardware facilities.
Pascal has only two primitive 10

operations: get and put Each moves a single
unit of data (character, integer, record, etc)
from or to a sequential file. Files are not
necessarily associated with or stored on
secondary storage devices, although two
special predefined files (named input and
output) are available for those files asso¬
ciated with devices that will also be accessed
by humans. There are in addition two pre¬
defined procedures (named read and write)
that perform data transmission from or to
files in particularly useful ways, but it is
important to emphasize that these are
procedures (subprograms) and not state¬

ments or operations in the language.
The peripheral devices of personal com¬

puter systems are extremely varied, and very
few system configurations are exactly alike.

Therefore, each user will need somewhat
different lO capabilities in the language.
Many users have an on line terminal, access
to which requires the ability to access
specific absolute addresses in memory or
specific port addresses. Users with disks
will need direct access file capabilities.
Others may want the ability to process
interrupts for real time applications. None

of these capabilities exist in Pascal, and
none can easily be implemented as a dis¬

guised sequential file.
The obvious conclusion is that if a push

for Pascal as the language of personal
computing is made, there will be a variety
of nonstandard implementations. This is

exactly what we have seen with BASIC.
Implementors will add their own versions
of their own favorite bells and whistles.
We may expect numerous methods of
specifying absolute memory addresses

(peeks and pokes), direct access disk file

statements, and all kinds of facilities to
handle the exotic peripherals being attached
to personal systems. In addition, imple¬
mentors will want to add their own favorite
data type (for example, Pascal does not

have a built-in string data type), and their
own favorite operator (for example,
Pascal does not have an exponentiation

operator). Next, seeing the size of the
resulting compiler, implementors will begin
to delete their least favorite standard fea¬
tures (often meaning the ones they least

understand), in order to come up with a 4 K

version of “eensyweensy Pascal."
One approach to preventing some of the

problems just mentioned is to get all of us
hobbyists together to agree (is this possible?)
on a standard set of additions and deletions,
or perhaps a few standard sets in order to
develop 8 K, 12 K, 16 K, etc, versions. The
traumatization of the language could be
minimized by requiring that all the new
features be implemented as procedures,
rather than as new statement types, thus

maintaining the syntactic integrity of the
language. Of course, this would require a
capability to link external procedures to
each Pascal program, and none of these
procedures could be written in Pascal.

This means either that all users will need
to know another programming language,
or that the implementors of the new

varieties of Pascal will have to supply
customized procedures for each customer.

There is a fundamental flaw in this

approach, however. Pascal was not in¬
tended to be all things to all people. It was
designed with specific, well thought out,
predefined goals. All aspects of the language
were designed to complement each other
in attaining those goals. Any deletion from
the language, however minor it seems, will
upset this balance, and thus damage
Pascal's ability to achieve its goals. Dele¬
tions and additions will also change the
character of the language, and it is this

overall character of Pascal that has

brought it so many devotees.
A better approach, I believe, is for those

of us in personal computing to get together
to agree on principles for the next widely
used language, rather than on the features

to add to or delete from an existing lan¬
guage. This is not any kind of vote against
Pascal; to the contrary, I hope Pascal
will become available to all hobbyists
with systems that can support standard
Pascal, and that it be used for all suitable
applications programming. I have used
Pascal for at least 95% of my own pro¬

gramming over the last three years, and

cannot recommend it too strongly.
If a new persona! computing language

were developed from guiding principles,

I would hope that it would have much of the
flavor of Pascal. I would hope it would be
syntactically uncluttered like Pascal,
not only because it makes the language
easier to use, but also because it allows
much simpler (smaller) language trans¬
lators. I would hope it would have con¬
trol structures at least as strong and as

logical as those of Pascal, and data
structuring facilities as simple and powerful
as those of Pascal. It should be designed

so that we can write almost all of our soft¬
ware in this one language, including both
systems and applications programs. It should

not try to provide every feature of every

existing language, but rather, like Pascal,
provide a small set of primitive constructs
from which users can define their own
powerful features. It should allow us to
write truly portable programs and to main¬
tain a Library of procedures, since a good
procedure facility, like that of Pascal,
is perhaps the single most important tool
for software developers. But whatever we'
choose to put in the language, let us design
it from principles, and not evolve it from a
set of independent features, as was the case
with BASIC and FORTRAN. ■

Editorial

Is Pascal the Next BASIC?

One of the most interesting phenomena
in the academic world of computer science
of late is the language Pascal. This lan¬
guage is the subject of mucli intense activity,

and is rapidly gaining acceptance as the lang¬
uage of choice for training and illustration
of computer concepts to new students of
the field. Characteristic of this phenomenon
is the existence of on the order of 100
different implementations of the language
for various computers and a very active

“Pascal User’s Group.”

Pascal began in the late 1960s as a
tutorial experiment of Professor Niklaus
Wirth: a method of teaching the concepts
of programming in a systematic fashion
using a consistent and highly structured

program representation. Historically,
Pascal has antecedents in' the ALGOL
language but with the addition of con¬
cepts such as record and file structures
which were missing in ALGOL's definition.
The following passage by Professor Wirth
gives the essence of Pascal’s purposes..

The development of the language
Pascal is based on two principal aims.
The first is to make available a language
suitable to teach programming as a system¬
atic discipline based on certain fundamental
Concepts clearly and naturally reflected by
the language. The second is to develop
^Implementations of this language which are

c>th reliable and efficient on presently
ovailable computers.

The desire for a new language for the
programming is due to

mai ^fth the presently used
struct whose features and con-
callv ^ t)ften cannot be explained logi-

convincingly and which too often

Carl Helmers

defy systematic reasoning. Along with this
dissatisfaction goes my conviction that the
language in which the student is taught to
express his ideas profoundly influences his
habits of thought and invention^ and that
the disorder governing these languages
directly imposes itself onto the program¬
ming style of the students.

There is of course plenty of reason to be
cautious with the introduction of yet
another programming language, and the
objection against teaching programming
in a language which is not widely used and
accepted has undoubtedly some Justifi¬
cation, at least based on short term com¬
mercial reasoning. However, the choice of a
language for teaching based on Its wide¬
spread acceptance and availability, together
with the fact that the language most widely
taught Is thereafter going to be the one
most widely used, forms the safest recipe for
stagnation in a subject of such profound
pedagogical influence. I consider it therefore
well worthwhile to make an effort to break
this vicious circle. [Quoted from the second
edition of the Pascal User Manual and
Report, by Kathleen jensen and Niklaus
Wirth, Springer Verlag, New York, 1974,
page 133.]

Since the time of Pascal’s creation by
Professor Wirth, the language has become
widespread, primarily because his tutorial
purposes also happen to coincide with what
one might want in a systems and appli¬
cations programming language used in
software development. In fact acceptance
has been sufficiently widespread that there
now exist implementations for some of the
more common microprocessors in the

personal computing field (using the Pascal

User's Group Newsletter as a source for
this informaiion in a listing of implemen¬
tations in issue #8 recently published). What

are the ramifications of Pascal as it might

affect personal computing users?
At the present time, outside of low level

assemblers, the personal computing field is
dominated by one language, BASIC. It is the
high level language of choice for users of the
equipment and for manufacturers who sell

to the users of the equipment. Any at¬
tempted personal computing system design

these days must come up to the standards

of a reasonable BASIC (such as the Micro¬
soft BASIC used by MITS. OSl, Commodore
and others) or it will be at a relative dis-
advanUge in the marketplace. This domi¬
nance of BASIC as a language is a fact of life
in this field. A decade and a half of language
design evolution has occurred since BASIC
first came on the scene, yet it still dominates

at the user level. Why?
In a casual enumeration mode, I can list

several fairly obvious and interrelated
reasons why this has become the case; out

of these reasons will come a similar scenario
for development of Pascal as a future

option for personal computers.

• Everybody knows BASIC.
• BASIC has a manufacturer indepen¬

dent standard definition.
• Lots of implementations of BASIC are

available.
• Much personal use applications soft¬

ware already exists in BASIC.
• BASIC is friendly.

At a superficial level, these reasons are
part of a self-sustaining loop of circular
reasoning: Since BASIC is friendly, every¬

body wants to know BASIC; since so many
people learn BASIC, there tend to be lots

of implementations. Much software for

applications has been written in BASIC.
Since a manufacturer independent standard

for BASIC exists, conversion of programs
from one machine to another is simplified,
thus making widely available software useful
to people, and so on ... ad infinitum. . .

This is Professor Wirlh's “vicious circle."
Like many similar conventions, BASIC

has been bootstrapped into the public
awareness over time, and has acquired a

certain inertia of its own that will keep it
going for years in the same way that
FORTRAN seems to live forever. Let's
examine the reasons in this list, and in so

doing compare BASIC to Pascal, a lan¬
guage which is quite possibly in an earlier
stage of a similar bootstrap cycle and may
indeed become a much demanded "language

of choice" for the user community. Vicious
circles can have positive aspects: it all

depends on which circle one has established.

A contention I make is that the same sort
of "vicious circle" can be, and indeed is
being established for the language Pascal.

Everybody Knows BASIC.

BASIC historically was introduced at a
lime when "big" computers dominated the
field, and there was a need to partition the
activities of such computers into small
individually oriented packages for purposes
of making the "big" computer available
to many people. This partitioning succeeded
admirably: when professor X (or Y or Z)
wanted to make real exercises in program¬
ming avaiiable to students, BASIC was
frequently employed, due to its availability

and interactive simplicity. Like any tech¬
nology, BASIC did not start out in an
"everybody knows" state, but it got that
way through its early availability and no
small push from pedagogues of computer

science.
Today, the teachers of programming are

tending to push Pascal as the language of
choice for teaching "good" programming

concepts. The Pascal User s Group is
evidence of the number of academic people
who support the Ideas of Professor Wirth to
the extent of implementing their own local
Pascal systems for educational purposes.
(This is typically done using a number of
techniques of machine independence con¬

ceived by early implementors of Pascal
for purposes of spreading its implemen¬
tations.) One result of this availability is that

Pascal is becoming the tool of teaching
programming concepts which Professor
Wirth envisioned ... and the beginnings of

the "everybody knows" state for Pascal

are already evident.

basic Has a Manufacturer Independent

Standard Definition.

This comment is nominally true of

BASIC. Work is indeed in progress on an
ANSI standard for BASIC, and there is
of course the original Dartmouth College
definition of BASIC. The fact that people

are trying to define a standard form of
BASIC, however, is a result of the fact
that the implementations of BASIC have
been somewhat subject to variations. In

the personal computing world, there are
numerous differences at a detail leve
between language extensions of various
BASIC interpreters, some as basic as the

variations in string and array handling
in various forms of minicomputer BASIC.

BASIC language implementors are no

different from implementors of a ^
of languages, often succumbing to
"wouldn’t it be neat if" syndrome a

18

throwing in features not part of the original
definitions of the language. The hitch with
such featurism is that if anyone uses the
features, the programs written with the
feature may no longer be portable.

Of course Pascal would be no more
immune to featurism on the part of imple¬
mentors; at least that would be an obvious

contention since there is no fundamental
difference between people who implement

BASIC and people who implement Pascal.
But before making such a statement, an
examination for the motives of implemen¬
tation featurism should be made. BASIC
in its original definition is a very limited
and parochial language, one which represents

a viewpoint of quick implementation of
programs with limited 10 formatting,
standard floating point operations, and no
intent to service large or complicated
applications. Thus, many of the “feature"
temptations presented to BASIC imple¬
mentors are a result of attempts to correct
the deficiencies of BASIC by adding omitted
items (for example, strings, implemented
differently in various BASIC interpreters).

Pascal, on the other hand, by having
a definition which is more general in scope
than BASIC (although by no means compli¬
cated to use in simple problems) helps cut

down these “feature" temptations on the
part of its implementors. One basic example
of this slightly more general definition is

in Pascal's inclusion of extensible data

types which can be declared, as well as

file and record structures missing from
BASIC. Pascal is a block structured

language allowing multiple character strings
for procedure and data names, and is thus
closer to the natural symbolic thought
processes of designing a program than is
BASIC.

A classical contrast between the two
languages in this area of features is to pose
the problem: How would I use the language
to include complex numbers for use in
engineering analysis or physics? In BASIC,

I rnight not even want to consider the
possiblity of using the language for complex
numbers because of the kluge that would
result. Using Pascal, I would simply use
the type extensibility of data to declare a

complex number type and code various
procedures to implement complex number
operations. An example of this concept,
which^ involves no features not inherent in
a^al s definition, is given on pages

of the Pascal User Manual and
epo/f quoted earlier. Of course, perhaps

in°i or desirable features were
Pascal's definition, so dialects

as well as in BASIC. Bui the

exten!*^^ dialects generated through
>ons is probably less in Pascal,

making the standard created by Professor
Wirth a closer approximation to what
actually gets implemented.

Lots of Implementations of BASIC
Are Available.

Here is where BASIC no doubt has a

considerable lead over Pascal at the
present time. But Pascal is rapidly gaining
in a catch up mode. As noted earlier, there
are presently nearly 100 different implemen¬
tations of Pascal, mostly for minicom¬

puters and larger computers ranging in size
and scope up to a CRAY-1 implementation
of Pascal. At the low end, according to
the Pascal User*s Group Newsletter,
number 8, page 64, there are presently
compilers implemented for the Motorola
6800, Intel 8080 and Zilog Z-80 micro¬
processor architectures (although the listing
did not mention whether the compilers
were self-compilers or cross compilers).
Implementations are coming, part of the
history of the language and the active
following it has among computer science
people.

Much Personal Use Applications Software
Already Exists in BASIC.

No argument here. The number of books
and periodicals which publish programs
in BASIC will probably exceed the number
with Pascal representations of equivalent

programs for a long time to come. But this
is equivalent to saying that BASIC has been
around longer in the public eye, for given
time much of the same sort of software can
and will be written in Pascal as more and

more implementations become available.

BASIC is Friendly.

BASIC is fundamentally an interactive

approach to programming in which pro¬

grams are entered in source form and tested
within the confines of one session with
effectively instant change from editing to
execution. If Pascal is to become an

equivalent “friendly” language, it must be
implemented in a way which allows a
similar instant change from editing the
design to trying out the design of an appli¬
cation.

Whether this friendliness requirement
can be best met by an interpreter or a

compiler is an open question, but it Is
a definite requirement. In BASIC the
rule to date has been interpretive, or semi¬
compiled code, where semicompiled means

that symbols for language tokens are re¬
placed by compact codes. In Pascal
to date, compilation has been the rule

rather than the exception. It is conceivable
that a compiled Pascal coupled with an
editing and object code maintenance facility
oriented to the block level might give
sufficiently quick response at the terminal
with much faster execution times associated

with compiled code.
Another open question concerning

Pascal is that of how much memory is
required for a Pascal self-compiler or

resident interpreter in a typical personal
computer’s microprocessor based system.
1 suspect that a compiler or interpreter of
Pascal can be built which will fit within
16 K to 32 K bytes of memory, but whether

this is really possible or not is by no means

clear to me.
To sum up the thesis, Pascal is well

on its way to becoming the kind of widely
known language which will be taught as
a matter of course to new students of
programming. This in turn will tend to boost
the long term acceptance of Pascal and
get it established as one of the major lang¬
uages, a process which at an earlier date
occurred for FORTRAN and BASIC. For
our own part, we at BYTE are interested in
giving Pascal a boost. We have a survey
article about Pascal in preparation at the

present time. We would also like to talk to
implementors of the language who would
be interested in marketing Pascal com¬

pilers or interpreters through software
book publications which include source code
and machine readable object code. For those
who desire more background information
on Pascal, we recommend the Pascal

User’s Group, run by Andy Mickel at the
University of Minnesota Computer Center,
227 Exp Engr, University of Minnesota,
Minneapolis MN 55455, (612) 376-7290.

The Pascal Newsletter is published four
times per year, and at the time of this

writing costs $4 per year."

Note on the Pascal User’s Group |

A5 of July 7, 1979 the Pascal

User's Group (PUG) has over 3300
members in 47 countries. Those in¬
terested in Joining can contact Andy
Mickel at the University of Minnesota
Computer Center^ 227 Ex Engr, Univer¬
sity of Minnesota, Minneapolis MN
55455, (672) 376-7290. The Pascal
Newsletter is published four times a
year on a July to June schedule, with a
subscription fee of $6 per year. AH
issues for the current year are sent
with a new subscription, and back

issues are available.

2D

Languages Forum

Concerning Pascal:

A Homebrew Compiler Project

Stephen P Smith

Your editorial in December 1977 BYTE^
was commendable. It served to reinforce
my conviction that Pascal is the next
step up from BASIC for personal computing.
As you and your readers know from the
biographical sketch that preceded my article
in November 1977 BYTE^, a Pascal
compiler is my pet microcomputer project.
Because that sketch prompted a number
of inquiries about the status of my work,
I thought a letter to BYTE would be timely
following your editorial.

My approach to the compiler is to start
with a small subset of Pascal and add
features as my resources and talents permit.
I've begun by determining the minimum
subset needed to describe its own compiler.
Because statements written in the resulting
language will still be valid Pascal, the
initial version can be debugged and run as a
cross compiler on any computer which
supports the full language. When opera¬
tional, my compiler will convert itself to
machine code to be loaded on the target
microcomputer. Further development will
be done on that machine. Each subsequent
revision will be written in the Pascal sub¬
set of the previous one.

At this writing, I have completed the
paring procedures and am testing them on a

R . with the guidance of Dr
o ert Mathis at Old Dominion University.

edition.

Lander Algorithm 'rnprovod Lunar

The production of machine code is still
some way off, because I feel I need more

experience with the instruction set of the
target machine, MOS Technology’s 6502.
I expected to get this experience with a
6502 based Challenger I ordered from Ohio
Scientific in August, but it has yet to be
delivered. Perhaps this spring I will have an
operating compiler to report.

As an alternative to my subset approach,
there is another way to implement Pascal.
It reflects upon your editorial discussion of
the compiler/interpreter alternative. I am
developing a pure compiler, but the standard
Pascal implementation is a hybrid. A pro¬
gram is available to convert source programs
into assembly code for a hypothetical stack
computer (HSC code). The assembled
hypothetical stack machine code is then

interpreted by the target machine. This
technique has speeded implementation of
Pascal at several installations, and might

be useful for personal computing since the
hypothetical stack machine code is itself

portable. A club, for example, might main¬
tain the source to hypothetical stack
machine compiler on one member’s com¬
puter which had the necessary resources.
Other members need only support the
hypothetical stack machine assembler and
interpreter for their machines. Although
operationally more cumbersome than direct
machine language compilation, this approach

might speed up the availability of Pascal
and reduce the hardware requirement for
applications users. ■

Languages Forum

A Proposed Pascal Compiler

Kin-Man Chung

Herbert Yuen

A Note About the Tiny Pascal project.. .

The three part article "A Tiny' Pascal Compiler”plus the complete
p-code to 8080 conversion program listing are included in this edition
beginning on pages 59 and 203 respectively .. . BWL

In the Languages Forum of the April

1978 BYTE, page 150^ we read Stephen
Smith's report on his homebrew compiler
project. Actually, he is developing the Pascal
subset compiler on a mainframe computer at
a university and planning to transfer it to a

microcomputer. He said he had a minor
problem with code generation (using 6502
machine code). We think his project might
progress more smoothly if he uses another

approach—that of generating assembly code
for a hypothetical stack machine. This is
the same method professionals use for
implementing portable Pascal compilers on
big computers.

Our own homebrew compiler project was
developed in house on a microcomputer
that uses an 8080 processor and has a North
Star disk system. We began in mid December
of 1977. Our motivation came from the fact
that the North Star disk BASIC, although
very good for general programming pur¬
poses, was not fast enough for system soft¬
ware development and some graphic games,

or instance, our 8080 assembler, written in
ASIC, takes 1 to 3 seconds to assemble

assembly instruction. Assembling
^ 500 line program takes about one half
our. From various sources of information
e now that Pascal is one of the easiest

^guages to implement. It also has many

e eatures that are desirable in a high level
‘^nguage.

The Pascal subset is small, otherwise it

of this edition.

would be very difficult to develop using a
BASIC interpreter. All variables in the
subset are 16 bit integers. Arrays are single
dimensional. Character strings are declared

as arrays and each character takes one array
element: although wasting space, this is easy
to implement. Procedures and functions may

be recursive. Variables and constants,
except arrays, can be passed as arguments
to procedures and functions. Language state¬
ments include declaration, assignment,
BEGIN-END, IF-THEN-ELSE, WHILE-DO,
REPEAT-UNTIL, FOR-TO/DOWNTO-DO,
CASE-OF-ELSE. The subset is big enough
to provide useful features. The Pascal
compiler can be written in the subset with¬
out much difficulty.

The actual coding of the compiler (in
BASIC) began in January 1978, The com¬
piler generates p-code for a hypothetical

stack machine, the same one described in
Wirth’s book. Algorithm -h Data Structure =
Programs. (P-code is the intermediate code
generated by the Pascal compiler. It is the
machine language of a hypothetical Pascal
oriented computer. Use of p-code makes
the Pascal language portable since only a

p-code interpreter needs to be written for a
particular processor. This saves the user
from writing the entire compiler for each
individual machine.) Several instructions and
input/output (10) capabilities have been
added. At the same time, an interpreter was
also written (in BASIC) to execute and

debug the p-code. It helps to verify the
correctness of the codes generated by the
compiler. In late January, after most parts

of the two programs had been debugged,
we began to design a run time support
package in 8080 assembly language and also,
a translator that translates p-code to 8080
machine code. With the debug package and

simulator in the system (see Kin-Man’s
article “An 8080 Simulator" in the October
1977 BYTE, page 70), we did not have
much trouble debugging the run time
routines. During March most of our time was
spent in refining all the routines: revising
some features and extensions in the com¬
piler, adding local optimization capabilities
in the translator and improving the effi¬
ciency of the run time routines. The run

time routines, which perform all 16 bit
integer arithmetic and logical operations and
10 conversions, take only 1 K bytes of

memory.
The first step in the bootstrapping pro¬

cess was to write the interpreter in Pascal
since it is the slowest but shortest program.

It was coded by straightforward translation
from the BASIC version. Debugging was
smooth and the entire program was up and
running within a week. Compared to the
BASIC version, the Pascal version runs about
15 times faster; slightly better than we
expected. Our next step will be writing the
translator and compiler in the Pascal subset.

After that, further development can be done
in Pascal without the BASIC interpreter.

For three months, each of us have been
spending about 10 to 15 hours a week on

this project. The first version (in BASIC) of
the compiler and supporting software were
completed with an estimated effort of two

working months. Considering such a short
time period and a functioning compiler,
we believe we are approaching the task
from the right direction. We hope that our
project will attract the attention of many
readers so that we can share our interest

and experience in Pascal with them."

About The Language

Pascal

A Structurally Strong Language

Stephen A Alpert

People should be able to communicate

their ideas to a computer in a language that
people understand; not simply in a language

they know. Additionally, if the computer
can be made to understand the same language
easily, all the more reason to consider its
use. Such a language is Pascal. This lan¬
guage, perhaps more than any other com¬
mon language, is the easiest to understand
and more importantly, allows a straight¬
forward presentation of most algorithms.
Although many languages also make this
claim, few have the overwhelming and
energetic support from collegiate computer

science departments. Let’s consider some
of the language features of Pascal.

This language is equipped with a precise
syntactical description that defines both
how programs may be constructed and

how Pascal compilers should function.
There is a required form for programs,
statements within programs, and data
operated upon by programs. At first glance,
a naive user may rebel at this apparent lack
of freedom (eg: BASIC allows a dimension
statement virtually anywhere in a program).
One soon learns that this structure admits
''ery general programs and in no way limits
the programmer in exercising his talents. On
the contrary, it forces the user to think
logically and plan out the program.

A program written in Pascal may utilize
free format form of programs that

IS conducive to structured programming.
Unlike line oriented source languages,
ascal allows extra spaces, tabs and car¬

nage controls to be inserted anywhere with-
out si^gnificance except in the middle of

enti lers or character strings. Comments
y e inserted wherever spaces may be

serted and are delimited by "(* ... *)”.

A program is made up of two parts, a
heading and a block. The heading contains

the name of the program and lists its param¬
eters. The parameters are somewhat im¬
plementation dependent but normally
specify the names of file pointers from
which the default input is received and to
which output is sent, A typical heading is

program parser (input, output)

A block consists of six separate segments or

sections of a program. All but the last part

are optional. These are:

• Label declaration section
• Constant declaration section
• Type declaration section
• Variable declaration section
• Procedure and function declaration

section
• Statement section

Labels in Pascal identify statements
to which control may be transferred. Labels
are numeric; more specifically, unsigned
integers. Not every statement requires a
label. In fact, most Pascal users consider

programs better if they have fewer labels.
At first glance, these declarations might

seem a nuisance, but they force the user
to think about the entire program before

sitting down at a terminal.
The constant declarations allow a user to

create synonyms for constants used in the

program. Thus

const pi=3.141592;
6=2.7182818;

defines the constants “pi” and “e” for use
throughout the program. Clearly, it no
longer is necessary to type 3.141592 in the
several places required by a program. Addi-

PASCAL forces the user

to think logically and

plan out the program.

Most PASCAL users con¬

sider programs better if

they have fewer labels.

27

Arrays may be multi¬

dimensional and include

arrays of arrays.

Items of different types

may be aggregated into a

single entity that can be

stored as one logical

unit.

tionally, one may name character strings

as well

const title='matrix inversion program vOV;

The type declaration section allows creation

of user defined named data types. This
will be discussed in some detail later. Pascal
has four predefined data types: integer, real,
Boolean, and character. Most versions of
BASIC support the first three types and
strings. Data of type character is very con¬
venient in a microprocessor environment
since a byte is the basic unit of memory.

The variable declaration section requires
the naming of all identifiers that will be used
as variables within this block, FORTRAN,
BASIC, APL, and LISP do not adhere to this
convention. Again Pascal forces the user

to think about what he wants to say before
he says it. A sample variable declaration

section might be

var x,v: integer;
cost: real;
flag:boolean;

Pascal's design allows the user to combine
the utility of type declarations and variable

declarations into data forms that would
shame BASIC and FORTRAN. We have

already seen Pascal's predefined scalar
variable types above. These are actually

known as simple types.
Another sirnple type is the subrange type.

Often a variable in a program may be ex¬
pected to take on values only from asubrange
of a simple type, say integers. For example

var asiz:1..100;

meaning *‘asiz” will be an integer whose
values should Me between 1 and 100. Note
that the compiler might choose to store
“asiz" as a byte rather than a word if it was
efficient enough to do so. Alternatively, if
several variables are of the same range, a

type statement could have been used

type lsiz=1..100;
var asiz, bsiz, f1 :isiz;

Another simple type is the symbolic
scalar type. This feature permits identifiers
to-be used in place of a sequence of integers,
greatly enhancing the readability of the
program. Suppose a program needed to
represent the months of the year as a vari¬
able associated with some billing informa¬
tion. The approach in BASIC would be to
use the sequence 1, 2, . . . , 12. Pascal

could use the subrange type 1 ., 12 or better

type
months = (jan, feb, mar, apr, may, jun,

jul, aug, sep, oct, nov, dec);
var billmonth,duemonth:months

In the statement section of a program,

"billmonth" may be assigned one of the
symbolic scalars from “months’* or tested to
see how its value compares with “due-
month.” There are several functions avail¬
able that operate on symbolic scalars, for

example, ord(billmonth) would yield a
number between 0 and 11 indicating the
position of that month in the list “months.”

Simple types are part of a more general
data description called a type. Types include
pointers which are used when dynamic data
storage is referenced, file pointers which are
used to reference secondary data storage,
and arrays which are used with vector data
storage. An example of an array declara¬

tion is

var cost: arraylmonths] of real;

Notice that this array will be indexed, or
subscripted, by "months.” In general,
arrays may be indexed by any simple types,
may be multidimensional, and may be of

any type, including arrays of arrays.
Two additional types set Pascal in a

class by itself; these notions allow powerful
algorithm descriptions. The set type allows
user manipulation of sets. Consider

var special: set of months;

The union, intersection, and set difference

operators as well as relational operators may
be applied to sets. A variable of scalar
type may be tested for membership in a set

of the same scalar type, for example

if billmonth in special then.. .

The last type is the record type. Items of
different types may be aggregated into a
single entity that can be stored as one logical
unit, for example as one element of an

array.

type
customer = record

name:array [1..20] of char;
bal,bal30:r6al;
datedue:daterec

end;
daterec = record

day:1..31;
mo: months;
year: integer

end;
var

database: array[1..100] of customer;

To reference fields of a record, the record
name followed by a period, followed by the

field name is used. Hence the over 30 day
balance of customer 12 is “database[12j •

bal30” and the day of the due date of the
current bill of customer 27 is “database[27J •

datedue.day.” The full impact of recora
types cannot be explained in this s o

article; they must be used to be
One advantage of records is that items

28

be logically grouped together rather than
stored in parallel arrays.

Procedure and function definitions would
follow next in a program. They may be
recursive and permit parameter passing in a

style somewhat similar to ALGOL. Because
of the position in a program of these declara¬
tions, procedures and functions may
reference globally any variables or types
defined In the main program. The body of a

procedure or function is identical to the
body of a program; hence, procedures may
be defined within procedures, and so on.
Any variables defined within procedures or
functions are considered local to the pro¬

cedure and are unique to each invocation of
the procedure. The sample program In
listing ^ has several examples.

The statement portion of a program is

called a “compound.” A compound Is a
sequence of the keyword begin, any num¬

ber of statements separated by semicolons,

and the keyword end. The program ends
with a period. Each of the statements with¬

in a compound may be one of a variety of
different kinds of statements. Assignments,

like

database[i-t"k] .bal:=total

are the most common statements, Pascal

supports a large number of control state¬
ments which give the language its structure.

Pascal has a looping control similar
to that of standard BASIC but the step or
increment may be only +1 or —1. The for
statement causes a single statement, which
could be quite complex, to be executed
some number, including zero, times. For
example

for ind. =1 to 100 do
begin

due: =1.006*database[ind] .bal:
database[ind] .bal:=0.0;
sum:=sum-i'due;
database[ind] .bal30: =

1.006* database[lnd] .bal30+due
end

This segment shifts the balance 30 days
a ds some interest charge and accumulate:
a sum of the recently aged balances. If ir

—1 increment were to b(
then the keyword downto would re

place the keyword to.

both simple condi

statements

<condition> then <statement>

'^ondition> then <statement>

<statement>

sequence*of “if

-paired with the innermosfif ' ^'^^^
working With recolds, pan

Listing 1: The Polish "compiler” listing. Notice that Pascal does not con¬
strict the format of the program line. Indentation allows the program blocks
to be easily separated from each other and makes the program easier to read.

PROGRAM PfiRSECINPUT,OUTPUTS;
<>fPR0GRnM PARSES SIMPLE ARITHMETIC EXPRESSIONS

INTO THEIR RESPECTIVE POLISH CODE IT DOES
THE PROPER TVPE CONVERSIONS NECESSARY FOR
REAL AND INTEGER EXPRESSIONS ACCORDING TO
THE FORTRAN CONVENTION:

REAL: A-H. 0-2
INTEGER: I-N

VARIABLES ARE ONE LETTER L0NG4>>
LABEL 99j <*F0R ERROR RESTART*)
CONST

DONTCARE*'?'; C*MRRKERS FOR CODE GENERATOR*?
MRXPC-100j <*MflXIMUM CODE SPACE*)

TVPE
CODESPflCE**! MAXPC; <*ADDRESS SPACE*)
ATTR-<NOHEiINT.REA); <*ATTRIBUTES OF OPCODES AND EXPRESSIONS*)
LEXTV-CRDDOP.MULOP. LPAREN, RPAREN. IDENT, EOL);

C*THESE LEXEMES FOR INPUT ASSUME A NON-HOSTILE USER*)
INSTRUCTION-RECORD

0PC:CHflR3 <*0PC0DE*)
ITVPE:RTTRi <*0PC0DE TVPE*)
ADR: CHAR (:*NRME OF IDENT*)

END;
VAR

CODE:ARRRVCCODESPACE] OF INSTRUCTION^ C*UHERE CODE GOES*)
PC:CODESPACEd C*PC OF CURRENT INSTRUCTION*)
GflTTR;flTTRi <*GL0BAL TVPE OF EXPRESSIONS*)
CH:CHARi C*CURRENT INPUT CHARACTER*)
CHTVREATTR; <*CURRENT CHARACTER ATTRIBUTE IF IDENT*)
LEX:LEXTV; C*LEXEME OF CURRENT INPUT*)
BFR:PACKED ARRAVCl 001 OF CHAR; <*INPUT BUFFER*)
BP:INTEGER; (*CHARACTER BUFFER POINTER*)

PROCEDURE SCAN; C^PROCESS NEXT INPUT CHARACTER*)
BEGIN

REPEAT
BP:-BP*!;
CH:-BFRCBP]

UNTIL CHU' ^
(*U0RRV ABOUT END OF LINE*)
IF 0RD<CH)»e

THEN LEX:-EOL
ELSE

IF CH IN C'A'. . 'Z''i

THEN
BEGIN

LEX:-IDENT;
IF CH IN C'l" 'H'-)

THEN CHTVPE-INT
ELSE CHTVPE-REA

END
ELSE

CASE CH OF
LEX; -LPAREN;
LEX:-RPAREN;

LEX:-ADDOP;
LEX:-HULOP

END
END <«0F SCAN*);

PROCEDURE ERROR;
BEGIN

MRITELN<' ':BP*1. 't ERROR'); <*COMPENSRTE FOR USER PROMPT*)
GOTO 99

END <*0F ERROR*);

PROCEDURE GENCODECF;CHAR; I:ATTR; A: CHAR);
BEGIN PC:-PC*1;

IF POMRXPC
THEN BEGIN URITELN<'OVERFLOU'); ERROR END;

WITH CODECPC] DO (*INDEX INSTRUCTION*)
BEGIN OPC:-F; ITVPE:-I; ADR:-A END

END (*CF GENCODE*);
PROCEDURE LISTCOOE;

VAR LPC:CODESPRCE;
BEGIN

FOR LPC;-1 TO PC DO
WITH CODECLPC] DO BEGIN (:*INDEX INSTRUCTION*)

CASE OPC OF
WRITE('ADD');
WRITEC'SUB');

'0':WRITEC'NEC');
'*';WRITE<'MUL');
'/" HRITE<'D1V')J
'F' WRITER'FLOAT');
'P';WRITE<'PUSH') END;

IF OPCP'F'
THEN

BEGIN
IF ITVPE-INT THEN HRITE<'I') ELSE HRITE<'R')

END;
IF OPC-'P' THEN URITELN(CHRC116)dADR) ELSE URITELN

END <*0F WITH AND FOR*)
END C^OF LISTCODE*);

29

Listing 7, continued:

PROCEDURE FIXUP<nX:COOESPflCE; <*PC OF FIX LOCfiTION OF OPERRND

LOP:CHflRj <>*«CURRENT OPERRTOR*>

LRTTR:flTTR>; <.^flTTRIBUTE OF OPERRND

VRR TPC:CODESPflCE;

BEGIN
IF CRTTRPLRTTR <»TVPES DON'T flCREE*>

THEN

BEGIN
IF GRTTR-INT <4FLOflT OPERAND

THEN BEGIN CENCODE<'F'. NONE.DONTCRRE>i GRTTR:-RER END

ELSE C^HRVE TO FLOAT OPERAND 1. MOVE CODE UP»?

BEGIN ^ ^
IF PC-HflXPC THEN BEGIN WRITELNC'OVERFLOW'5i ERROR END;

FOR TPC:-PC DOUNTO fiX DO CODECTPC+13 *CODEITPC]J

PC;*PC+1; <»TOOK ANOTHER WORD»>
CODECRXD. OPC:»'F' <*FLORT OPERAND I*)

END

END;
GENCODE<LOP.GATTR. DONTCRRE> <*GENERRTE OPERATION-^)

END <*OF FIXUP*>i
PROCEDURE EXPR; <*HERE IS ALL THE WORK*)

VRR
LOP:CHAR; <*CURRENT RDDOP*)

LRTTRATTR; <*ATTRIBUTE OF OPERAND 2*)
AXPC:CODESPRCE; <*UHERE FLOAT OF OPERAND 1 COES. IF NEEDED*)

PROCEDURE TERN;

VAR
LOP:CHAR; <*CURRENT MULOP*>
LATTR ‘RTTR; <*ATTRIBUTE OF OPERRND 2»)

AXPC:CODESPflCE; <*WHERE FLOAT OF OPERAND 1 GOES. IF NEEDED*)

PROCEDURE FACTOR;

BEGIN
IF LEX-IDENT <*IDENTIFIER*)

THEN

BEGIN
CRTTR:-CHTVPE;

GENCODEC'P'. GRTTR. CH);

SCAN

END
ELSE

IF LEX-LPRREN

THEN
BEGIN

eraiii PWPPi

IF LEX-RPAREH THEN SCAN ELSE ERROR

END
ELSE ERROR (*JUNK INPUT*)

END (*OF FACTOR*);

BEGIN <*OF TERN*)

FACTOR;

WHILE LEX-HULOP DO

BEGIN
LATTRs-GATTR; LOP:-CH;
AXPC:-PC+lJ <*SAVE ADDR OF NEXT INSTRUCTION*)

SCAN; FACTOR;
FIXUP C AXPC. LOP. LATTR)

END
END <*OF TERH*>J

BEGIN <*OF EXPR*)
IF LEX-RDDOP C*LEADING SIGN*)

THEN

BEGIN
LOP:-CH; SCAN; TERM;
IF LOP-'-' THEN CENCODE<'t'.GATTR.DONTCARE)

END

ELSE TERN;

WHILE LEX-ADDOP DO

BEGIN
LATTR:-GATTR; LOP; -CH;
RXPC:-PC*1; <*SRVE ADDR OF NEXT INSTRUCTION*)

SCAN;TERM;
FIXUP<BXPC. LOP. LRTTR)

END

END <«OF EXPR*);

BEGIN C*OF MAIN PROGRAM*)
WHILE TRUE DO <*INFINITE LOOP*)

BEGIN

99: REPEAT
WRITEC'»’'>; <*PROMPT USER*)

BP:*e; C*GET INPUT LINE*)

WHILE NOT EOLN DO

BEGIN
BP:-BP*!;READ(BFRCBP3>

END;
READLN <•RESET EOL INDICATOR*)

UNTIL BPtl; <*CET A NON-EMPTV LINE*)

BFRCBP]:•CHR<0)> C* <NULL> FOR EOL*)

PC:-e;BP:-e; <*SCAN FROM THE BEGINNING*)

SCAN;
EXPR; <*DOES ALL THE WORK*)

IF LEX-EOL THEN LISTCODE ELSE ERROR

END

END.

dressing can be done by using the “with”
statement. This allows the fields of a record
to be referenced as variables. The previous

example then becomes

for ind: = l to 100 do
with database [ind] do

begin
due:=1.006*bal;
bah=0.0;
sum:=sum+due;
bal30:=1.006*bal30+due

end

Three additional control statements are
the while, repeat, and case statements. The
while statement allows a given statement
to be executed as long as some Boolean
expression is true (the condition is tested

first).

while ^condition^ do statement^

The repeat statement allows one or more
statements to be executed until a condition
becomes true (the condition is tested last).

repeat <statement> { ;
<statement>} until <condition>

The brackets denote a portion that may

occur zero or more times; for example

ind:=0;
repeat;

jnd:=ind+1
until (database[ind] .bal>100.0) or

{ind=100)

This will find the first customer whose

balance is greater than $100, if one exists.
The case statement consists of an ex¬

pression, known as the selector, and a list
of statements, each labelled by one or more
constants of the type of the selector. The
statements whose constant is equal to the
current value of the selector is executed.
Some versions of Pascal admit subranges
for labels and an else or otherwise clause

within a case statement.

case database [ind] .datedue.mo of
jan.feb.mav: <statement 1 >;
marjun.jul: <statement 2>;
oct.dec: <statement 3>

end

Statement 1 will be executed if the due
month is January, February, or May, and so
on. Notice that no statement is executed
if the month is April, August, September,
or November. Of course, the nesting of such
control statements is permissible and allows
much more complex control structures to

be implemented. . ■ • i-
The reset and rewrite statements initialise

input and output channels, respectively*
Some versions of Pascal do not require

these for the default channels input an
output The 10 commands are designed ^
two levels. To move primitive data to an

from 10 devices or files use the
put or get respectively. To input or ou

30

an entire line or set of data we use read,
readin, write, and writein which are similar
to FORTRAN 10 commands. Formatting is
done within the commands themselves. The
read command will only input the necessary
information (even if it must read several
lines) while readin additionally discards
the remainder of the current input line. The
output commands, write and writein,
operate in an analogous fashion for output

A significant example is now in order.
Consider the problem of compiling an
arithmetic expression. To greatly simplify
the problem, assume all variables are one
letter in length, no constants will appear,
and the only operators will be +, —, and
/. To make the problem interesting, assume
that variables lettered a—h and o—z are
of type real and the rest are of type integer.

This is the same as the implicit types for
FORTRAN. The program will produce

code for a “stack machine.” That is, the
operators are applied only to operands
already on the stack and the result will
replace the operands on the stack. One task
is the recognition of correct expressions.
This may be done by several methods in¬
cluding precedence tables, LALR(1) parsers,
and recursive descent. The latter will be used
since it is the technique employed within

most Pascal compilers. Recursive descent
compilation utilizes a set of recursive proce¬
dures to recognize its input, with no back¬
tracking. To understand the algorithm,
consider the series of “syntax diagrams”
in figure 1.

To generate a valid expression, for ex¬
ample, one enters the diagram from the left,
selects an arbitrary path through the dia¬
gram, and exits to the right. Any box en¬
countered is to be treated like a subroutine
or procedure call. A circle or box with

rounded edges is to be the current input
item. An expression is thus an optional
5ign, a term, followed by any number (in¬
cluding zero) of addition or subtraction
operators and terms. Similarly, one can

efine a term. These definitions build in
t e normal precedence of operators and
^rrectly handle a unary minus. Notice that

r <term>, <ierm> will

na!i <!' maybe <factor> will
expr> again. This would occur when-

ver parentheses were encountered.

Iv accomplish is to proper-

intermpHia! ^ "*^^®5sary type conversion of

this nr® refer
directed discussing syntax

solu fon

above assumptions) consider""
J+K • X

is not known that th'
this expression must

EXPR

FACTOR

Figure 1: Syntax diagrams for generation of valid expressions. The diagram
"expr” is entered from the left and calls term. Term calls “factor'' which may
call expr, etc. This mode! assumes that the only operations are addition,
subtraction, multiplication and division.

have a real value until the X is seen. The
recursive descent phase, independent of

type conversion might translate this to

PUSH J

PUSH K
PUSH X
MUL
ADD

for its equivalent Polish Notation: J K X * +.
However, what is really required is

PUSHIJ
FLOAT {convert the top of the stack)
PUSHIK
FLOAT
PUSHR X
MULR
ADDR

where the operators have either “R” or “1”
suffixed to indicate a real or integer opera¬
tor, respectively. The suffix for the PUSH
instruction is known as soon as the variable
name is seen. The types for the arithmetic
operators and the insertion of the FLOAT

instructions must be added somewhat after
both operands have been seen; in other
words, a fixup must be done. As one alter¬

native, this may be accomplished by gener¬
ating code in memory and keeping track of

An expression is an op¬

tional sign, a term, fol¬

lowed by any number of

addition or subtraction

operators and terms.

31

PUSHR ft

PUSHR B

nDOR

»Pi/l

PUSHR fi

PUSHI I

FLOAT

DIVR

»I/J

PUSHI I

PUSHI J

DIVI

»J+K^X

PUSHI J
FLOAT

PUSHI K

FLOAT

PUSHR X

INSTRUCTION is a record type.
The variable CODE is an array of instruc¬

tions. This is where the “compiled” code
will reside. The type attribute of the second
operand of an operation is stored in GATTR
which is global to all the program's

procedures.
The procedure SCAN picks up the

next character(s), ignoring spaces and
determines the correct token and type if
it is a variable. Note the use of the case
statement and the sequential nested

conditionals.
HULR

ADDR
»<I*J-CX+I1))/<P+N)

PUSHI I

PUSHI J

MULI

FLOAT

PUSHR X

PUSHI M

FLOAT

AODR

SUBR

PUSHR P

PUSHI N
FLOAT

ADDR

DIVR

»A+B*

t ERROR

»R*K<B+I

t ERROR

»I>^B

t ERROR

»2I
t ERROR

Listing 2: Sample program, execution. After outputting a prompt the pro¬
gram waits for an expression to be input. It then lists all of the Instructions

that would be generated for a compiler code.

the type attribute of each operand and the
addresses of where the last instruction for

that operand was stored. If a type conver¬
sion is required on the first operand (of a
binary operator), all code beyond the saved
address is simply moved up one location and
a FLOAT instruction is inserted. If a type
conversion is required for the second
operand, a FLOAT instruction is added as
the last instruction in the evaluation of the
second operand. [In this paragraph and re¬
maining text of the article, words in upper
case refer to listing 7... RGAC/

The program in listing 1 is a solution to
the expression evaluation problem. It is a
direct implementation of the methods
suggested. The main portion of the program
Is trivial; it asks for a line of input, calls
procedure EXPR to parse the line, lists the
output if there is no error, and repeats the

process.
The type statements are important and

quite varied. See that the constant MAXPC
defines the maximum address space and is
used in the declaration of the subrange
type CODESPACE. The variables ATTR
and LEXTY are symbolic scalar types and

The procedure ERROR outputs a line
with an upward pointing arrow to indicate

where the error occurred.
The procedures GENCODE and LIST-

CODE are responsible for encoding the
instructions into the code array and decod¬
ing the code array for output respectively.
The' with statements simplify both the

Pascal and compiled codes.
Any discrepancy in types of operands

is resolved by FIXUP which inserts the code

for the operator itself. In a full compiler,
FIXUP would also worry about strings and
other data types and issue the appropriate

error messages when needed.
EXPR does' most of the work, together

with the procedures TERM and FACTOR.
They function exactly as described above.
They are quite simple in appearance but
function correctly as the sample runs illus¬
trate. The symbolic scalars ADDOP and
MULOP are quite useful in this design.

When properly segmented, any program
should be similarly constructed and as easy
to read or modify. A lot may be gained from
using a top down design. Given the time,
anyone could stretch this program into a
full compiler whose output was a similar

Polish code, and alternatively encode this
program into their favorite assembly lan¬
guage. All the hard work has really been
done in expressing the algorithm to solve

the problem.
I heartily recommend that anyone

seriously interested in Pascal in partic¬
ular and good programming style in general

obtain the two books listed in the

references. ■

REFERENCES

• Jensen, Kathleen and Wirth, Niklaus, Pascal

User Manual and Report. Springer Study
Edition (2nd Edition), Springer-Verlag.

175 Fifth Av, New York NY 10010. 1975.

a Wirth, Niklaus, Algorithms + Data
Programs. Prentice-Hall, Englewood Cliffs

07632,1976.

32

Compilation and Pascal

on the New Microprocessors

Charles H Forsyth

Randall J Howard

We are concerned with the use of high
level languages, and in particular Pascal, on
microcomputer systems. We are most
interested in the use of such languages for
what is termed, on larger computer systems,
systems programming. This includes writing
code to drive floppy disks, interpreters for
APL or BASIC, or all those bits of code that
people have until now written in assembler,

and which in some way make their micro¬
computer systems friendly.

Microcomputer users show a generally
high level of sophistication, so it might be
surprising at first that so much of their code
is still written in assembler. The advantages
of writing in a high level language have been
often described in computing literature:
programs can be made more portable; they
exhibit better structure; and they are easier
to write and debug. In addition, it is much

^ compiler worry about the
efficiency of the object code; and deficien-

object machine are hidden. With
me 8 bit microcomputers like the Intel 8080
and Motorola 6800, we feel that there is

\nt^r but to write in assembler (or

their*^n^!f^ * facilities provided by
supDort simply insufficient to
support most high level languages

8 inappropriate for

8809), especial^y'^S
"’OH assembly eliminating
also feel that u°" machines. We
--- '"^.I'acilities that enable

code for such
^ <--piler to gener^beuer

machines than might be expected from
compilers for other languages.

Jensen and Wirth provide the definition
of and tutorial introduction to Pascal in the
Pascal User Manual and Report. Aho and
Ullman’s book, Principles of Compiler
Construction, provides an excellent descrip¬
tion of the elements of a compiler.

Options

Tiny BASIC, Tiny C, APL, and FOCAL
are Implemented on microcomputers with

interpretive code. Interpretation has a num¬
ber of advantages. Since the interpretive
language is highly specialized, it can be made
compact. New macro operations can be
added easily as time and experience dictate.
Array and structure addressing and the block
copying associated with array and structure
assignment may be made particularly cheap.
When interpreting array indexing, run time
checks of the index values against the array
bounds are possible (although often left out)
at little extra cost. This is true of other kinds
of debugging facilities as well, such as value
traces or stack tracebacks. Both compiler
and interpreter are easy to write, especially
if the interpreted code implements a stack
machine. Interpretation's main disadvantage
is that it is slow.

An alternative to interpretation that
alleviates this latter problem of speed some¬
what is threaded code, which has been
described as “interpretive code which needs
no interpreter" (see references 2 and 3).
Rather than having a sequence of codes and

type
index = 0..I0;
twicelndex = 0..20:
unsigned * 0..32767:
short = -I28..I27:
shortUnsigned = 0..255:
thing * record

field 1: 0..7:
field2: O.Jl

end;
packedThing = packed record

field!: 0 .7;
field2:0..3l:

end:

vftr
a. b: irray [index] of integer;
i, j: index;
k: twicelndex;

The listings in this
article were prepared by
arrangement with Walter
Banks of the University of
Waterloo.

s: set of (READY. BLOCKED. RUNNING. SWAPIN. SWAPOUTI;

begin
a[il := b[jl; |thc dreaded array-indexing example!

fc /+/; {subranges are usefulj

5 ;= [READY. BLOCKED. RUNNING];\st\. operations!
5 := j - [READY. RVM^INGJ;
5 := J + [SWA PIN J:
s := 5* [SWAPIN. BLOCKED};

end

Listing 1: Pascal program fragment for array indexing.

tsx /Enable indexing off sp

Ida A, AX) /Fetch address of / relative..

Ida B.j+/(X) /to sp into (A,B) register pair

asl B /Shift (AB) pair left by 1..

rol A /yielding integer offset

add B, /»+7(X) /Add in 16-bit array

adc A, MX) /pointer i to (A,B) pair

sta A, temp /Transfer (A,B) pair to X reg,

sta B, tcmp+1 /..not re-entrant

Idx temp
Ida A, 0(X) /Finally, fetch b[j] into..

Ida B, l(X) /(A,B) pair..

psh A /and push onto stack

psh B
tsx /Following code is repeat of..

Ida A, /(X) /above for getting address of.

Ida B,i+/(X) /array element ali]

asl B
rol A
add B,fl+/(X)
adc A, MX)
sta A. temp
sta B, temp+1
Idx temp /X now points at a[i]

pul B /Pop b[j] from stack..

pul A /into (A,B) pair..

sta A, 0(X) /and store in a[i]

sta B. 1(X)

Total code: 52 bytes

Listing 2: Motorola 6800 assembly code for the first

fine of the Pascal fragment shown in listing h

an interpreter which reads them, calling out
to the routines implementing each operation,
threaded code simply contains the sequence
of machine addresses of the routines to proc¬
ess each operation. These routines, much
like the code segments called by the inter¬
preter to implement the pseudo-machine,
provide the run time support for the threaded
code. Rather than return to an interpreter

after it has done its work, though, a routine
simply jumps (indirectly) to the next such
routine in the code flow. Arguments are

passed to these routines in various ways —
for example, by placing values or addresses

between the code pointers.
The third approach to language imple¬

mentation is that traditionally adopted on
larger machines: real code generation. This
approach provides the fastest program
execution at the possible expense of space
used by the object code. On almost any
machine, the high level constructs of flow of
control and logical expressions as well as
calls to the intrinsic built-in functions can be

directly implemented as branch or jump
instructions with relatively little expenditure

of speed or time. However, for many of the
existing microcomputers, code generation

for even the simplest of the fundamental
high level language constructs proves effec¬
tively impossible. Such constructs include
most common arithmetic operations, array
and structure accessing, and automatic
storage manipulation. Particularly difficult

on some machines are multiply, divide,
modulus and string operations. Therefore it
is important to determine vvhat properties of
a particular machine make it suitable for real

code generation.

8 Bit Microcomputers

A detailed study of the common 8 bit
computers available today (eg: Motorola
6800, Intel 8080) quickly reveals that such
machines are not conducive to real code
generation by compilers for high level

languages such as Pascal.
On such machines, compilations of even

the simplest arithmetic or pointer expressions

lead to a very high object to source code
ratio, if such constructs can be compiled at

all. Listing 2 gives an example of code which
might be compiled for a Motorola 6800 to
implement the Pascal assignment statement.

a[i}:=b[j}; in listing 1. The assumption here
is that automatic arrays are implemented as
pointers on the stack to areas of storage
residing elsewhere. In addition, we have
assumed that the compiler keeps track oft e
stack offsets for its automatic variable

relative to the moving stack pointer; ^
using the notation j to represent the s
offset of variable j. In addition to this

34

segment, the procedure preamble must set
up the pointers to the arrays a and b (stored
at offsets a and b respectively), to point at
the integer before the beginning of the array.
Thus, for example, a[1] will then be identi¬

fied with the beginning of the storage
associated with the array a.

Beyond the actual code shown here,

however, the most important insight to be
gained from all of this is the sheer bulk of
code that such a simple construct would
generate (and it is not even reentrant at that).
Imagine how large the object code size

would be for even a reasonably short Pascal

program.
Implementing threaded code is somewhat

difficult on these machines because they
require 16 bit memory pointers, an efficient
mechanism for indirect addressing, and some
method of incrementing such a pointer to
the next 16 bit pointer. At least one of the
above criteria is so troublesome on both the
Motorola 6800 and the Intel 8080 that the

threaded code becomes unwieldy. Thus, for
these machines one has little choice but to
interpret or write in assembler. This suggests
that the interpreters themselves must be
implemented in assembly language.

The above discussion is an attempt to
analyze the reasons why programs written
for 8 bit microcomputers have traditionally
been interpreted or written in assembly or
machine code, rather than being compiled
into “true" code from a high level language.

Let
r;= IX, Y, S, U|
a := I A, B, D i
X := memory reference
c constant value

X long relative, short relative, direct
*jc long & short relative indirect
$x immediate byte
*$x extended
**$x extended indirect
cCr) ±4, ±7, ±15 bit indexing
*c(rl ±7 and ±15 bit indirect indexing
(r)-¥ Auto Increment by 1 or 2
-(rj Auto Decrement by 1 or 2

Indirect Auto Increment by 2
*-(r} Indirect Auto Decrement by 2
a(r} Accumulator Indexing
*a(ri Indirect Accumulator Indexing

Table 7; A summary of the Motorola

MC6809 addressing modes.

a precise meaning. With real machines, one

usually loses clever addressing modes, for
plenty of general purpose registers, and one
must balance the benefits somehow. The
final judgment will usually be that of the
person writing the compiler.) With these
attributes, it is a fairly straightforward task
to construct a compiler for a high level
language such as Pascal.

8 and 16 Bit Hybrids

16 Bit Microcomputers

Previously, the only alternative to the
8 bit architecture was that of the 16 bit
microcomputer. Examples of such machines
include the Tl-990/4 and the DEC LSI-11.
While the considerable costs of these proc¬
essors tend to make them impractical for
many computer experimenters, and for
those applications in which many processors

are required, it Is instructive to consider
what properties set these machines apart
torn their 8 bit counterparts with respect to

code generation. In fact, it can be shown
^ at, given a machine of sufficient sophisti¬
cation, it should be possible for a compiler
to o as good a job as an assembler program-
mcr vis-a-vis machine resource utilization.

fhere are two main virtues of these 16 bit

have place, these machines

inciudinT^h^^V^ instruction repertoires

tend to have a ^ processors
sing modes such complement of addres-
tions, automatic in* '"‘^®’ting, stack opera-

of pointers, and sd decrement
this article the d«, ■' elsewhere in
fPuy, .»n,. „.y

Element does not admit of

The current trend in 8 bit microprocessor
technology is towards a hybrid combination
8 and 16 bit machine. Essentially, these
processors are capable of 16 bit operations
while retaining 8 bit data paths throughout
the processor architecture. A prime example
of such a hybrid is the Motorola 6809,
which is due for formal product release later
this year. Table 1 gives a summary of the
basic addressing capabilities of the Motorola
6809, expressed in a hypothetical assembler
syntax which removes from the user the
burden of understanding all of the details of
the actual hardware addressing modes.

What advantages do these machines have
over their pure 8 bit predecessors? In partic¬
ular, these machines now have at least one
accumulator for performing addition, sub¬
traction, shifting and comparison operations
on 16 bit data. A second feature of these
machines is the 16 bit memory pointer,
which, combined with the ability to auto¬
matically increment and decrement such
pointers, provides a very general memory
accessing capability. In addition, common
high level language features such as stack
frames and display pointers become quite
easy with the general index and stack
registers of the M6809. It is apparent that

the Motorola 6809 is particularly well-
endowed with addressing modes which
tend to facilitate code generation for high

level languages.
Consider again the array assignment

which the 6800 handled so dismally. The
Motorola 6809 code for the same construct
is given in listing 3. (Note that the syntax of
our assembler code is intended to be more or
less consistent amongst the examples, and
not necessarily that of the manufacturer's

assembler. It is in fact the syntax used by
our UNIX assemblers for these machines.)
Code for the PDP-11/45, considered to be a

good instruction set given in listing 4, is

included for comparison.
It is rather precipitous to deduce much

from this one example, although array
indexing does exercise many of the addressing
modes of a machine, and such assignment
statements can provide a check on the
register usage of a compiler. How a partic¬
ular architecture fares with more general
arithmetic expressions and function and
procedure call, save, and return sequences
would provide further basis of comparison.
Indeed, other examples that we have tried
suggest that the results of this comparison

are typical.

/'X* points to lop of stack (display)

Ida D, /(X) /i
asl B
rol A /•2
add D, Sa-2 / +offsel of 'a'

lea Y. D(X) / + stack top

Ida D,/(X) /j
asl B
rol A /•2

add D, %b'2 / +offset of *b*

Ida D, D(X) / +stack top

sta D, (Y) / a(i] := bUl

Total code; 20 bytes

Listing 3: Motorola MC6809 assembly code for array indexing

program fragment

/ r5 points to the
/ slack frame

/(r5),r0
rO
r5,fO
/(r5).rl
rl
r5,rl

mov
a$l
add
mov
asl
add
mov

Hop’* of ihe

/j
/•2
/+ display pointer

/i
/•2
/+ display pointer

^-2(rO)^-2(rl) / a(i]b(jl;

Total code: 22 bytes

LIsItng 4: DEC PDP-11 assembly code for array indexing example.

Special Advantages of Pascal

We feel that the use of Pascal and a
competent compiler can lead to better
code in many cases on hybrid 8 and 16 bit
machines than can be achieved with many
other languages. Obviously, the best results
will require that Pascal be properly used -
that subranges be used where possible, for
example — and that these be declared to be

as small as possible. A Pascal program can
contain a great deal of information that
allows even a straightforward compiler to

generate code which makes good use of the
available registers. The Pascal declarations of
listing 1 provide illustration for the following

discussion, and the code given is for the
Motorola 6809. Remember that the intent is
not to describe an implementation of Pascal.

The declaration of scalar and subrange

types essentially allows the declaration of
small integers and makes known the detailed

characteristics of variables of such types to
the compiler. Variables may thus be com¬
pletely bounded, and the compiler can
compute upper and lower bounds on the

value of an expression.
In our example, variables of type short

or shoriUnsigned may be loaded into the

8 bit accumulators of the 6809, and both
registers may be used simultaneously. A
variable may be recognized as unsigned if
there are no negative values in the subrange
to which it belongs. In the assignment state¬

ment k := /+/; the variables /, and/, are both
in the range 0 thru 10. The result is thus in
the range 0 thru 20, and an 8 bit accumulator
may again be used to compute this result.
(All of this is particularly useful if array

indexing is also involved.)
The Pascal set type may be regarded as

providing a readable way to do "bit twid¬
dling." A set is typically implemented as a
sequence of bits, one for each element of the
base type of the set. The variable s might
then be a byte in which the low order bit
corresponds to the element READY, the
next to BLOCKED, and so on. The sequence
of assignments might then be compiled as in

listing 5.
Pascal, of course, provides pointers,

record structures and arrays.
The use of pointers is strictly controlled:

arbitrary arithmetic operations on pointers
are not allowed. About the only things that
may be done with a pointer variable are.

indirect addressing, assigning another pointer
to it, or passing it to a procedure or function.
This structured use of pointers and indexing

results in a very stylized use of
the compiler’s internal representation,
in turn allows the compiler to detect
places where double indexing may be u
to advantage rather easily, on machines

36

the 6809 which have this feature.
Indexing of an array of records does

require multiplication of the index by the
width, in bytes, of the record. Often, this
may be accomplished by a shift. Of course,

this cannot always be done, since records
need not be a power of 2 in length, though
a compiler could arrange to round the size

of a record up to an appropriate boundary if
the difference were small. In any event,
provided the size of the record Is no more
than eight bits (as an unsigned quantity), the

code for the multiplication could reasonably
be included in line.

We wondered how often division or multi¬

plication is used in the UNIX system (an
operating system developed at Bell Labs),

and wrote a simple command file which
would compile each of the source programs
of the system and scan the resulting assem¬
bler for mu! and div instructions. The
number of multiplications was of interest in
light of the above discussion; the number of
divisions was collected as well, since these
would have to be interpreted by subroutine
on the 6809, and we wanted to know how
many occurred in critical code. The results

are shown in table 2.
Only one of the divide instructions occurs

in a routine that might be regarded as signi¬
ficant, with respect to increasing system
overhead, were a subroutine called to do the
divide piecemeal; and that division was
performed at a low priority level. 31 of the
divide instructions in the device driver rou¬
tines were in disk drivers, which had to
compute track and cylinder offsets. The

multiplications In all cases were of small
amounts; it seems that (most likely by
accident) record structures used in the
kernel happened to be a power of 2 in length.
It would have been more instructive, perhaps,
to examine user programs, but in that case it
would have been more difficult to separate

multiplications written explicitly from those
created implicitly by array indexing.

A Pascal programmer may declare partic¬
ular record or array types as packed, which
IS a hint to the compiler that the program¬
mer would prefer elements of the given type
o occupy as little space as possible even if

ere is a cost in increased code to access
tnem. This leaves the unit of packing to the

P^kedTh!^°\ example, the types thing and
and un listing 1) describe packed
Pa^ai records with similar fields (to

■n compatible

field2 will pc' I
"pCI i' " PP-PPilPr
tfien in a pockedThP completely,
occupy three hit ^ Mdl will likely

Packing of records on*"’* borage.
on microcomputers is

/ X is display pointer
/ equates are in octal
READY = 01
BLCX:KED - 02
RUNNING « 04
SWAPIN - 010
SWAPOUT » 020
Ida
sta

/
Ida
anda
sta

/
Ida
ora
sta

/
Ida
anda
sta

A, SREADY-hBLOCKED-hRUNNING / immediate load
A, s{\)

A, siX)

A, $![READY+RUNNING] / complement
A, s{X)

A. s(X)

A, SSWAPIN
A, siX)

A. ^X)
A, $[SWAPIN+BLOCKED]
A, J<X)

Listing 5: Set assignment code for the Motoroia MC6809 processor.

often much easier than on the larger proc¬
essors, because microprocessors do not have
the alignment problems that plague compiler

writers on those machines.
Finally, as in many other languages, the

order of evaluation of expressions is left to
the implementor, but since side effects are
not allowed, no legal Pascal program can
possibly be harmed by this. This has two
related effects: in arithmetic expressions,
the compiler may evaluate the operands in
the order that leads to the least amount of
code, and in Boolean expressions the left-
hand side of the logical operators and and or
need not be evaluated if the expressions on
the right determines the truth value of the
entire expression. Faster or smaller code will
usually result if a compiler takes advantage
of these properties.

Pascal: Problems?

We feel that there are a number of areas
where Pascal is likely to require expensive
mechanisms, and which would be inappro¬
priate for a systems programming environ¬
ment. One solution might be to implement
a subset of the language, leaving these hard

Lines Number of Number of
Section of C Code Multiplications Divisions

UNIX Kernel 6,013 4 9
Device Drivers 8,640 62 41

Tabie 2: A search through a particuiar operating system to determine the
number of multiplications and divisions used. This was done to determine
how important the speed of a multipUcatlon and division routine would be to
a typical program.

37

features aside, but in most cases, since the
expensive mechanisms are only invoked if
the programmer asks for them, it should
be sufficient to have the compiler avoid
including the associated run time procedures
v/hen they are not requested. (This is worth
mentioning, if only because this rule is often
not followed.) We shall first mention those
constructs which are expensive, but which

appear only by programmer request.
The semantics of Pascal’s fi/e variables,

and the input/output (10) system in general
tend to reflect characteristics of a batch
environment, with a restricted character set.
The basic 10 procedures are badly designed

for an interactive terminal. The read and
write procedures are fairly expensive to
implement, since they are extremely general

and all encompassing.
On machines like the 6809 which lack a

divide instruction of any sort (let alone a
16 bit one), division will be done by calling a
run time support routine. Only if the pro¬
grammer explicitly writes either a divide, or
modulus operation, will the call be gener¬
ated. Floating point numbers will be inter¬

preted, as usual.
Pascal allows procedures and functions to

be defined inside other procedures and func¬
tions. This requires either a display, which
must be copied, or a system of pointers by
which a routine may access the variables
owned by routines in an outer scope. (The

latter is the most likely choice.)
Strings, arrays, records and large sets (if

implemented) may all be assigned or passed

as parameters to routines. These operations
require block copies, but only if the opera¬
tions appear in the source program. Copying
of actual parameters may be avoided, of

course, by declaring the matching formal

parameters as uar parameters.
The remaining points concern some philo¬

sophical concerns about Pascal and its
implementation. (Input and output might

also be considered in this class.)

Philosophy

It has been observed that much of the

checking done at run time In other languages
may be done at compile time in Pascal. This
is not always so, and run time checks are
required on assignments of a variable from a
larger subrange to a variable in a smaller
subrange of a given type, or on similar use
in array indexing, and pointers must always
be checked to ensure that they are not nil.
It might be argued that run time checks
might not be done at all. It is better to
arrange for them to be turned on and off, as
required, in different sections of code.

The Pascal Report (see references) does
not put boundaries on the number of ele¬

ments in the base type of a set type, but it
does say that an implementor will likely
choose the word length of a given computer
as that limit. Otherwise, routines are required
to perform various Boolean operations on
large bit strings. Unfortunately, a great many
Pascal programs in existence, most notably
those for the CDC 6600, assume that it is
possible to delcare or use diSet of char, as in:

if c in ['a’.. 'z'\ then

{ c is a letter}

where c is declared as a char. The CDC
Pascal compiler restricts the number of
elements in the base type of a set to about
the number of bits in a word (58), but the
CDC character set is small enough that it
(nearly) fits within a set. On a microcom¬
puter with the ASCII character set even 16
bits is clearly insufficient, and larger sets

may need to be implemented.
There is no method provided to initialize

variables in their declaration. This is of

consequence when one wishes to create a
table with values that remain constant
throughout the life of the program (eg: a
translation table). The only way to do this in
standard Pascal is to write a sequence of
assignment statements. This will typically
result in several bytes of code for each
assignment, as well as forcing two copies of

each data value in the table. On a large
machine like the CDC 6600, this may be of
little consequence, but on a microcomputer
with little core, this is a distinct disadvantage.
Of course, various implementations of Pascal
have provided a means to do this sort of
thing efficiently, but this results in a porta¬
bility problem because each implementor
tends to have slightly different rules about
where and how these initializations may be

accomplished.

Conclusions

For languages like Pascal, compilation is

the preferred method of implementation on
hybrid 8 and 16 bit microprocessors. The

object code size on these machines for
common constructs in these languages seems

to compare quite favorably with that for
larger processors like the PDP-11 or the
Honeywell 66/60. We illustrated this with a
very simple array operation; the reader can

try other operations.
When choosing a programming language,

one typically considers not only the case or
difficulty of implementation and the e i
ciency of the compiled code, but stylistic

qualities as well. For example, we have

found the C language a pleasant and
language for developing programs, u

does not, of course, follow that .
else would. The same holds true for f’as

We merely note that the Pascal Is interesting,
in that Pascal programs may be so written as
to allow a compiler to compile code which
m?kes efficient use of 8 bit accumulators on
machines that have them, and that amongst
the other major high level languages this is
an unusual property (PL/I is a likely excep¬

tion). Whatever the language used, we hope
to see the day when on microcomputer
systems, as on UNIX, the use of assembly
language for a program of any size is greeted

with surprise, shock, despair, dismay, and
outright hostility."

REFERENCES

1, Jensen, K and Wirth, N, Pascal User Manual
and Report. Springer-Verlag, New York 1975,

2. Bell, JR, “Threaded Code/' CACM, volume

16, number 6, June 1973, pages 370 thru

372.

3. Dewer, RBK, "Indirect Threaded Code,"

CACM, volume 18, number 6, June 1975,

pages 330 thru 331.

4. Aho, AV, and Ullman, JD, Principles of Com¬
piler Construction, Addison-Wesley, Don

Mills, Ontario 1977.

5. 990 Computer Family Systems Handbook,
manual number 945250-9701, Texas Instru¬

ments, Austin TX 1976.

6. LSm PDP71/03 Processor Handbook. Digital

Equipment Corp, Maynard MA 1975.

7. M6800 Microprocessor Programming Manual,
Motorola Semiconductor Products, Phoenix

AZ 1975.

8. Kernighan, BW, and Ritchie, DM, The C Pro-
programming Language, Prentice-Hall, Engle¬

wood Cliffs NJ 1978.

9. Thompson, KL, and Ritchie, DM, "The UNIX

Time-Sharing System,” CACM, volume 17,

number 7, July 1974, pages 365 thru 375.

10. Honeywell 66/60 Macro Assembly Program,
Honeywell Information Systems, Phoenix AZ

1972.

11. Wiles, et al, "Compatibility Cures Growing

Pains of Microcomputer Family,” Electronics,

2 February 1978.

12. M6809 Advanced Microprocessor, Motorola,

Austin TX.

Pascal versus BASIC:

An Exercise

Allan Schwartz

Introduction front panel. Later, assembly languages were
used, followed by equation or formula trans-

Pascal is one of the newest high level utors such as FORTRAN. When it was dis¬
languages on the personal computing scene. covered that computing involved mostly
Pascal has been accepted at many universi- computing decisions and repetition, the lan-
ties for several years. It is being used more guage ALGOL (/I LGOrithmic Language) was

and more in industry outside of education, designed to express algorithms more clearly
and has just recently been introduced in and conveniently. The need for a language to

microcomputers. Why is there so much structure and represent all of the data and
enthusiasm about Pascal? files in business data processing applications

Pascal is a general purpose language, the was filled by COBOL. Today we have
product of the long evolution of computer Pascal, which has flexible data representa-
languages. It has a simple but elegant syntax tions, sufficient flow of control statements
and has been implemented in both large to represent algorithms, and a clear, simple
systems (CDC 6000, IBM 360 and 370, syntax making it a favorite for a variety
Burroughs 6700, etc) and microcomputers of applications. Pascal is the result of several
(LSI-11,8080, 8085 and Z-80). evolutionary steps in the history of com¬

puter languages.
Historical Background Why is Pascal so appealing? First, it is an

expressive language. It has several control
Just as computer hardware has been structures that make the coding of algo-

continuously evolving during the past 25 rithms very natural. Second, Pascal has
years, so too have computer software flexible data representation,
tequirements. Originally, computers were

employed to work on mathematical tasks Expression of Algorithms in Pascal
such as solving ballistics problems, or gen¬

erating tables of logarithms. Later it became Figure 1 presents an algorithm to com-
economically feasible to use computers for pute the greatest common divisor (GCD)
^ata processing or working with voluminous of X and Y. The greatest common divisor
sinounts of data such as census data or bank of the integers X and Y is the largest integer

com- that will divide evenly into both X and Y.
dedicat various customized, Note that three assertions are stated in the
^taffic V like the control of flowchart. The first, a necessary pre-
niobile i tnicrowave ovens and auto- condition, states that X and Y must be

ha positive integers. The second is a loop
languac variety of applications invariant such that, when control passes

tion of com through that path in the flowchart, the
originally GCD(X, Y) is equal to the GCD(A, B). The
algorithms into ^ ^translation of simple third, a post condition, states that A is equal
loading of ihp and bit by bit to B, which is equal to the result, the

ompuier’s memory via the GCD(X, Y).

41

Figure 1: An algorithm to
calculate the greatest
common divisor (GCD) of
two integers. (The greatest

common divisor of two in¬
tegers is the largest integer

that will divide evenly into

the two integers.)

If we can prove these three points are

true, then the algorithm is correct - that is,
it will compute the greatest common divisor
of X and Y. The loop invariance is easily
proved, because if B is greater than A, the
GCD(A,B) equals GCD(A, B-A) (a more
rigorous proof is posed as an exercise in

Wirth's book [see references]). The post
condition is also easy to prove, because the
path to this exit is taken only when A
equals B, and then the GCD(A, A) certainly

equals A.
We are now reassured that if the precon¬

dition is true, the algorithm will compute
the desired result. Now, how do we code
this algorithm into our favorite programming
language? Before we answer that question,
let’s look at the elements of the flowchart.
The flowchart in figure 1, and indeed any
computable algorithm, is made up of three
elements: sequence, selection and repetition.
Sequences are represented in the flowchart

by rectangular boxes such as:

^_

B--Y

;
Note that this flowchart element has one

entry (the arrow going in) and one exit, [in

BYTE's use of flowcharts, a top to bottom
flow of control is assumed with arrows used
for exceptions; In this article we make a
stylistic exception, using extra arrows to

emphasize flow.. .CH]
The second flowchart element is selec¬

tion. Selection is represented by:

A selection flowchart element requires at
least two or three boxes; however, it always

has one entry and one exit.
The third flowchart element is repetition.

It is represented by:

This form of repetition is called a “while
loop,” because while the decision is true,
the element is repeated. Again, this element

has one entry and one exit.
These flowchart elements have been

translated directly into Pascal statements
(see listing 1). Note that the sequence

element

i
A-#-X

B*^Y

I
is translated into the two Pascal assignments-

a:=x; b := y

Now some of the syntax details of
become evident. The assignment
is which is different from the

42

TRAN or BASIC " = " in that the ;= oper¬
ator in Pascal is used for assignment only,
while the = in BASIC and FORTRAN is

used as both the assignment operator and
the equals sign. Statements are separated
by semicolons, and any number of state¬
ments may be typed on one line. If the
above sequence were a subelement of a
selection element, it would be bracketed
by begin and end keywords. For example:

if (x>0) and (y>0) then
begin a :=x; b :=y
end

Any number of elements combined into one
sequence element by begin and end brackets
forms a compound statement.

The selection flowchart element is trans¬
lated into the Pascal if statement:

If(7>^thent7 : = a—b
else b :=b—a

And the repetition flowchart element is
translated into the Pascal while statement;

while a <> b do <statement>

The expression <.statement'> is called a
metavariable. For an explanation, see the
accompanying text box. Notice, though,
that the metavariable < statement > in the
greatest common divisor while clause is an if

statement.

The real power in Pascal's algorithm descr
capability lies in this sort of nesti

or example, any element can occur a
y, ^'ernent of the while or if stateme

^^lled structured statemer
they can be nested to any depth.

divisor (Gcn^f^^
that the 1- N
3 variahi consists of a heading ;
hy onp ^ '^®‘^*3ration statement follov
hy statement, bracke
dures in p^c *^uf^ctions and prc

be thought of as nar

statements with local variables. They always
have one entry and one exit, and therefore,
a call is flowcharted as a sequence element

such as:

1

T

1

I

Figure 2: Flowchart for a portion of the dice game *'craps. “ The five IF tests
can be implemented in Pascal with one case statement.

Metavariables

Bracketed symbols such as (**< statement >'V all call metalin¬

guistic variables (or metavariables) or syntactic units. They represent a
class of possible language elements. They are nonterminal symbols; that
Is, the symbol statement >" Itself will not appear in a Pascal pro¬
gram. ft represents a set of legal symbols that can appear in its place
in the program. Nonterminal symbols are bracketed by and " > ”
and are printed in Italics to distinguish them from terminal symbols
such as for := if do. Terminal symbols are usually printed In heavy
type if the symbol is a language key word, and appear exactly as they

would In the Pascal program.

43

Pascal has a second selection statement
called the case statement. This statement
is a concise representation of the special

case of nested if statements. An example
of this is the “craps first roll" algorithm
used to implement the dice game called
craps. A pair of dice can obviously have
only one summed value from 2 to 12 on any
given throw, making this an ideal use for the
case statement (see figure 2). The five nested
decisions can be represented with the follow¬

ing Pascal case statement:

s : = die 1 -h die 2;

case s of
2,3, 12:

craps;

4, 10 :
begin point: = s; odds : = 2/1

end;
5,9;

begin point: = s; odds : = 3/2

end;
5,5;

begin point; = s; odds ; = 5/5

end;
7, 11 : win

end I of case statement|

Of course, this could be represented using if

statements; however, the case statement is
much more concise and clear. When the
decisions in a group of nested if statements

are mutually exclusive, that is, if any one
being true implies that the rest are false,
then a case statement is probably the ap¬

propriate representation.
Pascal allows two other forms of repeti¬

tion: the repeat statement and the for
statement. The repeat statement:

repeat
<any statement>

until <condition>

is represented by:

Repetitions can always be expressed as
either repeat statements or while statements.

However, one form usually sounds better.

For example:

repeat shoot craps
until broke or out of time

is equivalent to

shoot craps;
while not broke
and not out of time

do shoot craps

The for statement

for <i’ar>: =
<lnit va!> to <fmai val>
<any stQtement>

is represented by:

Notice that again there is one entry and one

exit for this flowchart element.
Another element we might see in a flow¬

chart is an arrow coming out of a subele¬

ment, perhaps to a different page of the

flowchart. This exit from the normal flow
of execution is the only use of the Pascal
goto statement. Indeed, very few Pascal
procedures need goto statements to ex¬
press the algorithm. Goto statements can

fog the otherwise clear logic of a routine.
A final element that might be found in

flowcharts is an assertion and commentary

such as;

I--"T
-4 GCD(X,Y) =Ar B I

I_'

The Pascal greatest common divisor (GCD)

function has all of these elements in an
appropriate place in the source code. Pascal
allows comments, delimited with braces,

j and I , to be freely inserted any¬
where a blank can be inserted.

We can conclude that for each Pascal
language statement there is a corresponding
flowchart element, and vice versa. Therefore,
one could easily flowchart any algorithm
just from its Pascal listing. Compare the

Pascal program in listing 1 to the FORTRAN
and BASIC programs in listings 2 and 3.
They are fundamentally identical, but all
of the statement numbers and GOTOs in
the FORTRAN and BASIC versions obscure
the logic. You might maintain that, for so
simple an example, there is no advantage for
Pascal. One could flowchart the greatest
common divisor (GCD) algorithm just from
the BASIC listing. Of course you could, but
how about flowcharting that 1200 line
FORTRAN headache you wrote a year ago
that has returned to haunt you?

Data Representation in Pascal

Pascal has several flexible forms of data
representation. A variable can be defined as

a scalar (single value) or a structured type.
The different scalar types are: real, integer,
character, Boolean, and user defined or
enumerated. The structured types include

arrays, records, sets and files.
Users can define their own scalar types by

enumeration. For example, in a traffic
control program, there might be a variable
called signafcolor which has a value of
yellow, green or red. Or, in a microwave
oven program, there might be a variable
called temp which represents the cooking
level specified. These concepts are repre¬
sented by the following Pascal declarations:

type color = (red,yellow,green);
cooking level = (warm,defrost,simmer,

roast,reheat,
maxpower);

var signalcolor: color;
temp: cookinglevel;

In this example the type declaration describes
J e user defined types and the var declara-
'on specifies variable names and their

associated type.

Another innovation in Pascal is the ability
0 specify a subrange of a scalar type. For

intpT*^ variable count is to be an

woul^ber'^^" ^ declaration

count: 7. JQ-

To further demonstrate these features, a

BASIC program that would benefit from
Pascal data representation is next explored.

Mastermind Codebreaker Example

The Mastermind codebreaker algorithm I
have chosen for this exercise was presented
by WL Milligan in the October 1977 BYTE,
pages 168 thru 171. His BASIC version is
reproduced in listing 4. A Pascal translation
is presented here in listing 5. Let us compare
the two.

The first 15 lines of the Pascal version

correspond to lines 10 to 45 in the BASIC
version. These are the type declarations and

the global variable declarations. These global
variables can be referenced from within any

iuncXion gcd(x,y: integer): integer;
vara,/?: integer; tx,Y>0 }
begin

a . = x; b :* y; . »
whileaObdo { GCD<X,Y) = GCD(A,B) }

if a>b then a a—b
else/b:=b—a/ >

f GCD(X.Y) = A = Bf
gcd a ^

end

Listing 1: Pascal function to calculate the greatest common divisor of

two integers.

100 LET A=X
110 LET B=Y
120 IF A=B THEN 190
130 REM . . . GCD(X,Y) = GCD(A,B)
140 IF A>B THEN 170
150 LET B=B-A
160 GO TO 180
170 LET A=A-B
180 GO TO 120
190 REM . . . GCDlX.Y) = A = B
200 RETURN

Listing 2: BASIC subroutine to compute the greatest common divisor

of two integers.

120

INTEGER FUNCTION GCD(X,Y)
INTEGER A,B,X,Y
A=X
B=Y
IF (A.EQ.B) GO TO 190

c . . . GCD{X,Y) = GCD(A.B)
IF (A.GT.B) GO TO 170

B = B-A
GO TO 180

170 A = A-B
180 CONTINUE

GO TO 120
c
c . . . GCD(X,Y) = A = B

190 RETURN
END

Listing 3: FORTRAN
visor of two integers.

function to compute the greatest common di-

45

procedure. The type declarations define new

variable types such as:

type colors = (colorless, red, blue,
brown, green, yellow,
orange, space);

row = array/7. of co/oz-s;

eva! - record

black, white: 0. A
end;

This means that a variable of type colors has

a value equal to one of these enumerated

items. A variable of type row is an array of

four colors. The type eva! represents a code¬

maker’s response to a guessed row. What

does this represent in the game? This re¬

sponse is the number of exact color and

position matches (black key pegs) and the

number of out of position color matches

(white key pegs). The codemaker responds

with between 0 and 4 black and white key

pegs. The type eva! in the Pascal version

accurately models this: a record consisting

of two components, black and white, each

an integer between 0 and 4.

The variable version represents the ver¬

sion number, either 1 or 2. The 10 possible

rows of code pegs in the game are recorded

in the Pascal structure declared as:

var rows: array [1. .10] oirow;

Note that the careful selection of data

representation makes the program much

more clear and concise. The ability to deal

with structures as a whole instead of just

their elements tends to tighten up the logic

of the program. For example, the BASIC

lines;

820 REM ASSIGN NEXT ROW

830 FOR J=0 TO 3

840 LET R$(1+1,J)=D$(J)

845 NEXT]

are functionally equivalent to the Pascal

assignment;

rows[i-i-l] := hyp |asslgn next row|

Also, the BASIC lines:

10 HASTER MIND 'CODEBREAKER*
20 REH CODED IN RT-11 BASIC
30 RANDOMIZE
40 DIM R«<9*3>»S(9»1)
45 DIM A«<6}»B«<3)rC4(3)rD«<3)
50 REN INITIALIZATION
60 FOR J*0 TO 6
70 READ A«(J>
BO NEXT J
90 DATA •RED'f*DLUE'»*GREEN«»'YELLOU*»‘BLACK'r'UHlTE»i"SPACE*
100 LET L0=0
110 LET Ll-0
120 LET L2"0
130 LET L3>0
140 PRINT 'MASTER MIND CODEDREAKER*
145 PRINT 'PLEASE BE PATIENT. SOMETIMES I TAKE A FEU MINUTES ON Mt MOUE*
150 PRINT "WHICH VERSION <1 OR 2) *r
160 INPUT V
170 LET V=M+5
180 REM ASSIGN COLORS AT RANDOM FOR ROW 1
190 FOR J*0 TO 3
200 LET R*<0rJ)»A»CINT<V*RNO<J)>)
210 NEXT J
220 REM START MAIN PLAY OF GAME HERE
230 REM I IS THE ROW COUNTER
240 FOR 1=0 TO 9
245 PRINT
250 PRINT 'MY MOVE FOR ROU'I+1' IS'
260 PRINT R«CI>0}pR*<Irl>iR«(Ir2>pR*(Ir3)

270 PRINT 'HOU MANY BLACK PEGS
280 INPUT S<liO>
290 IF S(I»0)<>4 THEN 320
300 PRINT 'THANKS FOR THE GAME'
305 PRINT
310 60 TO 670
320 IF S<I»0)<>3 THEN 360
330 LET S<Iil>=0\REM IF 3 BLACKS THEN 0 WHITES
340 60 TO 3B0
360 PRINT 'HOW MANY WHITE PEGS ‘i
370 INPUT S<If1>
360 REH GENERATE HYPOTHESIS
390 FOR I0=L0 TO V-1
400 FOR ri=Ll TO V-l
410 FOR I2=L2 TO V-l
420 FOR I3=L3 TO V-l
430 LET Di(0)=A4(I0>
440 LET D4(1>=A*<I1)
450 LET D*(2)=A«(I2)
460 LET D*(3)=A*(I3>
470 REM CHECK ALL ROWS FROM FIRST TO CURRENT FOR CONSISTENCY
490 FOR R=0 TO I
500 FOR J=0 TO 3
510 LET C*<J)=R*(RiJ)
520 LET &4(J)=D*<J)
530 NEXT J
540 REM USE ROW EVALUATION SUBROUTINE TO CHECK CONSISTENCY OF
550 REH HYPOTHESIS AGAINST EACH ROW
555 LET N*0\LET M=0
560 GOSUB 910
570 REM CHECK FOR AGREEMENT OF BLACK 1 WHITE COUNT
1560 IF N<>S(RiO> THEN 700
590 IF MOSIRpI) THEN 700
600 NEXT R
610 REM MAKE SURE THAT HYPOTHESIS ROW DOESNT IillFTICATE ROW 1

620 LET Z=0
630 FOR .1=0 TD 3
640 IF R*<0.J) THEN 660
650 LET Z=Z+l
660 NFXT J
670 IF Z=4 THEN 700
690 GO TO 020
700 NEXT 13
710 NEXT 12
720 NEXT n
730 NEXT TO
740 PRINT 'T HAVE REACHED AN IMPASSE IN MY THINKING*
750 PRINT 'COULn YOU HAVE MADE AN ERROR?'
760 GO TO 870
770 LET I 0=10
700 LET Ll=Il
790 LET 1.2=12
BOO LET I 3=13+1
aiO REM DO NOT RECHECK ELIMINATED POSSIBILITIES
B?0 REM ASSIGN NEXT ROW
R30 FOR J=0 TO 3
B40 LET R»(I+lrJ)=D$(J)
045 NEXT .J
B50 NEXT I
660 PRINT ■! AM STLlMPEn — YOU WIN*
R70 PRINT 'ANOTHER GAME ‘r
0BO INPUT R4
890 IF R«=*Y* THEN 150
900 STOP
910 REM SUBROUTINE TO EVALUATE RESPONSE
920 REM COUNT BLACKS FIRST
930 FOR .J1=0 TO 3
940 IF C$(J1)<:;B*<J1) THEN 960
950 LET N=N+1
960 NEXT J1
970 REM NOW COUNT WHITES
960 FOR J1=0 TO 3
990 FDR J2=0 TO 3
1000 IF J1=J2 THEN 1000
1010 IF C»<J1)=B*(J1) THEN 1080
1020 IF C*<J2)=B*<J2) THEN 1000
1030 IF Ci<Jl><>B*(J2> THEN 1000
1040 LET H=M+l
1050 LET B»(J2)=*X*\REM DUMMY WRONG VALUE
1070 GO TO 1090
1080 NEXT J2
1090 NEXT J1
JlOO RETURN
1110 STOP
2000 END

Listing 4: Codebreaker portion of W Lloyd Milli¬

gan's Mastermind game written in
program appeared originally in the October 1

BYTE, pages 169 and 170 (see page
edition for a description of Mastermind).
pare this with the Pascal version in listing 5.

46

610 REM MAKE SURE THAT

HYPOTHESIS ROW DOESN’T

DUPLICATE ROW 1

620 LET Z=0

630 FOR J=0 TO 3

640 IF R$(0J)<>D$(J) THEN 660

650 LET Z=Z+1

660 NEXT J

670 IFZ=4THEN 700

690 GO TO 820

Listing 5: Pascal version of the Mastermind BASIC program in listing 4.

program imm>i(\nput,<mtpnt):

label H7(}:

type colors - (colorless, red. hlue. brown, green, gellow, orange, spare):

row = array [/. .4] of colors;

vrni = record
block, white: <>. .4

end;

are functionally equivalent to the Pascal

statement:

if hyp O rows{ 1] then goto 820

Mr Milligan’s BASIC version is well

written and well structured. It contains three

key routines; initialization (lines 50 to 210);

generate hypothesis (lines 380 to 845); and

evaluate response (lines 910 to 1100). How¬

ever, due to the inexpressiveness of BASIC,

it takes careful study, even of this well-

written BASIC program, to recognize its

structure. On the other hand, looking at the

Pascal version of the same algorithm, the

expressiveness of the language shows the

structure at a glance. Similarly, the use of

meaningful variable names and Pascal record

structures makes the data representation

readable. Table 1 describes which variables

in the Pascal version are used in the same

context as variables in the BASIC version.

As careful as you are when coding BASIC,

bugs are bound to creep in. For example, in

the BASIC version (listing 4), lines 610

thru 690 are unnecessary. Additionally,

there is no path through lines 770 to 810.

Coding errors rarely creep into Pascal

programs because the compiler enforces

variable declarations and type agreement.

For example, evaluations!5j := rows[5] is

illegal because they are not type-compatible.

Also c := brown-red is illegal because arith-

JTietic is undefined for our user defined

colors type. And, version 3 is illegal

ecause the value 3 is outside the legal range
for version.

Other Pascal Attributes

looked at some of the nc
worthy features in Pascal. There are also

powerful features of block structured sc(

ames, recursion and dynamic allocat

known as a very "sa

comnifp^ it optionally has exten:

type com tun time type checking includ

*tray S bo "‘7’ bounds i

data'^ ep esemar ■ ot

I can't Ka • ^'■'■ays, pointers ;

features here ^bnr all of th
re, but you don't have to unc

var erahi(ition.s: array [1.. !o] of ei'al:

row.s: array [/.. Ift] of row:

name: array (co/or.vl of packed array [/. .c;) of ehnr

rofiw: array . T) of colors:

redraw: row: (First hypothesis checked }
last: row: { Last hypothesis formed)
rersion: 1..2: maxroior: oro}\<ie.,spaev:

i: I..H: J: 1..4: ch: char:

procedure imtializatiitn:

var r: colors; i: t. .4',

begrin
nann\red] ;= 'RED

:= 'BLUE
:= 'BROWN

for (• ;= colorless to spare do
volor[ord(c)] c;

for iI io 4 do

nami\grren\ := 'GREEN ':
nann{gef/ow] := 'YELLOW';
nanK\orange] := 'ORANGE';
Wf//wr(N/)frfr) ;= 'SPACE ';

rcf/ro/it (’] := red;

ln.st ;= redraw;

writeini' MASTERMIND CODEBREAKER');
wrUelnC PLEASE BE PATIENT. SOMETIMES I TAKE A FEW'):
f/T/rr/N(' MINUTES ON MY MOVE. WHICH VERSION U or 2)?');
read (rersion):
maxcolor := color{rersion+5]:

{ Assign colors at random for row I)

for I := / to 4 do
rojr.s(/,p] color{ trune((rersion+.5)*random(fK0)+l.i))]

end { Of Initialization Routine } :

procedure cheekronsistancy (hypothesis.prerioitsrow: row;

var fv eral):

label 1090;

varj}.j2: J..4:

begin

(Count blacks first)
e.hlack 0;

for jl ;= / to 4 do
if hypothesi,*^!] = prf’rioM.sroMt/71 then

e.black e.hlack + 7;
{ Now count whites)
e.white ;= 0;

for j; ;= 7 to 4 do
beg^in

for j2 := 7 to 4 do
if and

(hypothesii^jl] f prerionsroniJl]) and
(hypoth€su^2] ^ preriousrouiJ^]} and
(kypotkesi^l] = preriousrouiJti]) then
be^n

e.white := e.white + l;

{ Dummy wrong value }
premousrouij2] := colorless:

goto 1090 (Exit J2 loop)
end;

1090:

end
end (Of Check Consistancy Procedure)

Listing 5, continued

function forvihmmihfxis: Houlvun:

label NJ/J.
var itJ-i.i.f.iJt: colors;

r:
hifit: rofc;
f'i'ol I: 'cal;

riahle: Rifoleini;

begin (forming Hypothesis)
riohle ;= Inie;

for i / := lost[I] to oKi.iTolor do
for iJ ;= lostiJ] to mojTolor do
for i.l ;= lust[.i] to wojTolor do
for IJ, ;= lastU] to mu.rcolor do

begin
lostn-tlroic;

fifllV] ■- ■= := •■I- == '-i-
(Check all rows so far for consistancy)
r := o;

repeat
r r + I;

rhcckrottsisfo uri/dnjff. nm's\r].i‘ral I };

until (croll * i‘r<iln<ifi<tns\r\} or (r - i):

if mill = <'ra/M«/mN.s(rl then
{ Make sure that hypothesis doesn't duplicate row 1;

if it hasn’t then we have a viable hypothesis)
if hiw ^ n;w.sl /) then goto SJO;

(Otherwise, keep searching:....NEXT i4.i3.i2,il)

end;
riahic = folsr; { No viable hypothesis left)
sji); if cMi/Wc then

beffin { Do not recheck eliminated possibilities |
lost ;= hifiK

roM-wl/■*■/] •- I Assijfn next row)
end

else bef^in
u'ritrhn' I HAVE REACHED AN IMPASSE. ');
>rritrhi{' COULD YOU HAVE MADE AN ERROR?')

end;
fonuhtffiolhrsis := riohic (Return with function value |

end (Of Form Hypothesis Procedure) :

begin { Mastermind Codebreaker)

repeat
iuifiolizr:

I Start main play of game here j
for i/ to If do

begin
irriichi: ivritr ('MY MOVE FOR ROW'.i; 2.' is');
for J := / to do

H); irritf^lH;

irritehi ('HOW MANY BLACK PEGS?');
read (miht(itio)o,ii].hl<u‘l\}:
if = J, then

begin
rrr/(c/H (THANKS FOR THE GAME'): goto Ii70

end;
if = >1 then

else begin
writehi (' HOW MANY WHITE PEGS?');
read (evaluations[i].u'hiie}

end;
if not fomihypothesis then goto S70

end;
writeln (' I AM STUMPED-YOU WIN!');

fi70: repeat
writein (' ANOTHER GAME?'); read (ch)

until (eh = 'Y') or (ch = 'N'^
until eh = 'N'

end (Of Main Program |

stand all of them before you write your first

Pascal program.
The main selling feature of Pascal is that

properly developed programs are extremely
easy to debug. Once you get a clean compile,
the program usually runs! Why? Because the
algorithms are expressed cleariy and natural¬
ly. The range of all control variables are well
specified and can be enforced at run time.
The data types ail agree and are appropriate
to the problem. The program is readable -
data types mean what they say — and it is
therefore maintainable. Pascal encourages
the methodical and systematic development
of algorithms, an important structured

programming method.
I hope this survey of Pascal has whet your

appetite for the language. If so, read more

about Pascal in this issue, then pick up any

of the books in the references and dive in!
Pascal is a rich and fertile language that

emphasizes the expression of algorithms and
data representation naturally and clearly.
When will your microcomputer speak

Pascal?"

REFERENCES

Introductory books on Pascal:

Bowles, K L, Microcomputer Problem Solving
With Pascal, Springer-Verlag, New York, 1977.

Grogono, P, Programming in Pascal, Addison-
Wesley, Reading MA, 1978.

Schneider, G et al, An Introduction to Pro¬
gramming and Problem Solving With Pascal,
Wiley. New York, 1973.

Wirth, N, Systematic Programming — An Intro¬
duction, Prentice-Hall, Englewood Cliffs NJ,
1973.

Other books:

Dahl, O J, Dijkstra, E W and Hoare, CAR,
Structured Programming, Academic Press, New
York, 1972.

Jensen, K and Wirth, N, Pascal User Manual
and Report (second edition), Springer-Verlag,

New York, 1976.

Wirth. N, Algorithms + Data Structures = Pro¬
grams, Prentice-Hall, Englewood Cliffs NJ,
1976.

48

BASIC Version Pascal Version

Lines 220 to 270
and 850 to 900 program mm2

1 i: 1 . .9; j: 1 ..4
DIM RS(9,3) rows: array [1. . 10] of row
R$ ch: char
DIM S(9,1) evaluations: array [1 . . 10] oi eva!

Lines 50 to 210 procedure initialization

J i: 1 .. 4; c: colors

DIM A$<6} name: array [colors] of string
color: array [0 .. 7] of colors

V version: 1.. 2

Lines 380 to 845 procedure formhypothesis

10,11.12,13 i1,i2,i3,i4: colors

L0.L1,L2,L3 redraw, last: row

V maxcolor: orange. . space
DIM A$(6)
DIM D$(3) hyp: row

R
J

r: 0.. 9

N,M avail: eval

Lines 910 to 1100 procedure Checkconsistency

J1,J2 Jlj2: 1..4
DIM C$(3> hypothesis: row
DIM B$<3) previousrow: row

N,M e: eval

Table /; A comparison of the variables used in the two versions of the Master¬

mind game (see listings 4 and 5).

What Is Mastermind?

One of the most interesting con¬
ventional (ie: noncomputer) games on
the market is “Mastermind,” distri¬
buted by Invicta Plastics, Suite 940,
200 5th Av. New York NY 10010, and
available in many local stores. Master¬
mind involves deductive logic, hypo¬
thesis testing and probabilistic infer¬
ence. In Mastermind, the players take
turns as "codemaker” and “code¬
breaker.” The codemaker sets up a
concealed row of four colored pegs
from a set of Red, BLue, BRown,
Green, Yellow and Orange pegs. It is
acceptable to use the same color or
colors more than once. In version 2, a
more advanced game, empty Spaces
are also permitted.

To challenge the computer program
you are the codemaker. Write down a
code. A row of four colors invokes the
codebreaker computer program. It will
take up to ten tries (rows) to discover

the secret arrangement of colors in the
concealed row. After printing each
guess, the program will prompt you
for the number of black and white key
pegs.

The number of black pegs corres¬
ponds to the number of correct colors
in correct positions. An important rule
is that no position in the try is
counted more than once.

When evaluating the program's try
it is necessary to count black and
white pegs carefully. If you make a

mistake counting the number of exact
or inexact correspondences, the pro¬
gram may exhaust all possible arrange¬
ments without finding a possible valid
try. In this event the message:

I HAVE REACHED AN IMPASSE.
COULD YOU HAVE MADE AN ERROR?

is printed.

(Adapted from WLloyd Miftigan's article, "Mastermind," October 1977 BYTE, page 168.)

Pascal versus BASIC: Round 2 includes FORTRAN

The article “Pascal versus BASIC: An
Exercise,” by Allan M Schwartz (page 41)

is a typical example of a language chau¬
vinist using a language ineptly and then

pointing to the faults in the code he has
written as inherent properties of the lan¬

guage.
The function GCD (page 45) that he

has written (leaving aside the BASIC version)

has several faults, to wit:

1) X and Y are not declared in the Pascal

version.
2) The FORTRAN version will develop

an infinite loop if X or Y equals zero
(no comment there excludes X, Y

greater than zero).
3) The FORTRAN version ^jei^er defines

the functional value of GCD and so
will not even compile in a good

compiler.
4) There sure are a lot of GOTOs and

statement numbers in his program;
in particular, statement 180 is
totally useless. GOTO 180 should be

GOTO 120.
5) There is no reason to have any GOTOs.

It could be written as in listing 1.
6) If you don't mind downward branching

GOTOs (generally considered to be
harmless) function GCD can be
written as shown in listing 2.

As in Pascal the flow is clear and flow¬
charting is simple (Warnier-Orr diagrams are
still better). I don't run down Pascal but 1
fail to see why Schwartz runs down
FORTRAN just because he writes a pidgin
dialect inexpertly. In FORTRAN, as in
Pascal, “Go to statements can fog the other¬
wise clear logic of a routine,” as Schwartz
states in his article. FORTRAN 77 with

IF. . . THEN . .. ELSE statements, and zero
trip counts on DO loops, removes most of

Lawrence C Andrews

2634 Wycliffe Rd
Baltimore MD 21234

Schwartz's FORTRAN objection. Anyone

can write a bad program in any language.

Pascal is no exception to that statement."

INTEGER FUNCTION GCD (X,Y)

INTEGER X,Y, A,B, LIM

C. .. X.Y.GT.O

A = X

B - Y

LIM = MAXO (A,P)

DO 1000 I = 1, LIM

IF (A .GT. B) A = A-B

IF (B .GT. A) B = B-A

GCD = A

IF (A. EQ. Bl RETURN

1000 CONTINUE

END

Listing 1: The GCD func¬
tion written in FORTRAN
with no GOTO statements.

DO 1000 I = 1, LIM

IF (A .GT. B) A = A-B

IF (B .GT. A) B = B-A

IF (A. EQ. B) GO TO 2000

1000 CONTINUE

2000 GCD = A

RETURN

END

Listing 2: A much shorter
version of the GCD func¬
tion using one downward
branching GOTO state¬
ment.

Originally appeared in April 1979 BYTE

magazine.

5n

Pascal versus COBOL:
where Pascal Gets Down to Business

Kenneth L Bowles

With a few important extensions, Pascal
can be an extremely powerful tool for writ¬
ing interactive business application programs

on microcomputers and minicomputers.
Pascal provides data structuring facilities
generally superior to those of COBOL, and
its control constructs allow a systematic

and modular approach to program design
that reduces development effort and im¬
proves reliability compared with BASIC or
FORTRAN. The extensions needed make
it easy to write interactive programs, use
random access (floppy) disk files, handle
business arithmetic, and recover from error
situations.

A Case Study

In this article we will illustrate the use of
Pascal for a program application one might
find, with variations, in many small busi¬
nesses. More general descriptions of the
language are contained elsewhere in BYTE
and in many published introductory text¬
books.

The business we have in mind ki

of information about transact
its customers, and also records i

*^*tiing descriptive information about
people with whom it deals. The descrip
records might apply to clients of a law f

a lents of a medical or dental clinic,
P 'ers of a hardware store with a large

rean^ houses currently listed t

Warp ^ hardware and i
and handled by a computers!

descrihA^'^ j transaction records w(

liveries
^or payments, reqi
ctJstomer P‘'omolional literature s

property sent out for rep

medical tests ordered, etc. Typically each
record in the file of descriptive records
would correspond to many transaction
records. Depending upon circumstances,
the transaction records might be stored in¬
termingled with the descriptive records (just
as in the shoe boxes that some small busi¬
nesses now use) or in a separate disk file.
They might be stored on the same floppy

disk if the files are small, or they might be

stored on different disks. In any event, we
assume that the number of items in the de¬
scriptive file is so large that manual proc¬
essing of the transactions information repre¬
sents a significant cost to the business for

record keeping. We also assume that the
business is small enough that it cannot
afford to have its own full time data proc¬
essing department.

We now consider how Pascal programs
written for a small computer might help in
the operations of a hypothetical small busi¬
ness, the Zyx Gizmo Store, With many com¬
peting manufacturers producing gizmos, it
is necessary for Zyx to keep track of many
different sizes, shapes, qualities and special¬
ized forms of gizmos. Moreover, the buyer
can start with a basic model, later adding

modules to obtain a larger and more sophis¬
ticated gizmo. Gizmos require periodic
maintenance and corrective repairs. Zyx
stocks some replacement parts which are

installed in customers' gizmos by the Zyx
repair department or sold to users who do
their own repair work. Some replacement
parts are too expensive to stock locally, and
Zyx must order them from regional distribu¬
tors when needed. Gizmos are complicated
enough to use that many users require text¬

books or short training courses to under¬
stand how to use them. Zyx sells the text-

books and runs periodic training seminars

for which users pay a small fee. Both the
training and repair problems are made com¬
plex by the rate at which the technology of

manufacturing gizmos is advancing, as new
models are introduced by the manufacturers
each year. While the similarity of the gizmo
to the microcomputer is easily recognized
by many readers, the gizmo model could
apply equally well to technology based de¬

vices being sold in many fields today.
We can assume that Zyx is large enough

to employ several salespeople, repair people,
and at least one full time administrative

assistant in addition to the owner of the
company. In general, when a situation arises
requiring communication with a customer,
any one of these people may have occasion
to refer to the filed records on previous
transactions involving that customer. If the
customer telephones to request advice about
an apparently malfunctioning gizmo, the
responding Zyx employee usually needs
information about the make, model, size
and other details describing the customer’s

gizmo. If a customer asks Zyx to order an
additional module from a national distribu¬

tor, he or she may call Zyx to inquire about
the fate of the order before delivery is ac¬
tually completed. If a manufacturer of
modules for gizmos introduces a new line
of devices, Zyx may wish to save on promo¬

tion costs by contacting only customers
known to be using gizmos compatible with
that manufacturer's devices. For these and
many other reasons, designated employees
of Zyx should have ready access to records
on the customer's dealings with the firm.

These records make it possible for Zyx to
render a personalized service that probably
is the main reason why customers come
to the Zyx store for their gizmos rather
than to a national or regional distribution

company.
Of course now that low cost microcom¬

puters have become moderately powerful,
it is possible, in principle, for Zyx to main¬
tain its descriptive and transaction records
on customers in a floppy disk or small hard
disk system. Ideally, the cost of adding a
microcomputer to a small business operation
is only a fraction of the value received, both

in labor costs and in improved customer
relations. Moreover, the company could
use the microcomputer for maintaining its
accounting records, sending bills, keeping
track of inventory and so on. We say ideally
because the effort to write a suite of pro¬
grams to access and maintain the necessary
files can be quite substantial if the program¬
ming is done in BASIC or FORTRAN (or
assembly language). Using Pascal the effort
should be very much less than the equivalent

effort using BASIC or FORTRAN.

Since COBOL is becoming available
on microcomputers, some comments on
COBOL versus Pascal are appropriate. Here
the principal issue has more to do with the
operating system, within which business pro¬
grams written in the language will run, than
with the language comparison. Given reason¬
able operating system support of the lan¬
guage, no one versed in Pascal would con¬

sider backing up to COBOL. COBOL’s
principal attraction in the business comput¬
ing community has been that it is the most
standardized of all the widely used lan¬
guages. COBOL provides facilities for storing
dissimilar types of information mingled to¬
gether in transaction records intended to be
stored in off line media like disks and
magnetic tape. Pascal too has very powerful
facilities for storing complex data records,
and its facilities for building complex pro¬
grams are far superior to those of COBOL.

Regarding the operating system support,
we’ll assume in the rest of this article that

the user's Pascal program is developed under,
and runs within, the UCSD (University of
California at San Diego) Pascal Software
System (see "UCSD Pascal: A Machine Inde¬
pendent System,” page 3). This system
provides what amount to language exten¬
sions to Pascal which facilitate the use of
Pascal in writing interactive business pro¬
grams. Some of these extensions will be
mentioned at points in the discussion

where they are used in our example. The
accepted informal standard for the Pascal
language, as described by Niklaus Wirth in
his revised report on Pascal {Pascal User
Manual and Report, K Jensen and N Wirth,
Springer Verlag, New York/Heideiberg,
1975), lacks definition of several facilities
that are really essential if the language is to
be convenient for writing business programs.
On the other hand, Pascal provides an ex¬
tremely high level from which these facilities

can be added.

Transaction Records

In Pascal, the programmer is required to
declare what type of information will be
stored under the identifier of each variable.
Readers of BYTE should be familiar with

the concept of type as it refers to an integer
(whole number), real (floating point num¬
ber), or string (of characters) item stored in
the program’s memory. Readers may also be

familiar with the concept of an array con
taining a collection of items all of the
type. In effect, an array is a composite typ^
associating one identifier with a collectio

of many similar data items, ie: all
or all reals, etc. Pascal allows one to^
one’s own composite type containmg^^^

collection of items of dissimilar typ®^*

ing 1 gives a concrete example that might
apply to the records of the Zyx company.

In Pascal, any type declarations one
wishes to make must appear in the main
program or in a block (subroutine) before
any variable identifiers are declared follow¬
ing the reserved word var. In the example
above, representing part of a block, the var¬
iable identifier inrec is to be used for tempo¬
rary working storage of a customer record
read in from an external device such as disk.
outrec is to be used to collect several data
items together before writing out to the ex¬
ternal device. Both variables are declared to
be laid out in memory according to the type
declaration for customer. In other words,
the declaration of customer describes the
various fields of information that will be
found in any record of that type, whether
currently stored in main memory or on an

external medium.
The first field within a record of type

customer is a name consisting of up to 30
characters. The name is of type, string^
which is a UCSD extension of the standard
Pascal concept of a packed array of charac¬
ters. The type string is really just a prede¬
clared record type within standard Pascal. In

addition to the packed array of characters,
the record also contains a single byte field
representing the number of characters cur¬
rently containing useful string information.
In UCSD Pascal, a variable of type string
with no reference to the maximum length
(like the [30] in the name field) will be
given a default maximum length of 80 char¬
acters. Characters are ASCII and are synony¬
mous with the concept of 8 bit bytes.

The identifier chargesunpaid is an ex¬
tended precision integer represented inter¬
nally as a 32 bit binary number and limited
to storing numbers with up to eight decimal
digits of precision. Associated with charges¬
unpaid is a scale factor of two decimal digits,
designed to represent dollars and cents. Both
the extended precision concept and the deci-

scaling factor are UCSD extensions to
sUndard Pascal intended particularly for
business use. Where no precision or scaling
Hclor is mentioned in the type portion of

in integer declaration (as with the fields
oreacodCy prefix and extension), the system
^sumes that the programmer wants the
^3n ard integer precision on the machine

jl?® On most microcomputers this

r\an- ^puivalent to about 4.5
decimal digits.

withinTr^ the identifier of a field

^'elds each of containing three
ing upon th.. integer. Depend-

"tind for the
might be better tn°" numbers, it

tter to represent the telephone

type customer *
record

name: stn'ngfSOj;
chargesunpaid: integer[8:2];
telephone:

record
areacode: integer;
prefix: integer;
extension: integer

end;
address:

record
street: string[40] ;
citystate: string [40];
zip: integer[5]

end
end {customer};

var
x,y: real;
i: integer;
inrec, outrec: customer;

Listing 1: User declared composite type
declaration in Pascal, in Pascal^ the program¬
mer is required to declare what type of
information will be stored under the identi¬
fier of each variable. Examples of standard

predeclared types Include integer and real.
Pascal allows one to declare one's own com¬
posite type containing a collection of items

of dissimilar types. In this example, the type
"customer" has been created, consisting of a
record of the variable’s name, chargesunpaid,
telephone and address. String is a prede¬
clared composite type provided by UCSD’s

Pascal system.

number field as a string of ten characters.
We have used this representation mostly as
an illustration of the language facilities.

address is also the identifier of a field

which is itself a record containing three
fields. Both telephone and address are said
to be ^‘nested" inside the record of type
customer. Pascal would allow us to nest

record type fields within either telephone
or address if we wished to do so, and those

record fields could in turn contain other
records. In this respect Pascal and COBOL
are similar, though the Pascal facilities for

record declarations are generally more flexi¬
ble. As in COBOL, one can declare that a

particular transaction record may be used
with several distinct field layouts, allowing
a file to contain records with several differ¬
ent formats.

In Pascal, one refers to a complete record
by its identifier alone. We could transfer the
entire content of inrec to outrec using the
statement:

outrec := inrec

No concept similar to COBOL's MOVE
CORRESPONDING statement is available to
allow the transfer of similarly named fields
between records declared to be laid out
differently.

If we wish to refer to a single field of a

Pascal record, it is necessary to name both
the record identifier and the field identifier.
Thus we might assign a value to the name

field of outrec as follows:

outrec.name := 'John Q. Public’

In the situation of complex record types
with many nested records, one can often

simplify the extra writing needed to refer
to all the nested record identifiers by using

the Pascal with statement.

Interactive Input and Output

Input and output (lO) is the area of
greatest importance in business applications
where the standard Pascal definition lacks a
few essential features. Standard Pascal input
and output do provide an orientation simi¬
lar to some implementations of COBOL in
that a file (an 10 device) has an associated
buffer variable of the same type as that of
the file itself. In the next section we’ll

consider files associated with record types.
Published discussions of input and output

in Standard Pascal are generally limited to
handling files of type char, meaning that
input and output are assumed to consist of
a stream of characters. The standard identi¬
fier text is a convenient way to declare a

file identifier as in;

fid: text;

which is equivalent to:

fid: file of char;

The standard Pascal read and write state¬

ments provide automatic formatting of
external character strings representing inte¬
ger or floating point numbers into and from
their corresponding internal integer and real

representations.
While the concept of type text is useful

when working with magnetic tape devices or
with card input and line printer output, it
has proven difficult to use with interactive
devices. The UCSD Pascal system is ex¬
tended for this purpose. The principal prob¬
lem with type text for interactive files is the
standard Pascal definition oi the read state¬
ment. read(fid,x) is equivalent to;

X : fid t;
get (fid)

in which the content of the buffer variable
is first assigned to the variable x, following
which a new character is loaded into the
file’s buffer variable from the external de¬
vice. This is inconvenient when one would
like to place a prompting message on a video
display screen, using a simple write state¬
ment, following which the program should

wait for input demanded by a read state¬
ment. The standard mechanism implies that
the system looks ahead for a character to be
loaded into the buffer variable. This is a
great idea for tape files, but not at all con¬
venient for interactive devices. UCSD Pascal
extends this concept by associating type
interactive with interactive devices. Type
interactive is the same as type text except
that the buffer variable is loaded from the
external device before the value in the buffer
variable Is moved to the program variable.

In more explicit terms:

var fid: interactive;

get(fid);
X : = fid t

where the last two lines ret^resentread(fid,x).
UCSD Pascal extends the Idea of types

text and interactive by allowing a string
to be handled with minimum fuss. On
read(fid,str9) (or just read(strg), when re¬
ferring to the standard system file input),
one types characters at a video display key¬
board with each character appearing im¬
mediately on the screen. If a character is
mistyped It can be erased from the screen
and the input buffer by pressing the back¬
space key. If one wants to erase the entire
input buffer for a clean start (with all typed
characters wiped off the screen), one presses
the delete or rubout key. The read operation
is terminated when return is pressed, where¬
upon one can determine the number of

characters actually input into the variable
strg by using the built-in string function
fength(strg). On output, the write statement
determines how many characters to send
from a string variable using the length field
associated with that variable. For example,

write{‘He\\o There’);

and

strg := ‘Hello There';

write(strg);

would both produce the same 2 word mes-
sage on the output device. As in Standar
Pascal, the width of the field of character

sent from the write statement can be co

trolled as follows:

write(strg: width)

Disk Input and Output
d i5^

One of the main reasons for using

file is to allow rapid random access

selected record in the file. Access lo a floppy

disk record takes roughly 0.25 seconds,
whereas access to a record on a tape cassette
or cartridge can take many seconds or more

than a minute. Interactive business process¬

ing usually requires files to be maintained
on an external medium like disk or tape be¬

cause the main memory of a microcomputer
or minicomputer is usually not large enough
to contain a complete file at one time. Ran¬
dom access is almost mandatory in most
cases to avoid long waiting times for the

people using the computer.
For example, the Zyx company might

have a database of customer records in a file

fcust declared as follows.

fcust: file of customer;

within the variable declarations of a Pascal
program. When a customer arrives to ask for
information, a Zyx staff member wants im¬

mediate access to the record associated with
that customer in the disk file. Standard

Pascal provides no way to reach the cus¬
tomer's record without sequentially reading
many other records: usually starting at the

beginning of the file. UCSD Pascal allows
one to position the record number pointer
of the file using the built-in seek statement,

for example:

seek (fcust, recnumber)

Following execution of this statement, the
standard procedure call get(fcust) would load

the selected record numbered recnumber
into the buffer variable of the fcust file.
Contents of the buffer could then be altered
directly or moved to other variables in the
program, get causes the record number
pointer associated with the file to be ad¬
vanced to the next record in sequence. If
you want to change the contents of the
buffer variable and then return the changed
contents to the disk record numbered
recnumber using put(fcust), you would first
have to call seek again. The get and put pro¬
cedures of Standard Pascal are designed with
sequential tape files in mind, and they can
also be used for sequential reading of disk
files. Use of the seek procedure as described
allows random access to disk files with mini¬
mum alteration of the standard language.

Several aspects of disk file handling are
important for simplifying the task of

the business application programmer, though
not specified as part of the Pascal language.
For example, standard floppy disk media are
usually partitioned into sectors of 128 bytes
^ch. In some operating systems, such as the

igital Equipment RTll operating system,
3 file is made to appear as partitioned into
physical records of 512 bytes called blocks
lUCSD Pascal system uses this convention),
‘yptcally, the record layout a programmer

wants to use (such as customer in our ex¬
ample) does not result in a neat fit with the
sector or block size demanded by the oper¬
ating system. This means that a logical rec¬
ord associated with a record type declaration
in Pascal may occasionally be split between
two physical records on the disk. The oper¬
ating system should allow the Pascal pro¬

grammer to get a record from the disk or
put a record to the disk without concern for
this complication. The system should main¬
tain a directory of disk files so that the pro¬
grammer need not be concerned with the
actual location of a file on the disk, but only
with the number of a logical record counting
from the beginning of the file.

The programmer of a business applica¬
tions program package needs to have a

simple way to cause a program to call for
changes in the library of disk files main¬
tained by the program. For example, an
obsolete copy of a master file might be re¬

moved from the directory, or its directory
name changed. The UCSD Pascal system pro¬
vides these and other facilities to make disk
file handling as painless as possible on a
small machine.

Keeping Track of Categories of Data

One of the common problems in business
programming is identifying people or things
with certain groupings or categories in order
to simplify the handling of data on those
people or things. For example, the Zyx com¬
pany might want to characterize some cus-

type
manuf = {able, baker, Charlie, davis, edwards, Jones, smith, none);
customer =

record
name: string[30];
chargesunpaid: /n teger[8:2] ;
equipment: set of manuf;
telephone:

record
areacode: integer;
prefix: integer;
extension: integer

end;
address:

record
street: string[40] ;
citystate: string[40];
zip: integer[5]

end
end -[customer]■;

var
x,y: real;
i: integer;
supplier: manuf;
inrec, outrec: customer;

Listing 2: An expansion of the Pascal code In listing 7 illustrating the use of
sets. The type manuf has been added, which can be associated with a variable
allowed to assume only the values enumerated in the declaration. For ex¬
ample, the new variable supplier, of type manuf, may take on the value of
any of the items in the manuf list such as able or davis, but no others outside
the type.

55

tomers as primarily oriented to gizmos made
by certain manufacturers, such as the Able,
Baker, Charlie, Davis, Edwards,)ones and
Smith companies. Within the product lines
of these companies, Zyx might also want to
have ready access to a record showing which
selection of all the possible gizmo modules
a customer might have. Thus, when a cus¬
tomer makes an inquiry or a manufacturer
brings out a new type of module, Zyx staff
members could reduce the effort in knowing
how to deal with the customer. For ex¬
ample, a printed promotional brochure

might be sent only to the customers asso¬
ciated with an appropriate combination of

categories.
In virtually any programming language,

this problem can generally be solved by stor¬
ing descriptive strings as additional fields of
the customer record. However, the strings

can take up far more space than one would
like (particularly on a minifloppy diskl), and
they are awkward to use when you are sim¬

ply searching through a file for records cor¬
responding to a particular combination of
categories. For example, we might want to

search the file to identify all customers who
own gizmos made by the Able, Jones and
Smith companies who also have a particular
type of add-on module. (If you are having

trouble relating to gizmos, how about S-100
bus microcomputers with a minimum of

16 K bytes of memory?)
To solve the space problems in storing

categories information, a standard technique
in traditional programming languages in¬
volves deciding on a set of codes to represent
the various categories. In our simple exam¬
ple enumerating the gizmo manufacturers,
we might store a single letter representing
each manufacturer, such as A for Able, B for
Baker, and so on. But how do we store the
information that a particular customer is
associated with two or more of these codes?

Without a complex indexing mechanism, a
random access disk file virtually requires

that all logical records be of the same size.
Do we provide an array for storing these
codes? How long does the array need to be
to account for all possible combinations of

codes for our customers? Are we willing to
put up with inaccurate data on a few cus¬
tomers in order to save large amounts of file
space for the great majority of customers?

How do we write a search program to go
through the file quickly to find all the cus¬
tomers associated with a specific combina¬

tion of categories? The reader might well
pause at this point to consider how to ac¬
complish these tasks with his or her favorite

programming language.
The Pascal facilities for handling sets are

designed to make program solutions for
problems like these as painless as possible.

For example, we might expand the declara¬

tions given earlier as shown in listing 2.
We have added the declaration of a new

type manuf which can be associated with a
variable allowed to assume only the values
enumerated in the declaration. For example,
the new variable supplier is allowed to be
assigned the value able, or Jones, from the

list of enumerated identifiers.
Also declared as a new field of the

customer record type is equipment, a set of
members selected from the type manuf.
If a customer of Zyx owned gizmos made
by Baker, Edwards and Smith companies,
the following assignment statement might

appear In a simple program:

outrec.equip [baker, edwards, smith]

where the quantity in brackets on the right
side is a set constant stating that items are
present from the three manufacturers noted.
For an interactive business file maintenance

program, the record of a new customer
showing no association with a manufacturer
would most likely be initialized using an

empty set constant:

outrec.equip := []

Then, when the customer acquired his or her
first gizmo, we might find a statement such

as:

outrec.equip := outrec.equip -h [edwards]

which would form the union of the old value
of the equip set with a new set constant
value. In other words, equip would now
have a notation indicating the presence of
edwards in addition to what was previously
noted in equip. We could continue adding
notations of other gizmo acquisitions when
appropriate. In fact this process is likely to
assign a value to a simple variable of the set
type associated with manuf', then that vari¬
able would be used elsewhere in the program
to augment the noted membership of equip.

Pascal’s facilities for handling sets are
advantageous in many ways. A set is gener¬
ally stored in memory as an array of binary
bits which are made accessible in a special
way. In UCSD Pascal, a set is stored as a

string of bytes, each byte containing up to
8 bits to indicate whether a corresponding

value is present in the set. Only the number
of bytes needed to hold the declared number

of set members need be stored. If,
usual, one needs several dozen members in
a set for a business application, the spac®

occupied is very little more than the min'
mum needed. UCSD Pascal allows a set

have as many as 4080 members. .
Once the value of a set field of a rec

has been assigned, it is readily po^si ®
test whether a customer record is assoc
with a desired combination of members.

example^ to determine whether a customer
is noted as owning gizmos made by Baker,
Edwards or Jones companies, we could use
an //‘statement such as:

if (outrec.equip * [baker,edwards,Jones]) O []
then

begin.. . end;

Here the expression within parentheses
(on the left of "<>’’) isolates the members
of equip falling in the group Baker, Edwards
and Jones. The parenthesized expression is
said to be the intersection of the value in the

equip field in outrec and the set constant
within square brackets. The comparison indi¬
cated by <> then asks whether the result of

the intersection operation has left any mem¬
bers by asking whether the result is an emp¬
ty set. If not, then at least one of the three
members must be present, and the com¬
pound statement (begin . . . end) following
then is executed.

The alternative to this test for set mem¬

bership would usually be a complex se¬
quence of IF tests in the traditional lan¬
guages. The set combining and testing
operations can be implemented efficiently
by the Pascal system. Thus they allow a
program to be written more simply and
occupy less space. They also make the oper¬
ations undertaken by the program more
obvious to anyone versed in Pascal, thus
making a complex program more easily
maintainable and bug free.

There's a Lot More

It is not possible to present a comprehen¬
sive view of how one uses a language for
complex business programming within a
short article. For example, we have not de¬
scribed the use of Pascal subrange variables,
which allow a programmer to state that a
variable is permitted to contain only certain
declared values. If an attempt is made to
assign to the variable a value outside thede-

cbred range, the program either terminates
a normally or (if Pascal is extended in a
simple way) the programmer may provide a
wovcry block in which corrective measures

ay e taken. Data validation is one of the
ost common problems in business data

pr^essmg. At UCSD, we feel that the addi-

is e«pnt^ simple recovery block mechanism
comni allow reduction in program
tional ^'^ndling the many excep-

ness data
°f processing. ‘unnecessary interruption

A Note on Pascal Extensions

exiens'ions to make°bM
'"ake business applicati

gramming truly practical, the language pro¬
vides an extremely powerful base from
which to work. One of the strengths of
Pascal, according to the intentions of its
designer, is that it offers all this power in a
remarkably simple and self-consistent form.
The necessary extensions can be made in
ways that generally retain this consistency
so as to be relatively obvious to the program¬
mer. We feel that Pascal is by far the best
language available for adaptation to inter¬
active business processing on small machines.
We would be happy to send further informa¬
tion about how we use the language for
business or real time applications to anyone
who writes to us.

The questions of whether standard
Pascal should be extended, and how, are

currently being debated intensely in the
international Pascal Users Group. Each
special interest community of Pascal users
has its own list of extensions considered
essential to make the language a practical
tool for developing software products in that
community. Even the question of what
extensions are essential is being debated,
since it is possible to use the facilities of the
standard Pascal language to create a library
of routines to handle the user's special
problems in most cases. In general, an imple¬
mentor should consider extending the
language only in cases where the result will
be simpler and more reliable or efficient
programs.

This article discusses extensions that the
author feels are essential for business appli¬
cations. Other communities with very strong
interests in Pascal work with real time appli¬
cations, development of system software
such as operating systems and compilers,

interactive systems such as computer assisted
instruction, scientific computations, and so
on. Of course these communities do overlap
substantially. If the essential extensions
needed by all these communities were added
to the standard Pascal language, the simpli¬
city and self-consistency that make the
language so important would probably be
destroyed. Therefore, it is very unlikely that
an eventual formal standard for the Pascal
language will include any but the most
widely needed extensions currently under
discussion.

This situation leaves many Pascal advo¬
cates very much worried that there will be
no effective standards for the extended
language features needed by the special
interest communities. There has been
discussion within the Pascal Users Group
about the possibility of encouraging develop¬
ment of common interest supersets of the
language for specialized uses. Ideally, lan¬
guage standardization is a process which
should proceed slowly giving attention to

the ideas of all experts who wish to be
heard. In practice, the use of Pascal is
growing so fast throughout the computer
industry that close coordination of the

extensions made by many implementors
has become virtually impossible. We at
UCSD have set ourselves the limited goal

of seeking coordination and cooperation
on Pascal extensions for system program¬

ming (including those for business and real
time applications) among a number of
industrial firms that seem most active in use
of the language, particularly as regards small

computers. For reasons associated with their

own proprietary interests, these firms will
generally be able to cooperate on only some
of the most widely used language extensions
within their special interest communities. A
Pascal language extensions workshop was
held at UCSD in July of this year primarily

to help bring about this coordination. We
intend to continue working as closely as
possible with the international Pascal Users
Group, and to take guidance from the PUG
leadership on extension issues whenever

practical."

A ''Tiny" Pascal Compiler

Part 1: The P-Code Interpreter

Kin-Man Chung

Herbert Yuen

Roughly speaking, a compiler is a pro¬
gram that translates the statements of a high
level language (such as Pascal or FORTRAN)
into a semantically equivalent program in
some machine recognizable form (such as
machine or assembly code). The former is
usually referred to as the source program
while the latter is called the object pro¬
gram. An interpreter, on the other hand,
reads in the source program and starts
execution directly, without producing an ob¬

ject program.
There is little doubt that compilers and

interpreters are a necessary part of any
computer system. The reason most per¬
sonal computer systems do not have high
level language compilers is not that there is
no need for them. Compilers, being inherently
more complex than interpreters, require
more effort to write and more computer
memory to run. The main advantage of a
compiler over an interpreter is the relative
speed. A compiled program typically runs

an order of magnitude faster than an equival¬
ent program executed interpretively. In
ness, it must be also pointed out that ir
preters are usually easier to use, and rr
suitable for an interactive environm

This series of articles is an attempi
acscribe how a compiler for a subse:

ascal was implemented on an 8080 c

intention t(
of ^ reasons for the ch

an tw^rview
referred to aT '^f^g^age, readers
«tion, BYTE.1 The p,

^ser Manual and Report

Kathleen Jensen and Niklaus Wirth
(Springer-Verlag, 1974) should also be
consulted as the authoritative source book
on the language in its original form.

This is not, of course, the first Pascal
compiler ever written for microcomputers.
However, instead of waiting for a Pascal
compiler to be written for our particular
processor, we decided to undertake the
project ourselves. In this way, we can add or
subtract features from the original Pascal to
suit our needs and system capabilities, so
that it can be easily integrated with other
system software developed so far.

2 Stage Compiler

The compiler is divided into two stages:
a p-compiler and a translator. Instead of
having the compiler generate machine code
directly, it generates code for a hypothetical
machine, called the p-machine. These codes,
called p-codes, are then converted into the
target machine codes by the translator.
Dividing the task of a compiler into two
stages offers several advantages. The com¬
piler can be written abstractly, without com¬
mitting oneself to a particular machine and
worrying about details of code generation
and optimization. Such a compiler is said to
be portable, meaning that it can be used on
other computer systems with minimal start
up effort. It is only at the last stage of code
translation from the p-codes to actual ma¬
chine codes that we have to commit our¬
selves to a particular machine.

Another advantage this method offers is

greater flexibility when writing the com¬
piler. The compiler and the translator can be
coded and debugged separately. The flexi¬
bility of such a compiler was apparent to us
as we started to introduce more and more
Pascal features into our original minimal

MEMORY
LOCATION

0000

lAOO

0 CREATE/EDIT
USER PROGRAM

0 COMPILE 0 TRANSLATE 0 INTERPRET 0 EXECUTE

Figure 1: Memory overlay structure of the modules of the compiler. The
North Star DOS and BASIC start at hexadecimal 2000 and take up approxi¬
mately 14 K bytes of memory. The p-compiler is the largest BASIC program
of the system; in its compressed form (void of ail comments and blanks) it
occupies 14 K bytes, it reads Pascal source programs created by the editor
from disk files, and generates relocatable p-codes directly in memory. We use
hexadecimal 0000 to 19FF for p-codes and find it adequate for Pascal source
programs under about 300 lines in length. The smaller translator (9 K bytes)
produces 8080 codes directly filled into memory. The origin of the codes
can be specified. The run time routines (which total 1 K bytes of memory)
are needed only when the translated 8080 codes are being executed. The
interpreter Is written in Pascal, compiled and translated. The BASIC inter¬
preter is no longer needed when it or any other Pascal program is being run.

subset. Seldom was it necessary for us to
introduce new p-codes other than those

originally specified.
There is also one more reason for breaking

the compiler into two stages: most small
computers do not have enough memory
space to store the complete compiler. After
the p-codes are generated, the p-compiler is
no longer needed, and can be overlaid with
the translator. Therefore the compiler and
the translator can share the same memory

locations.
Actually we also use two other utility

programs: a text editor and a p-code inter¬
preter. The editor is used to prepare the
Pascal source programs. The interpreter is
used to interpret the p-codes produced by
the p-compiler. This provides another
alternative for running the Pascal programs.
Because it is equipped with various de¬
bugging aids, such as setting up breakpoints
in p-codes and outputting values for vari¬

ables, debugging can be easily done. Only
after a program is verified to be correct Is
the translator loaded, and 8080 code pro¬
duced. This allows easy development of
the Pascal programs without sacrificing

efficiency at run time. Figure 1 shows
the overlay structure for the various mod¬
ules of the compiler. Figure 2 shows the

logical flow during a program development.
In this part of the series on our project,

we will describe the general plan. The
Pascal subset is defined using syntax dia¬
grams. A description of the p-machine and
its codes are also given. We will discuss the
p-compiler, translator and run time routines

in the following parts.

Bootstrap Compiler

How does one introduce a new language
into a computer system with limited com¬
puter resources? By computer resources we
mean not only the computer hardware like
memory and peripherals, but also software
tools. We have learned from experience not
to attempt programs with the complexity

of a compiler in machine or assembly 1^^'
guage. This left us with BASIC. Although
it is not the most desirable language to
write a compiler with, it turned out to e
adequate. Some careful thought is neede .
of course, to handle recursive subroutin

calls from BASIC, a feature central to o

compiler writing. 3

The alternative to BASIC is to
commercial computer and write the
or part of the compiler in an approP

language. The finished product (or part of
it) can then be transferred to the smaller
computer. This is, however, a luxury most
of us cannot afford.

Of course, the compiler written in BASIC
would be very inefficient and slow. But this
actually would not matter, since it would
only be used as a bootstrap compiler. The
concept of bootstrapping should be familiar
to most personal computer owners. We
usually use it when initially starting up
our computers. After turning on the power,
a bootstrap loader is first loaded into the
computer (either manually or through the
use of read only memory). This bootstrap
loader is then used to load the loader, which
in turn loads the monitor into memory. The
bootstrap loader is a smaller version of the
loader; It is just big enough to load the main
loader and not adequate to be a general
purpose loader.

The same idea can be applied to com¬

piler writing. A compiler for a small subset
of a language is first written. This subset
should be big enough so that a compiler for
a bigger subset of the same language can be
written in it. The larger compiler is then
written and compiled, using the first com¬
piler. Next, a compiler for a still bigger sub¬
set of the same language can then be written
and compiled, using the second compiler,
and so on until a compiler for the complete
language is produced. In actual practice, no
more than three stages are used. It does not
matter if the first compiler is very inefficient.
The idea is to get a working, albeit primitive

and inefficient, compiler with minimum
starting effort.

Pascal Subset Syntax

The syntax of Pascal can be des'
precisely by using a notation usually
Backus-Naur form (BNF). This is a <
tion of rules for the grammar of th
guage. Instead of dealing with Backu;
orm directly, we use an equivalent but

understandable notation: the synta?
grams Figure 3 describes the syntax .
™ subset we are interested in.

are " diagram, the square
^)vak . ^ nonterminal symbols, whil
svmhr^T^ terminal symbols. Ter

laneua ^ building units <

luminals L ''"Preser

in the L ° ''' '®P'®
^ols in the«/ nontermina
^^*rig rules can be exp,

and there'u**^ another synta
nonterminal slmk "I fo
A branch in thT h°
allowable bv th represents oi

^ grammar. When all

terminal symbols are eliminated by ex¬
pansion in this fashion, we would have a
valid program. We start off a compilation
with the nonterminal program. Looking at

the syntax diagram we see that a program
is a block followed by a period (.). Looking
at the syntax diagram for block, we notice
that it can have an optional declaration part
followed by the main body which begins
with the string begin, followed by any

' I I LOAD '

I P-COMPILER h
I I
I_I

! LOAD
I INTERPRETER ■
I AND RUN-TIME H
I ROUTINES I
I_I

I LOAD
I TRANSLATOR

61

PROGRAM

BLOCK o

62

BLOCK

number of the nonterminal symbols, state¬
ment, separated by semicolons (;), and then
the string end. The statement block can be
further expanded by the syntax diagram for

statement, and so on.
The reason we go through the details

here is because it is important to precisely
describe the features we want to include in
our language before starting to write the
compiler. It is the first step towards writing
the compiler. These syntax diagrams will
later become flowcharts for the syntax

analyzer of the compiler.
Readers familiar with Pascal will no

doubt notice several important features
missing from our subset. There is no GOTO
statement. The only data type we have is
integer and integer array of one dimension.
Also missing from the subset is the structured

data type, pointer type, user defined type,
and file type. A less obvious omission is
passing the parameter of a proced’ire by
address; the parameters are passed by value
only. Aside from the fact that these features
are difficult to implement, they are not
indispensable in our bootstrap process. Of
course, features like user defined type and

structured type are some of the unique fea¬
tures of Pascal, and should not be omitted in
the long run. But we feel that they can be

added later.
We have also included some trivial but

nevertheless useful enhancements to the
language, which we hope do not deviate
from the standard too much. One is the
addition of the optional clause else to the
case statement which provides an exit path
if the value of the variable does not fall
into any of the case labels. Another is the
inclusion of format controls in the read and
write statements. Following an expression

in a wr/fe statement, a pound sign, #,
cates numeric form and a percent sign,
indicates hexadecimal format. If there is no

format control, a character whose AS
code equals the expression is output. Also a

hexadecimal constant is prefixed by %• ^ '
allows processing of hexadecimal num ^

without conversion by the user. ,
To allow interfacing Pascal programs

assembly programs, a facility is
read or write a byte from or to a so
memory locations. The array rr\em ts

served array name that is used to o

For instance:

mem [i]:=mem\l'\;

reads the byte from the memory location]
and writes it back to memory location i.
Machine language subroutines can be called
from Pascal programs. The statement:

Caff 0);

can be used to make a call to memory
address /.

The P-Machine

The p-machine is a stack oriented ma¬
chine consisting of four registers and two

memory storage areas. Memory is separated
into program storage and data storage areas.
The program storage area contains the pro-

expression

SIMPLE EXPRESSION

IDENTIFIER

^^XINTEGER

Figure 3, continued: Elem^
entary constructs for Pascal
subset Hexinteger is usual¬
ly not defined In Pascal but
is used here so that actual
memory locations can be
easily manipulated.

FACTOR

CONSTANT

identifier
-

-n

INTEGER

k string]-

HEX INTEGER

Figure 3, continued: Notice that some of the diagrams, for example FACTOR, contain them

selves in their own definitions. This is known as a recursive definition.

grsm codes (p-codes), and remains un¬

changed during program execution. The
data storage area contains the values of
variables. It is also used to store temporary
values during arithmetical and logical

operations.
Though the variables can be fetched and

stored in a random fashion, the datastorage
area operates as a stack with respect to
arithmetical and logical operations and run¬
time storage allocation. Arithmetical and

logical operations are done on the top
elements of the stack, and the results of
the operations are pushed back on the
stack. In this respect, one might call it a
zero address machine, since operations
(except store and load instructions, which

must specify an address) are done without
reference to any address. Later we will

discuss the use of the stack during run time

storage allocation.
The four registers in the p-machine are

the program counter, P, which points to
the next executable instruction in the
program storage; the instruction register, I,
which contains the current execution in¬
struction; the stack pointer, T, which points
to the top of the stack, and the base address
register, B, which contains the current base
address. The functions of the first three
registers should be quite clear from the
above discussion. The function of register B
will become clear after we discuss storage

allocation.
Each variable in a Pascal procedure has a

scope and lifetime. The scope of a variab e

is the range within which it can be re e
enced. The scope of a Pascal variable

simply the procedure block to _
belongs. The lifetime of a variable is
the time storage is allocated for it to

time storage is disallocated.
is the time the procedure defining t e ^
able is activated to the time a re

i‘r>4 TEMENT

^-»(^BEGIN^

VARIABLE EXPRESSION

PROCEDURE
IDENTIFIER

xi EXPRESSION i'. »i

—o—^
■(>>

STATEMENT

o

»^END^

EXPRESSION STATEMENT STATEMENT

CASE)—J EXPRESSION -» CONSTANT

o
STATEMENT ELSE

o

STATEMENT END

W(~WHILE^-► E XPRESSION STATEMENT

^(repeat)- RTATFMFNT ■ iNTii k—* EXPRESSION

L ^ J

IDENTIFIER EXPRESSION EXPRESSION

DOWN TO

STATEMENT

EXPRESSION
"S-V <i>

0. i ^
1—X—^^

o
]—(i>

MEM)-H y-»| EXPRESSION |-D

3, continued.

_J EXPRESSION , J
f 1

frn u procedure. This is
^om the way variables are treated ii

nrno? ^ variable is tl
its lifetime the entire e

•" ■wop*.”"',"™"”' »
activated f When a pro

^llocaied 00°',^ ""

disallocaied when thp°^
Thu. " procedure

''^f'ables of th contains
°f the currently active pr.

The variables of the last activated procedure

are on the top of the stack, those of the
second to last activated procedure next to
it, and so on.

Since storage allocation is not static,
addresses cannot be assigned at compile
time, but must be calculated at run time.
The base register, B, always points to the
starting location of the segment of the data
block in the stack. The addresses generated
by the compiler are not absolute addresses,
but displacements from some base addresses.
If the variable is local, then its address is the

65

Figure 4: A typical activation record for a
function. For a procedure, the function re¬
turn value is omitted. Note that the proce¬
dure and function parameters, as well as the
function return value, are below the base
register B, and thus would have negative dis¬

placements.

displacement from the current base register

B; but if the variable is from an outer pro¬
cedure, then the base address for that pro¬
cedure should be calculated, and added to

the displacement.
To do this, and to ensure proper pro¬

cedure or function linkage, extra storage
is allocated on the stack when a procedure
is activated. Figure 4 shows the various
quantities present in each of the procedure

blocks. The function return value is used
only for function calls, and storage is allo¬
cated for any parameters needed by the
procedure or function. The base address
contains the value of the current base
register B, and the return address contains
the program return address al the place of
the call. The functions of the dynamic
linkage and the static linkage need further

explanation.
The dynamic linkage forms a chain

that reflects the procedure activation history.
It points back to the base address of the
procedure that was activated immediately
before this one. For instance, if procedure A
calls procedure B, which calls procedure C,
then the dynamic link chain points from C
to B, and then to A. It is used to ensure that
the program returns to its previous state
when exiting a procedure. In particular, the
base register B must be loaded with the cor¬
rect base address of the calling procedure.
This would be easy to do if we follow a step
through the dynamic link chain.

Th,e static link, on the other hand,

reflects the static hierarchical structure of the

procedures. Each active procedure has a
link that points to the procedure (also
active) that immediately contains it. The
static links actually form a tree, with the

main program block as the root. These links,
which in general are different from the
dynamic links, are used to let programs
have access to the correct base address of
the variables in an outer procedure, since
at compiler time, only the static relationship
among the procedures are known. The com¬
piler therefore generates the pair (static level
difference, relative displacement from the
base address) as addresses for variables. The
calculation of the addresses from these
pairs would presumably slow down the
process, but it is a small price to pay for

nice features like recursive procedure calls.

The P-Codes

The p-machine has only 11 basic instruct¬

ions, which are listed in table 1. For the sake
of simplicity and easy handling in this ver¬
sion of the implementation, all instructions
are four bytes long. The contents of the four

bytes are as follows:

byte 1: op - the operation code,

byte 2: can be (i) v-static level dif¬

ference.
or (ii) c — condition code in a jump

instruction.
or (iii) 255 — denotes absolute

addressing.
or (iv) not used for some instruc¬

tions,
bytes 3,4: can be (i) d - displacement

from the base address.
or (ii) n — numeric constant.
or (iii) a — address in the p-code

program.

The OPR (arithmetic and logical opera¬
tions) and CSP (call standard procedure)
are further subdivided into more instructions.
The complete set of instruction mnemonics

and operations is listed in table 2. The
LODX and STOX instructions are used to
load and store array elemc nts with the value
of the array subscript on top of the stack.
The call standard procedure (CSP) instruc¬
tion is primarily used for input and output
(lO) operations. Besides the basic function
of inputting and outputting single char¬
acters, additional procedures have been
implemented to relieve the user from writing
10 conversion routines in Pascal for numeri

and hexadecimal numbers. In the
more procedures can be added to
the input and output of other
such as floating point numbers an
records for tape or disk. Meanwhile
seven instructions are sufficient fof eo

66

ient use in writing the bootstrap compiler
and its related software.

Readers are urged to read the p-code
interpreter listing which simulates the
operations of the p-machine. The program
statements are straightforward and self-
explanatory. Familiarity with the p-machine
instruction set is essential in understanding

the code generation part of the p-compiler.

The P-Code Interpreter

Since the p-machine is a hypothetical

computer, there has to be some method of
executing the p-codes generated by the
compiler. There are two simple solutions

to this problem. One is to write an inter¬
preter which can decode and execute the p-
codes. The other solution is to write a trans¬
lator which can decode the p-codes and
output equivalent executable machine codes
for an existing computer. Both methods
have been used in our compiler system. The
first method, although it runs slower, is
good for developing programs because many
debugging facilities can be implemented in
the interpreter. The second method is good
for production programs which may need
faster execution speed. A p-code to 8080
machine code translator will be described in
part 3 of this series.

The p-code interpreter is made up of two
major modules:

• Main program.
• Procedure which simulates the p-

machinc.

Every call to the simulator will execute
one p-machine instruction. Each p-machine

Op Code Mnemonic Operation
(Hexadecimal)

00 LIT O.n load literal constant
01 OPR 0,n arithmetic or logical operation
02 LOD v,d load variable
12 LODX v.d load indexed variable
03 STO v,d store variable
13 STOX v.d store indexed variable
04 CAL v.a call procedure or function
05 INT O.n increment stack pointer
06 JMP 0,a jump unconditional
07 JPC c,a jump conditional
08 CSP O.n call standard procedure

Table 1: Basic p-codes. The V in call, load and store instruc-
tions is the difference in static ievei between the current
procedure and the one being cafied or the one which con¬
tains the variable from the base address. An address in a
p-code program is shown by a. The condition code, c, can
either be 0 or 1.

instruction cycle can be divided into four
stages:

• Fetch a p-code from memory.
• Increment the program counter.
• Decode the instruction.
• Execute the instruction.

Several global variables are used to hold the
values of the p-machine registers such as
program counter, stack pointer, current
instruction, etc. A one-dimensional array
represents the data stack. Functional opera¬
tions of the various p-machine instructions
are coded directly from the instruction set
defined in table 2. The main program
simply initializes the program counter to
zero and then calls the simulator repeatedly
to simulate machine execution. This sounds
simple but not useful, because the user has

Mnemonic Description Mnenjonic Description

LIT
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR
OPR

0. n
0. 0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0, 9
0,10
0.11
0.12
0,13
0.14
0,15
0,16
0.17
0.18
0,19

load literal constant
procedure return
negate (sp)
add (sp) to (sp-1)
subtract (sp) from (s
multiply (sp-l) by
divide (sp-1) by (sp
low order bn of (sp)
(sp—1) modulo (sp)
test for (sp-1) = (sp)
test for (sp-l)<>(si
lest for (sp-1)<(sp)
test for (sp-i)>={s}:
test for (sp-l)>{sp)
test for (sp-i)<={sp
ogical (sp-1) OR (s
OQ'cal lsp-1) and U
logical NOT of (sp)
shift left (sp) logical
shift right (sp) logicj
mcrement (sp) by 1

OPR 0,20 decrement (sp) by 1
OPR 0,21 copy (sp) to (sp+1)
LOD v,d load a word
LOD 255,0 load a byte from absolute address (sp)
LODX v,d load a word with index address (spl
STO v,d store a word
STO 255,0 store a byte to absolute address (sp—1)
STOX v.d store a word with index address (sp)
CAL v,a procedure call
CAL 255,0 call procedure at absolute address (sp)
INT O.n increment sp by n
JMP O.a jump to location a
JPC 0,a jump to location a if low order bit (sp)=0
JPC l.a jump to location a if low order bit (sp) = 1
CSP 0,0 input 1 character
CSP 0,1 output 1 character
CSP 0,2 input an integer
CSP 0,3 output an integer
CSP 0,4 input a hexadecimal number
CSP 0,5 output a hexadecimal number
CSP 0-8 output a string

^fenjent is represent pointer, sp, points to the top element of the stack. The content of the stack
^ix reiatfofj^jf operatio operands of the OPR instructions are replaced by their results on the stack. The result of the

^ ons adjust the starb - ^ ^ ^ false. With the exception of single operand OPR instructions, all instruc-
potnter, sp, after execution.

61

North Star BASIC

A brief summary of North Star BASIC (version 6, release 3) is given for

readers not familiar with its particular features. . , u *. r \
Variable names are one or two characters long: an alphabetical character fol¬

lowed optionally by a decimal digit. There are four types of variables: numeric

string, array of numeric, and function. The string variables are names Posthxed

by a dollar sign S. while function names are prefixed by FN.
parameters) are defined by the declaration DEF, and ended by FNEND (for

multiline function). The parameters in the function definition are local to the

function, and would not affect variables in the calling program.
Strings cannot be dimensioned. The DIM declarations for strings declare

the maximum length of the string variables, not their
AS (3 5) denotes the substring of AS from position 3 to 5. Thus if A$-ABCDtFU,

AS (3, 5) is the string COE. This substring expression can be used both on the

left or righthand side of an assignment statement.
Multiple statement lines are allowed. Statements within a line are separated

by either colons, or back slashes, \. -ru«
Absolute memory locations can be accessed from BASIC programs. The

function EXAM(I) returns the content of memory at address I; and the instruc¬

tion FILL 1 J writes a value of J into memory address I.
Another feature of North Star BASIC is its ability to read from or write to

disk files. The statement OPEN #0, "FNAME- assigns disk fde ”FNAME to file

unit O A subsequent READ ^O.AS reads A$ from the disk file, and a WRITE

#0 A$ writes A$ to the disk file. A built-in function TYP can be used to check

the' type of data to be read. It has a value of 0 when the end of file is reached.

G- Qo - Set program counter to zero; initialize other counters; start execution.
S; single-step - Execute one p-code; display the mnemonics of the next p-code pointed

bv the updated program counter. _
R- run/restart - Start execution from current program counter until the program ends

or a breakpoint is reached. This command is used to continue execution at a break¬

s' jef - A p-cod'e address is entered as a breakpoint after the interpreter

prompts with a ?. Up to five breakpoints may be set.
C- clear - All breakpoints previously set are cleared.
Y p/sp/avZ>reai'fpomr-Disp!aY ihebreakpointsalreadyset.

X: examme status - Display the values of; current program counter, base address, stack
Dointcr the top two elements of the stack.

K- stack conrenr - A value is entered as the stack pointer after the interpreter Prompts
with a ?. It will then display the values of six stack elements starting from this stack

T- r’race - Display the address and mnemonics of the 16 p-codes last executed. This
command is usually applied at a breakpoint. It is used for tracing the logic flow of

E- txammf^^ogram - A p-code address is entered as a display pointer (DP) after the
' interprete%rompts with a ?. It will then display the mnemonics of the p-code at this

Lddress This command and the U and N commands are used for examining the
D-codes anywhere in the program without altering the current program counter.

U: up - Decrement the display pointer by one and display the mnemonics of the p-code

N: ^Increment the display pointer by one and display the mnemonics of the

p-code pointed by it.
Q: Qun - Terminate the interpreter program and return to operating system.

Table 3: Interpreter commands. All commands for the p-code interpreter are

single characters. A command is entered after the interpreter prompts the
user with a>on the video dispiay. Additionai information is needed for some
commands such as breakpoint and stack addresses. On entry to the Inter¬

preter it wifi ask for the starting memory address of p-codes and initialize

the program counter to zero. On exit it will display the number of p-codes

executed.

no control of the program during execution

until it terminates.
In order to enable user control of an

executing p-code program, the main program
must accept commands from the user which
instruct it to call the simulator a specified

number of times or to display register and
stack contents. This is the simple idea of a

debugging interpreter. The debugging aids
commonly known include single step execu¬
tion, set and reset of breakpoints, and dis¬

play of register and stack contents. A num¬
ber of these debugging facilities have been
incorporated in the p-code interpreter.
Table 3 shows the 13 interpreter commands

and their functions. Note that the trace
command is particularly useful in analyzing
mysterious logic flow of a program, such as
discovering the path along which a break¬
point is reached. This command is more con¬
venient to use and much faster than single
step execution. The limits on the number of
breakpoints and the number of instructions
traced can be changed easily in the program.

The first version of the p-code interpreter

was written in BASIC. While developing the
p-compiler, different constructs of Pascal
statements were tested one at a time using
the interpreter to verify the correctness of
the p-codcs generated. After the compiler
was debugged, the interpreter was rewritten
in Pascal. The program logic is very similar
to the BASIC version. Since the program
structure of the Pascal version is neat and
highly readable, the debugging time is
minimal. The Pascal source program is
shown fn listing 1. The program design is
rather straightforward. Readers with some
programming experience in any high level
language should be able to read and under¬
stand it without the help of a flowchart or
further explanation on program logic. Note
that in the main program and procedure

exec, the case...of statement is put to good
use. In the BASIC version the interpreter
commands have to be tested within a FOR
loop by comparing the input character with

a string array, and then an ON...GOTO state¬
ment is used to branch to various parts of

the program.
It must be emphasized again that the

interpreter executes p-codes and not Pascal
statements. Therefore the user is required

to have some knowledge of the p-machine

and p-codes. In addition to this, the p'
compiler should be instructed to list p-
codes together with Pascal program state¬

ments during compilation. They will
cross-ieferenced when running the inter
preter. Obviously this procedure is not as
convenient and easy to use as an ordinary
BASIC interpreter, but still it provides the
only way for debugging Pascal programs ir>
our present version. A now debugginS
scheme is being planned for the future whici
will enable the user to debug program
at the Pascal statement level. This mean^
the user may refer to variables and array^

and statements rather than stack
and p-code addresses. Part 2 will
details of the design and implemenUtiof^

the p-compiler."

Listing 1: Pascal source code for the p-code interpreter as output by the authors* system. This
version implements all of the commands in table 3.

P-CODES STARTS AT OddCi
WANT CODE PRIHTED7N

0 ?tP IHTS
0 < P-CODE INTERPRETER HY 1 3/31/78 BY H YUFN >
0 < LAST MOD ^/12/78 }
0 CONST LI=15.:BPLIM = 5jSI7E=500iSI7Fl=‘1B0;
1 UAR 2.P.B.T,BP.P0,TP,CMD,I..J..K,STOP; INTEGER:
1 S = ARRAY[SIZE] OF INTEGER.;
1 TRACE:ARRAY[LI] OF INTEGER;
1 MH;ARRAYC26: OF INTEGER;
1 BREAK^ARRAYCBPLIfl] OF INTEGER;
1
1 < IMPORTANT GLOBAL UARIABLFS;
1 P;PR0GRAM COUNTER B^BASE POINTER
1 T=STACK POINTER BP'BREAK POINT INDEX
1 TP^TRACE STACK PTR K;INSTRUCT1 ON COUNTER
I S'DATA STACK 2;STARTING ADDR OF P-CODE >
1
1 FLINC BASE^LEU);
1 UAR Bl:INTEGER;
2 BEGIN B1;=B;
5 WHILE LEU>0 DO BEGIN
9 Bl:=SCBl];LEU;=LEU-l END;

17 BASE==B1
18 END <BASE>;
20
20 PROC IHIT;
20 UAR I : INTEGER;
21 BEGIN T;=0;B;=l;P:=0;STOP:=e;
30 S[lI==e;SC2];=0;S[3];=-l;
40 P0:=8;TP-=U;K==0;
46 FOR I;=e TO U DO TRACECI];=-1
55 END {INIT>;
63
63 PROC CRLF;
63 BEGIN WRITEC13^10> END;
70
70 PROC EXEC;
70 UAR X.A.L.F.IDX;INTEGER;
71 BEGIN X;=P SHL 2+2;
78 A = =MEM[:X+3] SHL 8 +t1EMCX+2];
90 TP;=TP+1;IF TP>U THEN TP;=0;

615 4=BE6IN <CALL)
619 L;=MEMCX+13;
624 IF L=255 THEN BEGIN CALLCSCT]>;T;=T-1 END
635 ELSE BEGIN
636 SCT+1]:=BASECL>;S[T+2];=B;
649 SCT+3]-=P;B;=T+l;P:=A END
660 END;
661 5:JF TXSI2E1-A) THEN BEGIN
671 WRITEC STACK OUFLCRLF; STOP-• =1 END
687 ELSE T:=T+A;
693 6;P:=A; <JMP>
700 7:BEGIH IF StT3=MEM[X+l] THEN P;=A; <JPC>
714 T==T-1 END;
719 B'CASE A OF <CSP>
724 0;BEGIN T = =T+1;READ<SCT]) END; <IN CHAR)
736 1=BEGIN WRITE<SCT3);T;=T-1 END; (OUT CHAR)
748 2:BEGIN T'»T+1;READ<SCT3#) END; (IN NUMBER)
760 3:BEGIN WRI TEi: SC T 3# >; T = =T“1 END><OUT NUMBER)
772 4:BEGIN T;=T+1;READ<SCT3X) END; <IN HEX)
784 5:BEGIN WRITEC SCT3^);T—T-1 END;<DUT HEX)
796 B^BEGIN <OUT STRING)
800 FOR IDX:=T-SCT3 TO T-1 DO WRITECSC10X3);
820 T:=T-SCT]-1 END
827 ELSE BEGIN WRITEC’ ILLEGAL CSP');CRLF;STOP = = 1 END
845 END <CASE OF A)
846 ELSE BEGIN WRITEC’ ILLEGAL OPCODE');CRLF;STOP==1 END
867 END (CASE OF F>
868 END^ <EXEC);
869
869 PROC CODECPC); <PRINT CODE)
869 UAR X>N,IDX;INTEGER;
870 BEGIN X = =PC SHL 2 +Z; N •• =MEMCX34:3;
882 IF N<=24 THEN IDX;=' '
887 ELSE BEGIN N = =N-48; 1 DX ' X ' END;
895 WRITEC' '>PC4.' '.MNCN 3 > (IN C N+1 3 . MHC N+23 . IDX> '
924 MEMCX+ID#. ■, •,MEMCX+3] SHL 8 +MEMCX+23i);CRLF
944 END (CODE).
945
945 PROC CKBP; {CHECK BREAi; PLiIHT>
945 UAR I:INTEGER;
946 BEGIN IF P<G THEN ST0P:=1

TRACECTP3==P;
P-=P+liPB;=P;K==K+li
F==MEMCX3;
IF F<=8 THEN IDX;=0

ELSE BEGIN IDX==1;F'=F-16 END;
CASE F OF
BEGIN T;=T+1;SCT3==A END;

CASE A OF
0 'BEGIN {RETURN)

T:=B-l;B;=SCT+23;P'=SCT+3] END;
1 =SCT3'=-S[T];
2 'BEGIN T;=T-1;SCT]:=SCT]+SCT+13 END;
3 'BEGIN T'=T-1;SCT]'=SCT]-SCT+13 END;
4 'BEGIN T;=T-1;S[T]'=S[TI*:S[T+13 END;
5 'BEGIN T'=T-1;SCT3'=S[T3 DIU SCT+t3 END;

S[T]'=SCT] AND 1
BEGIN T'=T-l;SCT
BEGIN T'=T-1jSCT

T] AND 1; (TEST FOR ODD)
=T-l;SCT]'=SCT] MOD SCT+13 END;
=T-1jSCT3'=S[T]=S[T+13 END;

9 'BEGIN T : =T-L.: SCT J ; =SL r J< ;S[T+13 END.'
iO'BEiiIN T ' =T-1,; SCTJ ' =S[T]<S[T+1 3 END.;
ll'BEGIN T ' =T-1.: SET] = =St r])=S[T-f I] END;
12'BEGIH T ; =T-L; SET] ; =S[T] ;S[T+1 .1 END;
13'BEGIN T:=T-1;SET] '=S[T3<=S[T+1] END;
H'BEGIN T:=T-1;9[T]'=S[T] OR SET+1] END;
IS'BEGIH T'=T-1..SCT3;=SCT3 AND SETM] END:
16 ' SET3 : =NCiT S[T 3;
17^BEGIN T ' =T-1; SET] ' =S[T3 SHL SET+13 END.;
18'BEGIN T'=T-1;SCT3:=SET] SHR SET + 1] END.;
CS'SIT] :=SET] + 1.;
ff'SCT]'=S[T3-1;

• begin {COPY >

»SCT-13 END
END ILLEGAL OPR •); CRLF i STOP'= 1 END

^'BEGIN (LOAD)
‘- = =nEMCX+l3;

S[T]:.nEMtStT3)
LSE begin if iox THEN A'^A+SCT);

END; ' '‘'^*^"ID>;;SCT] —SCBASECL)+A3 END

(STORE)
’•_*=MEM[X+l]i

BEGIN

else BEGIN^^ =S[TJjT;«T-2 END

END, 'StTJ.T ^T-l-IDX END

=S[T] SHL SET+13 END
=SET3 SHR SET+13 END

952 ELSE BEGIN
954 FOR I'=l TCi BP DO
961 IF BREAKCI3-P THEM BEGIN
966 WRITEC' BREAK'■);CODECP);
978 ST0P'=1 END END
985 END (CKBP);
986
986 BEGIN <NAIN;
986 FOR I'=e 10 26 DO
994 MNC13 ' =NEMC I + JdESD].: (MNEMONICS ARE IN MEMORY)

1005 WRITEC ■ ADDR? ' >.; READCZrO; CRLF;
1015 INIT; CODECP);BP'=0.:
1021 REPEAT WRITEC);READCCMO).; 1021 REPEAT WRITEC

CASE CMD OF
;* 'BEGIN STOP' =0; REPEAT EXEC.'CKBP UNTIL STOP END

BEGIN EXEC; CODECP) END;
1046- 'X' 'BEGIN
1050 WRITEC' P='.P#>' B='.B#..' T='.T#,
1072 ‘ SCT3= * .SCT3«. ' S C T-1 3 = ' SC T-13 i ; CRL F
1099 END;
1100 'G' 'BEGIN INIT.;REPEAT EXEC;CKBP UNTIL STOP END;
1110 'T' 'BEGIN WRITEC ■ 4;TRACE4.' CRLF;
1125 FOR r'=0 TO U DO BEGIN
1132 TP'=TP+1;IF TP>U THEN TP'=0;
1142 IF TRAC:ECTP3>=0 THEN CODEC TRACE C TP3 .) END
1151 END;
1157 'K■ 'BEGIN READCI#);
1163 FOR J'=I TO 1+6 DO
1172 WRITEC' ’.S[JJII);CRLF
1185 END;
1186 •B''IF BPCBPLIM THEN BEGIN
1194 BP'=BP+1;WRITECBP#, ’ ' ');
1202 READCBREAKCBP34);CRLF END;
1207 'C'BEGIN (CLEAR BP>
1211 BP:=0;CRLF END;
1215 'Y’'BEGIN FOR I'=l TO BP DO
1226 WRITE(■ ' .BREAKCn4);CRLF END;
1240 •£• 'BEGIN READ(PG#);CODECP0) END;
1250 'U-'IE P0>0 THEN BEGIN
1258 P0==P0-liCCiDE(Pe) END;
1266 'N' 'BEGIN P0'=PG+1;CODECPCO END;
1278 'Q''P'=-l
1283 ELSE BEGIN WRITE('??');CRLF END
t29L END (CASE OF CMD)
L292 UNTIL P<0;
1296 CRLF; URITECK4>’ INSTR EXECUTED ■);C:RLF
L319 END (MAIN).
IHTERPRETCI), OR TRANSLATECT)?

69

A “Tiny" Pascal Compiler

Part 2: The P-Compiler

Kin-Man Chung

Herbert Yuen

When Nikiaus Wirth introduced Pascal

in 1971, one of the design objectives was
to allow efficient program compilation.
As far as we know, all existing Pascal com¬
pilers use the one pass compilation
technique.

Newcomers to Pascal sometimes criticize
features of the language such as declaring
variables before use, and having constant
and type declarations precede variable
declarations. But such features are necessary
to make a one pass compiler work (aside
from the fact that it is also good program¬
ming practice to declare identifiers before
use). Compared with multipass compilers,

the job of writing a one pass compiler is
relatively simple, since there is no need to
store the program in its intermediate form.

Figure 1 shows the structure of our
one pass Pascal compiler. The main portion
is made up of the scanner, syntax analyzer,
semantic analyzer and code generator.
A brief overview of these functional por¬
tions of the compiler follows. Detailed
descriptions will be given later.

The syntax analyzer is commonly called
the parser. Its main function is to detect
^ntactica! errors in the source program.

th ^ source program
that the parser looks at is called a token.

Of instance, the reserved word while,

wn. identifier idname
v-in tokens. The main job of the

ouiduT f source program and
■rrcicvamneeded by the parser.

To fi . ^°'^tdaries are ignored,
parser th the work of the

e values of numeric constants are

59 “fthis edition.

also evaluated by the scanner. The parser
then parses the program according to the

rules laid down by the syntax diagrams
which were described in part 1 (“A Tiny
Pascal Compiler,” September 1978 BYTE,
page 58'') and generates error messages if
illegal constructs are found. Identifier names
are entered into a symbol table as they are
declared. The symbol table is consulted by

Figure 1: Logical arrangement and interconnections of the p-compUer

modules.

71

Listing 7: BASiC version of the p<ompiier. This program takes the Pascai
program and compUes it into p<ode. The term p<ode stands for pseudocode,
an assembier language code for a hypothetical computer which can be con-

s^erted into an existing assembler language. Listing continues thru page 78.

IN $,T

N

n

ITE"

'REN p-code: mnemonics

10REM PASCAL SUBSET COMPILER FOR P-MACHINE
20REM BY KIN-MAN CHUNG
30REM L/78. LAST UERSION 4/7S.
40 N0=32nREM « OF RESERMED WORDS
50 T0=50nREM SYM table SIZE
60 N1=32767^REM LARGEST IH'I
70 N2=8sREM IDEHT LEH
80 DIM W0*(5*Ne)\REM RESERUED WORDS
90 DIM TB*N2>vREM SYMBOL TABLE
100 DIM T0$<T0)\REM KIND OF IDEMT IN SYM TAB\C..U..P
110 DIM Lf<64>\REn LINE BUFFER
120 DIM A$<H23.B$C5)
130 DIM SC100>.S:r': L00)''REM STACKS
140 DIM T1<T0)\REM LEUEL OF ID IN $Yt1 TBL
150 DIM T2<T0>*vREM UALCFOR CONST) OR hDR<FOR 1NT)0F ID
160 DIM T3<T0>\REM ARRAY DIM 0R4I OF PROC PARAMETERS
170 W0S<1.40>="AHD ARRAYBEGINCALL CASE CONSTDIU DO
180 W0$<4l.80)=‘'DOWHT£LSE END FOR FUHC IF INTEGMEM
190 W0$<8l,i20>»“MOD NOT OF OR PROC READ REPEASHl
200 we^-: L2l» l6e>=''SHR then TO TYPE UNTILUAR WHILEMR
210 DIM M#<27);Cf':80>
220 M$-''LITOPRLODSTCiC:ALIHT JMPJFLCSF

230 P8=L
240 P7=0\P9=P7\REN START CODE = 0Dt.iti
250 !“P-C0DES STARTS AT 0000"
260 QSI*4096T2nREM LAST USABLE MEM

280 INPUT "WANT CODE PRINT ED?"

290 IF Y*="Y" THEN Y9=0 ELSE
300 X**" "^GOSUB L240''-REM GET A TOKEN
310 GOSUB 5340SREn BLOCK
320 2=FNE1C"."*9)
330 FILL P9.255VFILL P9+L,• EJO^REM flLi. IN EUF MhRL
340 INPUT"INTERPRET(I). OR TRANSLAT b(T >?" .■ Y-i

350 IF Y$="" THEN END
360 IF Y$="I" THEN CHAIN "IHTERP"
370 IF Y#»"T‘' THEN CHAIN "TRANS"
386 END
390REt1
400R:EM error ROUTINES
410REM ttt , - , - c ac
420REM FNEl .IF CURRENT TOKENOKJ IHEH tRRuR 4E
430 DEF FNEKK't.E)
440 IF S6$<>K$ THEN Z=FNE<E>
450 RETURN 0
460 FHEND
478REM ttt
480REM FNE2. IF NEXT TOKENOK* THEN tKHUK HE
490 DEF FNE2(K$.E)
500 GOSUB 1240
510 IF SOiOKJ THEN 2 = FNE<E>
520 RETURN 0
530 FHEND
540REM tti.
550REM PRINT ERROR MSG
560 DEF FHE<.E9)
570 !TAB<C:0+4)."t‘T.E9
580 GOSUB 610
596 STOP
600 RETURN OvFNEND
S10REM ERROR MSGS
620 ON IHT<(E9-l)/5)+l GOTO 630.640.656
630 OH E9 GOTO 710.720.730.740.756
640 OH E9-5 GOTO 990.990.990.760.776
650 OH E9-10 GOTO 7S0.790.SOO.990.996
660 ON E9-15 GOTO 8L0.020.S30.840.856
670 ON E9-20 GOTO 860- 070.SSO.99u.Syu

680 ON E9-25 GOTO SOO .■ 910.920.990.930
690 OH E9-30 GOTO 940.990.950.966.9/0

. 6 6 Li. 6 7 0 « 6 El 0.6 9 ti .> i ti 6

700 ON E9-35 GOTO 980
710 !"MEM FULL"sRETURN
720 ! "CONST EXPECTED"'.RETURN
730 !"'=■ EXPECTED'nRETURN
740 ! "IDENTIFIER EXPECT ED"sRETURN
750 i"'j’ OR ’ = ' MISSING "''RETURN
760 EXPECTED"'-.RETURN
770 MISSING"\RETURN
780 ! "UNDECLARED IDEHT"\RETURH
790 ! "ILLEGAL IDEHT "''•RETURN
S00 i"‘:=‘ EXPEC:TED"\RE1 URN
S10 ! " ■ THEN' EXPECTED" '••FiETURH
820 OR 'END' EXPECTED"\RETURN
330 !"'D0' EXPEXTED"vRETURN
840 ! "INCORRECT SYMBOL "‘'.RETURN
850 '"RELATIONAL OPERATOR EXPECTEO"’RETURN
860 !''USE OF PROC IDENT IN EXPR"'’-RET URN
870 !■">' EXPECTED"SRETURH
880 ["ILLEGAL FACTOR"nRETURH

the parser as well as the semantic analyzer.
After a Pascal construct is recognized, its
meaning is analyzed by the semantic ana¬
lyzer and appropriate p*codes are generated.
Occasionally, there are forward references
whose addresses cannot be determined at the
time the codes are generated, but have to
be resolved at a later time. Thus updates
to the object program have to be done at

the appropriate time.
This may sound complicated, but in fact

a one pass compiler is actually the simplest
compiler imaginable. The technique used by

our parser is usually referred to as top-down
parsing or goal oriented parsing. The top-
down parsing algorithm assumes a general
goal at the beginning. This goal is then
broken down into one or more subgoals,
depending on input strings and the rules
in the syntax diagrams. The subgoals are

realized by breaking them down into finer

subgoals.
This is usually not a very efficient algo¬

rithm if backups are needed. The need for

backups occurs if at some point we choose
one subgoal from several others and find
after some processing that we have made
the wrong choice. We would then have to
undo what had been done by the wrong
choice and back up to the point where we
could try other alternatives. This is usually
a messy business and involves a lot of
bookkeeping. Fortunately, in the parsing of
Pascal, no backup is necessary. A keyword
is present at each decision point, and it
determines what subgoal we should choose.

An example will make this clear.
Suppose our goal is to recognize a state¬

ment. A statement can be a number of basic
constructs: it can be an assignment state¬
ment, an if statement, a case statement

or any other construct defined by the
syntax diagram. The Pascal grammar is so
designed that we know which type of
statement we should choose by just looking

at the next token. If the token is if, then we
know it is going to be an if statement,
if the token is case, it is going to be a case
statement, etc. There would seem to be a
problem if the token is an identifier, since

the statement can be the beginning of an
assignment statement or a procedure call.

But this can be easily resolved by consulting
the symbol table, where we also keep the
attributes (data types, addresses, etc) ot
the identifiers. This is one of the reasons
why identifiers and procedures must e

declared before use: it makes comp*

writing easier.
A top-down parser without backup ^ ^

be implemented by using a technique ^^
recursive descent. Such a parser
recursive procedure for each nonter

72

Line
Number Remark

400 Error routines - FNE, FNE1, FNE2
1030 Get a character
1090 Input a line
1240 Get a token
1950 Enter entry into symbol table
2060 Search symbol table
2170 Constant declaration
2240 Get constant
2340 Variable declaration
2380 Simple expression
2610 Term
2850 Factor
3290 Expression
3490 Statement
5340 Block
6120 Push numeric
6150 Pop numeric
6180 Push string
6240 Pop string
6310 Code Generation - FNG
6520 Fixup forward references

Table 1: For easy reference the main sub
routines of the p-compHer are listed here
along with remarks regarding their uses.

in the syntax diagrams. A call is made to
this procedure whenever a parse for such

a nonterminal is required. It is easy to see

why such a scheme would work. The stack¬
ing mechanism of the run time procedures

ensures that we get back to the correct
position in the syntax diagram after com¬
pleting the parse of the nonterminal.

If you look at the syntax diagrams care¬
fully, you will see that diagrams for certain
nonterminals actually contain the non¬
terminal itself, either immediately or after
several expansions. In terms of compiler
writing this means that the procedures corre¬
sponding to these nonterminals would call
themselves recursively.

One important part missing from our
compiler is the ability to recover from
errors. Of course all syntactical errors
are caught by our compiler and somewhat
meaningful messages are printed to indicate
errors. However, if an error is found, the
compiler is aborted prematurely and will
not resume compiling. Such a compiler is,
o course, not acceptable in practice. But
With the understanding that this compiler
Wi be used as a bootstrap compiler, as
Qi^ussed in part 1. it is tolerable. A com-

simple error recoveries would

but ^ P^>'ticularly difficult to implement

^ of programming
to add .u- time. We hesitate
P'^ogram already big and slow

cornpiler^witL^'*^ difficult to implement a

features «;i k error recovery
detect ermrc ^ ‘"tjmpiler would not only

Ihe damages caSs''eHr'''‘^ try to repair
aused by such errors. The com-

S90 ! “'BEGIN' EXPECTED"\RETURN
900 !'"0F' EXPECTED"\RETURN
910 ! “ILLEGAL HEX CONST''\RETLIRN
920 !'"T0' OR ‘DOWHTCi’ EXPECTED'-nRETURH
930 !"NUMBER OUT OF RANGE"\RETURH
940 EXPECTED'‘\RETURN
950 !'"[■ EXPECTED"\RETURN
960 r'J' EXPECTED"\RETURH
970 ! "PARAMETERS f1ISMATCHED"\RETURN
980 !"DATA TYPE NOT RECCiGNI2ED"\RETURH
990 ! "BLIG"\RETURN
1000REri
teiOREM SCANNER
t020REM
t030REM GETCHAR
1040 IF C0<LCi THEN 1060
1050 GOSUB 1090N6OTO 1040

1060 C0=C0+l\Xi=L*<C0..CCO
1070 RETURN
1080RE(1
L890REM INPUT A LINE
1100 !:s4I..Cl.. “
1110 IF F5<0 THEM INPUT Li ELSE llc.G
1120 IF Lt=”'' THEN 1100
1130 IF L$<1.. 1)="J" THEN 1210XREN MACRO FILET-
1140 L$=L$+" "\C:0=G
1150 L0=LEH<Lf)\RETURH
1160 IF TYP<F5><:>0 THEM IISO'^REPI EOF IF TVP=0
1170 CLOSE #F5'sF5 = F5-l''REr'l RETURN TO LAST ACTIUE FILE
1180 GOTO 1110
1190 READ #F5,L$s!L$

1200 GOTO 1130
1210 F5=F5 + 1N0PEH «F5.. LfC 2a LEHC L$))
1220 GOTO 1090
1230REM

1240REM GET A TOKEN
1250REM RETURN SOi^TOKEN.. A$=STRING.. N3 = NUNERIC
1260 IF " THEN 12S0
1270 GOSUB ie30\GOTO 1260\REM FLUSH BLANK'S
1260 IF X*<“A" THEN146a\REN INDENTiFiER?
1290 IF X*y'2" THEH1460
1300 K=0\A$ = ''
1310 IF K> = N2 THEN 1330vRF;N ONLY 1ST N2 LETTERS ARE USED
1320 K=K+rvA$(:K,K:)=;<;?
1330 GOSUB 1030
1340 T=ASCCX$)
1350 IF T>47 AND T<5ti OR T/64 ANU T<91 THEN 13i0\REN DGT UK LTik
1360REM BIN SERACH FOR RES NORDS

1370 I = lvJ=N0»;5-4
1380 B^=AJ
1390 K=INT<<: I+J)/10)*5+l
1400 Z$=W0^?K.K+4)
1410 IF B$<=Z$ THEN J=K-5
1420 IF THEN I=K+5
1430 IF I<=J THEN 1390
1440 IF 1-5) J THEN S0:f = B«: ELSE S0^='‘iDENT"
1450 RETURN
1460
1470 IF Xf<"0'’ THEN 1580''REM AH INTEGER?
1480 IF X#>“9" THEN ISBO
1490 S6$=''NUM“
1500 2$=2$+X$
1510 GOSUB 1030
1520 IF ASuC Xi }>=4S AND ASCC 5<;S)< =57 THEN 1500
1530 N3=UALC2*)
1540 IF N3<=N1 THEN RETURN
1550 E9=30sGCiSUB 556
1560 N3=Nl'vRETLiRN
1570REM CHECK FOR SPECIAL SYMBOL
1580 IF .. iHLN 1640
1590 GOSUB 1030
1680 IF X$=''='' THEN 1626
1610 S0*="="LRETURN
1620 S0*='' = ="
1630 GOSUB 1030\RETURN
1640 IF " THEN 1710
1650 GOSUB 1030
1660 IF X$=">" THEN 1690
1670 IF K$="=" THEM 1700
1680 S0$="<''SRETURN
1690 S0$="<>“^GOSUe 1030VRETURH
1700 S0^=''<="\GOSUB iei30\RETURM
1710 IF X$<>'‘>" THEN 1750
1720 GOSUB 103U\SUf='’>"
1736 IF X$<>" = " I KEN RETURN
1740 Se$=">="\GOSUB 1030^RE1URN
1750 IF X$<>'’' •’ THEN 1790
1760 Se$="STR''\C:f='"'
1770 GOSUB 1030MF . THEN 1030
1780 C$=C$+X$\G0T0 1770
1790 IF X^<>"(" THEN 1S20\REM IGNORE COMMENTS
1800 GOSUB 1030MF X$<>">" THEN ISOO
1816 GOSUB L030^GDTO 1246
1820 IF X$<>"Ji" THEN 1930\REM HEX CONSTANT
1830 GOSUB 1030\S0$=''NUM"M'I3=0
1840 FOR 1=1 TO 4

73

1.850 T=ASC<X$)
1.86Q IF T>=43 AND T<=57 THEN ISSO
1870 IF T>=65 AND T< = .'0 THEH T^T-7 ELot 1910

iIIg H3lH3f:l6+T'G0SUE: ICiSCr-HEXl

1900 RETURN
1910 IF I>1 THEN Z=FNE<27)
1920 Se$=''>-.''^RETURN
1930 S0*=X$''(5OTO 103G
1940REM
1950REM ENTER SYMBOL INTO TABLE
1960 T1=T1+1
19/0 T$< < Tl-1 >^-H2+l.. T >=AJ:
L980 Te$(Tl.Tl)=K.f'-REM STORE TYRE
1990 IF K$<>"C" THEN 2010
£000 T2C T1)=N3^RETURH’\REH STORE UALUE
2010 Tl< T1)=L1''-REM STORE LEOEL OF UiENT
2820 IF Kf<>"U'' THEN RETURN

11- Mill /y men h^hTUkHvKEn SF- NAS ALLuOATEu TOR PRUL-
2640 T2(T1)=D0''O0=DG+ l''-RETURH\RLn S i ORE OFFSET

205GREN
2060PEM FIND IDENT A:T IN Tf .■ STAR F iNb- t-KuM Tl hNO UF
2070REN RETURN POINTER TO IRBLL IF FDUtTD, ELSE RETURN O

2060 J = ai-1)TN2-H
2090 FOR I=T1 TO 1 STEP -1
2100 IF A* = Tf< wk J-f N2--1) TFIEN E5UT 2130
2110 JssJ-NE'-NENT
2120 1=0
2130 RETURN
2 140REM
215GREM PARSER AND CODER
2160REM
2170REM CONSTANT DECLARATION
2180 Z=FNE1': "IDENT'-4 >
2190 2=FNE2'L " = ".. 3)

2200 GOSUE: 124li'‘.GuSLIB 2240
2210 K$ = ''C'"'-COSUB 1950
2220 GOTO 1240
223eREM
2240REN CONSTANT
2250 IF S0J = "HUI'r' THEN RETURN
2260 IF S0$=''IDEHT" THEN 2290‘'REM CuNsT?
2270 2=FHE1-:''3TR''.2; .
2280 N3=ASC‘:;CT)''-RETLIRM'-kEM IAIFE iSf CHhR
2290 GOSUe EOCO'IF 1=0 IHEl! FliECS;)
2300 IF T0$< I1 XT "C’ THEN FHEC2)
2310 N3=T2<IJ^RElURN
2320 GOTO 1240
2330REM
2340REM UARIADLE DECLARATION
2350 Z=FHE1': "I0£NT%4)
2360 K$ = ''U”--GOSUB 1950'-i:»Olu 1240
2370REM
2380REM SIMPLE EXPRESSIOti
2390 IF SOf=" + ‘’ THEN 24 20
2400 IF FHEN 2590

>0$''.GDSUE: 6LS0

PAR

i,- u. i
2 5 0 u
2500

2410 Y$=
2420 GOSUB 124£i
2430 GOSUB 2610'
2440 GOSUE 6248
2450 IF Yl=''-’' THEN :
2460 IF S0$='' + '' THEN
2470 IF SC'f = '‘--’' THEN
2480 IF S0J:=''0R '' THEN 2500
2490 RETURN
2500 Y:?=-S Cl f G- 0 s LI E: 615:0
2510 GOSUB 1240
2520 GOSUB 2610
2530 GOSUB 6240
2540 IF THEN 2570
2550 IF Y$=" + '' THEN 4:500
2560 2=FNG< L.O. 14)vGCiTO 2460
2570 Z=FHG': 1,CX3>’-G'0T0 2460
2580 2 = FNG(1.0,2r-G0T'0 2460
2590 GOSUB 2510\GOTO 24£G
2600REM
2610REN TERM
2620 GOSUB 2S5n
2630 IF S0$="T" THEN 2700
2640 IF S0$=''DIU " THEM 2706
2650 IF S0^="AMD " THEN 2760
2660 IF S0$="MOD " THEN 2700
£670 IF S0--f="SHL " THEN 2700
2680 IF S0i="SHR " THEN 2700
2690 RETURN
2700 Y$ = SOi''GOSUE blSO'-REM PUSH
2710 GOSUB 1240\GOSLIB 2S50
2720 GOSUB 6240
2730 IF Y$=’’DIU " THEN 2790
2740 IF |•■»=•MULl ■ iHtH 2yuU
2750 IF Yt=‘‘r' THEN 2810
2760 IF Y$="SHL ” THEN 2820
2770 IF Y$=''SHR " THEN £830
2780 2=FNG< 1.0; 15 >''-GOTO 2630NREt1 "AND

2790 Z=FNG< 1.6.5)'vGOTO 2630
2800 2=FNG':1.0.7)nGOTO 2630

piler has to make some assumptions about

the nature of the errors and the intention
of the author. This is usually difficult.

If our concern is solely that of locating

all errors in a single parse of the source
program, there are simple ways of doing it.
Upon detecting an error, the compiler
simply skips the input text until it can safely
resume the compilation process. To do this

the compiler looks for certain keywords
or stopping symbols for hints to resume the
parsing process. For instance, if we find an
error while parsing a conditional expression,
we skip the input tokens and search for

BASIC Recursive Subroutines

yWosf t'ers/o775 of BASIC do not
’Adequately support recursive sub¬
routine calls, fn North Star BASIC, the

multiline function call can be invoked
recursively, in a limited fashion. This ts
because the function parameters are
local within the function definition
and are pushed onto a stack when

making a call.
The surprising fact is that most

BASICS do not forbid a recursive
call if one is made. For instance, the
following BASIC subroutine, which is
an inefficient way of printing the first
N integers in descending order, is
probably permitted in most BASICs:

100 PRINT N
200 IF N=0 THEN RETURN
300 N=N-1
400 GOSUB 100
500 RETURN

The problem of doing recursive

calls in BASIC is that of preserving
the values of the identifiers in the
subroutines. This can be done by
using a stack. The values of the identi¬
fiers are pushed onto the stack before
a recursive call, and popped out of the
stack in the reverse order when
returning from the call, in BASIC, the

stack can be simulated by an array:

10 DIMS(IOO)
11 P=0
12 REM INITIALIZE STACK POINTER

ioOOREM PUSH X INTO STACK
1010S(P)=X
1020 P=P+1
1030 RETURN
2000REM POP X FROM STACK
2010P=P-1
2020 X=S(P)
2030 RETURN

74

symbols, such as =, > =, etc, and keywords
such as then and do or perhaps begin. If

we do this for all the parts of the language
constructs, we will at least have a compiler
that would resume compilation after an
error is encountered in the hope of finding
all syntactic errors in one pass, and which
would give meaningful diagnostics for most
errors.

To reduce the size of the program shown
in listing 1, comments are kept to a mini¬
mum. Each module or subroutine is clearly
identified. To facilitate easy reference,
the important subroutines and variables are
shown in table 1 and table 2, respectively.

Scanner and Symbol Table Management

Each time the p-compiler calls the scan¬
ner (line 1260, listing 1), the input text is
scanned and a new token is produced.
This is done by calling a subroutine (line
1040) that returns a character from the

input string. Since the input/output (10)
routines are line oriented instead of charac¬
ter oriented, a line buffer (L$) is used to
hold a line, and a counter (CO) is used to
indicate the character just read. When the
end of a line is reached, the line input
routine (line 1100) is called to read in a new
line.

In our compiler we also provide the
capability of invoking or recalling a file
of Pascal text from disk. This is initiated
by a command that starts with a dollar
sign (^) in the first column followed imme¬
diately by the name of the disk file to be
inserted and compiled. Since North Star
BASIC allows four disk files to be open at
the same time, there can be four levels of
file nesting. The variable F5 is used to indi¬
cate this level. If it is equal to —1, then input
is taken from the keyboard. The initial
input is from the keyboard. This feature is

quite useful, since we can store procedures
that are commonly used in a disk library,
and have them recalled when needed.

Usually, the token that the scanner

returns is a number that represents the
token class the symbol is in. To make the
program more readable, we use str
variable S0$. Possible values returned

anH Mm?' ^
tokp tokens, which

identifiers and numbers, reqt

alsn*^ information, A$ and N3
of to Store the textual representat

ber the ni
respectively.

^ ''^hd token i:

'^‘'ens thl ^ both Vi

also look??;?^^^' the
the next character

2816 2=FNGi: 1,0.4>\GOTO 2630
2820 2*FNG< L,e> t7>\(?OTO 2630
2830 2=FNG<1,0,LSOVGOTO 2630
284eREM
2850REI1 FACTOR
2860 IF Se*='‘IDENT'' THEN 2340
2870 IF S0$="NUM" THEN 3060
2880 IF S0$="STR" THEN 30S0
2830 IF Se$="<'‘ THEM 3L00
2900 IF S0i=''MEM '■ THEN 3146
2910 IF S0$="NOT " THEN 3260
2920 2=FHEC23>
2930REM W. IDENTIFIER
2940 GQSUB 2060
2950 IF 1=0 THEN 2=FHE'; 11)
2960 IF TOf-: I. I >=''P" THEN 2=FNE^ 21)'■ REN PROC NAME
2970 IF T0$': I, I)<>"Y" THEN 3pei0
2980 2=FNG<5,0.1)\REN FUHC
2990 I=I-1\G0T0 4290\REN T2': I) = ADD OF FUHC
3000 IF T0f<I,I)="A" THEN 319G1\REM ARRAY
3010 IF T0$a,I)<>”C" THEN 3038
3020 2=FNG< 0,0,72': I))''.G0T0 1240''REN CONST
3030 2=FHG<2,L1-T1<I),T2';‘]))\REN ID
3040 GOTO 1240
3050REM NUMERIC CONST
3060 2=FHG':0j0,H3 j\G0T0 1240
3070REri ttt STRNG CONST
3080 Z=FNG<0,0,ASC':C^))''G0T0 1240
3090REM PAREH EXPR
3100 GOSUB 1240\GO3UB 32S0
3110 IF 50#=”)" THEN 1240
3120 2=FNE<22)\RETURN
3130REM *** READ MEMORY
3140 Z=FNE2<"C'',33)
3150 GOSUB 1240VGOSUB 3290
3160 2=FNE1<'’]",34)
3170 GOSUB 1240
3180 2=FHG': 2,255, GO\RETURH
3190 X=I\GCiSUB 6120
3200 2=FNE2':"E'',33)
3210 GOSUB 1240^GOSUB 3290
3220 Z=FNE1(’']",34>
3230 GOSUB 615ev2=FHG': IS, Li-Tli: T2r;
3240 GOTO 1240
3250REM NEGATE
3260 GOSUB 1240'«iJCiSUB 2850
3270 2=FNGi: 1,0,16>\RETURN
3280REN
3290REN EXPRESSION
3300 GOSUB 239e\REM SIMPLE EXP
3310 IF S0$ = " = " THEN 33SGi
3320 IF Se$=''<>'' THEN 73S0
3330 IF S0t = ''v " THEN 33S0
3340 IF S0$='’< = " THEM 3300
3350 IF 50$=")'' THEN 33S0
3360 IF S0<:='‘>=‘‘ THEN 3380
3370 RETURN
3380 y$=S0^\GOSLIB 61S0\REM PUSH
3390 GOSUB 1240\GOSUB 2390
3400 GOSUB 6240\REM POP
3410 IF '{$=>’='' THEN Z=FNG<1,0,SO
3420 IF Y$='‘<>" THEN Z=FHG<1,0;9>
3430 IF Y$='’<" THEN Z=FHG< 1, O, 10 >
3440 IF THEN Z=FNG': 1,0, 11)
3450 IF Y$=">'’ THEN Z=FHG‘: 1, O, L2)
3460 IF Y$="< = " THEN Z=FHG': 1,0, 13 >

3470 RETURN
3480REM tttttXW-t
3490REI1 STATEMEMT
3500 IF S0:f="IDENT'‘ THEN 3630
3510 IF S0$=''IF '■ THEN 4440
3520 IF S0$="FCiR “ THEN 5170
3530 IF S0$="WHILE" THEN 4S00
3540 IF S0$=“CASE “ THEN 4S9Gi
3550 IF S0$=’’REPEA" THEN 4730
3560 IF S0i="E:EGIN" THEN 4590
3570 IF S0i=‘’READ " THEM 4640
3580 IF S0$="WR1TE" THEM 3870
3590 IF S0$="MEM " THEM 4650
3600 IF S0$="C:ALL " THEM 4240
3610 RETURN
3620REM ttt ASSIGNMN‘1
3630 GOSUB 2660
3640 IF 1=0 THEN Z=FHE(11)
3650 IF 70$-: I, I)="A" THEN 3700-vREM ARRAV
3660 IF T0$(I, I)=''U" THEN 3760\REM INI VAR
3670 IF T0$<:i,I)="V" THEM 3760NREM FUHC RETURN UALUE
3680 IF T0$<I,n="P" THEN 429CivREM PRDC CALL
3690 2=FNE(12)
3700 X=I'sG0SUB 6L20\REM PUSH TBL ADD
3710 X=16\G0SUB 6120\REM INDE5': ADD NODE
3720 Z=FNE2("['',33)
3730 GQSUB 1240\GOSLIB 3290
3740 2=FNE1G"3",34)
3750 GOTO 3780
3760 X=1\G0SUB 6126

75

37?0 X*0NSOSUB 6120
3700 60SUB 1240
3790 IF S0t="==" THEN 3810
3000 2=FNE<13>MJ0T0 3826
3810 GOSUB 1240
3820 GOSUB 3290SGOSUB 6158
3830 K^XnCOSUB 6150
3840 2»FNG<3+K*L1-T1CX).T2(X))
3850 RETURN
386eREt1 ttt URITE
3870 Z=FNE2<''':"p31)
3880 GOSUB 1240^IF S0$<>"STR" THEN 3950
3890 L-LEN<C$)\IF L>1 THEN 3910
3980 Z=FNC<0>0.ASC<C$>)\2=FNG<S.0.1>\GCiTCi 3940

3910 FOR 1=1 TO L
3920 2=FNG<0.0/ASC<C#< I. I)))''HEXT
3930 2=FNG'; 0;0v L)nZ=FNG<S. 0. 8>
3940 GOSUB 1240VGOTO 4000
3950 GOSUB 3290vK=l
3960 IF 80#="#'' THEN K=3vREM DEC
3970 IF S0$=''5J" THEN K=5\REM HEX
3980 IF K>1 THEN GOSUB 1240
3990 Z*FHG(S,0,K)
4000 IF 80$=%'' THEN 3S80
4010 Z=FHE1(")’'.22)
4826 GOTO 1240
4830REH ttt READ
4040 Z=FHE2<"C".31>
4050 2=FNE2("IDEHT".4?
4060 GOSUB 2060‘'IF 1=0 THEN 2 = FNE< 1
4070 X=1\G0SUB 6120
4080 IF TetCI.I5="A" THEN 4190
4090 IF T0#<I.I>="U" THEN L=0 ELSE

1)

2=FHE^ 4)

4100 GO?UB 124e\K=0

4110 IF 80$="#" THEN K=2''REN DEG
4120 IF 80$="^" THEN K=4''.REM HEX
4130 Z=FNG(8.0jK)
4140 IF K>0 THEN GOSUB 1240
4150 GOSUB 6150\2=FHGi; L-h-3. L1-T1< X).T2'lX))
4160 IF 80$="." THEN 4050
4170 Z=FNE1< " >''/31>
4180 GOTO 1240
4190 2=FNE2(" [" > 33 >
4200 GOSUB 1240^GOSUB 3290
4210 Z=FNE1C"3''.34?
4220 L*16VG0T0 4100
4230REM ***; ABSOLUTE MEM CALL
4240 2=FNE2(".31)
4250 GOSUB 1240VGOSUB 3290
4260 2=FNE1C")".22>

4270 2=FHGc: 4.255. CO\GOTCi 1240
4280REM ttt PROC OR FUNC CALL
4290 K2=0\K3=1
4300 IF T3<1)=0 then 4400\REM HO PAkAMETER
4310 Z=FHE2<"<”.31)
4320 X=K2XG0SUB 6120
4330 X=K3vG0SUB 6120
4340 GOSUB 1240\GQSUB 3236
4350 GOSUB 615evK3=X
4360 GOSUB 6150\K2=X\K2=K2+1
4370 IF S0$="." THEN 4320
4380 IF K20T3CK3) THEN Z=FHE< 35)
4390 2=FNE1C")".22>
4400 2=FNG'C 4. L1-T 1< K3). T 2>: K3))
4410 IF K2 <>0 THEN 2=FHG<5.0.-K2)
4420 GOTO 1240
443eREM tU: IF
4446 GOSUB 1240
4456 GOSUB 3290
4460 2»FME1<"THEN 16)
4470 GOSUB 1240
4480 X=C1\G0SUB 6120''REM FORWARD REF POINT
4490 Z=FHG<7.0.O)vREM JPC
4500 GOSUB 3490
4510 IF S0$<>"ELSE " THEN 6520
4520 GOSUB 6150VK-X
4530 X=C1\G0SUB 6120
4540 2=FNG<6.0.0)sREM JMP
4550 X=K\GOSUB 6540'vREM FIXUP FORWD REF
4560 GOSUB 1240\COSUB 3490
4570 GOTO 6520
4580REM COMPOUND STTMNT
4590 GOSUB 1240
4600 GOSUB 3490
4610 IF 30$='*;" THEM 4590
4620 IF S0$="END " THEH 1246
4630 2*FHEC 17 ARETURN
4640REM ttt WRITE MEM
4656 Z=FNE2<"D".33)
4660 GOSUB 1240'‘GOSUB 3290
4670 IF S0$<>"3" THEN 2=FNE<34)
4680 Z=FNE2<"'=".13)
4690 GOSUB 124QSG0SUB 3290

4700 Z=FNG(3.255.0)
4710 RETURN
4720REM ttt REPEAT .. UNTIL

determine the correct token. This can be
done by using a one character look ahead.
When the scanner is entered, a character
is assumed to have been read, and upon
exit from the scanner, a character beyond

the current token is read.
Another problem that the scanner may

have is that of recognizing reserved words.
The reserved words are stored in a table
in sorted order. When an identifier is found,
it is compared with the entries In the table,

by performing a binary search. If it is not
in the table, it is assumed to be a user

defined identifier.
In Pascal programs, identifiers are de¬

clared at the beginning of each procedure
block. The scope of an identifier covers the

entire block containing it (and any of the
blocks inside that block). A simple symbol
management scheme that reflects such scope
rules makes use of a stack. When the com¬
piler enters a procedure block, a segment
of the stack is used to store identifiers
for the block. If the procedure block con¬
tains another procedure block, then another

segment of the stack on top of the existing
segments is used for identifiers of this block.
After successful compilation of a procedure,
its segment of the stack can be discarded,
since there is no further use for this part
of the symbol table. In this way, we can also
eliminate possible interference with identi¬
fiers in some other blocks. We also see that
since the block delimiting mechanism is
hierarchical, use of stack is also appro¬
priate. Figure 2 illustrates two-level block

nesting.
Readers may have noticed the similarities

between this symbol table stacking scheme
and the run time storage allocation scheme
discussed in part 1. Since the symbol table
deals with a static structure, it is much

simpler.
Within the segment of the symbol table

for a procedure block, further data struc¬
tures can be set up for storing the identi¬
fiers. We chose to use what we feel is the
simplest method: store the identifiers se¬
quentially, in their order of appearance.
This means that search also has to be done
sequentially. Since most procedures have
only a small number of identifiers, this
should work well in most cases. Other
more sophisticated structures such as a
balanced binary tree or hashed table are

commonly used in larger compilers.
The symbol table also contains some

information about the identifiers. ®

identifier type has to be kept with t
symbol table. Specific information is nee e
for each type of identifier. For constan
the information is the values of the co

slants; for program variables, the
tion is the address pair (level, offset

PROC A;
VAR

I -► PROC AA;
VAR

BEGIN (•AA*)

END (*AA*)
PROC AB;

VAR

BEGIN (•AB*)

END (*AB*)
BEGIN (*A*)

END (•A*) ;

AA AB

Figure 2: Example symbol table at various
points of compilation.

Vsriabit
Name

A$
CO
Cl
DO
E9
F5
K1
LO
LI
L$
M$
NO
N1
N2
N3

P8
P9
S
S9
S$
so$
TO
T1
T$
TO$

Tl{)
T2(I

T3(}

X
xs
Y$
wo$

Ram ark

String of the token returned by the scanner
Input buffer pointer
P-code address pointer
Run time storage counter
Error code
Active input file unit number; keyboard^—1
Number of parameter in the previous block
Length of the input line
Static level of procedure
Input line buffer
P-code mnemonics
Reserved word table size
Largest integer
Length of identifier name
Numeric value of token (token - "NUM")
or ASCII value of string (token = "STR")
Stack pointer for S$
P-code absolute memory address counter
Stack for numeric values
Stack pointer for S
Stack for strings
Next token
Symbol table size
Symbol table pointer
Symbol table: identifier
Symbol table: type of identifier

V; variable A: array
P: procedure F: function

Symbol table: level
Symbol table: value (constant)

or displacement (variable)
or address (proc or fund

symbol table: array size (array)
V,., number of parameter (proc or funt
Value to be pushed or popped
Next character to be read by the scanner
otrmg to be pushed or popp^
Table for reserved words

Table 2: Important variables used in the
P<ompifer,

C: constant
Y: parameter

^is hh P''ocedures and

P^rLetrs
inform'

4730 X=Cl\ffOSLIB 6120
4740 GOSUB 1240SGOSUB 3490
4750 IF S0*=";" THEN 4740
4760 2=FNE1C''UNTIL’M0>
4770 GOSUB 1240\6OSUB 5290
4780 GOSUB 6150v2=FNG<7,0>X)\RETURN
479eREM ttt WHILE ., DO
4800 GOSUB L240\X=C1\6OSUB 6120
4810 GOSUB 3290SX=C1VGOSUB 6120
4820 Z=FNG(7..0.0>
4830 Z»FNE1<"D0 MS)
4840 GOSUB L240\GOSUE! 3490
4850 GOSUB 6150M<=XVGOSUB 6158
4360 Z=FHG<6.0.X)
4870 X^KSGOTO 6540
4S80REM ttt CASE ,, OF
4890 GOSUB 1240\GOSUe 3;
4900 Z=FNE1<"0F "..25)
4910 I2=l\REf1 # OF CASE
4920 I1=0VREM # OF CASE

90

STATMUTS
LABELS

4930 GOSUB 1240VGOSUB 2240
4940 Z=FHG<1.0»21)vZ=FNG<0>0,N3)\Z=FHG<i.0.S>
4950 GOSUB 1240MF SO^-" ^ " THEN 4998
4960 2=FNE1<".5)
4970 X=C:l\G0SUB 6120\Z«rMG< 7. 1 j 0)\kEM A MATCH FOUND’?'
4980 I1=IL+1\G0T0 4930
4990 IC=C1\Z=FNG<7.0.0)\REM GOTO NEXT CASE STMNT IF NO MATCH
5000 FOR 1=1 TO I1\G0SUB CSZOxNEXThREM FIXUP FORWD REFS
5010 X=K\G0SUB 6120
5020 GOSUB 1240\X = I2sGCiSUB 6128
5030 GOSUB 3490\GDSUB 6I50\I2=X
5040 IF S0$="ELSE " (HEN 5096
5050 IF 50*0";" THEN 5130
5060 K=C1\2=FNG<6.. 0.0)\REM EXIT AflER A CASE STMNT
5070 GOSUB 6520
5080 X=K\GOSLIB 6120M 2=12+l\GCn 0 4928
5090 K=C1\Z=FNG<6^0.. 0)\GOSUB 6528
5100 X=K\GOSUB 6120
5110 GOSUB 124Ci\X=I2''G0SUB 6128
5120 GOSUB 3490\GOSUE! 6150M2-“X
5130 Z=FNE1<:"EHD 'M?)
5140 FOR 1 = 1 TO I2\G0SUB 6528M'iLXr\fNEr1 FIXUP FORWD REFS
5150 2=FNG<5,0.“l)\GOTCi J2‘l0\REPt F'OP UAL OP CASE EXP
5160REM ttt FOR
5170 Z»FNE2<"IDENT".4)
5180
5190
5200

GOSUB 3630SGOSUB 6120
P9=1MF SO»="TO '■ THEN 5210sREPi kLHLMBER UP-- OK DOWN
2=FNE1<"D0WhT",2S)\F9=8

5210 GOSUB 1240SGOSUB 3290
5220 GOSUB 6150nK=XnX=C1nGOSUB 6128
5230 2=FNG<1.0.21)\2 = FNG':2.Ll-lltK), T2(K))
5240 2=FHG(lj0,13-F9-F9)\X=Cl\GOSULi 6120\2=FHfrC?,0,0)
5250 X=F9\G0SUB 6120\X=KnGOSUB 6120
5260 2=FHE1C''D0 'M8)sG0SUL! 1240
5270 GOSUB 3490SGOSUB 6150\Z = F 2. L1-T iC X),'1,2': X))
5280 K=X\GOSUB 6150\2=FMG<1.0,20-X)
5290 2=FNG(3.Ll“Tl<K),.T2a:))
5300 GOSUB 6150\K=X''.GOSUE: 6150\Z=P NG^ 6O^ X)
5310 X=K\GOSUB 6540
5320 2=FNGC5.0<-1)vRETURNnREI1 POP OFF UAL OF LOOP CNTRL UAR
533eREri tttttttM
5340REM BLOCK
5356 D0=3sREM RESERUED FOR STATIC LINK. OVNAMIC LINK REIN AfiD
5360 T2<T1-K1)=C1\REM INIT ADD OF THE PROC: BLOCK
5370 Z»FNG<6.G>0)\REM JMP TO STARTING BLK ADD
5380 X=Tl-KlsGOSUB 6120
5390 IF Se$="CONST" THEN 5460
5400 IF S6$="UAR " THEN 5550
54L6 IF S0$=''PRC(C: '* THEN 5738
5420 IF S0$="FUNC " THEN 5770
5430 IF S0$="BEGIN" THEN 5980
5440 Z=FHEi:25)
5450REM ttt CONST DCL
5466 GOSUB L240
5470 GOSUB 2170
5480 Z=FNEi':■'.5)\G0SLIB 124 6
5490 IF S0*="UAR " THEN 5556
5500 IF S0$="PROC; " THEN 5736
5510 IF S0i="FUNC " THEN 5770
5520 IF S0$="BEGIN'' THEN 5980
5530 GOTO 5470
5540REM tat UARIABLE DCL
5550 L=0\F9=i
5560 GOSUB 1240\GOSUB 2346
5570 L*L-HMF 80^="." THEN 5566
5580 2=FNE1<"=".5>
5590 GOSUB 1240MF S0$="ARRAY" THEN 5610
5600 2»FNEi< "INTEG".36>\G0TCi 5670
5610 2=FNE2<"C".33)vGOSUB 1240\GOSUB 2240
5620 2=FNE2< " T" > 34 >\Z=FHE2< " OF ". 26)'■ Z=F NE2^ " IHTEG". 36 >
5630 D0=De-L
5640 FOR I=T1-L+1 TO T1
5650 T0*< I. I)="A'‘ST3(I)=N3-fl
5660 T2CI)=D0^D0=De+H3+lsNEXT
5670 2=FNE2C";".5)
56S0 GOSUB 1240MF Se$=’'PROC " THEN 5730

77

5690 IF S0«="FUNC " THEN 5779
5700 IF S0f="BEG.IN" THEN 5980
5710 L=0\F9=L\GOSUB 2340\GOTO 5570
5720REM ttt PROC DCL
5730 2=FNE2t"IDENT%4)
5740 K1=0^K$="P“^GOSLIB 1950
5750 L1=L1+1^G0T0 5816
5760REM *** FUNC DCL
577 0 2-FNE2<"IDENT%4>
5780 K$*"F"sGOSUB 1950VREM FUNC ADDRSS
5790 Ll=Ll+lsKl=l
5800 K$=''Y“nGOSLIB 1950\REI1 FUNC UALUE
5810 K2=K1\G0SUB 1240
5820 X=Tl^GOSUB 6120
5830 XsD0\GOSUB 6126
5840 IF S0$<>''<'’ THEN 5396
5850 COSUB 1240^F9=0^COSLIB 2340\K1=K1+1
5860 IF S0$=%" THEN 5858
5870 ZsFHEU ")".22)
5880 COSUB L240\T3< Tl-Ki)=K1'*K2
5890 2=FHE1<";'S5)
5900 FOR 1 = 1 TO KlvREM FUNC UALUE 8. PARS HAUE OFFSET

5910 T2<TL-I+1>=-I^WEXT
5920 COSUB L240\GOSUB 5340nL1=L1-1
5930 SOSUB 6150vD0=X
5940 GOSUB 6150v.Tl=X
5950 2 = FHEl("i%5)
5960 GOSUB 1240NGOTO 5410
5970REM START OF EXECUTIBLE BTTNNTS
5980 GOSUB 1240VGOSUB 615BM<=X
5990 X*T2<K)\G0SUB 6540
€000 T2<K)=ClsREM START BLOCK ADDR
6010 2=FNG<5.0.00)
6020 GOSUB 3490
6030 IF S0f<>"J" THEN 6650
6040 GOSUB 1240^GOTO 6620
6050 IF S0.f<>''END " THEN Z=FHE<1»'>
6060 GOSUB 1240
6070 Z=FHG<1.0.0)
6080 RETURN
6090REI1
6100REM END PARSER AND CODER
6110REM
6120REI1 PUSJ4 X INTO STACK
6130 S'; S9)=X^S^=S9+1^RETL^RH

6140REM
6150REM POP X FROM STACK
6160 S9=S3-l^X=S<S9)vRETLIRN
6170REM
eieOREM PUSH Yf INTO-STACK
6190 L=LEH<Y#>
6200 Sf<PS.P8-HL-l)=Yf
6210 X=P8''-G0SUB 6120'nREM PUSH S IAR T &
6220 X=PS+L-1^G0SUB bl20
6230 PS=P8+L^RETURH
b240REM POP Y-f FROM STACK

END STRNG POS

6250 GOSUB 6150
6260 L=X\GCiSU6 6156
6270 Y*=S$<X.L)
6280 Pe=P8-L+X-l
6290 RETURN
6300REM
63ieREh1 GENERATE CODES
6320 DEF FNG<X1.X2.XS)
6330 B$="
6340 FILL P9.X1\FILL P9-H..X2
6350 FILL P9+2.FNA(XS)\FILL P9■^3.FHB(X3
6360 IF Y9 THEN 6400SREM IF INPUT FROM
6370 IF Xl<16 THEN 6390
6380 1. 1 >="X"NX1=X1-16''>REM INDEX
6390 !X4I.C:l. " . MJ'; X 14:3+1. X14:3+3). B*.
6400 Cl=Cl + l^F•^=P9+4
6410 IF P9>=Q9 THEN Z=FHE<1)
6420 RETURN O
6430 FNENO
6440REM

)
KEYBOARD THEN DOHT

J:31.X2.X6I.X3

6450 DEF FHB-'.Z)
6460 H=INT<Z/256)
6476 IF M<0 THEN N=256+N
6480 RETURN N
6490 FNEND
6500 DEF FNAi; Z)=Z-INTC Z/256)T25b

65ieREM
6520REM FIXUP FORNORD REF
6530 GOSUB 6150
6540 N=P7+X4:4 .
6550 FILL N+2.FNACC1)NFILL N+3.FNB'.C1;
6560 IF Y9 THEN RETURN
6570 !*'ADD AT".X.’' CHANGED TO".Cl
6580 RETURN
READY

ECHO

The symbol table is used by both the
parser and the semantic analyzer. The infor¬
mation in the symbol table is used in a
number of ways. The type of identifier
is used, for instance, to check the type
consistency in an expression. When a vari¬
able is referenced or a procedure or function
called, the symbol table is searched to
obtain the level and relative address from the
base address. The number of parameters
in a procedure or function is used to check
the correct matching of parameters in actual

procedure or function calls.
An identifier is searched for by starting

from the end of the symbol table and work¬

ing towards the beginning. (Viewing the
table as a stack, we say that we search from
the top of the stack down to the bottom,)
There are two reasons for this searching
direction. First, identifiers in the current
block are more likely to be referenced and
should be searched first. Secondly, suppose
that a variable X is declared in both an outer
and an inner block; by searching for X from
top to bottom of the stack, we can be sure
that we will find X of the inner block first,
in accordance with the scope rule.

Parser, Semantic Analyzer, and Coder

The parser, the semantic analyzer and

the coder are not separate routines, but are
intermixed in a large routine. In most

cases, after the successful parsing of a
statement, its meaning is also understood
by the compiler. Thus the semantic analyzer
either requires minimal extra processing
or is implicit in the parser and disappears

altogether.
The parser, as we have mentioned before,

uses a top-down technique called recursive

descent. Since there is a close correspond¬
ence between the parser and the syntax
diagrams of the Pascal grammar, there
should be no difficulties in understanding

the parsing process. The parser adopts the
convention of one token look ahead which
is similar to the one character look ahead
convention used by the scanner. The vari¬
able S0$ is used to hold the next token

to be read by the parser.
There is a part of the Pascal grammar,

commonly referred to as the dangling

else, that is ambiguous. The statement:

if condl then if cond2 then statl else stat?.

can be parsed in two ways. The else
ment can be associated with the first i o
with the second if, producing entire

different results. ^5

We resolve this difficulty by a
associating the else statement wif
most recent if. If an else statemen

78

the first if is desired, one of these two
methods should be used:

If condl then

if cond2 then statl else
else stat2;

or:

if condl then begin
if cond2 then statl

end
else stat2;

The situation is similar to the case state-
ment with the added feature of an optional
else statement. If the statement for the last
case label is an if statement, we then have
the dangling else problem. This is resolved
in the same manner.

There are three functions used to print
messages when errors are detected. The func¬

tion FNE(X) prints the error message
corresponding to error code X. FNE1 (A$,X)

checks to see if the current token is equal
to A$, and prints the error message corre¬
sponding to error code X if not. FNE2

is similar to FNE1 except that the scanner
is first called to get a new token. As we
mentioned earlier, the compiler aborts as
soon as an error is found. Therefore these
error routines do not return to the calling
procedure.

The code generator requires more work:
care must be taken to store important
values in stacks due to the inability of
BASIC to fully support recursive subroutine
calls. Otherwise the coder is more or less
straightforward, since the p-codes are so
designed (see part 1) that there is a direct

correspondence between simple Pascal state¬

ments and p-codes. Table 3 shows the almost
direct translation of Pascal statements Into
p-codes.

The declarative statements (const, var,
proc, and func) do not produce any exe¬
cutable statements; they merely provide
information about declared identifiers. The
irst executable code encountered when

entering a procedure or function block is a
orward iump instruction to the main body

o t e block. This jump is necessary since in
nera there may be procedures and func-

^«des take up space. The

menu block incre-
nts the stack pointer (I NT). This allo-

'«riaW« address) plus any

T' of spa..;

^®ciaraiinn •<nown from the

variable^Dn'°" Procedure block,
space to be aii of the
the block. at the activation of

Note
no space is allocated for con-

Pascal source p-codes

x+10*y15} LOD X
LIT 10
LIT 5
LODX Y
OPR »

OPR +
a:=exp; (exp)

STO A
if exp then stm 1 else stm2; (exp)

JPC 0,1b1
(stml)
JMP lb2

1b1 (stm2)
1b2

for i:=exp 1 to exp2 do stm. (exp1)
STO 1
(exp2)

Ibl OPR CPY
LOD 1
OPR >=
JPC
(stm)
LOD

0,1b2

1

OPR INC
STO 1
JMP Ibl

1b2 INT -1
while exp do stm; Ibl (expl

JPC 0.1b2
(stm)
JMP 1b1

1b2
case exp of (exp)

c7b 1 ,c1b2:stm 1; OPR CPY
c1b3 :stm2; LIT clbl
else stm3 OPR =

end; JPC 1,1b1
OPR CPY
LIT c1b2
OPR a
JPC 0,1b2

Ibl (stml)
JMP 1b4

1b2 OPR CPY
LIT c1b3
OPR
JPC 0,1b3
{stm2)
JMP 1b4

1b3 {stm3)
1b4 INT -1

repeat stm until exp; Ibl (stm)
(exp)
JPC O.lbl

i:-funca(exp t,exp2); INT
(expl)

1

(exp2)
CAL funca
INT -2

Table 3: Code generation for various Pascal constructs. For readability^ the
p-codes are given in assembly form. The italic identifiers in the Pascal state¬
ments are nonterminals that can be substituted by any valid expansion. The
codes for these quantities are represented by parenthesized identifiers.

slants. If a constant is referenced, a 'load
literal (LIT) instruction is generated instead
of a load (LOD) instruction. Also note that
the procedure or function parameters and
the function return value do not reserve

any space in the procedure or function
block called. Space is reserved before the
call is made. Therefore, these values have
negative displacement from the base address
of the called procedure or function.

When a call is made to a function, the
space for function return value is allocated
by incrementing the stack pointer (line
2980 in listing 1) (this step is skipped for
a procedure call). The parameter expres¬
sion is then evaluated (line 4250), putting

79

P-CODES START AT 0000
WANT CODE PRINTFD7N

0 ?$LST2.2
0 CONST CRb13;LP“10>
1 VAR A.B.C.DiINTEGERj
1 FUNC MAX4(X1,X2,X3,X4)| {LARGEST OF 4 NUMBERS)
1 FUNC MAX2(X1,X2); {LARGEST OF 2 NUMBERS)

2 BEGIN
3 IF X1>X2 THEN MAX2:-Xl

9 ELSE MAX2t-X2

12 END>

14 MAX4I-MAX2(MAX2(Xl,X2),HAX2{X3fX4))

2e END;
30 BEGIN
30 REPEAT
31 READ (A#,B#,C»,D#) ; ^ _
39 WRITE ('THE LARGEST IS'rMAX4(A,B,C,D)#,CR,LF)

67 UNTIL A<0

69 END.
INTERPPET(I), OR TRANSLATE(T)7N

READY
LOAD DECODF

READY
RUM

0
4

e
12
16
20
24

28
32
36
40
44
48

52
56
60
64
68

JMF
LOD

LCD
STO
INT
INT
CAL
STO
STO

STO
LIT
LIT

LIT

LIT
LOD

CAL
CSP
LIT

n 30
0 -2
0 -2
0 -3

0 1
0 -2
0 3
0 -5

0 3
0 5
0 72
0 65

0 83
0 83
0 3

0 14
0 OUTCH
0 n

JMP
LOD
STO

OPR
LOD
INT
INT
OPR
CSP

CSP
LIT
LIT
LIT

LIT
LOD
INT

LIT
OPR

14
-1
-3

RET
-4

1
-2

RET
INNUM

INNUM
69
82
84
14

4
>4

10

JMP
OPR

JMP

INT
LOD
LOD
CAL
INT
STO

STO
LIT
LIT

LIT

CSP
LOD
CSP
CSP
JPC

0 13
0 3
0 -3
0 -2
0 3
0 7
0 4
0 6
0 32
0 71

0 32
0 OUTST

0 5
0 OUTNM

0 OUTCH
0 31

INT
JPC

LOD
INT

CAL
LOD

INT
CSP

CSP
LIT
LIT
LIT

LIT
INT
LOD
LIT

LOD

OPR

3

11
-1

1
3

-1
-2

INNUM
INNUM

84
76
69

73
I
6

13
3

RET

Listing 2: Sample Pascal program with compiled p-code. The number at the
beginning of each source line is the offset of the corresponding p-code from

the base address.

pointer is also decremented by the same
amount, but since a space has been allo¬
cated before the function call, the function

return value is now on top of the stack,
ready for further processing. This simple
scheme works very efficiently and should
lower the overhead usually associated with

procedure or subroutine calls.
Listing 2 gives an output from the com¬

piler for a Pascal program that prints out the
maximum of four numbers. There are of

course better ways of writing the program,
but it does illustrate some ideas of the

compiler discussed so far.
There is no optimization of the p-codes

produced. Limited optimization can be done

on the local level, and some optimization
is actually done in the p-code to machine
code translator. The problem of producing
efficient codes is a difficult one, and is not
addressed properly in our project. Given the
simplicity of the p-machine and p-code, the
p-compiier is efficient. But whether the com¬
bination of p-compi!er and translator pro¬
duces efficient 8080 code is uncertain.

This completes our discussion of the
p-compiler. In part 3 we give a detailed dis¬
cussion of a translator for converting the
p-code into executable 8080 machine code."

REFERENCES

the resultant value on the stack. Thus,
space is allocated for each parameter and
initialized with the value of the param¬
eter expression. Upon return from a pro¬
cedure, the stack pointer is decremented
by an amount equal to the space allocated

for the parameters, getting back to the
state before the procedure call. Upon
returning from a function call, the stack

1. Jensen, K, and Wirth, N, Pascal: User Manual

and Report (second edition) Springer Verlag,
New York, 1974.

2. Wirth, N, “The Programming Language Pascal/'
Acta Iniormatica, 1, pages 35 thru 63, 1971.

3. Wirth. N, Algorithms + Data Structures =

Programs, Chapter 5, "Language Structures and
Compilers," Prentice-Hall, Englewood Cliffs NJ,

1976.

80

A ''Tiny" Pascal Compiler

Part 3: P-Code to 8080 Conversion

Kin-Man Chung

Herbert Yuen

In part 1 of this series (September 1978

BYTE, page 58"') we defined a Pascal subset
language in terms of syntax diagrams. The
p-machine and its instruction set and a

p-code interpreter were also described. In
part 2 (October 1978 BYTE, page 342) we
presented the design and implementation of
the p-compiler. The subject matter for this
part is the translation of p-codes to exe¬
cutable 8080 machine codes. We will also
discuss the implementation of run time
support routines and code optimization.

Compiler-Interpreter Systems

To understand why we need a p-code to
8080 translator, we should first take a brief
look at the different structures of compiler-
interpreter systems. The most widely used
structure for microcomputers is the inter¬
preter. Since interpreters are written in the
target computer's assembly language, their
memory size is small. They are self-con-
ained m the sense that they include an edi-

source programs and run

brv *^0 all computations. Mem-

small programs is also
cutin* ^ disadvantage is speed. Exe-

e^timated^tn^h'^ ^ program is
the elpr. . ^^^bout 300 to 1000 times

'^titten in program
SDenH language. Interpreters

scanl?^" of their
*^^aracter n;»? symbols character by
errors, Mq syntax and checking

tter how many times a pro¬

gram statement is executed, the parsing pro¬
cedure is repeated every time.

This problem can be readily solved by
separating the parsing and execution steps.
Before execution, the source program is
compiled and intermediate code is gener¬

ated. Thus scanning and parsing are done
only once for each program statement. This

is the so-called compiler-interpreter scheme
used in some BASIC compilers. Execution of
the intermediate codes is by interpretation.
The gain in speed over a pure interpreter is
a factor of approximately 2 to 10. However,
the gain in speed is paid for by extra mem¬
ory storage needed for intermediate codes.

The compHe-go and compHe-Unk-go ap¬
proaches are commonly used for many high
level language compilers in mainframe com¬
puter systems. These compilers generate re¬
locatable binary codes. The compile-link-go
approach has the advantage of linking to¬
gether different modules of programs that
are compiled separately, such as those in a
subroutine library. This is done by a linking
loader. However, due to limited system re¬
sources like memory and peripheral devices
in microcomputers, these two structures are
rarely used. Further, since Pascal is designed

for fast compilation, linkage of program
modules may be done at the source lan¬
guage level.

Among those four structures just men¬
tioned, the compiler-interpreter seems to be
most appropriate for implementation on
microcomputers. However, execution speed
is still slow because intermediate codes are
interpreted rather than executed directly by
the computer. An obvious solution to this
problem is to translate the intermediate
codes into executable machine codes. Thus,

each intermediate code is decoded once by
a program which we call a translator. The

translated machine code can be expected to
run about two to five times faster than in¬
terpreted intermediate codes. Therefore,
the overall gain in speed, compared with a
pure interpreter, is a factor of approxi¬
mately 10 to 50. (Preliminary test runs in
our system show that Pascal programs run
about 15 times faster than the same pro¬
gram written in BASIC.) We call this struc¬

ture compile-translate-go.
The five compiler-interpreter structures

we discussed above are summarized in table
1. The compile-go and compile-translate-go

are rather similar in structure. Compile-go
actually combines the process of compiling
and generating executable codes into one
step. The binary codes are generated by
straightforward algorithms without optimi¬

zation, because code optimization would re¬
quire more complex program logic and make
the compiler even larger. Separating compila¬
tion and translation into two steps signifi¬
cantly reduces the size of the compiler.
Local optimization techniques can also be
applied during translation. Code optimiza¬

tion will be discussed later. Since p-codes are
designed to be machine independent to
make the compiler portable, the translator
is responsible for producing efficient codes

for a target computer.

Designing the Run Time Routines

Run time routines form an essential
part of all compiler-interpreter systems in
microcomputers. Large computers can do
fixed point, floating point and decimal
arithmetic with 32 bit or larger word sizes
in single instructions. Many microcomputers,
on the other hand, can do only basic integer

Table 1: Summary of dif- arithmetic with 8 bit words (bytes). There-
ferent structures of com- fore, multiple instructions are needed to im-

piler-interpreter systems.

plement 16 bit operations like multiply,
divide, subtract, logical operations and
multibit shifts. The run time routines, some¬
times referred to as run time support pack¬
age, are a collection of subroutines written
in assembly language that can be called by
an interpreter or any program to perform

various arithmetic and logical operations.
Usually they include subroutines for 10 con¬
version between ASCII and binary data.

The design of run time routines for our
compiler system is based on three principles;

• Fast implementation and clarity: A
straightforward approach is followed

so that the overall package can be de¬
bugged and tested quickly and modi¬

fied easily.
• Speed; The best known algorithms

are used for computer arithmetic to
achieve fastest execution speed pos¬
sible. However, tricks such as self¬
modifying code are not used.

• Memory storage: The package is ex¬
pected to be fairly compact. Since
p-codes are translated mostly into sub¬
routine calls, the number of instruc¬

tions to set up arguments to be passed
tb the subroutine should also be

minimal.

As described in part 1, the p-machine has
a data stack and four registers: stack pointer
T, base register B, program counter P, In¬
struction register I. Since the translator takes
care of the program counter and p-code in¬
structions are not needed after translation,
all we need are the stack pointer and base
register. In the current version of our run
time routines, contiguous memory storage
is used to represent the data stack. For the
sake of program clarity and easy debugging,
the 8080 machine stack is not used, al¬
though using it for dual purposes as a data

Structure Example Step Input System software Output Remarks

interpreter BASIC, APL
interpreter

1 source
program

interpreter
(execution)

Most popular for microcomputers.
Advantage: conserves memory space.
Disadvantage: very slow execution

speed.

compiler-
interpreter

BASIC-E,
Pascal
compiler

1

2

source
program
intermedi¬
ate code

compiler

interpreter
(execution)

intermediate
code

The interpreter may overlay the
compiler to save memory space.
Advantage: faster execution speed.

compile-go WATF1V,PL/C

compiler

1 source
program

compiler executable
code

Only used in large computers.
Disadvantage: size is too big for

microcomputers. -—

compile-link-go FORTRAN IV,
PL/I, COBOL
compiler

1

2

source
program
binary
code

compiler

linking loader

binary
code
executable
code

Widely used in large computers.
Advantage: fast execution
Disadvantage: requires more sys

resources. ^

compile-translate-go Pascal
compiler
(by authors) H

source
program
p-code

compiler

translator

p-code

executable
8080 code

Advantage: size of compileMs
reduced, fast execution speed,

increased portability, easy
implementation. _—^

82

stack and temporary storage for normal pro¬
gram logic is possible and probably more
efficient.

Figure 1 shows the structural differences
between the p-machine stack which we im¬
plement and the 8080 machine stack. Since
integer data is stored as pairs of 8 bit bytes
(character strings are stored as single dimen¬
sional arrays^ two bytes to each element and
only the low order byte is used; see descrip¬
tions in part 1), each load instruction incre¬
ments the stack pointer by 2. The order of
the byte pair is arranged as high-low because
it is more convenient to use than low-high.
The stack pointer always points to the low
order byte of the 16 bit integer, which is on
top of the stack.

Register pair D,E is dedicated for use as

the stack pointer, while registers H and L
are mainly used for 16 bit operations such as
DAD, LHLD, SHLD and PCHL. When
needed, register pairs DjE and H,L can be
easily exchanged using the XCHG instruc¬
tion. Sinc^ the base address remains un¬
changed within a procedure block, a 2 byte
fixed memory location (with symbolic name
BB) is used to represent the base register.
The LHLD and SHLD instructions are used
to retrieve and update the base address
value. A summary of register assignments for
implementation of the p-machIne is shown

in table 2.

Coding the Run Time Routines

MEMORY MEMORY
LOCATION _ LOCATION

X + n n •-TOP OF STACK Y
1

0

X + 1

•
•
•
•
•

1

Y- 1 1

•
•
•
•
•

X 0 Y - n n •-TOP OF STACK

P-MACHINE STACK 8080 MACHINE STACK

PUSH; INCREMENTS STACK POINTER PUSH; DECREMENTS STACK POINTER

Figure 1. Differences between p-machine and 8080 stacks. This figure shows
n+1 entries on each of the stacks.

P-machine 8080 run time routines

P: program counter PC
T: stack pointer D,E register pair
B: base register memory location BB (16 bits)
1: instruction register —

data stack memory storage

Table 2: Register and storage assignment for runtime routines.

ment of the second operand to the first. A
message will be issued if overflow occurs and
execution continues without any corrective
action. The condition for overflow is de¬
tected by the rule:

Most of the subroutines are easily under
standable. The routines for load, store, cal
and load constant are coded by direct trans
lation from the interpreter program to 8081
assembly language, keeping in mind tha
each stack element (one data item) occuple
two bytes. The routines for arithmetic am
logical operations and 10 conversions re
quire more programming effort. In general
single operand functions such as negate
logical not and increment are performed oni
byte at a time in register A. Double operani
operations such as add, divide and logical o

are performed with register pairs H.L an<
I - The entire runtime package occupie

aoout 1 K bytes of memory. The followinj
te remarks on coding some of the nol-so

trivial subroutines.

fim POP: for most double operant

to POP is called firs
mernnr \ operands from the staci

ODPr:.f: (second operand). Afte

the re
and ooto the stack

double nr. ^ 8080 instructior
fraction is donY^h operation, sub

by adding the 2's comple

if [sign(arg.l) ® sign(arg.2) ©carry

® sign (result)] = 1, then overflow;
otherwise nothing.

MULT16; 16 bit signed multiplication is
done in two stages using an 8 bit multiplica¬
tion routine. First, multiply the second
operand by the high order byte of the first
operand; the result is in register pair HjL.
Second, continue the multiplication (left
shift and double add) with the low order
byte of the first operand; the result is in
register pair H,L. This method is very effi¬
cient. In comparison, conventional 16 bit
multiplication routines require more PUSH,
POP and XCHG instructions because there
are not enough registers to shift two 16 bit

words and also update a loop counter. Over¬
flows are ignored, as this is the usual practice
for integer multiplication.

DIV16: 16 bit signed division is one of
the most difficult routines to implement.
First the signs of both operands are saved on
a stack and are then converted to positive in¬
tegers (actually the divisor is made negative
In 2’s complement because subtraction is
done with a double add instruction). The
divisor is also checked for zero value, and if
so, a DIVIDE CHECK message is issued and
the routine returns. Division Is carried out as

83

a sequence of subtraction and shifts. At the
end, the signs of the quotient and remainder
are corrected according to the original signs
of the operands. The same routine is also
used for calculation of the MOD function.

Relational operations; are done by com¬
paring the high order and then the low order
bytes of the operands. For testing less than,
less than or equal, greater than, greater than
or equal conditions, a common subroutine
for testing less than is used. Register pair
B,C is used as a flag to indicate whether the
opposite of less than and equal to is wanted.

SHL and SHR; the logical left shift and

right shift routines are symmetric in the
sense that a negative argument (second op¬
erand) for the number of bits to be shifted
will cause one routine to jump to the other,
resulting in shifts in reverse direction.

INNUM: the conversion subroutine for
input integers allows leading zeros and
blanks and may optionally be preceded by
a plus or minus sign (+ or -). It also checks

for the absolute magnitude of the integer,

which must be less than 32,768.
OUTNUM: conversion of binary integers

to ASCI I is done by repeated division by 10.
The 16 bit divide routine is utilized.

P-code Translation

In general, p-codes are translated to sub¬
routine call instructions which jump to the
appropriate entry points in the run time rou¬
tines. Output from the translator is an 8080
machine language program containing
mostly subroutine call instructions. Some p-
codes, such as load and store, require addi¬
tional instructions to set up the arguments
to be passed. Address offsets are always
placed in register pair B,C and the static
level difference is placed in register A. The
jump instruction in p-code simply becomes
a IMP instruction in 8080 with the correct
address determined by the translator. The
p-code addresses in CAL and JPC instruc-

I

Hexadecimal
Op code P-code 8080 Mnemonic Commentary

Hexadecimal
Op code P-code

00 LIT 0,n LXl B,n
CALL LIT

04 CAL v,a

a) v=0

01 OPR 0,0

OPR 0,n

JMP POO;

CALL Pn ;

procedure return
routine
one of the 21
arithmetic/logical

routines

b) v>0

02 LOD v,d
c) v=255

a) v=0 LXl B,2d
CALL LOD

05 INT 0,n

b) v>0 LXl B,2d
MVI A,v
CALL LODI 06 JMP 0,a

c) v=255 CALL LODA; load absolute address 07 JPC 0,a

12 LODX v,d

a) v=0 LXl B,2d
CALL LODX

JPC 1,a

b) v>0 LXl B,2d
MVI A.v
CALL LODX1 08 eSP O.n

(n=0...5)

03 STO v,d
for n=8:

a) v=0 LXl B,2d
CALL STO LIT 0,ci

LIT 0,C2

bl y>0 LXl B.2d
MVI A,v
CALLST01

LIT 0,c^

c) v=255 CALL STOA; store absolute address LIT 0,n
eSP 0,8

8080 Mnemonic

CALL CAL
JMP X

MVI A,v
CALL CALI
JMP X

CALL GALA;

LXl H,2n
CALL INT

JMP X

LDAX D;
DCX D
DCX D;
RAR ;
JNC X

CALL SYSn.

MVI C,n;
CALL SYS8
DB c-|
DB C2

DB

Commentary

machine language
subroutine interface

get conditional code

decrement stack
pointer test condi¬
tional code

(same as JPC 0,a
except JC x)

one of the 6 con¬
version routines

(output a string)

^ of char.

13 STOX v.d

a) v=0 LXl B,2d
CALLSTOX

b) v>0 LXl B,2d
MVI A,v
CALL STOXl

Table 3: P<ode to 8080 translation. LIT, LOS, STOXl, INT, LODA, etc,
are used as symbolic entry points in the run time routines. There are -
routines for the OPR instructions: POO, POl, . . P21. There are seven stan

dard routines for 10 conversion: SYSO, SYSJ, . . SYS5 and
variable x /5 used as the memory address in the translated 8080 code co

spending to p~code address a in a call and jump instruction.

84

tions are similarly taken care of by the trans¬
lator. The complete list of 8080 code cor¬
responding to each p-code is shown in
table 3.

FIRST PASS

The 2 Pass Translator

The structure of the translator is similar
to that of the interpreter. Both programs

SECOND PASS FIX UP

I

i

2' j

^ith peephole op^mf translator. AO, A1,,, .A8 are program segments for generating 8080 code for the p-code
ion as illustrated by the rules in table 4. Refer to table 5 for a description of the variables.

85

read p-codes from memory and decode
them. The interpreter calls a simulator to
execute the p-codes. The translator writes
translated 8080 code in memory. The major
difference between them is that the trans¬
lator needs three additional tables to keep
track of p-code and 8080 addresses. Since
all p-code addresses are relative to the start¬
ing p-code of the program, the program is
relocatable. The memory address corre¬
sponding to p-code address for any back¬
ward and forward referenced jumps can be
calculated easily because all p-codes are four
bytes long. The number of 8080 instruc¬
tions generated per p-code is also not con¬
stant as shown in table 3. Therefore, it is
necessary to build a table of 8080 addresses
corresponding to p-code addresses to be
used in jump and call instructions. How¬

ever, it is not practical to build a table of
8080 addresses for every p-code because it
will take too much memory storage for large
programs. Only the addresses of those p-
codes that are being referenced need be

entered into the table.
P-code to 8080 machine code translation

is done in two passes. During the first pass,
p-code addresses in CAL,]MP and JPC in¬
structions are entered into a table. The
table is sorted after the completion of the
first pass. Actual translation is carried out
in the second pass. P-codes are fetched one
by one from memory and decoded. The ad¬
dress of each p-code is checked with those
in the address table. If it indicates that the
current p-code is being referenced, the cur¬
rent 8080 address is entered to the corre¬
sponding 8080 address table. Then 8080
machine codes are produced according to
the translation rules shown in table 3.

For CAL,]MP and JPC instructions, the

p-code address in the instruction is looked
up in the address table using a binary search.
If the corresponding 8080 address has al¬
ready been entered, it is output in the trans¬
lated code; otherwise it is a forward refer¬
enced address. When the latter case occurs, it
is necessary to record the current 8080 ad¬
dress in a forward reference table. Then, in¬
stead of the 8080 address (which is not yet
known), its position in the table is output in
the translated code. At the end of the sec¬
ond pass the forward referenced addresses

are fixed up by the following procedure:
a) Get the 8080 address from the for¬

ward reference table (call it P).
b) Get the table entry (call It J) at ad¬

dress P in the translated program.
c) Get the updated 8080 address (call it

A) at table entry J.
d) Write the correct address A back to

memory location P.

Figure 2 is a simplified flowchart of the

translator. The part for code generation is

not shown, but it can be easily understood
by referring to tables 3 and 4. Table lookup
is done by binary search through the sorted
table. The table elements are entered sequen¬

tially during the first pass. A simple bubble
sort algorithm is used to sort the table. This
method works fine for small Pascal pro¬
grams. For larger programs, and thus more
referenced addresses, the bubble sort algo¬
rithm is too slow because the number of
comparisons is of order n- for n elements. A

binary tree sorting algorithm with order
n fog n will be used for our next version of

the translator.
The various entry points in the runtime

routines are initialized in the translator as
a series of string constants. These hexadeci¬
mal addresses are converted to integers and
placed in arrays so they can be accessed

very easily later on.
When execution begins, the program

prompts the user for starting addresses of
the p-code program, the output 8080 code, ^
and starting and ending addresses of the i
data stack. The following three instruc- |
tions are generated to initialize the data !

stack and pointer: .

LXl H,STK1 starting address of data '
stack. ij

LXl D,STK2 2’s complement of stack J
ending address. |

CALL#1A00 run time routine (initial- j

ization. j

The program then begins its first pass. j
The number of address references and actual |
number of referenced addresses are dis¬
played at the end of the first pass. During '
the second pass, cross references of p-code
and 8080 addresses, which may be useful for |
future references, are listed in hexadecimal
form. At the end of the translation, sizes of
the p-code program and 8080 code are

displayed.

Code Optimization

Code optimization is a technique em¬

ployed by most compilers to improve the
object code produced. Many sophisticated |

code optimization techniques are known

today but are outside the scope of this

article. We shall describe only one ° j

local optimization technique (j
ing used in our project. Local optimizatio H

is done within a straight line block o J
code with no jumps into or out of the mi jj

die of the block. Peephole
one form of local optimization
amines only small pieces of object ^ ./I

Since most code optimization

niques are difficult to build in a sy

directed code generation algorithm, peep¬
hole optimization is particularly useful in
improving the intermediate code. Each im¬
provement may lead to opportunities for
further improvements. The technique can
be applied repeatedly to get maximum op¬
timization. In our translator, peephole op¬
timization is applied only once during the
second pass.

The goal of optimization is to minimize
the size of the translated 8080 code and to
increase execution speed without sacrificing
a lot of time during translation. The peep¬
hole technique is quite simple. It examines
only a single code or two consecutive codes.
Some redundant p-codes are obvious and
can be easily recognized. For example, the
JMP instruction generated at the beginning
of a procedure block which does not con¬
tain inner blocks is redundant. Similarly, the
p-code INT 0,0 (increment stack pointer)
generated after a procedure call with no
arguments can be eliminated. The biggest
benefit comes from optimizing redundant
load and store instructions, because they are
relatively slow in the current implementa¬
tion. For example, a LOD instruction im¬
mediately following a STO instruction of
the same variable can be replaced by an
increment stack pointer instruction, be¬
cause the variable is still on the stack. How¬

ever, if the LOD instruction has a label,
ie: is being referenced somewhere in the
program, we cannot be sure that the STO
instruction is always executed immediately
before the LOD instruction.

Other sources of peephole optimization
are the replacement of specific operations
by more efficient instructions. Addition and
subtraction of small constants (less than 4)
occur frequently in array subscripts and loop
counters. They can be replaced by repeated
increment or decrement instructions. Some
p-codes are translated into in line 8080 code

instead of a call to run time routines. Table
4 is a summary of peephole optimization
used in the translator. Note that the opti¬

mized code always takes less memory space
than the unoptimized code.

An Example

The various modules of the compiler sys¬
tem have been described. Now let us look at

a complete program example. Listing 1
shows the compilation, translation and exe¬
cution of a sample Pascal program. The pro¬
gram is stored in a disk file with file name
T4. It is a sorting program that uses a binary
tree algorithm. As mentioned before, it is
more efficient than a bubble sort algorithm.
The two subroutines in this program will

Table 4. Summary of peephole optimization. The goal is to reduce the size of the object program. The optimized code is more

efficient than the unoptimized 8080 code. For the redundant store fix, the load instruction cannot be referenced elsewhere in
the program.

Source of optimization Example P-code 8080 code Optimized 8080 code

Redundant jump
instructions

beginning of a procedure
without inner procedure

n: JMP 0,n-(-1 JMP X no code generated

Redundant loads
and stores

J:=J+5; A[J]:=X; STO v,d
* LOD v,d

(as usual)
(as usual)

(as usual)

INX D; increment stack
INX D; pointer

Repeated load of
the same variable

A[J] :=A[J]-rY; LOD \/,d
LOD v,d

(as usual)
(as usual)

(as usual)
CALL P21; copy

instruction
with small constant

procedure call without
parameter

procedure call

INT 0,0

INT 0,n

(-3 < n < 2)

LXI H,^?0000
CALL INT

LXI H,2n
CALL INT

no code generated

INX Dl /repeat n times\
INX D((n>0 I

DCX D> /repeat n times\
DCX Dnn<0 1

Loaa negative
constants

B:= -20; LIT 0,n

OPR 0,1

LXI B,n
CALL LIT
CALL P01

LXI B,-n
CALL LIT

and subtract
small constants

array subscripts LIT 0,n LXI B,n CALL P19; increment
In < 31 A[J+2] CALL LIT (repeat n times)

B[K-1] OPR 0,2 CALL P02
L: = L+^:

LIT 0,n LXI B,n CALL P20; decrement
CALL LIT (repeat n times)

Load Zeros OPR 0,3 CALL P03

P~0: LIT 0,0 LXI B,#0000 XRA A
CALL LIT INX D

STAX D
INX D

be an unreferpnr.^ ^ _
STAX D

87

T$ — table of p-code address labels
D$ - table of 8080 address corresponding to address labels in array I

E — table of forward references
W — count of address references
WO — count of actual labels
G — count of forward references
K — p-code instruction counter
X - memory location of current p-code
P - 8080 program counter of the translated code

F — current op code
y — =1 means indexed load or store
RO — =1 means current P-code is being referenced
U - program counter of the next referenced p-code

Table 5: Table of important variables and arrays in the translator

program shown in flowchart form in figure 2.

P-CODES STARTS AT 0000
WANT CODE PRINTED7H

0 ?$T4
0 { P(5H — SORTING BY BINARY TREE >
0 UAR I,J,K>N/NEW INTEGERj
1 T,L>R*S = ARRAY[U0] OF INTEGER;

1
1 PROC ENTER<N);
1 UAR J=INTEGER;
2 BEGIN J==0;
5 REPEAT
5 IF N<=TCJ3 THEN
9 IF LCJ3O0 THEN J==LtJ]

17 ELSE BEGIN LCJ]==NEW;J—0 END
24 ELSE IF R[J]<>0 THEN J:=RCJ3
32 ELSE BEGIN RCJ]==HEU;J=^0 END

39 UNTIL J=0;
43 TCNEW3:=N;NEU^=NEW+1

48 END;

51 PROC TRAU<J); < TRAUERSE THE TREE >
51 BEGIN IF LCJ3O0 THEN TRAU<LCwl]);
62 SCK]:=TCJ3;K =K+li
70 IF RCJ3O0 THEN TRAU<:RCJ])

79 END;
80
80 BEGIN <KAIN>
80 T[03==255;NEW==0;
86 READ<K#);WRITE(13> 10);
92 FOR 1*0 TO K DO BEGIN
99 LCI3^=0;Rn3 = -0; EHTERC PIEMC I+^ilAOOI > END;

L16 K==0; TRAUCe);
121 FOR 1—0 TO K-1 DO WRITE*:* '..SCI]#);
140 URITE<13>10>
144 END.

INTERPRET I OR TRANSLATEC T)?T

Listing 1: Compilation
and translation of a
sample Pascal program.
At the end of the trans¬
lation, the ratio of p-
code to 8080 code is
determined for refer¬
ence purposes.

ttt P-COOE TO 8080 TRANSLATION ttt
ADOR (HEX) OF PAS.LIB lADO

ADCiR (HEX) OF P-CODE =0000
ADDR (HEX) OF OUTPUT 8080 PGM^0800
STACK START ADDR (HEX>=5000
STACK END AODR (HEX>=7FFF

20 REFERENCES
15 ACTUAL LABELS

0 0809 0C 0C 12 17 ID 23 29 31 34 3B 41 49 4F 51

15 0858 5E 66 6C 6F 75 7D 85 8A 90 93 99 A1 A6 A9

30 0880 B6 BE C4 C7 CD D5 DD E2 E8 EE F3 F6 FD 05

45 6908 13 IB 21 LE 26 29 29 2F 35 3D 42 45 4C 52

60 0950 62 64 6C: 72 7A 82 8A 90 8D 95 9B A3 Ad AB

75 0982 B8 80 C8 CA CD D3 D8 OE E4 E9 EF F2 F8 FE

90 0A01 07 CiA 0F 15 IB LE 24 27 2E 34 39 3F 45 4A

105 8050 56 5C 5F 62 68 6A 70 73 79 7C 7E 83 89 8E

120 0094 96 96 A1 A7 AD AA AD B3 B6 BD C3 C6 CC D2

135 0AD5 OB OE E4 E7 E9 EF F2 F8 FB FE

11 FORWARD REFERENCES

P-CODE. 145 INSTRUCTIONS

8080 . . 766 BYTES
P-CODE=8080 = 1 3206897
* END TRANSLATION *

BYE
»LF PAS.LIB IA00
»jp080e
?7

29 34 34 35 43
4:JP080e
?2e

0 1 5 25 29 29
4:JP2A04
READY
!CHR$<129)

43 235 242

32 33 34 34 35 35 40 43 43 112 113 201 235 242 244

be used in our next version of the translator
(written in Pascal). The main program begins
by asking the user to input an integer K (K
must be less than 110) for the number of
items to be sorted. It then reads the K+1
bytes of data starting from hexadecimal
memory location lAOO (the location where

runtime routines arc stored). The data
items are read one at a time and procedure
ENTER is called to build a binary tree with
these items. Procedure TRAV is then called
to traverse the tree recursively in the “left
subtree..root..right subtree” fashion and the
data with sorted order is placed in array S.

Finally, array S is printed.
The p-compiler generates 145 p-codes (0

to 144) for this program. Afterwards, it uses
a CHAIN statement (North Star BASIC) to
load the translator program from disk, and
overlays the compiler. The translator begins
by asking the user to input memory ad¬
dresses of run time routines, p-code pro¬
gram, output 8080 code and data stack. At
the end of the first pass, 20 address refer¬
ences are recorded. After sorting, it is found

that there are only 15 actual labels. Output
from the second pass of the translator is a
cross-reference of p-code program counter
and memory addresses of the corresponding
translated 8080 code. The leftmost col¬
umn is the p-code program counter. Hexa¬
decimal memory addresses are printed in
groups of 15 per line. With the exception
of the first one, only the two low order
hexadecimal digits are printed. At the end
of the second pass, 11 forward references
are recorded. A total of 766 bytes of 8080
code are generated. Compared to the size
of the p-code program, the translated code
is 1.32 times larger. This ratio usually
ranges between 1.05 and 1.35, depending on
program structure and the types of state¬

ments used.
After translation is completed, control is

transferred to the disk operation system
(DOS). The run time routines are loaded
from the disk file, PAS.LIB, to hexadecimal
memory location lAOO. Then execution
may begin by typing a JPxxxx command
(jump to xxxx), where xxxx is the starting

hexadecimal memory address of the trans¬
lated code. In listing 1, two separate runs
are shown: the first one sorts eight numbers
(K+1 with K = 7) and the second sorts 21
numbers. The user may get back to BASIC

by typing)P2A04, where 2A04 is
point of BASIC. (Thecommand !CHR$(12"/
is an immediate BASIC statement used to

turn off the printer.)

Summary

Compilers for high level languages

large, nontrivial programs. Their impl®'^

88

tation usually requires a significant amount
of computer system resources and human
effort. Although our available system re¬
sources were limited, both in hardware and
software, we managed to finish the boot¬
strap compiler within a relatively short
time period. The reason is obvious: The
Pascal subset we implemented is small. We
followed the same approach professionals
use for implementing portable Pascal com¬
pilers on mainframe computers. Syntax dia¬
grams, which define the subset language, are
used to construct the syntax directed, top-
down parser of the compiler. The generation
of p-code is also syntax directed. P-code is
relocatable and portable, and its interpreter
can be easily implemented on most micro¬
computers.

There are several features that are unique
to our compiler project. First, the bootstrap
compiler was written In BASIC (North Star
disk BASIC). Although BASIC is not an ap¬
propriate language for compiler writing, it is
the only high level language available in our
system. Its ability to perform recursive func¬
tion calls proved essential in simplifying the
implementation of the compiler. Secondly,
instead of writing a p-code interpreter in
assembly language, a p-code to 8080 ma¬
chine code translator was written in BASIC.
The translated code can be expected to run
more than twice as fast as interpreting p-

codes. A p-code interpreter with debug facil¬
ities was also written (in Pascal). It can be

used to debug p-code programs. Thirdly,
minor extensions to the subset language
were implemented. Absolute addressing of
memory locations and machine language in¬
terface are desirable features for microcom¬
puter systems. The availability of hexadeci¬
mal constants and 10 conversions provides
much user convenience.

Presently, the bootstrap compiler is very
slow. It compiles at the rate of about eight
lines per minute for a very dense Pascal pro¬
gram (using North Star BASIC with a 2 MHz
080 processor). With some refinement in

me compiler and run time routines, the

Pascal version of the compiler can be ex¬
pected to run 25 times faster, or approxi¬
mately 200 lines per minute.

Completion of the bootstrap compiler is
only a milestone in our compiler project.
There are many tasks still to be done.
Logically the next step is to write the trans¬
lator and then the p-compiler in the Pascal
subset and compile them using the BASIC
version of the compiler. Since the com¬
piler source and p-codes are big, there
may be a minor problem in memory man¬
agement. It may be necessary to write the
p-codes onto disk to save memory. After
these two programs have been debugged, any
further development can be done in Pascal
without the BASIC interpreter. It would be
quite interesting to have the compiler (in
object code) compile itself (in source code)
and use the output object code to compile
itself again. After each compilation, the ob-
iect code could be compared with the previ¬
ous one to provide a means of verification.

More Pascal features or extensions can
be implemented one step at a time. They
may include character type and pointer type
variables, disk 10 capabilities, floating point
arithmetic, multidimensional arrays and
built-in functions. It is also necessary to im¬
prove the error diagnosis and recovery
scheme of the compiler. Further develop¬
ment should be aimed at user convenience.
A dynamic debugging package that can dis¬
play and alter the values of variables as
specified by name at runtime would be
desirable. Ultimately, we hope to see a
Pascal system that is as convenient and easy
to use as an interactive BASIC system."

The Pascal run time routines and the
p-code to 8080 conversion program are
listed in Appendix A, beginning on page
203.. .BWL

'Tiny" Pascal in 8080

Assembly Language

Dr. B. Gregory Louis

The p-code interpreter, Pascal to
p-code compiler, and p-code to 8080
code translator described by Chung and

Yuen in the September through
November 1978 issues of BYTE
magazine have been rewritten in 8080
assembly language. In addition to pro¬
viding approximately two orders of

magnitude increase in speed, the object
versions run in far less memory. It is
quite feasible to write and run “tiny*’
Pascal programs in a system havng 12 K
bytes of programmable memory with
these 8080 object code modules. The
Pascal to p-code compiler occupies just
under 8 K bytes of memory, while the
p-code interpreter needs just under 4 K
bytes including run time routines.

The articles by Chung and Yuen

are required reading for potential users
of this package. Not only do they
describe in detail what the package

supply documentation

'^'11 '^hich these assembly listings
be difficult, if not impossible to

understand or modify.

that these three

j- programs are essen-

hieh'^i compilations of the
and Y ^ programs written by Chung

reduroH^" I probably be

'"Written'w th P^^cent if
If tu- ^ such optimiza-

^evelonm^ Pascal
couM^p including text

read n i ^ a 12 K
only memory.

“Tiny” Pascal is a subset of the pro¬
gramming language Pascal. The book

Pascal User Manual and Report, by
Jensen and Wirth (Springer-Verlag, 1974)
contains the full definition of standard
Pascal. The present implementation is
restricted in that there are no data types
other than integer and array of integer,
and parameters are passed by value on¬
ly. However, there are several extensions
which have been made,

In READ and WRITE statements, for¬
mat control characters have been pro¬
vided. If the variable name is followed
by a numerical sign (#), the input or
output string is taken as a decimal
integer. If a percent sign (%) is used, the
input or output string is taken as hexa¬
decimal. If no format control character
follows a variable name or constant, a
single ASCII charcter is written or read.
In write statements, quoted strings of up
to 79 characters may be used.

In the body of a program, hexa¬
decimal constants are specified by
preceding them with a percent sign.

ASCII constants may be specified, but
only the first character of a quoted
string is used. Source code lines may not
exceed 63 characters exclusive of line
number.

The compiler can accept input from
the keyboard or from tape. If a line of
iriput begins with the character $, the
next five characters are taken as specify¬
ing the name of a file to be loaded from
tape. (Such files may be prepared with

Table 7; Common I/O routines which the user must supply.
Routines DEOUT, OSEQ, and MO VE are given in listing 5,

WHO
WH1
BLK1
DEOUT
OSEQ

MOVE

CRLF

CLEAR

get character from console to register A.
send character to console from register A.
send blank to console.

{or DEOUT1) display hexadecimal contents of DE.
send contents of memory to console,
stopping at the next carriage return.
The pointer Is the HL register pair and
the carriage return is not sent. Return
with the HL register pair pointing at
the carriage return,
copy memory from location pointed
by HL to a location pointed by DE,
incrementing all three register pairs
(BC, DE, HL) after each transfer.
Repeat until BC register pair contains
zero.
send a carriage return and line feed
to the console.
send hexadecimal FF to the console.

an editor.) The rest of the input line is
then ignored. If the file thus loaded does

not contain either the end of the pro¬
gram or another line beginning with $,

the compiler waits for further input from
the keyboard. This is signalled by the
appearance of a $ at the beginning of a
new line. If the user wishes to continue
input via the keyboard, the $ is erased
with the rub out key; otherwise another

file name is typed.
The words MEM and CALL are reserv¬

ed and provide the user with access to
memory. MEM is an array name that
refers to memory space. For example,
the statement MEM 0 ;= MEM 1 would
cause the contents of location 1 to be
written into location 0. CALL is a way of

transferring control to a machine
language subroutine. The form is

CALL(ADDRESS).
CASE statements may be concluded

with ELSE. In any instance of possible

ambiguity, ELSE is always taken as refer¬
ring to the most recent CASE or IF state¬

ment encountered.
In this implementation of “tiny”

Pascal, there are several changes with
respect to Chung and Yuen's version.

Comments in “tiny” Pascal source
code are begun and ended with right
braces instead of left and right braces so

it is teletypewriter compatible.
The single quote may be included in a

quoted string by the usual trick of

doubling, thus;

'This is how it's done'.

Hexadecimal constants may be one to

four characters long, and may be
preceded by a minus sign if desired.

To increase flexibility, single
character input is not echoed to the con¬

sole. Although this necessitates an
explicit WRITE statement in many ap¬
plications, it allows for character map¬
ping and for redefinition of control

characters.
The assembly source code for the

three modules is virtually devoid of
comments, since the high level source
already published is intended to act as
documentation. Accordingly, the labels

in the assembly language programs have
been chosen to key to the previously
published listings. However, reference is

made to several I/O and utility routines
external to the programs. These com¬
mon utilities are already available in
most systems. They must be provided by
the user, and they perform the functions

shown in table 1.
Addresses 5966 through 5A15 of the

compiler implement a file input from
mass storage. The contents of BOFP are
used as the load address for the file,
which is assumed to be in the form of a

SYS/6 [or Processor Technology SP-1, or
Poly 88) listing. That is, the file is broken
into lines consisting of a length byte, a 4
digit line number, a space, and the text,

ending With a carriage return.
Similarly, hexadecimal locations 6D7E

and the following are used to implement
the chain to the interpreter or translator.

One other thing to note in the com¬

piler is that if a file has been input and
the end of the file (length byte of 1) is
encountered before the program ends,
keyboard input resumes, but a $
keystroke is simulated. The code that

does this is in locations 5921 to 5928.
This code assumes a double buffered,
interrupt driven keyboard input routine;
for use with a polled keyboard, it would

need modification.
These programs are relocatable in

that all address calculations employ
three byte instructions. For the inter¬
preter, the move address space is hexa¬
decimal 5000 to 5ECF, and the block of
executable code to be scanned by the
relocator runs from hexadecimal 5529 to
5ECF. The compiler move address space

is hexadecimal 4F00 to 6DC5 and
executable code runs from hexadecimal

57BA to 6DC5. The translator runs from
hexadecimal 5A00 to 68FD with code
starting at hexadecimal 6130. ^he run
time routines occupy hexadecimal 69

on. In addition, there are two jump
instructions at the beginning of the inte

preter, four at the beginning of the co
piler, and one each at the start o
translator and run time routines
have to be changed on relocation.

A sample compilation in “tiny ^

appears in listing 1 [Appendix B, page

221). The program is a simple p-code

lister that displays p-codes a screenful

at a time until control X is typed. An

editor listing appears first, followed by

the p-code compilation and translation.

Then there is a dump of the resulting

source code, and finally a disassembly
listing.

Listings, 2, 3, 4, and 5 (pages 235 thru

286) are the run time routines, Pascal to

p-code compiler, and the p-code inter¬

preter. These programs are copyright

1979 by B Gregory Louis, Ph. D. They

may be used or copied for noncommer¬

cial purposes only. The author accepts

no liability for any damage resulting

from the use or malfunction of these

programs and no warranty express or

implied applies to any of this material,■

WADUZITDOi How to Write

a Language in 256 Words or Less

Larry Kheriaty

Every computer owner likes to show his

or her microcomputer to friends. The first
question the friends usually ask is, “What

does it do?" The software system presented
here demonstrates what a computer can do
in a manner simple enough for almost any¬
one to understand. Even if you have a larger,
more capable system, it is often worth¬
while to be able to demonstrate something
that can be accomplished on a smaller scale.
WADUZITDO is small enough to run on
almost any microcomputer yet it allows
even the novice user to make the computer
“do something.”

WADUZITDO is a complete high level
language processor that fits In less than
256 bytes on either a 6800 or 8080 based
system. The only other requirement is some
kind of terminal. The system includes a
text editor to allow a program to be entered
and modified, and an interpreter to exe¬
cute the program. The only external rou¬
tines needed are single character input and
single character output such as those pro¬
vided by most system monitors.

The object of WADUZITDO is to run
simple conversational programs. There are
just five statement types, roughly derived
from the PILOT language. To keep it small
only the most essential capabilities are
available. This also makes programming very
*^^sy. In fact, only a few minutes after my

unsuspecting spouse had asked, “What does
It do? \ she had written the interactive

oialogue program in listing 1 to help me
make out a list of acceptable birthday gifts!

Programming in WADUZITDO is straight-

uncomplicated. For example,
computer to display a line of

ment°Tu^^ terminal you use the type state-
mar following example shows the for-

statement.

T:WHAT could BE EASIER

than this?

The T is
^he operation code for type. A

colon always follows the operation code.
The text after the colon is displayed exactly
as shown.

The accept statement allows the program
to receive one input character from the
terminal keyboard. Normally it is used after
a type that asks for a response. For example:

T:CAN YOU TELL ME WHAT 2 + 3
EQUALS?

A:

The accept statement is just the A opera¬
tion code followed by a colon. When it is en¬
countered execution pauses until the user
keys in any single character. Then the input
character is saved internally for use in sub¬
sequent statements.

The match statement is used to test the
character entered by the user on the previ¬
ous accept. Match is coded as an M (the op¬
eration code), followed by a colon and one
character. The character in the statement is
compared to the last character entered by
the user. The result of the comparison is re¬
corded internally in the match flag: Y if the
match is equal, N if it is not equal.

Once set the match flag can be used to
conditionally execute or skip any subse¬
quent statement. This is done by placing
either a Y (yes) or N (no) immediately
before any operation code. If the Y or
N is the same as the match flag the state¬
ment is executed, otherwise it is skipped.
An elaboration of the previous example
illustrates the use of match.

T;WHATIS2 + 3?

A:

M:5

YT:FIVE, RIGHT.

NT:NO,THEANSW£RlS5.

Listing 1: WADUZITDO
program written by a non¬
computer person. Notice
the last iine of the pro¬
gram, the \:0 command.
This instruction will make
the program execution
jump back to the accept
statement to try another

input

IT IS BIRTHDAY LIST TIME .
THE PURPOSE OF THIS PROGRAM IS TO
DETERMINE WHAT GIFTS ARE ACCEPTABLE.
jypE THE CODE LETTER ASSOCIATED WITH
THE POTENTIAL GIFT IDEA...

A HOME APPLIANCE
B SOMETHING BORING
C ITEM OF CLOTHING
D SOMETHING DECORATIWE FOR THE HOUSE
C GARBAGE DISPOSAL
n MY OWN COMPUTER

M:A
YT:UNACCEPTABLE.
H:B
YT:N0 way.
M:C
YT:ACCEPTABLE IF NOT UGLY.
n:D
YTsOKAY IF CHOSEN WITH GOOD TASTE
ytsso as not to be tacky.
M:C
YT:YEAH !
M«M
YTsTHE last THING IN THE WORLD
ytsi would ever want.
NMSA

NM:6
NM:C
NM:D
NMJC
NT:CANT you READ FOOL» THAT IS NOT
NT SOME OF THE CHOICES.
NTiTRY AfDtCfDrC OR M
J:0

Listing 2: A NIM playing
program. This program
demonstrates the jumping
capability of the language.

TjLETS play NIM WITH 7 PEBBLES.
T:WE take turns TAKING \fZ OR 3.
tjthe last one to take one loses.
T:THERE are 7» HOW MANY ?

a:
M: 1
YJ{ 1
M: Z
YJ:2
M!3

YJ:6
T:Y0U can take ONLY l»2r OR 3.

♦T:THAT leaves 6r I TAKE 1 LEAVING 5.
T:H0H many ?
A!
M: 1
YJ:5
M:2
Y.J:4
MS3

YJ:3
T:Y0U must take OR 3.
j:0
*T:THAT LEAVES 5f 1 TAKE 1 LEAVING 4.
T:H0H many ?
a:
M: I
YJS3

M:Z
YJ:2
MJ3
YJ: 1
T:Y0U must take IrZ OR 3 ONLY .
JS0
♦T:THAT LEAVES THE LAST ONE.
T: I TAKE IT .,. YOU WIN.

•T:THAT LEAVES I TAKE I LEAVING 1.
j:3
»T!THAT leaves 3. I TAKE 2 LEAVING 1.

iliTHAT LEAVES 4. I TAKE 3 LEAVING 1.
*T:H0W many ?
a:
M: I
NTsYOU HAVE NO CHOICE BUT TO TAKE 1.
NT:H0W many ?
NJ:0
T;YOU JUST TOOK THE LAST ONE ... 1 WIN.
♦T:T0 play again PUSH THE DOLLAR SIGN.

S:

Normally statements are executed se¬

quentially. The jump statement is used to
alter the normal sequence. The format of the
jump statement is J, followed by a colon,
and a number from zero to nine. The state¬
ment J:0 causes a branch back to the last
accept statement executed. Execution
resumes from that statement. The J:0
statement can be used to allow the user to
reanswer a previous question. For example:

T:HOW MANY FEET IN A YARD?

A:

M:3

YTiRlGHT.

NTiWRONG STUPID, TRY AGAIN.

N|:0

The second form of the jump makes use of
program markers. A program marker is an
asterisk, *, preceding any statement. The

statement J:n, where n is a number from
1 to 9, causes a branch to the nth program
marker forward from ihejump. This form of
the jump is shown in the sample program in

listing 2 which plays NIM.
The last type of statement is stop. This

statement merely terminates execution of
the program and returns control to the pro¬
gram editor. The format of the stop state¬

ment is S;
To increase the versatility of the language

the S; statement can, at the user's option,
be made to call a user written machine
language subroutine from within the
WADUZITDO program. To do this requires
a one statement modification to the system
which is detailed below. If you choose to
make this modification you can consider
S: to be the operation code fox subroutine

rather than stop. The format of the sub¬
routine statement is S:x where x is any
single character which serves as a parameter
to the user written program. The value x will
be stored in register A in both the 6800 and
8080 version. It can be used to select dif¬
ferent functions to be performed by the

program. .
During execution any statement whtcn

does not fit the syntax of one of the five
statement types is printed in its entirety^
then execution resumes normally with tn
next statement. Table 1 summarizes t

WADUZITDO instruction set.
When WADUZITDO is first entered con

trol is passed to the program editor wn

is used to enter or alter source
Also an internal program pointer, f
LOG, is automatically set to the beginning

98

the source area. As each statement is entered
on the keyboard the characters are stored
and the internal pointer advances. Typing
errors may be corrected by entering a
backspace and the correct character. To
reset the pointer to the start of the program
enter a backslash, \. To display the next line
of the program enter the mirror image of the
reset slash, /. To replace aline, display each

line up to but not including the one to be
replaced, then enter the new line. The new
line should be no longer than the line it
replaces. If it is longer, the next line of text
is also overwritten. End the replacement line

with a percent key rather than a carriage
return. The % causes null characters to be
stored as filler up to the start of the next
line. To begin execution of the program
enter a dollar sign, $. (The editing com¬
mands are summarized in table 2.)

If you already have a good text editor in
your system it may be used instead of
the one included. Each statement is variable
length, terminated by a carriage return
character. All other control characters
between statements are ignored.

Complete 6800 and 8080 assembly list¬
ings containing source and object code are
included to simplify implementation on

your system. The 6800 version in listing 3
uses the MIKBUG monitor; the 8080 version
in listing 4 uses the SOLOS/CUTER moni¬
tor. If you have one of these two system
monitors you need not modify the program
at all.

The entry point to the system is at loca¬
tion zero. Upon entry the stack pointer is
assumed set to address some scratchpad
memory area large enough to accommodate
a few levels of call. In MIKBUG or SOLOS/
CUTER, as with most system monitors, this
is handled automatically by the GO or
EXEC command. The 2 byte value stored in
LOC (hexadecimal 100) must point to the
place where the user program is to be
stored. In the assembly listings note that this
value is shown as hexadecimal 0106, the first
location not occupied by the system.

If you don’t have one of the above
monitors you must supply character input
3nd character output routines and change

references to IN and OUT to address
these routines. In the listings you will find
one reference to IN and one to OUT which

reo changed. If your terminal
quires a delay after each carriage return

characw/l^ number of null padding
the ^ oy a one byte modification to

®^tatement labeled PLF.

text special characters used by the

chan„:jT be easily

you° ke^T°''®

in the assembly listings the S:

STATEMENT FORMAT WHAT IT DOES

type Triext Display text on the terminal

accept A Input one character from the
terminal keyboard.

match M:x Compare x to last input character
and set match flag to Y if equal,
N if not equal.

lump J:n If n=0 jump to last accept.
If n®1 thru 9 jump to nth program
marker forward from the J.

stop S Terminate program and return to
text editor.

subroutine Six Call user machine language program
(requires modification).

conditionals
Y

May precede any operation code.
Execute only if match flag is Y.

N Execute only if match flag is N.

program marker • May precede any statement, serves
as a iump destination.

Table 1: Program instructions for the WADUZITDO language.

EDIT CHARACTER HEX MEANING

$ 24 Start execution.

5C Move edit pointer to program start.

/ 2F Display next line of program

% 25 Pad inserted line with nulls.

bs or 08 or 5F Backspace to correct typing error

cr OD End of statement

any other Character stored in program and
edit pointer advances.

Table 2: Editing characters used by the built-in text editor.

statement halts execution by branching to
the text editor. If you don’t modify this you

can treat it as asfop statement. To use it a^a
subroutine call you must modify the jMP
SUB Instruction to be a JSR or CALL
(depending on the system) to the appropri¬
ate address. Upon entry to the subroutine

the index register (6800) or HL register

pair (8080) contains the location of the
next program statement and should be saved
and restored before returning from the
subroutine. In the 8080 version the DE
register pair should also be saved. Register A

will contain the one character parameter, x,
of the S:x. Its use is totally up to the
subroutine.

The system has been organized so that
the six bytes of changeable data are iso¬
lated from the read only portion. This means
the rest of the 256 byte system could be

Text continued after listings on page 103

99

Il
ll

ll
ll

ll
ll

il
ll

ll
ll

ll
ll

ll
ll

ll
ll

ll
ll

Figure 1: Absolute loader format representation of the 6800 WADUZITDO program of listing 3.

0 0 0 0 0
0 0 0 0 0
0 12 3 4
0 0 0 0 0
0 0 0 0 0
0 13 4 6
0 9 2 A 2

0 0 0 0 0 0
0 0 0 0 0 1
5 6 7 8 9 0
0 0 0 0 0
0 0 0 0 0
7 9 A C D
B 3 C 5 E

00000000000
0000000000 1
01234567890

» WADUZITDO

« 6800 VERSION BY LARRY KHERIATY

9
ft MIKBUC SUBROUTINES USED

IN EQU $E1AC INPUT FROM KEYBOARD TO ACCA

OUT EQU »E1D1 OUTPUT FROM ACCA TO TERMINAL

ORC 90000

SUB EQU • 0000 USER SUBR START (CAN BE MODIFIED

ft ENTER SYSTEM AT LOCATION 0 WITH STACK POINTER PRESET

♦ TO SCRATCH PAD RAM ENOUGH FOR A FEW LEVELS OF CALL

0000 FE 0100 START LOX LOC SOURCE PROGRAM AREA START

0003 8D 45 EGET BSR JIN ACCEPT SOURCE CHAR

0005 81 5C CMP A iViSC \ ?

0007 27 F7 BEQ START YES» BACK UP TO PROGRAM START

0009 81 24 CMP A #»24 9 ?

000B 27 45 BEQ EXEC YES» CO EXECUTE THE PROGRAM

000D 31 08 CMP A 0908 BS '5

000P 26 03 BNE DIS NO

0011 09 DEX YES» BACK UP ONE IN SOURCE

0012 20 EF BRA ECET LOOP BACK

* PROCESS DISPLAY OF NEXT LINE

0014 81 2F DIS CMP A 092F / 9

0016 26 07 BNE PAD NO

0018 BD 00DS JSR PRT CO PRINT TO CR

001B SD 21 EPLF BSR PLF PRINT LINE FEED AND NULLS

001D 20 E4 BRA ECET LOOP

ft DO LINE REPLACEMENT- PAD TO END OF STMT WITH NULLS

001F 81 25 PAD CMP A #925 X ?

0021 26 12 BNE CHAR NO

0023 86 0D LDA A #90D CR

0025 dD 27 BSR JOUT PRINT IT

0027 86 0D LDA A #90D CR

0029 C6 40 LDA B #940 COUNT OF 64

002B A1 00 PADL CMP A 0rX AT CR YET ?

002D 27 06 BEQ ■CHAR tES QUIT PADDING

002F 6F 00 CLR 9ft PAD WITH NULL

0031 08 INX INCR LOC PTR

0032 5A DEC B DECREMENT SAFETY COUNTER

0033 26 F6 BNE PADL LOOP TILL CR OR 64 NULLS

* STORE ENTERED SOURCE

0035 A7 00 CHAR STA, A 0tX

0037 08 INX

0038 81 0D CMP A

003A 27 DF BEQ EPLF

003C 20 C5 BRA ECET
SUBROUTINE TO PRINT

CHAR IN PROGRAM

CHAR TO SOURCE LOC

MOVE LOC PTR UP ONE

IS IT A CR ?

YESr ECHO A LINE FEED

NOr GET ANOTHER CHAR
LINE FEED TO TERMINAL

003E C6 00 PLF LDA B #900 NUMBER OF NULLS TO PRINT

0040 4F PLFL CLR A NULL

0041 dD 0B BSR JOUT WRITE A NULL

0043 5A DEC B DECREMENT COUNTER

0044 ZA FA BPL PLFL LOOP TILL ENOUGH NULLS

0046 86 0A LDA A #«0A LINEFFEED

0048 20 t:i4 BRA JOUT

* NEXT FEW LINES MUST BE ALTERED IF YOU DONT U-Sl

004A BD El AC JIN JSR IN CALL CHAR INPUT ROUTINE

004D 39 RTS RETURN TO CALLER

004E BD ElDl JOUT JSR OUT CALL CHARACTER OUTPUT RU

0051 39 RTS RETURN TO CALLER

E MIKBUG

COME HERE TO BEGIN EXECUTION OF THE SOURCE PROGRAM

0055 09

0056 08

0057 A6

0059 81

005B ZF

005D 81

005F 27

0061 81

0063 26

0065 08

0066 B1

0069 27

006B 08

006C A6

0100 EXEC LDX LOC STARTING LOC OF PROGRAM

DEX LESS ONE

LOOP I INX ADR OF NEXT PCM BYTE

00 LOOP LDA A 0f X NEXT PGM BYTE

2A CMP A #92A ft CHAR ?

F9 BLE LOOP I YES(OR IGNOREABLE CONT Cl

♦
ft PROCESS r OR N FLAG TESTS

59 CMP A #959 Y ?

04 BEQ TFLG YES

4E CMP A #94E N ’

0F BNE XA BRANCH IF NOT A FLAG TES

*

TFLG INX STEP LOC OVER Y OR N

0105 CMP A FLC COMPARE TO CURRENT MATCH

EC BEQ LOOP ITS EQUAL SO EXECUTE THE

♦
ft ITS A FLAG FAILUREr SKIP OVER THE STMT

SKIP INX STEP LOC PTR

00 LDA A 0p X NEXT CHAR IN PCM

Listing 3: 6800 version of the WADUZITDO language. A dump
BUG format of WADUZITDO (shown in listing 3a, page 102) can be ^
manual entry of the program. This version was run locally at B YTE us/ y

SwTPCeSQO.

I

100

Figure 2: Absolute loader format representation of the 8080 WADUZITDO program of listing 4.

i06E 81 00 CMP A 880D TO END OF STMT ?
0070 26 F9 BNE SKIP NOT YET. SO LOOP
0072 20 E2 BRA LOOPI AT NEXT STMT. j30 DO IT

* PROCESS ACCEPT STATEMENT
0074 81 41 XA CMP A 0841 A ?
0076 26 11 BNE XM NO
0076 FF 0102 STX LST YES. SAVE LOC OF LAST ACCEPT
007B 8D CD BSR JIN ACCEPT ONE CHAR FROM KYBD
0070 B7 0104 STA A CHR SAVE IT
0060 • 8 INX MOVE OVER A
0081 86 00 PCR LDA A 080D CR
0083 80 C9 BSR JOUT PRINT IT
0085 8D B7 BSR PLF PRINT LINE FEED
0087 20 CD BRA LOOPI STEP OVER > AND GO ON

• PROCESS MATCH STMT

0089 81 4D XM CMP A 084D M ?
0088 26 12 BNE XJ NO

008D 08 INX STEP OVER M

008E 08 INX STEP OVER !

008F A6 00 LDA A 0.x GET MATCH CHAR

0091 C6 59 LDA D 0859 ASSUME Y

0093 B1 0104 CMP A CHR COMP MATCH CHAR TO INPUT CHAR

0096 27 02 BEQ MX BRANCH IF IT MATCHES.FLC*Y

0098 C6 4E LDA D 084E RESULT IS N

009A F7 0105 MX STA B FLC SET MATCH FLAG TO Y OR N

009D 20 B7 BRA LOOPI STEP OVER MATCH CHAR AND CO ON

• PROCESS . JUMP STATEMENT

009F 81 4A XJ CMP A 084A J ?

00A1 26 17 BNE XS NO

00A3 E6 02 LDA B 2. X DESTINATION

00A5 C4 0F
00A7 26 05

00A9 FE 0U

00AC 20 A?

AND B
BNE JF

LDX LST

BRA LOOP

CLEAR ZONE
ITS A JUMP FORWARD

ZERO.. JUMP BACK TO LAST ACCEPT

CONTINUE FROM THERE

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1
0 1 2 3 4 5 6 7 8 9 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 3 4 6 7 9 A c D F
0 9 2 B 3 B 4 C 4 D 6

00AE 08

00AF A6 00
00B1 81 2A

0083 26 F9

00B5 5A

26 F6

JF

00Q8 20 9C

SKIP FORWARD UNT

INK

LDA
CMP

BNE

DEC

BNE

BRA

0r X

||<>ZA
JF

JF
LOOPI

IL PASS N *-MARKERS (N IS IN ACCB)
STEP PGM LOC

NEXT CHAR

•-MARKER ’
NO. KEEP LOOPING

FOUND ONE. COUNT IT

LOOP IF NEED TO FIND MORE

DESTINATION FOUNDr GO EXECUTE

PROCESS STOP OR SUBROUTINE STATEMENT

00BA 61 53

00BC 26 0A

00DE 08
00BF 06

00C0 A6 00
00CZ 06

00C3 7E

00C6 20 8F

XS §%53

XT

CMP

BNE

INX

INX

LDA A 0.x
INX

NEXT STMT MAY BE

JMP SUB

BRA LOOP

NO
STEP OVER S

STEP OVER :

PARAMETER TO REG A

STEP OVER PARAMETER

MADE TO BE A JSR TO USER SUBR

CO TO USER SUBR (OR TO EDITOR)

CO ON UPON RETURN FROM USER SUBR

PROCESS TYPE STATMENT AND SYNTAX ERRORS
81 54 XT CMP A 0854 T ?
26 02 BNE TE NO. ITS AN ERROR
08 INX YES. STEP OVER T
08 INX STEP OVER 1
80 05 TE BSR PRT PRINT UP TO CR
BD 003E JSR PLF PRINT LNE FEED
20 82 BRA LOOP DONE WITH T

®0D5 C6 40
00D7 A6 00

5A

•0OA 27 0A

®*DC BD 0e4E
®«DF A6 00
0eEi 06

81 0D
80E4 24 FI
ME6 3<?

SUBR TO PRINT UP TO NEXT CR
PRT

PRTA

PRTB

LDA B
LDA

DEC

BEQ

JSR

LDA

INX

CMP

BNE

RTS

||I«40

0. X

PRTB

JOUT

0. X

#«0D

PRTA

COUNT OF 64

NEXT CHAR

DECREMENT SAFETY COUNTER

EXIT IF OVER 64 TILL CR

PRINT IT

RELOAD CHAR TO ACCA

STEP LOC PTR

CR ?

NOT CR. LOOP

DONE. RETURN

ABOVE IS END OF READ ONLY PORTION OF THE PROGRAM

THE FOLLOWING IS CHANGEABLE DATA

8100
8102

8104
8105

0106

80

LOC

lst
CHR

FLC

QRC

FDB

FDB
FCB

FCB

END

0100 MOVE TO START OF DATA AREA

00106 ADDR OF SOURCE PROGRAM AREA

0 PLACE TO SAVE LOC OF LAST As

0 PLACE TO SAVE LAST INPUT CHAR

0 PLACE TO SAVE MATCH FLAG 000000000000
0000000000 1 1
012345678901

101

Listing 4: 8080 version of the WADUZITDO language. A hexadecimal dump
(shown in listing 4a) is provided for manual entry. This version was run local¬

ly at B YTE using a SOL-20.

WADU2ITDU

8^80 VERSION BY LARRY KHERIATY

FE 50

CA

FE 24

000D CA 5200

0010 FE 5F

0012 C2 1900

0015 2B

0016 C3 0300

0019 FE 2F

001B CZ 2400

001E CD DF00

0021 C3

0024 FE 25

0026 02 3C00

0029 06 0D

002B 78
002C CD 4D00

002F 0E 40

0031 BE

0032 CA 3C00

0035 36 00

0037 23

0038 0D

0039 C2 3100

SOLOS/CUTER SUBROUTINES USED
INPUT FROM KEYBOARD TO A-REC
OUTPUT FROM E-REC TO TERMINAL

USER SUBR START (CAN BE MODIFIED)

nON 0 WITH STACK POINTER PRESET

40UCH FOR A FEW LEVELS OF CALL

SOURCE PROGRAM AREA START

ACCEPT SOURCE CHAR

\ ?
YESr BACK UP TO PROGRAM START

YESr CO EXECUTE THE PROGRAM

BS ?

NO
YES* BACK UP ONE IN SOURCE

LOOP BACK

/ ’

NO
GO PRINT TO CR

LOOP

PAD TO END OF STMT WITH NULLS

’A ?

NO

CR

CR TO
PRINT
COUNT

AT CR

YES QUIT

PAD WITH

IN EQIJ 0C01FH

OUT EQU 0i:0i9H

«

ORC 0000H

SUB EQU 0000H

* ENTER SYSTEM AT LOC

* TO SCRATCH PAD RAM

*

START LHLD LOC

ECET CALL JIN

CPI 5CH

JZ START

«

CPI 24H

JZ EXEC

•

CPI 5FH

JNZ DIS

DCX H

JMP ECET

*
* PROCESS DISPLAY OF

DI5 CPI 2FH

JNZ PAD

CALL PRT

JMP ECET

HI

* DO LINE REPLACEMEN

PAD CPI 25H

JNZ CHAR

MV I Bt0DH

MOV A*B

CALL JOUT

MV I C*40H

PADL CMP M

JZ CHAR

MVI M*00H

INX H

DCR C

JNZ PADL

A ALSO

IT

OF 64

YET ’

PADDING

NULL

INCR LOC PTR
DECREMENT SAFETY COUNTER

LOOP TILL CR OR 64 NULLS

STORE ENTERED SOURCE CHAR IN PROGRAM

003C 77 CHAR MOV MrA CHAR TO SOURCE LOC

003D 23 INX H MOVE LOC PTR UP ONE

003E FE 0D CPI ODH IS IT A CR ?

0040 CC F000 CZ PLF YES* ECHO A LINE FEED

0043 C3 0300 JMP ECET NOi GET ANOTHER CHAR

t CHANCE NEXT FEW LINES IF YOU DONT USE SOLOS/CUTER

0046 CD 1FC0 JIN CALL IN CALL CHAR INPUT ROUTINE

0049 CA 4600 JZ JIN TRY AGAIN IF NO CHAR YET THERE

004C 47 MOV B.A PREPARE TO ECHO THE CHAR

004D CD 19C0 JOUT CALL OUT CALL CHARACTER OUTPUT ROUTINE

0050 78 MOV AfB RESTORE JIN CHAR TO A

0051 C9 RET RETURN TO CALLER

« COME HERE TO Bf.GIN EXECUTION Of- THE '^.UIJBCE PhuCiHBM

0052 2A 0001

*

EXEC LHLD LOC STARTING LuC UF FRuoRAM

0055 ZB DCX H LESS ONE

0056 23 LOOP I INX H ADR OF NEXT RCM BYTE

0057 7E LOOP MOV A.M NEX1 PCM BYTE

0058 FE 2B CPI 2BH HI CHAR ’ (NOT E ZEH I' * ' * 1 '

005A FA 5600 JM LOOPl YF.S(OP ICNOREAELE CONT CHAR'

HI PRQC ESS Y OR N FLAG TESTS

005D FE 59 CPI 59H Y

005F CA 6700 JZ TFLG YES

0062 FE 4E CPI 4EH N ?

0064 C2 7600 JNZ XA BRANCH IF NOT A FLAb 1 ET

0067 23

HI

TFLG INX H STEP LOC OVER T OR N

0068 BA CMP D COMPARE TO CURRENT MATCH FLAG

0069 CA 5700 JZ LOOP ITS EQUAL SO EXECUTE THE STMT

* ITS A FLAG FAILURE. ■ SKIP OVER THE STMT

006C 23 SKIP INX H STEP LOC PTR

006D 7E MOV ArM NEXT CHAR IN PCM

006E FE 0D CPI 0DH TO END OF STMT >

0070 C2 6C00 JNZ SKIP NOT YET. SO LOOP

0073 C3 5600 JMP LOOPl AT NEXT STMT. GO DO IT

PROCESS ACCEPT STATEMENT

0076 FE 41 XA CPI 41H A ^

0078 C2 dE00 JNZ XM NO

SI 130000FE0100RD45R15C27F7S1P4P7 4SR10RP6 60

SI I 3001 00 30 920EF8 I 2F26079D00D5RD2 1 20E4'3 11 F

SI I 3002025261 2860DRD27R60DC640A 1 0027066®'52

SI I30030000R5A2 6F6A70008810D27DF20CSC60050

•SI 1 300404F8D0B5A2AFAR 60A200 48DE1 AC3 9RDE1 72
SI 130050D13 9FE01000908A600R12A2FF9R159270R

SI 130060048 I4E2 60F0RB1010527EC0RA600810D76

SI\3007026F920E2R1412611rF01028OCDR701044A
SI 13008008H60DRDC98DS720CD814D2612080RA6RF

SI 13009000C6S9B101042702C64EF7010520B78IF5

SI I300A04A26I7E602C40F260 5FE010220A908A667

SI I300B000812A26F95A26F6209C8153260A0fl0R2C
51 I300C0A600087E0000208F815426020808800592

SI 1300O09D003E20R2C640A600 5A2 70ABD004EA69 7

SI0A00E00008810D26F1392F

Listing 3a: MfKBUG format for the 6800

version of WADUZITDO.

00002A0001CD4600FE5CCA0000FE24CA5200

0010FE5FC2190020C30300FE2FC22400CDDF

002000C30300rE25C23C00060D7RCD4D000E

003040BECA3C003600230DC231007723FE0D

0040CCF000C30300CD1FC0CA460047CDI9C0
005078C92A00012B237EFE2BFA5600FE59CA

00606700FE4EC2760023BACA5700237EFE0D

0070C26C00C35600FE41C28E00220201CD46
00R000SF23060DCD4D00CDF000C35600FE4n

0090C2A10023237E1659B0CA9E00164EC356
00A000FE4AC2C30023237EE60F47C2B5002A

00B00201C35700237EFE2AC2B50005C2B500

00C0C35600FE53C2D20023237E23C30000C3

00O05700FE54C2D9002323CDDF00C357000E

00E040460DCAF000CD4D007E23FE0DC2E100

00F00E000600CD4D000DF2F200060AC34D00

0100060100000000

Listing 4a: Dump of the 8080 version of
WADUZITDO. The format consists of 4
character hexadecimal address and 16 hexa-
decimally coded bytes of information. There
is no checksum computed for any of the

information.

PAPERBYTE® Bar Codes for
WADUZITDO

In figure 1 and figure 2, we provide
a PAPERBYTE® bar code represen¬
tation for the WADUZITDO programs
of listing 3 and listing 4. These bar
code representations were created in
the absolute loader format docU'
mented in detail in the PAPERBYTE
book, Bar Code Loader, written by
Ken Budnick of Micro-Scan Asso¬
ciates, and available for $2 at focal
computer stores or by mail (add
postage and handling) from
Books, 70 Main St, Peterborough,

NH 03458.

102

Text continued from page 99 Listing 4, continued:

placed in read only memory. Ii would fit
in a single 1702A EROM chip.

It is easy to see how this language could
be used to write a question and answer con¬
versation using multiple choice or true,
false answers. It may not be so obvious that
more complex logic is possible. The example
in listing 2 is a computer versus user NIM
game which demonstrates a way this can
be done.

Although WADUZITDO is not the

ultimate answer to personal computing, it
is something that almost anyone can have
some fun with, and it definitely squeezes the

most out of 256 bytes of memory.

A Pascal WADUZITDO

Notes by Ray Cote

Program by Larry Kheriaty

Along with the assembly language ver¬
sions of WADUZITDO, Larry Kheriaty sent
us the Pascal version shown in listing 5. The
program is basically self-documenting and
very easy to translate into assembly level
programs for any particular processor. The
program is indented to show logical relation¬
ships between related areas of text. This is

sometimes known as prettyprinting.
The first four lines of the program are

definition lines for the main program. In
Pascal, all variables must be defined com¬
pletely at the start of the section in which

they are used. ‘^Completely "means name and
data type. This is a great help since all var¬
iables must be explicitly defined. You can
easily check to see what type of variable is
being used.

WADUZITDO uses two types of var¬
iables: integer and character. There is also
0 definition for constants (CONST). CONST
informs the compiler that the value being
^^Yigned to this variable will not change,
nteger variables will only take on whole

f^umber values.

The type character (CHAR) means that

^be values of
bers: including all letters, num-

spec/o/ symbols.

fine^ 1 definition section de-
^^rs PfiOG as an array of charac-
otive h ^^bhition also states that the rel-
°nd address of the array will be unity

start variables we are ready
Qram, /« executable part of the pro-

the logical parts of the pro-

007B ZZ 0201 SHLD LST YESr SAVE LOC OF LAST ACCEPT
007E CD 4600 CALL JIN ACCEPT ONE CHAR FROM KYBD
0081 5F MOV EtA SAVE IT
008Z Z3 INX H MOVE OVER A
0083 06 0D MVI B r 0DH CR
0065 CD 4D00 CALL JOUT PRINT IT
0088 CD F000 CALL PLF PRINT LINE FEED
00dB C3 5600

•
JMP LOOP I STEP OVER ! AND CO ON

* PROCESS MATCH STMT
008E FE 4D XM CPI 4DH M ?
0090 C2 A100 JNZ XJ NO
0093 23 INX H STEP OVER H
0094 23 INX H STEP OVER ;
0095 7E MOV AtM GET MATCH CHAR
0096 16 59 MVI D.59H ASSUME r
0098 BB CMP E COMP MATCH CHAR TO INPUT CHAR
0099 CA 9E00 •JZ MX BRANCH IF IT MATCHES»FLG=Y
009C 16 4E MVI D>4EH RESULT IS N
009E C3 5600 MX

*
JMP LOOPI SET MATCH FLAG TO Y OR N

«- PROCE-SS JUMP STATEMENT
00A1 FE 4A X-J CPI 4AH J ?
00A3 C2 C:300 JNZ XS NO
00A6 23 INX H STEP OVER J
00A7 23 INX H STEP OVER :
00Ad 7E MOV ArM DESTINATION
00A9 E6 0F ANI 0FH CLEAR ZONE
00AB 47 MOV Bf A NUMBER OF *S TO SKIP
00AC C2 B500 JNZ JF ITS A JUMP FORWARD
00AF 2A 0201 LHLD LST ZERO.. JUMP BACK TO LAST ACCEPT
00BZ C3 5700 JMP LOOP CONTINUE FROM THERE

« SKIP FORWARD UNTIL PASS N *-MARKERS (N IS IN BREC)
00B5 23 JF INX H STEP PGM LOC
00B6 7E MOV A . M NEXT CHAR
00B7 FE ZA TP I ZAH ^-MARKER =’
00E9 C Z 0500 JNZ JF N0» KEEP LOOPING
00BC 05 DCR E FOUND ONEt COUNT IT
00BD CZ B500 JNZ JF LOOP IF NEED TO FIND MORE
00C0 C 2 5600 JMP LOOP I DESTINATION FOUNDr GO EXECUTE

PRuCE^S STOP OR SUBROUTINE STATEMENT
00L 3 FE 53 X5 CP I 53H S ’
000 5 C2 DZ00 JNI XT NO
00C8 Z3 INX H STEP OVER
0009 23 INX H STEP OVER :
00i:a 7E MOV A f M PARAMETER TO REC A
00CB : 3 INX H STEP OVER PARAMETER

* NEXT STMT MAY BE MADE TO BE A CALL TO USI
0 0 C II r 0000 JMP ••SUB CO TO USER SUBR (OR
00CF C 3 5700 JMP LOOP GO UN UPON RETURN FI :UBR

PROCESS TYPE STATMENT AND SYNTAX ERRORS
00D2 FE 54 X T CPI 54H T ’
00D4 L Z D900 JNZ TE NOi ITS AN ERROR
00D7 23 INX H YESf STEP OVER T
00Dd Z3 INX H STEP OVER J
00D9 CD DF00 TE CALL PRT PRINT UF TO CR
00DC C3 5700 JMP LOOP' DONE WITH T

* SUBR TO PRINT UP TO NEXT CR
00DF 0E 40 PRT MVI C f 40H COUNT OF 64
00E1 46 PRTA MOV B » M NEXT CHAR
00E2 0D DCR c DECREMENT SAFETY COUNTER
00E3 CA F000 JZ PLF EXIT IF OVER 64 BEFORE CR
00E6 CD 4D00 CALL JOUT PRINT IT
00E9 7E MOV A f n RELOAD CHAR TO ACCA
00EA 23 INX H STEP LOC PTR
00EB FE 0D CPI 0DH CR ?
00ED C2 E100 JNZ PRTA NOT CRr LOOP

lUBROUTINE TO PRINT LINE FEED AND PAD
00F0 0E 00 PLF MVI C f 00H NUMBER OF NULLS TO PRINT
00FZ 06 00 PLFL MVI B r 00H NULL
00F4 CD 4D00 CALL JOUT WRITE A NULL
00F7 0D DCR C DECREMENT COUNTER
00F8 F2 F200 JP PLFL LOOP TILL ENOUGH NULLS
00FB 06 0A MVI Bf0AH LINE FEED
00FD C3 4D00 JMP JOUT PRINT THEN RETURN

ABOVE IS END OF READ ONLY PORTION OF THE PROGRAM

THE FOLLOWING IS CHANGEABLE DATA

MOVE TO -START OF DATA AREA

ADDR OF SOURCE PROGRAM AREA

PLACE TO SAVE LOC OF LAST A:

iE ONLY FOR 6800 COMPATIBILITY

UNUSEDr LAST INPUT CHAR IN EREG

UNUSEDtMATCH-FLAC IN DREG

ORC 0100H
0100 0601 LOC DW 0106H
0102 0000 LST DW 0000H

* THE NEXT TWO BYTES
0104 00 CHR DB 00H
0105 00 FLG DB 00H

END

103

gram are broken into procedures, equivalent
to subroutines in languages such as FOR¬
TRAN. Every procedure is blocked off by
BEGIN and END statements. The name of

the first procedure is CHIN. After we have
determined the name, we are told to begin
executing procedure ACCEPT (which will

return to us input values in variable CBUF).
This is a subroutine which is not shown
since it is specific to the processor being
used. The next two procedures are also
calls to subroutines used to DISPLA Y the
contents of the buffer and move the output
to a new line. These two procedures are also
machine dependent. Notice that Pascal

allows you to use descriptive names. This is
very important when writing a program
that you want other people to read or that
you want to understand at a later date.

Listing 5: Pascal listing of WADUZITDO. See notes by Ray Cote.

PASCAL VERSION OF WADUZlTDOr LARRT KHERIATY

PROGRAM WADUZITDO?
CONST PZ*5000r BS=IZ7; EuL=l0?
VARLOC.LST.I » INTEGER? LCHR » FLO BUF ► C . l EOL

PROG : ARRAY!1..PZ] OF CHAR?

PROCEDURE CHIN? BEGIN ACCEPT (CBUFll END?
PROCEDURE CHOUTi BEGIN DISPLAY (CBIJF>» END*

PROCDURE NEWLINE? BEGIN DISPLAY (NL> ? END?

CHAR?

PROCEDURE LIST? VAR l:INTECER?

BEGIN I!= 0?
REPEAT

CBUF := PROG CLOCI? LOC := LOC+1? I:-I+l»

CHOUT
UNTIL {I;64> OR (CBUF=CEOL)? NEWLINE

END?

PROCEDURE EXECUTE? VAR DONE : BOOLEAN

< THEN CBUF

'A' r*'J'•'T'

5 5 • * * ?

'S' DTHEN LIST ELSE

BEGIN LOC s= 1? DONE s= FALSE?

REPEAT
CBUF s= PROCCLOC3 ? IF CBUF

IF NOTICBUF IN C • »Y’*'N'

CASE CBUF OF
' * ’ » LOC !* LOC+1?
'Y'.'N' s IF CBUF*FLC THEN LOC :• LOC+l

ELSE REPEAT CBUF i» PROCCLOCH LOC»=LOC+l

UNTIL CBUF-CEOL?

»A' * BEGIN LST J= LOC* CHIN? LCHR »»CBUFf

NEWLINE? LOC i*LOC+Z END!

»I1» » BEGIN IF LCHR=PR0CCL0C+2] THEN FLO

ELSE FLO «» 'N';

LOC !■ LOC+3 END?
I IF PR0C[L0C+-2] » ’0' THEN LOC > =LST

ELSE BEGIN I** ORD(PROGCLOC+2])-48i

REPEAT LOCi*LOC*l?
IF PROCCLOC3 ' then I :• 1-1?

UNTIL I»0 END?

'T' 5 BEGIN LOC LOC+2? LIST END*

'S' » BEGIN DONE TRUE? LOC I END

END

UNTIL DONE

END?

BEGIN CBS := CHRIBSW CEOL »= CHR(EOL)? CBUF

WHILE TRUE DO BEGIN
IF CBUF THEN LOC i*l
ELSE IF CBUF«CBS THEN LOC i- LOC-1

ELSE IF CBUF'V' THEN LIST

ELSE IF CBUF=*f' THEN EXECUTE

ELSE IF CBUFs'X’ THEN

BEGIN 11*0? ^
WHILE U<64) AND (PROCCLOCT <> CEOL) DO

BEGIN PROCCLOC] CHR(0)? LOC !■ LOC+l END?

PROCCLOCI «=• CEOL? LOC :» LOC +1? NEWLINE

END ^ . .
ELSE BEGIN PRuGlLOC] s= CBUF? LOC LOU+lr

IF CBUF"CEOL THEN NEWLINE END?

CHIN

END

END.

The next procedure, LIST, first defines
its own focal variables, which it will use
only within the LIST routine. As before, the
procedure is delimited by BEGIN and END
statements. This procedure introduces us to
the concept of loops. Here we have a related
pair of commands: REPEAT and UNTIL.
These two commands cause the one line of
three instructions and the call to procedure
CHOUT to execute until either the value / is
greater than 64 or the variable CBUF is
equal to CFOL. Once either of these two
conditions occurs, the program logic pro¬
ceeds to call procedure NEWLINE. At this
point the LIST procedure ends and returns

to whatever procedure called it.
Procedure EXECUTE looks structurally

the same as procedure LIST. There is a def¬
inition of variables, the BEGIN and END
delimiters, and a REPEAT-UNTiL struc¬

ture. This time the REPEAT-UNT/L state¬
ment is not waiting for a relation to be
true, but is rather checking against one var¬
iable. Looking at how DONE was defined
at the beginning of the procedure, we see
that its designation is BOOLEAN. This
means that the variable Is being used as a
logical variable and can take on the value
true or false. The REPEAT-UNTIL instruc¬

tion waits to see if the variable DONE is
true. If so, we have finished this procedure

and can stop it
Procedure EXECUTE also contains an IF-

THEN-ELSE statement if the value of
CBUF is not contained within the brackets,

perform procedure LIST. If the value of
CBUF is somewhere within the square
brackets, we want to perform an operation

related to that value. We now come to
another Pascal instruction, the CASE state¬

ment
We are given a set of cases to choose

from. The CASE statement tells us that we
will be using the value in variable CBUF to
determine what is to be done. We scan down
each of the cases and find the one labeled
with the value in CBUF. Since CBUF is
type character we are looking at ASCII
characters. Once we find the value of CBUF
we execute the statements associated with it
that are blocked off by another set of
BEGIN and END statements. After vje

have finished, we move to the end of the
CASE statement and then the last Hoe o

REPEA T-UNTIL statement.
The next section of the program does not

look like the preceding sections. It does no
start with a PROCEDURE statement, bui

has a BEGIN statement. So far we ^
cussed procedures. Any of the
that needed to use variables have
their own. So why did we define those

tables at the very beginning of
The reason is not to use them in o P

cedute, but to use them in the main pro¬
gram. This BEGIN statement is nothing
more than the start of the mainline logic for
program WADUZITDO, The mainline logic
inputs characters and either stores them in
an array as program or executes them as
commands. This routine will not Jump out
of the loop and will have to be interrupted
to stop. Of course it is possible to create

another command that will allow you to
exit from this cycle.

Now that we have looked at the Pascal

version of WADUZITDO, the reader should

refer back to either of the assembly versions.
The Pascal version performs the same func¬
tion as the assembly versions.

The assembly language versions need to
be heavily commented for the reader to
understand what is happening. Even liberal
comments will not help when converting
from one assembly language to another.
The Pascal version can be easily converted
Into any machine language, it is also seif-
documenting. Notice that even without a

single comment, the Pascal fisting is extreme¬
ly easy to decipher. .,. RGAC"

Creating a Chess Player

Part 1: An Essay on Human
and Computer Chess Skill

Peter W Frey

Larry R Atkin

In a recent Time essay (see references)

Robert Jastrow, director of NASA’s Goddard
Institute for Space Studies, predicted that

history is about to witness the birth of a new
intelligence, a form superior to humanity’s.
The pitiful human brain has “a wiring de¬

fect” that causes it to “freeze up” when
faced with “several streams of information
simultaneously.” Jastrow suggests that “the
human form is not likely to be the standard
form for intelligent life” in the cosmos.
Even on our own small planet, a new day Is
near at hand: “In the 1990s, ...the com¬
pactness and reasoning power of an intelli-

'III LX.} 11 m gence built out of silicon will begi
that of the human brain.”

We have always been fascinated by
idea of a machine that is capable of ratic
thought. Jastrow is neither the first nor
l^st person who Is betting on rapid imprc
f^ents in machine intelligence. His expe
tion that computers will rival humar
whin 15 years seems optimistic to any
wo has watched half-a-dozen excited te
nicians flutter about for several hours tr>
to bring a crashed system back to life. 1

rophecy seems even more fanciful to th
wo have attempted to program machi

lran«?*^^ pattern recognition, langu

Th^^'T ^ t:omplex game such as ch
a DarH environment, in fact, provi

Probllm'! of the diffic
silicon ■ to be solved bef

th? oF""® a real
tccoeni7«H ^ Herbert Simor
'^^e'lieenrn field of artifii

t predicted that within a deca

the world’s chess champion would be a
computer. This prognostication has not
come to pass. Why was an informed scientist
like Simon so wrong in his assessment of
computer capabilities? A major factor is that
computer scientists have often failed to ap¬
preciate the level of knowledge which is
required to play master-level chess. They
have also commonly underestimated the

tremendous information-processing capacity
of the human brain. Even though chess is a
game of logic in which all legal moves can be
precisely specified and in which nothing is
left to chance, several centuries of intensive
analysis have not exhausted the perennial
challenge and novelty of the game. Psycholo¬
gists have been actively studying the human
brain for several decades and have discovered
a fascinating mystery wrapped within an
enigma. The more we learn about the brain,
the nnore we are aware of our lamentable
state of ignorance.

The Mind of the Chess Player

At a general level of knowledge, we have
several provocative insights on the nature and
structure of human chess skill. We know, for
example, that the skilled chess player does
not examine hundreds of possible continua¬
tions before selecting a move. We also know
that superior chess players are not formidable
“thinking machines” but in fact display a
normal range of intelligence scores. Strong
chess players, as a group, do not even appear
to have special retention abilities such as
having “photographic” memories. In most

Artwork by K N Lodding.

De Groot’s “law” of chess

is that Grandmasters play

better chess simply be¬

cause they pick better

moves.

respects, top-flight chess players have the
same intellectual -capacities as the rest of
the population and, in the technical details

of move selection, seem to engage in the
same type of information processing that is

observed in much weaker players.
Our knowledge In these matters is based

on the early work of Binet in France and

that of de Groot in Holland and on more
recent investigations by other scientists in

the USSR and the United States. In the late
nineteenth century, Binet was surprised
to discover that masters did not have a vivid
image of the board when playing blindfolded
chess. Instead, they seemed to remember
positions in abstract terms such as by specific
relations among pieces. Interviews with
masters clearly indicated that a photographic
memory was not a prerequisite for being
able to play many simultaneous games of
blindfolded chess. In the 1930s and 1940s,
de Groot worked with a number of strong
chess players (from Grandmasters to strong
club players) and had them verbalize their
thought processes while selecting a move in
a complicated position. His research indi¬
cated that the Grandmasters’ general ap¬
proach was highly similar to that of weaker
players. They analyzed a similar number of
moves (about four) from the initial position,
a similar number of total moves (about 35),
made a similar number of fresh starts (about
six), and calculated combinations to the
same maximal depth (about seven plies or
half-moves, where a move is defined as a

play by one side and a response by the

othet). The only clear measurable difference

was that the Grandmasters Invariably chose
the strongest move while the weaker players
did not. Thus de Groot concluded that
Grandmasters play better chess because they

pick better moves. Unfortunately, this con¬
clusion Is not very informative since it is
obviously circular. The fact that de Groot’s
extensive study did not uncover any promi¬
nent differences in the move-selection strate¬

gies used by strong and average players im¬
plies that the analysis procedure itself is not
the critical factor which determines chess

skill.
An important clue to the difference be¬

tween skilled and unskilled players was
discovered by de Groot when he displayed
an unfamiliar chess position to his subjects

for a few seconds and then asked them to
recall the position from memory. He found
that masters recalled almost all the pieces
while club players remembered only about
half of them. Recent work in this country
by Chase and Simon at Carncgie-Mellon

University has indicated that novice players

recall only about a third of the pieces-

Chase and Simon also added an
control procedure. They demonstrated t

the differences in recall ability

disappear if the pieces are
randomly. This outcome indicates tha
superior memory of the chess mastc

chess-specific and not a general trait.
Simon and Gilmartin have ^

skilled chess players learn to as
large number of piece combinatio

108

perceptual chunks and perform well in the
recall task because they remember four or
five chunks rather than four or five pieces
like the novice. If the average chunk size is

three to four, the skilled player will recall
16 to 18 pieces.

On the basis of this analysis, skill in chess
depends on a learned perceptual ability
which is highly similar to that acquired
by every schoolchild as he or she slowly
builds up a large repertoire of words.
Initially the child learns to read each word

character by character and often does not
understand the meaning of the word. The
novice chess player perceives the chess¬
board in a similar way, assessing a position
piece by piece and failing to recognize the
meaning of common piece configurations.
The adult reader recognizes words and
phrases as basic units (chunks) rather than
individual characters and has a recognition
vocabulary of approximately 50,000 words.

The skilled chess player, in a similar vein,
recognizes a very large number of piece

configurations (chunks) and understands
what they imply both individually and in
combination.

The critical aspect of move selection
occurs in the first few seconds of the task.
Based on his assessment of the position,
the skilled player immediately recognizes
appropriate long-term and short-term goals
and has a good feel for the specific moves
which are compatible with these goals. For
this reason, only two to four moves on the

average are given serious consideration. The
difference between the Grandmaster and
the expert lies in the fine distinctions which
are made in the first few seconds of their

analysis. Skilled chess players can play a
remarkably strong game when they are given
only five seconds for each move. In this
short time, it is not possible to make a
careful analysis of many different continua¬
tions. The player must have an “instinctive"
feel for the correct move and be able to

recognize key features and to understand
_ oth their immediate and long-term
’•T^plications.

Human chess skill, therefore, is based on
highly refined capacities, pattern

ecognition and rapid information retrieval.
^ e atter ability depends on the fact that

is content-addressable rather
n location-addressable like that of a

searc^h^ Computer systems often have to
f^emo ^ ^P^cific item of information in
linear ^ conducting an exhaustive,

ingiv ^^'^cver is organized in an amaz-
fashion such that most of us

a cnl ^ specific fact on the basis
^^amnlp novel retrieval cue. For

» flame a flower that rhymes with

nose. In this case, your quick response
demonstrates that words are grouped to¬
gether on the basis of their phonetic similar¬
ity (ie: sound). Your ability to quickly recall
words which are similar in meaning to the
word fat (such as obese, chubby, rotund,
flabby, plump and stout) demonstrates
that human memory is also organized by
semantic similarity (ie: meaning). When a
person is given a retrieval cue which does not
elicit an immediate response, he or she can
usually find the correct information after a
brief search of related ideas or concepts.
This facility contrasts sharply with the

extremely limited linear searches which are
generally conducted with large computer
based storage systems. Even sophisticated
computer retrieval strategies which arrange
the data base in multilinked lists with
elaborate tree structures presently lack
the large system efficiency displayed by
their biological counterparts.

Pattern recognition and rapid information
retrieval arc not only key capacities for
chess, but are also essential for a wide
range of important human problem solving
skills. Whether your field is medicine,
engineering, plumbing or computer program¬
ming, you would be a complete failure at
your job without these essential abilities.
Jastrow’s claim that machine intelligence
will soon equal man’s intelligence seems to

overlook the important points made in

BYTE by Ernest Kent (see references). Kent
emphasizes the fact that biological infor¬
mation processors have a vastly different
architecture than their silicon Imitations.
In fact, he suggests that our lack of success
in building a thinking machine stems from
our attempts "to make a wrench do a

screwdriver’s job." Our modern high-speed
computers were designed to do important
tasks which men are not very good at,
such as complex mathematical calcu¬
lations.

The human brain evolved, in contrast,
on its ability to identify important environ¬

mental events and to quickly recognize their
significance. Natural selection has never
placed much emphasis on our ability to
multiply or our ability to compute the

inverse of a matrix. Kent also reminds us
that organic evolution worked with a very
different kind of hardware than that which
is available to the modern computer

engineer. Biological information processors
have an incredibly slow cycle time, less than
100 operations per second. The basic unit,
the neuron, operates in milliseconds
rather than in nanoseconds. The brain,
however, makes up in quantity and in
structural complexity what it lacks in
speed. Computers, on the other hand, have
many fewer components and a much simpler

gating architecture, but are orders of mag¬

nitude faster.
It may be that present machine hardware

configurations are simply inappropriate for
efficient pattern recognition or semantic

recall. An analysis of the history of com¬
puter chess is instructive. Although there
have been numerous advocates for chess

The superior memory of programs which imitate human playing

the chess master is chess- methods, only a few have been attempted,

specific and not a general rione of these have played reasonable

chess. The earliest paper on machine chess,

written by Claude Shannon in 1950 (see
references), proposed a mechanical algo¬

rithm which was not modeled on human
chess play. Shannon suggested a workable
procedure for representing the board and
piece locations, specified simple mathe¬
matical algorithms for generating the legal
moves of each piece and gave an example of
a straightforward technique for evaluating
a position (see Chess Skiff in Man and
Machine, chapter 3). The key feature of
Shannon's proposal was the adoption of the
minimax technique as described by von
Neuman and IVIorgenstern in 1944. The basic
idea of the minimax technique is to assume

that the player whose turn it is to play will
always choose the move which minimizes
his opponent's maximum potential gain.

Hence, the name minimax.

The Type B Strategy

One of the difficulties of this approach is

that a complete analysis of all possible
continuations (type A strategy) very rapidly
leads to an overwhelming number of poten¬
tial positions. The look-ahead tree grows at
an exponential rate and with an average,

according to de Groot, of 38 legal moves at
each position, a search involving three
moves (three half-moves for each player)
produces over 3 billion (38^) terminal
positions. You may recall that de Grool’s
research indicated that human players
regularly searched a tree to seven plies and
sometimes much deeper. Because of this,
Shannon concluded that it would not be
possible for the machine to consider all
possible legal continuations at each node
of the game tree. Instead, he proposed a
type B strategy in which only reasonable
(ie; plausible) moves arc pursued at each
branching point. If the program considered
only five continuations at each node in¬
stead of alt 38, a 6 ply look-ahead would
involve only 15,625 (5^) terminal positions.

The attractiveness of the type B approach
seems overwhelming when the number of
terminal positions increases exponentially

with depth. The fact that skilled human
players explore only a limited number of
continuations at each choice point is addi¬
tional evidence which favors the adoption
of this strategy. It is not surprising, there¬
fore, that most programmers have used
Shannon's type B strategy in designing a

chess program.
Sometimes our understanding of the real

world, however, is not always as accurate
as we presume. In selecting a type B

strategy in preference to a type A strategy,

the programmer does not necessarily sim¬
plify the problem. This approach was
competently implemented in 1967 by
Greenblatt at MIT. His program played

reasonable, and at that time, fairly impres¬
sive chess. The major design problem in a
selective search is the possibility that the
look-ahead process will exclude a key move
at a low level in the game tree. The failure
to consider an important move can lead
to a very serious miscalculation. A chess
game can be lost by a single weak move.
For this reason, it is of critical importance

that a necessary move not be missed. The
type B programs place a critical dependence
on the accuracy of their plausible move
generator. Chess is an extremely complex
game and in many situations a move which

at a superficial level seems unlikely, is,
fact, the best one. Grandmasters fino
these moves while lesser players, including

machines, fail to see them. For a dcca e,

several dozen individuals have tried
create a plausible move generator that
superior to Greenblatt’s. The evidence

fairly clear, however, that type B progra

have improved very little since 1967.

As strange as it may seem,
gress in computer chess has come by ^
doning the type B strategy. ^ 5han ^^^„

logical analysis was made in a "stont

no

hardware environment and without know¬
ledge of several important algorithms.
Today, the type A strategy is not as ridic¬
ulous as it seemed in 1950. In addition,
very few individuals anticipated the immense
difficulty involved in constructing a com¬
petent plausible move generator. To become
a chess master, a man has to study chess
intensively (20 hrs or more a week) for at
least 5 years. During this time he acquires an
immense amount of detailed knowledge
about the game of chess. Subtle features of
a particular position are recognized immedi¬
ately and suggest both short-term and long¬
term goals as well as specific moves. This
kind of knowledge is sufficiently abstract
that most players find it impossible to
verbalize the relevant thought processes.
The one factor which stands out clearly,
however, is that the chess master has

acquired a tremendous library of factual
information which can be retrieved quickly

and applied in apparently novel situations.
No chess program has been able to duplicate
this facility and, without it, the creation of

a workable plausible move generator is next
to impossible.

When a type A strategy is employed,
however, this problem can be bypassed. By
making all the moves plausible, the program
never overlooks a subtle but important one.
In fact, by reverting to a brute force search

of all possible continuations, the program

often finds interesting combinations that are
commonly missed even by strong human
players. It seems ironic that the brute force
approach (full width searching) produces
many more brilliant moves than the smart
approach (selective searching). This Impor¬
tant discovery was made independently by
Slate and Atkin at Northwestern (the au¬
thors of the current world champion chess
program, Chess 4.6) and by the Russian
KAISSA team.

Minimax and the Alpha-Beta Algorithm

Slate and Atkin's work has demonstrated
^3t a full width search can be conducted

considerably more efficiently than anyone

™ previously suspected (including Slate
n Atkin; see references). There are a num-

developments which are
.^Ponsible for this reassessment. The most

discovery was made in the late

bv ^ Shaw and Simon as well

^nderlvin^^^*^- ^asic logic
sary lo ^ ^ f^‘nimax search, it is not neces-

before s entire look-ahead tree
simple move. Consider a

for V ^ move for you and
of opponent). First you examine

^oves and the 38 or so
5'tions which result from each

of your opponent’s legal replies. You select
the one reply which is best, according to
your evaluation function, for your opponent
(ie: the one which minimizes your own
maximum potential gain). Next, you con¬
sider a second move for yourself and the 38
or so replies that your opponent can make
to this move. In considering these moves,
you discover that the third reply you ex¬
amine would give your opponent a better
outcome than his best reply to your first
candidate. Immediately you realize that it
is a complete waste of time for you to ana¬
lyze any more of his replies to your second
candidate. Since you are already guaranteed
a worse position after the second move than
after the first, it is reasonable to reject the
second one and turn to your third candidate.
This decision eliminates the need for eval¬
uating 35 of the potential replies to your
second candidate. A very tidy savings.

Historically, the score for the best move

so far for White has been designated as o: and
the score for the best move so far for Black
has been called (3. Thus the name alpha-beta
(o;-^) algorithm. When the tree is both wide
and deep, this algorithm can reduce the
number of terminal nodes to a small fraction
of the number which would be examined by
a complete minimax search. The beauty of
this procedure is that it always produces the
same result as the full minimax search.

An important factor in determining the
efficiency of the alpha-beta algorithm is the
order in which the moves are examined. If
White’s best moves and Black’s best replies

Figure 1: Portion of a game tree for the opening game in chess. Square nodes
indicate that White is to play; round nodes that Black is to play. Techniques
such as alpha-beta pruning and minimax strategy are used to optimize the use
of trees like this.

in

are considered firsi at each choice point, the
search of the uniform game tree of height h
(number of plies deep) and width d (number
of successors at each node) will involve ap¬
proximately 2-d'^/- terminal positions in¬
stead of d^ (see references, Knuth and
Moore). The potential magnitude of this
saving can be appreciated by considering
our previous example with a 6 ply search:

38® is more than 3 billion while 2 X 38 is
about 110,000. Shannon might have given
more consideration to the type A strategy if

he had been aware of the alpha-beU algo¬
rithm and some of the other technical im¬

provements which were to follow.

General Strategy

To maximize the benefit of the alpha-

beta procedure, it is necessary to devise an
efficient strategy for generating the moves
at each node in an order which is likely to
produce a cut-off, such that searching
can be terminated at that node. There arc
several general heuristics which have proven
their value time and time again. One is
extremely simple and powerful: try captur¬
ing moves first. Because a full width search
includes many ridiculous moves, a reply
which involves a capture will often remove
a piece which was "stupidly” placed pme

(ie: attacked and insufficiently defended).

Captures also have the beneficial effect of
reducing the number of potential offspring.
An additional important characteristic of a

capturing move is that it will generally have
to be examined sooner or later in order to
insure the quiescence of the terminal posi¬
tion. Because of this, every capture that is
examined early generally reduces the
amount of work which will have to be done
later. In practice, investigators have re¬

ported a speed-up in search time of as much
as 2 to 1 by simply putting all the captures
at the beginning of the move list.

In addition to captures, there is another

class of moves which is also effective for
producing cut-offs. These are called killers
because they are moves which have pro¬
duced cut-offs in the immediate past and
have been specifically remembered for that
reason. A short list of killers is maintained
by the program and whenever the legal
capturing moves fail to produce a cul-otf,
each of the killers (i! legal in the given

position) is then examined. This killer
heuristic is quite elfective in producing a
move order which enhances the probability

of a quick cut-off.
The general features of the alpha-beta

algorithm and its important servants, the
capture and killer heuristics, were reason¬
ably well-known late in the 1960s. In recent
years, several important refinements have

been added to this list. One of the most
important is the staged or iterative alpha-
beta search. For example, instead of con¬

ducting a 5 ply search all at once the search
is done in stages, first a 2 ply search, then a
3 ply search, then a 4 ply search, and
finally a 5 ply search. Superficially this
might appear to be wasteful since the staged
search requires the full 5 ply search eventu¬

ally anyway. This is not at all the case. As
each search is completed, the principal
variation (best moves for each side at each

depth) is used as the base for the next (1 ply
deeper) search. The 3 ply search therefore
starts with a move at ply 1 and a reply at
ply 2 which has already been proven to be
reasonable (from the machine’s limited
perspective). The 4 ply search starts with
reasonable moves at its first three plies.
The 5 ply search has the benefit of reason¬
able moves at its first four plies. Because
the efficiency of the alpha-beta algorithm
is tremendously sensitive to move ordering,
the spill-over in information from one
iteration to the next has a surprisingly
powerful effect. A single 1 stage 5 ply
search might require 120 seconds of proces¬
sor time. The last segment of the staged
5 ply search might require only half as much
time (ie: 60). Since each iteration requires
about five times as much processor time
as its predecessor (the exponential char¬
acter of the look-ahead tree is diminished
somewhat by the alpha-beta algorithm), the

staged 4 ply search would take about 12
seconds, the staged 3 ply search about 3
seconds, and the 2 ply search about 1
second. The total time for the iterative
search would be approximately 76 seconds
(1 -I- 3 -r 12 + 60) rather than 120 seconds.

An added benefit of the iterative search,

and, incidentally, the reason for its discovery

in the first place, is that it provides a useful
mechanism for time control. In tourn¬
aments, a move must be calculated within
a fixed time limit such as 90 to 120 seconds.
If one decides to do a 5 ply search in a single

stage, it Is possible to find oneself tied up m
calculation after 120 seconds with no idea
of how much more time will be needed to
complete the search, and without a move to
make until the search is completed. In some
complex situations the search might take
long as 10 minutes - a disaster for tim

control. An iterative search allows one

predict the probable duration of j|.
iteration and to make a decision whet e

is cost effective to initiate the next
this decision is a go and the search,
reason, fails to terminate in the anticiP
time, the machine can abort ^nd piay^l^U
move selected by the last iteration.

provides relatively neat and tidy
trol. The iterative search was first men

by Scott in 1969 and was apparently dis¬
covered independently several years later
by Jim Giilogly at Carnegie-Mellon, by
Slate and Atkin at Northwestern and by the
Russian KAISSA team.

Refinements to the Type A Strategy

Several other refinements have also made
the type A strategy more manageable. One
of the time intensive activities involved in
tree searching is move generation. This can
be minimized by generating only one move
at a time and seeing if it produces a cut-off
before generating the next move. If a cut-off
occurs and the node is abandoned, one can
avoid generating a large number of potential
moves. With the n-best approach, it is cus¬
tomary to generate all moves at each node
and then invest time attempting to decide
which ones are worthy of further consider¬
ation. Thus the smaller tree, obtained by
selective searching, has to be partially paid
for by an additional time investment in
plausibility analysis.

Another time-intensive activity In the tree
search is the repeated use of the evaluation
function. Since many thousands of terminal
nodes have to be evaluated in each move
selection, any refinement that reduces the
work of the evaluation function will pay
rich dividends. There are three important

techniques which fall in this category. One
of these is called incremental updating. In
order to make an evaluation of a node, it is
necessary to have certain key facts available,
such as which squares are attacked by each
piece, which pieces are present, etc. This
information can be newly calculated at each
terminal node or can be incrementally
mainuined by updating the appropriate
tables as the tree is generated during the
search. This latter procedure is more com¬
plex to program but tremendously more
efficient in terms of computing time because
neighboring terminal positions are highly
sirnilar. They usually differ in respect to
®nly a single piece, and therefore the up¬
dating procedure requires about 10 percent
t the computations that would be ex-

rpTi ^1 evaluation data base were
^culated from scratch for each evaluation,

the refinement in this category is

uatinn^f organization in the eval-

^erit assess the relative

place h ^ position, most programs
ance emphasis on the material bal-

®ach sidel^ number of pieces for
‘^^a that • tradition is founded on the

'“Tclated rr u® strongly
l^aterial a ^!i . .ahead or behind in

^ rationale is that this
^Ptlated. readily available and easily

In most programs material factors are so
dominant that the other evaluation terms,
such as mobility, pawn structure, King
safety, area control, etc, taken together
almost never account for more than two
pawns. Because of this, it makes sense to
compute the material balance factor first
and then determine if the result is within
two pawns of the target value. If not, there
is no need to assess the other factors,
because the final decision will be independent
of their value.

This simple idea encourages one to organ¬
ize the evaluation function in strict serial
order such that influential (heavily weighted)
terms are analyzed first and the result ex¬
amined to see if a decision is possible based
on this initial information. If not, the next

113

most influential term(s) are examined and
another determination is made. This process
is repeated until an escape condition occurs
or until all terms have been examined. In
most cases, the evaluation will be terminated
long before the list of potential terms has
been exhausted. This technical refinement
can save a significant amount of time.

A third procedure for speeding the eval¬
uation process is to remember past evalua¬
tions. For instance, one should avoid re¬
assessing the same position two or more
times. In chess, there are many pathways by
which one can reach identical positions. In a

3 ply sequence in which the middle move
remains constant, for example, the first and
third moves can be interchanged and the

resulting position will be the same. Trans¬
positions such as this occur frequently in the
end game where the King may have literally
hundreds of 4 move pathways that end on
the same square. Rooks, Bishops and Queens
also have a special facility for reaching a
particular destination square in multiple

moves rather than in one or two.
A full width search (ie: type A strategy)

greatly accentuates this foolishness. By
creating a large table of past positions which
have been already evaluated, and using a
hashing procedure to check if the present
position is in the table, the programmer can
completely eliminate a portion of the eval¬

uation effort. In most middle game posi¬
tions, this technique will produce a 10 to 50

percent saving. In certain end game posi¬
tions, however, the transposition table can
eliminate more than 80 percent of the
evaluation effort. This idea seems to have
been implemented first by Greenblatt in

1967.
An extension of this idea is to use the

table to store likely moves as well as
evaluations. By remernbering a move which

previously produced a cut-off, the table can

facilitate move ordering decisions. In add¬
ition, the use of the same reply at a familiar
position may have the added benefit of
increasing the number of transpositions
which will be encountered at later nodes.
Additional details on the use of a trans¬

position table are discussed in chapter 4 of

Chess Skill in Man and Machine.
One of the most difficult challenges for a

chess program is the end game. A machine
which calculates a move for each position
has difficulty competing with humans who
“know" the correct move on the basis of
their own or someone else's past experience.
There are a huge number of end game sit¬
uations in which a specific and highly tech¬
nical strategy is required. Strong chess players
study these intricacies at great length and use
this knowledge at the chessboard to avoid
unnecessary calculations. For example, a

King and a pawn against a lone King is a
win in some positions, and a draw other¬

wise. The same is true for a King and two
pawns against a King and a pawn. If a Rook
or minor piece is added to each side, the
situation changes dramatically. Unfortu¬
nately our present day programs are obliv¬
ious to these subtleties. For this reason they
can find the correct move only by engaging
in prodigious calculations. Their human
counterpart, on the other hand, ‘ knows
the correct move after a cursory glance at

the position.
Newborn (see references) has introduced

a useful technique for reducing this knowl¬
edge gap. The main idea is to categorize

familiar end game positions as wins or
draws. Many games end with a King and a
pawn fighting a lone King. Skilled players
usually terminate the contest before it runs
its inevitable course because the outcome is

not in doubt. Newborn has shown that it is
feasible, taking advantage of the symmetries
of the chessboard, to make a bit map that
indicates either a win (1) or a draw (0) for
each potential square on which the lone

King might reside for each of the potential
locations of the opposing King and pawn.
This knowledge can be encoded in approx-
mately 300 bit boards of 64 bits each
(see chapter 5 of Chess Skill in Man and

Machine).
Although a tremendous amount of work

and chess knowledge is required to complete

this task, the end result is well worth the
effort. When a position involving two Kings
and a pawn is encountered anywhere in the

look-ahead tree, it can be immediately
scored with 100 percent accuracy as a win
or a draw. This extends the look-ahead
horizon of the program by as much as 12 to
15 plies for these specific situations, and
eliminates all the tree searching effort which
would normally be required. Furthermore, it

permits accurate evaluations at the end
points of a deep search, which allows the
program to select a continuation which leads
to a favorable end game. If this approach
were extended to a wider range of situations,
the machine's present knowledge deficit

with respect to the end game would be

greatly reduced.
These programming refinements, togetne

with rapid hardware advances, have ma c

the Shannon type A strategy feasible
particularly elegant. For this reason it ^

possible to program a machine to pl^V
game of chess which is free of gross blun
and which sometimes even contain
innovative move or two. Althoug

approach is clearly not a final
does provide a solid base which can
as a reliable starting point fot

developments .■

REFERENCES

Charness, N, "Human Chess Skill/' Chess Skill in
Man and Machine, Frey, P W (editor), New York,
Sprlnger-Verlag, 1977.

Frey, P W, "An Introduction to Computer Chess,"

Chess Skill in Man and Machine, Frey, P W

(editor). New York, Springer-Verlag, 1977.

Jastrow, R, "Toward an Intelligence Beyond

Man's/' Time, February 20 1978, page 59.

Kent, Ernest W, "The Brains of Men and

Machines" (4 part series): January 1978 BYTE,

page 11; February 1978 BYTE, page 84; May 1978

BYTE, page 74; and April 1978 BYTE, page 66.

Knuth, D E and Moore, R, "An Analysis of Alpha-

Beta Pruning," Artificial Intelligence, volume 6,
1975, pages 293 thru 326.

Newborn, M, "PEASANT; An Endgame Program

for Kings and Pawns," Chess Skill and Man and
Machine, Frey, P W (editor). New York, Sprlnger-
Verlag, 1.977.

Shannon, C E, "Programming a Computer For

Playing Chess," Philosophical Magazine, volume
41, 1950, pages 256 thru 275.

Slate, D J and Atkin, L R, "CHESS 4.5 - The

Northwestern University Chess Program," Chess
Skill in Man and Machine, Frey, P W (editor).

New York, Springer-Verlag, 1977.

115

Creating Chess Player

Part 2: Chess 0.5

Peter Frey

Larry Atkin

Part 1 of this series ("Creating a Chess Player, " October 1978 BYTE, page 182^} vjqs an
essay on human and computer skill. In Parts 2 and 3 n/e present Chess 0.5, a program written
in Pascal by Larry Atkin, who is coauthor with David Slate of the world championship com¬
puter chess program Chess 4.6. The program is readily adaptable to personal computers
having Pascal systems such as the UCSD Pascal project software. Part 4 of the series will con-
ciude with some thoughts about computer chess strategy.

Wc have attempted to incorporate several
features which make the search process more
efficient and others which increase the
user's options. Both of these enhancements
arc important. The first set of features
(incremental updating, iterative searching,
staged move generation, etc) were described
In general terms in part 1. These features
reduce computation to the point where a
move can be selected in a reasonable amount
of time even with a full-width search. The
second set of features (special control and
print commands, accepting chess moves in
standard notation) not only add to the
pleasure of using the program, but also make
the debugging process much easier. The price
^or these enhancements is a longer, more
complicated program. We hope the length
of our listing will not discourage the reader
from becoming actively involved.

Pascal was developed to provide a logical
systematic higher level language which

d produce reasonably efficient machine
° e for existing hardware. Computer pro-

^^3ms can be conceptualized in terms of

P^rts, descriptions of data and

actions which are to be per-
^ On the data. Pascal requires that

81^ edition.
81 of this edition.

every variable occurring in the program be
introduced by a declaration statement which
associates an identifier and a data type
with that variable. The data type defines the
set of values which may be assumed by the

variable. Since a chess program involves a
large number of variables, our program

begins with a long list of declaration
statements.

A constant definition introduces an iden¬
tifier as a synonym for a constant. This is
very useful since the value of the constant as

stated in the declaration list can be changed
at some later date, and this change will then
be reflected throughout the program in
every place where the constant is used. In
the chess program, the values of some of
the constants depend on the characteristics
of the user’s hardware. For example, the
values of ZK (maximum search depth) and
ZW (move stack limit) will reflect the amount
of memory which is available on your sys¬
tem. On personal computers, ZX will gen¬
erally be set at 7 if you have an 8 bit proc¬
essor and at 15 if you have a 16 bit proces¬
sor. Note also that the value of PZX8
depends on the value of ZX. To implement
this program on a given computer, it is
necessary to insert at the beginning of the
program the appropriate values for these
constants.

For the sake of clarity, specific data types

Note; The Pascal subset
described in "A Tiny‘
Pascal Compiler" (page
182^) is not compati-
able with the more

sophisticated Pascal
used here . .. CM

are declared for a number of different chess
concepts and for certain useful indices. The
program also takes advantage of the different

properties represented in Pascal’s data
structures: the set, array and record. It is
unlikely that anyone will immediately
memorize the names of all the variables.
Therefore it is useful to have them listed
at the beginning where they can easily be

found for later reference.
There is a comment statement accom¬

panying almost every instruction in the
program. Although these brief statements
may not initially be very meaningful, we
expect them to be helpful when the user
becomes familiar with the program. Because
Pascal requires that all procedures and func¬
tions be defined in the serial listing before
they are called by another portion of the
program, the procedures and functions
which are first defined tend to be primitives.
The main part of the program is concen¬

trated at the end of the listing.
The most important part of the variable

declaration list in terms of understanding the
program is the portion which specifies the
global data base. This includes the current
board (BOARD, a record) and a number of
important arrays. The look-ahead board
(NBORD) is an array listing the piece
occupying each square. The attacks emanat¬
ing from each square are represented by

ATKFR, an array which lists an 8 by 8 bit
board for each of the 64 squares. The
attacks to each square are represented by
a similar array, ATKTO. The combined
attacks for each side are represented by a 2

item array of 8 by 8 bit boards called

ALATK.
The location of all pieces by type is

represented by an array of 12 8 by 8 bit
boards, TPLOC. The location of all pieces
by color is represented by an array of two
8 by 8 bit boards, TMLOC. The moves are
stored in an array (MOVES) of records.
Each record (RM) contains information
about the from square, to square; whether
a capture is involved and the type of piece
captured, whether the move affects castle
status, involves check or male, involves a
piece promotion, and whether the move
has been searched yet. Additional arrays
provide information on castling squares,
en passant squares, the location of all pieces,
the location of pawns, etc. To be successful,
a chess program must organize the data base
in a logical manner and be able to manipu¬

late it efficiently.
For reasons of efficiency, the program

often stores the same information in two or
more different ways. Because of this, it is
necessary to be able to translate from one
form to the other. These activities are han¬
dled by special arrays. For example, the

XTPC array allows one to use a piece desig¬
nator (LP, LQ, LK, DQ, etc) as an index and
returns the corresponding character (1 thru

6 for Black pieces and A thru F for White
pieces) which is used when a board represen¬

tation is printed on the terminal.
There are several general purpose routines

which are needed by the program. Two func¬
tions, MIN and MAX, provide the smaller
or larger of two numbers upon request. A
third function, SIGN, applies the sign of
one number to the absolute value of another
number. A general purpose sort routine,

SORTIT, is also provided.

Manipulating the Bit Boards

There are a number of primitive opera¬

tions which involve the manipulation of
information represented in bit board form.

A bit board is one or more computer words
which have a bit set in specific locations to

represent the occurrence or nonoccurrence
of a particular event. For example eight
8 bit words can be used to represent the
eight rows of a chessboard. Each bit corres¬
ponds to one square. To represent the loca¬

tion of all White pawns, a bit is set (ie: 1)
in the proper locations and all other loca¬
tions remain clear (ie: 0). This method for
representing and manipulating information is
very useful in chess programming. For this
reason, the first actions defined by our
chess program are a set of procedures and
functions for manipulating bit boards.

The actions represented are:

(1) the intersection of two bit boards

(ANDRS);
(2) the union of two bit boards

(lORRS);
(3) the complement of a bit board

(NOTR5);
(4) setting a bit in a bit board (SETRS);
(5) removing a bit from a bit board

(CLRRS);
(6) counting the number of bits that are

set on a bit board (CNTRS);
(7) making a copy of a bit board

(CPYRS);
(8) setting all bits to 0 (NEWRS);
(9) shifting all bits in a particular direc¬

tion (SFTRS):
(10) determining whether a particular bit

isset(INRSTB);
(11) determining whether a bit board i

empty, ie: has no bits set (NULRS); and
(12) finding and reporting integer value

for a location where a bit is set (NXTTS)-

Since these routines arc used rcpeaie^^V

by the program, you can decrease

move calculation time quite a bit '^1^.
menting these primitives in assembly

You will note that the function

M^xfrS is written in two ways: machine
^loendent code, and code which is com¬

patible only with the Control Data 6000
Lies machines. There are a number of

I ces in the program where execution time
^an*^be enhanced by substituting machine
dependent code which takes advantage of

ne or more special features of the hard¬
ware you are using. It would be helpful,
also if functions in Pascal could return an
array or record instead of just a single
value. There are many places in the pro¬
gram where this type of function would be

more logical and more efficient than using a
procedure (ie: subroutine). If one were to
consider the best of all possible worlds,
it would be especially nice if the bit map
manipulations could be compiled in line.
With the Pascal arrangement, many of the

procedure calls take as much time as the
execution of the procedure.

Initial Steps

It is also necessary at the beginning of the
program to provide values for the variables
which define the chess environment, such as
piece characteristics. For example, a White
pawn is represented as LP for some purposes
and as the letter A for other purposes. It
has the color LITE, is not a sweep piece,
and moves only in certain directions. It is
necessary to initialize the translation tables,
the constant and variable 8 by 8 bit boards,
and a number of other tables. The three
routines which are called to do this when the
program is first activated are INISYN,
INIXTP and INICON. A fourth procedure
(INITAL) is called by the main program
to get ready for a new game. It will be called
more than once if the user wishes to play
more than one game.

During the development of the program,
jt is necessary to determine whether the
individual procedures are functioning prop-

* • ‘.T*^ helpful to have a few
primitive print routines which can provide
m ormation about the internal workings in

g which is understandable to the pro¬
grammer. These same routines are also called

input/output do) routine

program ^^ich appears later in the

routines (PRIMOV) prints

move ''^presentation of the machine's
an 8 by 8 array

consists (PRINTS). This
(^lack J^^robers for Black's pieces

^C'r Whii-P’ ^ ^ * Black King = 6) and letters

‘^'ng f) = A; White
a J^'l^h empty squares represented

^ 8 arrn ^ PRINBB routine prints an
y representing a bit board. In

this case an asterisk (*) stands for a square
where a bit is set and a minus sign (—)
stands for a square where a bit has not
been set. An attack map is printed by
PRINAM and this consists of 64 (one for
each square) 8 by 8 bit maps in which an
* stands for a bit which is set and a — stands
for a clear bit.

Other useful print routines include one

which permits a user controlled pause during
printing (PAUSER) and one which informs
the programmer of the status of particular
control switches (PRISWI). Because of
Pascal's serial requirement (ie: every proce¬
dure must be defined before it can be called
by another procedure), these routines appear
early in the program so that they can be
used to test the procedures and functions

which follow.
In part 1 we mentioned incremental up¬

dating as an important feature of an effi¬
cient chess program. It is necessary to
apply an evaluation function to the terminal
nodes of the look-ahead tree. These evalua¬
tions, if they are at all sophisticated, require
a substantial amount of detailed information
about the position. Although it is possible
to calculate this information separately for
each evaluation, this is not a very efficient
procedure, because adjacent nodes are
almost identical. Most of the information
which would be calculated each time would
be redundant. A more efficient alternative
is to “update" and “downdate" the relevant
data base incrementally as the program

moves about in the look-ahead tree. This
capability requires quite a bit of special
programming.

Several primitive routines are very useful
for this. If the move involves a capture, it

is necessary to change the material balance
function. The actual scoring itself is handled

by MBEVAL. This routine is called either
by MBCAPT or MBTPAC when a piece is
lost (update) or gained (downdate); or by

MBPROM or MBMORP when a pawn is
promoted (update); or when a newly pro¬
moted pawn is demoted (downdate). There
are other changes which are required in the
data base for both capture and noncapture
moves. The new squares which are attacked
by the piece need to be added to the attack
maps (ATKFR, ATKTO, ALATK). This is
done by ADDATK. The new square for the
piece is added to the data base by ADDLOC.

The attacks of sliding pieces which are
blocked by the newly moved piece are
recomputed by CUTATK. The attacks of
sliding pieces which are unblocked by
vacating the former square are recomputed
by PRPATK. The attacks which emanated
from the piece on its former square are
deleted by DELATK. These primitive
routines are called by LOSEIT when a cap-

ture is involved or by MOVEIT otherwise.
If the move affects castling status, the
necessary data base changes are made by
PROACA and PROAC5. If a pawn promo¬

tion is involved, PROMOT makes the neces¬

sary adjustments.

Move Generation

A major part of any chess program is the
move generation module. Because of the
complexity of the game, many programs
simply ignore some of the more unusual
moves, such as Queenside castling, en pas¬

sant pawn captures, or promotion of a pawn
to a piece other than a Queen (ie: underpro¬
motion). This arrangement will suffice to

play legal chess, but it may be costly if one
of the omitted move types is highly desirable

in a specific game situation. In addition, an
incomplete move generation facility prevents

the machine from checking the legality of

its opponent’s moves.
Rather than being satisfied with an

approximate solution, we have heeded the
old maxim, ‘Mf a job is worth doing, it is
worth doing well,” and have implemented
a move generator which permits the pro¬
gram to play a complete game of legal

chess. As you can see from the listing, this
requires extensive programming.

The first step in move generation is to
create the data base for the important
features of the existing board configuration.
This is done by CREATE. Once a move has

been selected, it is necessary to change the
data base. This is done by UPDATE which
makes use of the routines which were just
described (eg; ADDATK, CUTATK,
ADDLOC, CLSTAT, PRPATK, DELATK,
MOVEIT, LOSEIT). The move is placed on
the move stack by GENOME. Special rou¬
tines exist for generating moves which involve
the promotion of a pawn (PWNPRO) and
for generating the standard pawn moves
(GENPWN). When a move is tried and
produces an a-|3 cutoff, the program backs
down the look-ahead tree and begins to

explore moves at a different node. Several

procedures are employed to downdate the
data base. These include the main routines
RTRKIT and DNDATE, which are essen¬
tially the complement of MOVEIT and
UPDATE. Two other procedures are also

needed, one to unpromote a pawn (PAWNIT)
and one to resurrect a captured piece

(GAINIT). This set of routines permits the
program to move about the look-ahead tree
and incrementally update or downdate the

data base.
The executive routines which are respon¬

sible for move generation are GENFSL,

which generates all legal moves from a set
of squares, and GENTSL, which generates

all legal moves to a set of squares. The
rationale for having two routines is that we
wish to generate the moves in stages. For
example, captures should be searched first

at each node (ie: the capture heuristic).
To do this, we identify the square locations
of the opponent’s pieces, and then call
GENTSL to generate all capturing moves.

These moves are searched before any other
moves are generated. If one of these pro¬

duces a cut-off the rest of the moves need
not be generated at all. A third executive
routine (GENCAS) generates all castling
moves. These moves are generated after

the captures if castling is still legal.
A fourth executive routine for move

generation is GENALL. This procedure
generates alt legal moves and is used by the
program to check the legality of the oppo¬
nent’s move. It is called by LSTMOV which
makes a list of all the legal moves and each
of these are compared with the opponent’s
move by YRMOVE (presented later). If
the opponent's move is not on the list, the
machine prints “illegal move.” If the oppo¬
nent's move is compatible with more than
one of the moves on the list (eg: P-R3
could be either P-QR3 or P-KR3), the
machine prints the message, “ambiguous
move,” When the machine has completed

its own move selection or has determined
that the opponent’s move is legal and not
ambiguous, the move is actually made by

THEMOV."

Listing 1 (opposite): The first haif of Chess 0.5, written in Pascal. The second half of the pro¬

gram will be presented in part 3 (December 1978 BYTE)^ of this series. The portion of we
program presented here covers initialization of the program, variable declaration, manipulatio
of the "bit boards" (used to represent positions on the chessboard), user print routines a
move generation. The second half of the listing will include procedures for evaluation ot ter¬

minal positions, the look-ahead procedure, and user commands.

3. Page 131 of this edition.

PMGRIH CHeSS<I>#UT*OUTPUr» I

LIBEL

CONST

AA a It ZA a tot
AC • -A-; ZC s “1
AO < •zi; zo • *2i;
AJ a o: ZJ a 73;
AK a fl ; 7K a 16;
AKNZ
ZKPl
AL a

■ -2*
« 17*
1; ZL a 119;

AZL : = -iis: ; ZAL a 119:

AN a i; ZN a 30;
AS « a: zs a 63:
AT a -it ZT * 63;

AV a -32767; ZV a ♦32767
AH a i: ZM a SCO:
AX a 0: zi a 31:
AY a o: ZY a i;

LPP • 2o:
P2«8 * 167772161

STNCf * i;
SVNCL • 36;
S7NMF s 37:
srNML ‘ it7:

51m»lE Types

(• INITXUIEE FOR * NEM CANE
I* EMCCUTE NACNINES MOVE *1
I* END OF PROCRAN •»

(• CHARACTERS IS A MONO •)
(• CHARACTER LIMITS *t
<• DIRECTION LIMITS •»
<• CHARACTERS IN A STRING •)
<■ SEARCH DEPTH LIMITS •)
!• AK-E •»
I* ZR*1 •)
(* LARGE BOARD VECTOR LIMITS *1
<• LARGE BOARD DIFFERENCES

LIMITS •»
<* HESSAGE LIMITS •»
(• BOARD VECTOR LIMITS *1
<• BOARD VECTOR LIMITS AND

ANOTHER VALUE •»
(• EVALUATION LIMITS »)
I* MOVE STACK LIMITS •)
(• SUBSETS OF SQUARES •!
»• ARRAY OF SUBSETS TO FCHH A SET

OF ALL SQUARES ON BOARD •)

<• LINES PER PACE •!
i* 2'<ZK-7I •»

*• FIRST CAPTURE SYNTAI •!
(* LAST CAPTURE SYNTAX *1
I* FIRST HOVE SYNTAX •)
I* LAST HOVE SYNTAX •!

TA = AA.,2A;
TS s boolean;
Tc = chap;
TO 3 AO..Z0;
TE « T9Itac»e3«B6.Sl,S2,53.SA.Nl

TF = (F1,F2«FS«Fl.F5,F6,F7,Fs»;
TC s fPTiPR.PN.Pfll :
TH : (N0,H1,H2,H3,H*.,HS,H6.h7) ;

Tt : INTEGER:
TJ = AU..2J:
TK = ak:..zk:
TL = al..zl:
TN • <lITE«OARK.NONEM
TN « AN..INI

TP * (lp«lr»ln.lb.lo»lk«op«or.on

TO a <LS*LL*OS»OLI ;
TR a (R1«R2.R3,R6,RS,RC,R7,R||I
TS • AS..IS*
TT • AT..IT;
Tu ■ <ep«er.en.eb,eq,ek»;

TV » AV..ZVI
» av,,2m;

TF ■ Al..2xi
TT « AY,.2Y{
T7 » real;

I* SETS ■!

SC a SET qF AC.,
SF a SEJ Qf

SO » SET OF to:
• SET OF YR|

5* a SET OF 7x;

•• Records •;

ZC;

(* INOEX TO NOROS of chap •)
<• TRUE OR FALSE •!
I* SINGLE characters •)
(• OIRECTIONS •!

.NZ,N3,Ni.,NS.N6.N7.Na» :
;• NUMBER OF DIRECTIONS •»
•• files •»
!• PROMOTION PIECES •>

(* TREE SEARCH MOOES *1
<* NUMBERS *1
C* INDEX TO STRINGS "I
(* PLY INDEX •)
<* LARGE C10X12I BOARD •)
(• SIDES *1
(• INDEX TO MESSAGES •»

tOS.OQ*DK«NTII
(* PIECES! LIGHT PAMM. LIGHT

«>OK* ... , DARK K1N6« EMPTY
SQUARE •)

(• QUADRANTS *1
(• RANKS •!
I* SQUARES •)
t« SQUARCSt AND ANOTHER VALUE *»
I* TYPES! PAi«« ROOK.

KING •!
I* EVALUATIONS •>
(* NOtAS INDEX •}
I* SOME SQUARES *1
<• NUNBER OF TX‘S IN A BOARD •»
!• FLOATING POINT NUNBERS •»

SET OF CHARACTERS •>
(• SET OF FILES *1
<• SET OF CASTLING TYPES '
(• SET OF RANKS •>
<* SET OF SONE SQUARES •}

*® » record
*®TM I YM;
RBTS t fix
*®TI I TJ.
**5Q I 5Qj
CASE INTEGER OF

?• ‘ RBISI ARRA Y ITSl OF TPI ;

;• BOARDS •!
I* SIDE TO HOVE •\
I* ENPASSANT SQUARE *>
<* HOVE NUNBER •!
«« CASTLE FLAGS •>

INDEXED BY SQUARE *1 tl I Pilfer ' INDEXED BY SQUARE •!
INOI array |TP,TF| of TPIH* indexed by rank AMO file

RN 3 a. Of TP;

•J . SIcJeS 15?*'^ 0^ fCt
•CKEO ARRAY iTJl OF TC|

“ '‘acxeo record

, tb:
S®**- * tb:

?s;; ■

1;’"” Of

r.51 ni."

<* MOROS OF CHARACTERS *1
f« BOARD VECTORS •!
I* MESSAGES «l
I* STRINGS •)

!• SYNTAX DESCRIPTOR FOR
SINGLE SQUARE «)

I* PIECE •»
!• / •»
«• K OR 0 *1
(* Rt N, OR B •)
(* RANK •>

f« KLUDGE TO FIND NEXT BIT •)

(• BITS *1
!• FLOATING POINT NUNBER

RN a packed RECORO
RHFR I TS;
RHTO I TSt
RHCP I TP;
RNCA I TBi
RNAC I TBI
RNCH I TBI
RNNT I TB;
RNIL I TBI
RHSU I TB;
CASE RNPR ■ TS OF

FALSE! (
CASE RMOO I TB OF

FALSE! IRMCP ! TBi;
TRUE ! IRHQS I TBM

>1
TRUE ! IRNPP ! TGIl

ENOT

RS a RECORO
CASE INTEGER OF

OA (RSSS! ARRAY ITTl OF SX);
li IRSTIi ARRAY |TY] OF Tl);

end;

RX a array ITSl OF SSj

RY = PACKED RECORO
RVLS I RO;
RYCH 1 Tc;
RYRS I RO;
END;

RE = ARRAY (TH) OF TV)
RF 3 ARRAY (TH| OF RMS

<• OATA BASE •)

BOARD I
NBORO I
ATKFR I
ATKTO I
ALATK I
TPLOC I
TNLOC I
MOVES I
VALUE I
ALLOC !
BSTNV !
BSTVL I
CSTAT !
ENPAS !
GEHPN !
CENTO !
6ENFR !
MBVAL I
NVSEL I
INOEX !
KILLR !
LIMOX I
SRCHH I
GOING !
LSTMV I
NAXPS i
MBLTE !
MOPHN !
MBTOT I
NODES !

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
array
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
Tl;
RNT
rv»
TX|
ARRAY
TV I
TX;

tTS) OF TP;
(TSl OF RS;
ITSl OF RS;
tTH) OF RS:
(TP) OF RS;
ITM) OF RS;
ITHI OF rn;
(THJ OF fv;
ITK) OF RS;
(TKI OF th;
(AKh2..2KPl) OF Tv;
CTk) of rs;
ITKI OF RS;
ITK! OF RS;
ITKI OF RS:
(TKI OF Rs;
(TKI OF TV;
(TK! OF Ti;
1A<..ZKP1I OF th;
ITKI OF rn;
(TKI OF TMI
ITK) OF th;

TNI OF TX;

JHTK ! TK;
JNTK ! tk:
JNTN ! TNI
JNTH ! TH|

!• LETS •!

FKPSMO ! Ti;
FKSANQ I Ti;
FNAXMT ! Tl;
FNOOEL I Ti;
FPAOCR I array ITF) Of Til
FPBLOK ! Til
FPCON!(! Ti;
FPFLNX I TI*
FROUBL ! ri*
FRK7TH I Tl*
FTRADE 1 TI*
FTRDSL I Til
FTRPOK I nt
FTRPHN I fit
FMKINC I TI;
FMHAJM I TJt
FMHINM ! TI*
FHPAMN ! ri;
FHROOK I Tit
MINOOM ! Ti;

(• SNITCHES *)

SMCC
SNPA
SNPS
SNRE
SMSU
SMTR

Ts;
tb;
tb;
tb;
TB*
tb;

l« COHHANO PROCESSING OATA •»

ICARO I Rj;
ILIME t RJ*
JNTi I TJ*
JNTJ I TJI

(• MOVES *1
I* FROM SQUARE ")
(• TO SQUARE *1
<• CAPTURED PIECE *1
!• CAPTURC •)
<• AFFECTS CASTLE STATUS «l
!• CHECK *1
(• NATE •>
!• ILLEGAL •)
!• SEARCHED «l
(* PROMOTION •!

!* CASTLE *1
(* ENPASSANT •)
(• QUEEN SIDE •)

(• PROMOTION TYPE *)

(* BIT BOARDS •)

(• ARRAY OF SETS •»
(« ARRAY OF INTEGERS •!

(• ATTACK HAPS •)

•• MOVE SYNTAX DESCRIPTOR •»
I* LEFT SIDE DESCRIPTOR •)
(* HOVE OR CAPTURE •!
I* RIGHT SIDE DESCRIPTOR •!

I* ARRAY OF VALUES •)
(• ARRAY OF HOVES •!

THE BOARD •>
LOOK-AHEAQ BOARD •!
ATTACKS FROM A SQUARE •)
ATTACKS TO A SQUARE •>
ATTACKS BY EACH COLOR *1
LOCATIONS OF PIECE BY TYPE ♦)
LOCATIONS OF PIECE BY COLOR •!
MOVES •)
VALUES *1
ALL PIECES *»
BEST HOVE SO FAR •)
VALUE Of BEST MOVE •»
CASTLING SQUARES •)
ENPASSANT SQUARES «l
PAHN ORIGINATION SQUARES •>
HOVE OCSTINATION SQUARES •!
HOVE ORIGINATION SQUARES *1
MATERIAL BALANCE VALUES •)
COUNT HOVES SELECTED BY PLY •)
CURRENT HOVE FOR PtY •)
KILLER MOVES BY PLY •>
LAST MOVE FOR PLY *1
SEARCH HOOES •!
NUMBER OF HOVES TO EXECUTE •)
PREVIOUS HOVE *1
MAXIMUM POSITIONAL SCORE *1
MATERIAL BALANCE LITE EDGE «l
NUMBER OF PAHNS BY SIDE *1
TOTAL MATERIAL ON NBORO •)
NUNBER OF NODES SEARCHED •)

(* PLY INOEX *1
(« ITERATION •)
(« SIDE TO MOVE *)
(* MOVES STACK POINTER •)

KING PAWN SHIELD CREDIT *1
KING IN SANCTUARY CREDIT •)
NARINUM MATERIAL SCORE *1
NODE LIMIT FOR SEARCH •»
PAHN ADVANCE CREDIT BY FILE •!
PAHN BLOCKED PENALTY •»
PAHN CONNECTED CREDIT •)
PAHN PHALANX CREDIT «)
DOUBLED ROOK CREDIT •)
ROOK ON SEVENTH CREDIT «l
TRAOE'OOHN BONUS FACTOR •»
TRAOE-OOHN TUNING FACTOR •}
PAHN TRAOE«OOHN RELAXATION »)
PAHN TRAOC-OQHN FACTOR *1
KING EVALUATION HEIGHT •}
MAJOR PIECE MOBILITY HEIGHT •>
MINOR PIECE MOBILITY HEIGHT *>
PAHN EVALUATION HEIGHT «l
ROOK EVALUATION HEIGHT •>
SIZE OF ALPHA-BETA HlNOON •)

<* ECHO INPUT •)
(• PACING *1
(• PRINT PRELIMINARY SCORES *)
I* REPLY HITH HOVE •)
!• PRINT STATISTICS SUMMARY •»
(■ TRACE TREE SEARCH •!

I* INPUT CARO IMAGE •>
!• CURRENT COMNANO »l
!♦ CURRENT INPUT LINE POSITION *1
4* CURRENT COMMAND POSITION •)

121

Listing 1, continued:

HQVHS I rn;

(« TRANSLATION TABLES *)

XSPB I ARRAY |TPj OF TB|
IFPC I ARRAY (TPI Of TE1
XLLO I ARRAY liZl..IALI Of TO*.

XLPE ■ ARRAY (TPI Of TE:
xflfS t ARRAY (TFI Of RSI
XRRS I ARRAY (TRl OF RS|
XNFS I ARRAY (Tfl Of RSI
KNRS I ARRAY (TRl OP RSt
KRSS I ARRAY (TSI OP RSI
XRQH I ARRAY (TQI OP RMI
XSQS I ARRAY (TQI OP RSl
XSSX I ARRAY ITSI OF SKI
XTBC ■ ARRAY (TBI OF TCI
XTEO t ARRAY (TEi OF TOt

XT6C I ARRAY (TOl OF TCI
XTCNPl ARRAY (TC«TH| OP TP|

XTLS I ARRAY (TLl Of TTI
XTMA I ARRAY (TNI Of RA|
XTNQ I ARRAY (TNI OP TQI
KTHV I ARRAY ITHl OF TVI
XTPC I ARRAY |TP1 Of TCl
XTPH I ARRAY ITPl OF TNI
XTPU I ARRAY (TPI OP TUI
XTPV I ARRAY (TPI OF TV|
XTQA I ARRAY (TQI OP RA)
XTQS I ARRAY (TQI OP TSI
XTRPSI ARRAY (TR,TF1 OF TS|
XTSF I ARRAY (TS) Of TFI
XTSL I ARRAY (TSI OP Til
XTSR I ARRAY (TSI OF TR|
XTSX « ARRAY (TSI OF TXt

XTSY t ARRAY (TSI OP TTI

XTUC I ARRAY (TUI OP TCI
XTUHPl ARRAY (TU.TNI Of TP|

XRQSOI ARRAY (TQI OF RSI

XRQSAl ARRAY (TQI OF RSI

EDGE t ARRAY ITEI OF RS;
CORNRi RSI
HULNVl RHt
OTHERl ARRAY (TNI Of TNI
SYNTXI ARRAYISYNCF..SYHNLI Of RV

(• HOVE NESSA6E *1

(• TRUE FOR SHEEP PIECES *1
(* FIRST DIRECTION •>
<• DIRECTION FOR LARGE BOARD

SQUARE OIPFERENCES *>
(* LAST DIRECTION •)
(» BIT BOARD FOR FILES *1
«• BIT BOARD FOR RANKS *1
(• COHP BIT BOARD fOR PILES
!• CONP BIT tOARO FOR RAMIS *1
<• BIT BOARD FOR AIA INDEX ■>
(• MOVES FOR CASTLE TYPES •!
(• aiT BOARD FOR CASTLE TYPES «l
<• SET CLEICNT FOR IXB IIQEX »l
(• CHARACTERS FOB BOMEAHS •!
(• OIRECTXm NUMBER TO IBKIE

SQUARE OtPPERENCE *1
I* CHARACTERS FOR PROMOTION •»
(• PIECE FOR PROMOTION TYPE

ANO COLOR *1
l« AIA INDEX FOR IBXIZ INDEX •)
(• HOROS FOR COLORS •)
(• CASTLE TYKS FOR SIDE *1
(• SCORE FACTOR FOR SIDE *1
I* CHARACTERS FOR PIECES *1
4* SIDES FOR PIECES •>
(• TYPE FOR PIECE *1
I* VALUES OF PIECES •»
(• HOROS FOR CASTLES *1
(• TO SQUARES FOR CASTLE TYPES *1
(• BXI IHDEX FOR RANK ANO FILE
(• FILES FOM SQUARES »l
<• lAXiZ INDEX FOR AXI INDEX «l
(• RANKS FOR SQUARES *1
(• ELEMENT NUMBER FOR AKB

INDEX *)
(« ARRAY SUBSCRIPT INTO BIT BOARD

FOR AXA INOEX *1
(• CHARACTER FOR TYPE *1
(* PIECE FOR TYPE ANO SIDE •)

(• UNOCCUPIED SQUARES FOR
CASTLING *1

<• UNATTACKEO SQUARES FOR
CASTLING «l

<• eOCES IN VARIOUS OIRECTIOHS *>

(• KING SANCTUARY •)
<* NULL HOVE •!
(• OTHER COLOR
(■ HOVE SYNTAX TABLE

INTB l> fALSei
A(INTI»11 INTV:
B(INri»l| IS INRH{

ENDI
ENo: I* soRTir •)

PROCEDURE AHORS

(VAR CIRSI
A, BiRSM

VAR
INTY I ty;

BEGIN
fOR INTY IS AY TO ZY 00

CiRSSSIlNTYI IS A.RSSSdNTYI
ENOI <* ANORS •!

PROCEDURE CLRRS

IVAR CIRSI
AtTSH

PROCEDURE CPYRS
(VAR CiRSi
AtRSM

VAR
INTY I ty:

BEGIN
FOR INTY IB AY TO ZY 00

C.RSSSdNTYI IS A.RSSSIIHTYII
ENOI (• CPYRS •>

PROCEDURE lORRS
(VAR CIRS:
A, BiRSI;

VAR
INTY I TYJ

BEGIN
FOR INTY 1= AY TO ZY 00

C.RSSSlINTY) IS A.RSSSdNTYI
CNO; «* lORRS ■>

(• EXIT *1

(• INTERSECTION Of TNO BIT
BOARDS *1

(• RESULT •)
(• OPERANDS •)

(• BIT BOARD MORD INDEX •»

• B.RSSSdNTYi:

(• REMOVE SQUARE FRON BIT
BOARD •>

(• BIT BOARD •)
(• SQUARE TO REMOVE •)

XS$X(Alt

(• COPY Of A BIT BOARD *1
(• RESULT •»
(■ OPERAND •»

(• BIT BOARD MORO INDEX •»

(< UNION OF TWO BIT BOARDS •)
(• RESULT M
(• OPERANDS •)

(• BIT BOARD MORO INOEX *>

* B.RSSSdNTYi;

BEGIN
C*RSSS(XTSV(A1I M C.RSSSlXTSVfAll

END! I* CLRRS

FUNCTION nAXlA.BlTIIiTI;

BEGIN
IF A > e THEN

HAX is A
ELSE

MAX IS B;
end; (• MAX *1

FUNCTION HIN(A.BITIMT1I

BEGIN
IF A < B THEN

HIN Is A
ELSE

NIN I- Bl
ENOI (• HIN «)

FUNCTION StCNIA.BiTJMTII

BEGIN
SIGN ta TRUNCIB/ABSIBtl • ABSIAM

EMD| l« SIGN *1

PROCEDURE SORTIT
(VAR AlREI

VAR BiRfi
CITHI I

VAR
INTB 1 ;bi
INTH I TNI
INTI I Tl|
INTV I TVI
INRN I RNI

(• LARGER Of TNO NUMBERS *1

(• SMALLER Of TMO NUMBERS •!

(» SIGN or B APPLIED TO
ABSOLUTE VALUE OF A •!

(« SORT PRELIMINARY SCORES *»
I* ARRAY OF SCORES •!
(« ARRAY Of MOVES *1
I* NUMBER or ENTRIES *1

(* LOOP EXIT FLAG •!
<* OUTER LOOP INDEX •>
(• INNER LOOP INDEX *)
I* HOLD SCORE *1
(* HOLD HOVE *1

PROCEDURE MEHRS
(VAR AtRSII

VAR
INTY I ty;

BEGIN
FOR INTY t« AY TO ZY DO

A.RSSSdNTYI 1= li;
end; (* NEHRS •)

PROCEDURE NOTRS
(VAR CIRS;
AiRS)I

VAR
INTY I TYI

BEGIN
FOR INTV la AY TO ZY 00

C.RSSSdNTYI l« IAX..ZX1-A.
ENOI (* NOTRS *1

FUNCTION NXTTS
(VAR AI RSI

VAR BITS

I ITBI

LABEL
ill

VAR
XNTX I TX|
INTY I TYI
X I RKI

(• CLEAR SIT BOARD *)
(• BIT BOARD TO CLEAR •)

(• BIT BOARD WORD INDEX *1

(» COHPLEHENT OF A BIT BOARD *1
(• RESULT •)
(• OPERAND •»

(• BIT BOARD HORO INOEX *)

INTYll

(• NEXT ELEMENT IN BIT BOARD *>
(* BIT BOARD TO LOCATE FIRST

SQUARE* AND THEN REMOVE
(• SQUARE NUHDER OF FIRST SQUARt

IN BIT BOARD •>
(• TRUE IFF ANY SQUARES HERE SEl

INITIALLY *1

(« RETURN ■>

I* BIT BOARD BIT INDEX *>

I* BIT BOARD HORO INDEX *>
(• KLUDGE WORD *>

BEGIN
FOR INTH I a tH«Z TO C 00
BEGIN

INTI la INTH - II
INTV l> AdNTHII
INRN la BdNTHII
INTB la TRUEI
WHILE (INTI > AH) AMO INTB 00

IF INTV < AtlNTlI THEN
BEGIN

A(INTI»11 la AdNTIi:
BdHTI^ll la BllNTllI
INTI la INTI • 11

ENO
ELSE

BEGIN
FOR INTY la ZY OOHNTO AY DO

IF A.RSTKINTVI <> 0 THEN
BEGIN

(• LOOP THRU BIT BOARD WORDS

I •••
I •••
I
I
I
I •

I •
I «

BEGIN COC GOOD DEPEHOANT CODE *>
fOLLOHIMG CODE REQUIRES THE 'EXPO* FUNCTION TO W^URM
THE EXPONENT FROM A FLOATING POINT NUMBER. IT ALSO ASSIES
THAT FLOATING POINT NUMBERS HAVE AB BIT COEFFICIENTS RICH
JUSTIFIED IN A HOROt AMO THAT SETS ARE RICMT-JUSTIFXEO I"

A HORO. *)
X.RKTZ la A.RSTKINTTII (• FLOAT HORO •!
B la EXPO(X.RKTZ) I INTY • (ZX*11I yiiHBE*

(• CONVERT TO SQUARE NUH«»

122

Listing 1, continued:

(• I.ltKTB IS X.RKfe •

I* A.RSTIIINTYI |¥ TRUNCU.RKTZI {
I* HKTTS IS true;

(• BOTO 11;
<*** ENO COC 6000 DEPENDANT CODE *»

I*** BEGIN MACHINE INOEPENOENT CODE *1

POR INTI IB 2X OOHNTO AX 00

IF INTX IN A.RSSSIINTT] THEN

BEGIN

B IS INTX*INTY*IIK*1»;

A.RSSStINTVI I* A.RSSSfINTYl >

NXTTS l« TRUE;

GOTO li;

end;

(••• END HACHlME INDEPENDENT CODE •»

ENO;

NXTTS IS FALSE;

111 «• RETURN •)

end; I* NXTTS •)

FUNCTION CNTRS

<AiRs>its;

VAR

JNTY t

INTS I

INRS I

INTS 1

ty;

Ts;

Rs;

Ts;

REMOVE MOST SIGNIFICANT BIT •!

I* INTECERUE *\
(• RETURN A BIT SET •»

;• RETURN *1

<• LOOP THROUGH BITS IN WORD OF
SET *1

(• RETURN SOUARC NUMBER •!
CINTXl;

(• REMOVE BIT FROM NORO •)
<• RETURN A BIT SET «>

I* RETURN •>

(• ELSE RETURN NC BITS SET •»

<* COUNT NEHBERS OF A BIT
BOARD •)

(* BIT BOARD TO COUNT «l

I* BIT BOARD NORO INDEX

(• TEMPORARY •!

I* SCRATCH •)

(* SCRATCH •!

BEGIN

INTS M o;

!••• BEGIN MACHINE INDEPENDENT CODE •»
CPYRSdNRStAi:

MHILE NKTTSdHRS.IMTSI DO
INTS l« INTS»i;

(••• ENO MACHINE INOEPENOENT CODE •)

••• BEGIN COC 6C08 DEPENDENT CODE •!

•• FOLLONINC CODE REQUIRES THE 'CARO'

•• COUNT THE HENBERS IN A SET. M

FOR INTT l» AT TO ZY DO

INTS 1= INTS ♦ CAROIA.RSSSI INTYM ;
••• END COC OEPENOENT CODE *1

CNTRS 1= IMTS:

END; C* CNTRS •)

PROCEDURE SETRS

<* COUNT SQUARES *)

FUNCTION TO

(• RETURN SUN •!

(VAR CiRS;

AITS) ;

INSERT SQUARE INTO SIT
BOARD *)

BIT BOARD •)

SQUARE TO INSERT •>

BEGIN

C.RSSSlXTSYlA 11 |= C.RSSS(XTSYfA 11 4 XSSKLAi;
£N0; (• SETRS •)

<• SHIFT an BOARD

I* RESULT •)

<• SOURCE •)

«• DIRECTION •)

«• SCRATCH •)

<• SCRATCH •)

!• an BOARD NORO INDEX •)

PROCEDURE SFTRS
ivAR airs;

BiRs;

CiTE):

VAR

Inrs I RS;
I NT S I TS ;
IHTY I Ty;

begin

machine independent code *1
n LH KS f A I '

HHKE NXTTSie.iNTS) 00 ‘‘

IP *TLS(XTSLllNTSl4XTEDfCn > 0 THEN

SfTB?/* •* SHIFT EACH BIT •)

••• ENn ;
••• independent CODE •)

FofJjyJSr OCPENDCHT CODE •)

••• 9Y A ?J;sTS2?^!5cr«c "ULTIPLICATION OR DIVISION

•case C of INSTRUCTION. •»
•Sti GEGIn

PGR IMTY
begin

B«RSSSIINTYi

AY TO ZY 00 (• SHIFT ONE PLACE *1

»SZi

A

•Sli

a.r^tw';l;:; *■ b-wssuntyi - EocEisii.RssstzNTYi;
ENO; ** B.RSTIIINTYI OIV Z;

tNo; ’
begin

BEGiI"^^ *• SHIFT MOROS *t

tN5l!U«y;; “•«”IINTY) . EOGClSZJ.RSSStlHTVn
A.Rsssf?yiJ?^ ’ ••«ssiiMTYi • czx-r..2xn
* RSri lIJI *• 9««SSCIMTYI - IZ*-7..|X1|

EHO; *• A.RSTIIINTYI • 256

YO ZY 00
*-PSTlriNT,. . *• CARRY BETHCCN HOROS *1

ENO; dHTYI I. A.RSTIIINTYI ♦ lHRS.R5TtIIMTr-ll OIV PZXBI

begin

Y TO ZY 00 1 shift one PLACE •!
INTY

begin

_ *'BSTi1i3II[!" ®-WSSIIHrT| - ED6EIS3).RSSS(1NTT11
ENO; '“NTYI I. A.RSTIIINrTI *2;

I •$%!

(•

I*

;•

;•

»•

I*

;•

I •
I*

<«Bli

I •
(•

!•

I^BZl
!•

!•

I »

<•631

!•

<•
I •

4 *6141

<•

I •Nil

<•

I*

<•

I •HZI

I •

i*

<•

(•N3I

;•

«•

;•

MNAI

I"

<•

<•

I "NS I

< •
!•

(•N6I
I •

< •
I •n7i

<•

4 •
I •

I'NBi

4 •
I •

C*

< “END
4 •• •

*» AT TO ZY 00

END;

BEGIN

FOR INT)

BEGIN

e.RSSSriNTY) la

lNRS.RS$S(tNTT|

A.RSnilNTYI I.
ENo;
FOR INTT !■ AY TO ZT

A.RSTKtNTYl la
end;

begin

SFTRSfXNRS.B.SlI;
SFTRS4A.INRS.SZlt

ENO;

BEGIN

SFTRSIINRS,e.S2);

SFTRSIA.INRS.S3);

end;
BEGIN

SFTRSdNRS.B.SSI ;

SFTRSIA,INRS.SAI;
End;

BEGIN

SFTRS!INRS.BiSAI;

SFTRSIA,INRS.Sit;
ENO;

begin

sftrsiinrs.b.bi):

SFTRSIA,INRS.S2»;
ENO;
BEGIN

SFTRSdNRS.B.SZ) I

SFTRSIA,INRS.SZ)t
end;

BEGIN

SFTRS<INRS.B«B2»T

SFTRSUaINRS.SS) ;
end;

BEGIN

SFTRSdNRS,B,B3l ;

SFTRSU.INRS.S3i;
CMO;
BEGIN

SFTRSIINRS.B.BI) ;

SFTRSIA,INRS,SA);
END;

BEGIN

SFTRSdNRS.B.BA) ;

SFTRSIA.INRS.SA);

end;
BEGIN

SFTRSIINRS.B.BI,) ;

SFTRSU. INRS.Si) X
ENo;
BEGIN

SFTRSIINRS.B.BI) :

SFTRSIA.INRS.SII;
ENO;

I* SHIFT NOROS •»

B.RSSSIINTYJ - EOGEISAl.RSSStlNTYI;
»■ e.RSSSllHTYI • tAX..Ax«7i;

B.RSTIIXNTY) OIV 2561

1 DO

A.RSTIIINTY)
CARRY BETWEEN NOROS •)

INRS.RSTXIINTY41) « PZXS

END COC 6000 DEPENDENT CODE •)

end: !• SFTRS •)

FUNCTION INRSre

I AiRS;

BITS)itb:

BEGIN

1NHST0 |a XSSXIB) «= A.RSSSIXTSYieil;
end: (• INRSTB •)

<• SQUARE IN BIT BOARD BOOLEAN •)
!• BIT BOARD •)

<• SQUARE IN QUESTION •)

FUNCTION NULRS

lAIRS)
ITB:

VAR

iNTr I rv;

INTB I TB;

BEGIN

INTB i> TRUE;

FOR INTY |a AY TO ZY 00

INTB i» INTB AND (A.RSTlllNTV)
NULRS IS INTB;

ENDt !• NULRS •)

FUNCTION NJLHve

UlRH)

itb;
BEGIN

MITH A 00

NULNVB l« RNAC AND RHPR ANO INOT RMCA)?
ENO; (• NULHve •)

<• NULL BIT BOARD •)

I* BIT BOARD TO CHECK •)

I* TRUE IF BIT BOARD EHPTV *1

I* an BOARD HORO INDEX •)

<• temporary value •)

NULL HOVE BOOLEAN •)

HOVE TO TEST •)

TRUE IF NULL MOVE ")

PROCEDURE INICONI

VAR

INITIALIZE GLOBAL CONSTANTS •)

INTO 1 1 to; I* DIRECTION INDEX •)
INTE 1 1 te; I* DIRECTION •)
INTF 1 1 TF| !• FILE INDEX •)
INTI 1 1 Ti; I* SCRATCH •)
INTL 1 1 tl; I* LARGE BOARD INDEX •)
INTQ 1 1 TQ; (• castle type index •)
INFR 1 1 TR; <• RANK INDEX *1
INTT 1 1 tt; I* SQUARE INDEX •)
ZHTX 1 1 TX; !• SET ELEHCNT INDEX •)
INTY 1 1 ty; I* BIT BOARD MORO INDEX •!
InT Z I > ti; I* SCRATCH •)
INRS 1 1 RS; I* SCRATCH •!

123

Listing 7, continued:

PROCeOUM IMXSYH <• INlTULIie NO« SYRTIX
TAOLC ENTRY •>

UlRAM •*

BEGIN
WITH SYNTXIINT11 00

BEGIN

NITH RTLS 00

MGIN

ROPC I- TRUE!

ROSk !■ *C*A«3I <» ~

ROKQ l> AlAA*ll <> " ”1
RONB l» AIA**2I ** “ “I
ROR< I* AI*A*S| <* " “I

end:
RYCH I* ACAA«k1t

HITM RVRS 00

BEGIN

ROPC l» A(*A*5| <> • "I

ROSk I • *I ***6I <> *
ROKQ ic At A*»7l <> ~ **T
RONB I* AIAA*01 «> " -t
RORR I* *1*A*9J <> “ “t

end;
end:
INTI I* lMTI*i;

EN05 <• INISYN *1

XTRFS(INTR,1NTF| l« INTT;

xtlsiintli i> intti

KTSLIINTTl l> INTLt

XTSRIINTTI l« ZNTRt
XTSFIIHTTI la INTFl
INTk la INTL*i;

EN01
INIL M INTL«2l

ENo;

INITIALIZE ixa TO BIT BOARD

(« SET NATRIX TO VECTOR
TRANSLATION •!

(• SET LARGE BOARO TRANSLATION
TABLE HITN SNALL BOARO
INDEX •>

(• SET SNALL BOARO TRANSLATION
TABLE NITH LARGE BOARO
INDEX •»

I* SET RANK OP SQUARE
<• SET FILE OP SQUARE *1
(• ADVANCE LARGE BOARD INDEX *»

I* ADVANCE LARGE BOARD INDEX TO
SKIP BORDER ■)

•»

INIT !• >11
FOR XHTY AY TO ZY DO
BEGIN

FOR INTX ta AX TO ZX DO
BEGIN

ZNTT la INTTtll
XTSXfZNTTl la INTX)
XTSYIINTTI I* INTT5
KSSXIIHTTI la IINTXi:
NENRSIXRSStINTTlI%
XRSSIINTTI.RSSStlNTTI la (INTXIJ

end;
EHDt

PROCEDURE IMIXTP

<A I tp:

3 I TC:
c I tm:
0 I Tu:
E I TB;
F I te;
c 1 te;
H I TVM

BEGIN
XTPCtA] la B;
XTPMA] la Cl
XSPBCA] la e;
XFPEtAI la F;
XkPEfAl la c:
XTPUIA) la d;
KTPVtA] la n;
IF A <> NT THEN

XTUHPCOtCI la' AT
EHO; «• IHIXTP •»

BEGIN <• INICON •!

INITIALIZE PIECE CHARACTERISTICS •»

IMIXTPtLP,"A-,LlTEfEP,FALSE,Bl.a2.ia6A)\
INIKTPILR,“8-,LITE,ER.TRUE ,Sl.SA«5a6LM
lNIXTPILN,-C-.LlTE,EN,FALSE,Nl.NA,3a6Li;
IMIXTPCLB.-0-»LlTE«EB,TRUE ,81 .Bk,3*6<.»;
lNl*TP«LQ,-E*.LlTE.EQ.TfiOE .B1.SL.9*6L» T
INIxTPILKi"F"«LITE,EX,FALSE,BI.SA,II I
INIXTPlOP *“l“«0ARKi£P.FALSE*B3«8kt-iabLI;
INIXTP<0R."2“»0ARK»ER.TRU£ ,Sl»S*.,-5a&L» 5
lNlxTP(ON,-3-,OARK,EN,FALSE,Nt,N®,-3a8fcl5
INIXTPIOB.“*»“tOARKtEB«TRUE »Bl»8L. -3*6LM
INIXTPt0Q»"5“,0ARKlEQ,TRUE iBliS*»,-9*bkl;
INlXTPt0K."6“,0ARK,EK,FALSE,8l,SN,3H
INIXTPINT,’*--,NONE,EP,FALSE.BZ.Bl.0) \

I* INITIALIZE PIECE TRANSLATION

TABLES *»

(• PIECE TO BE TRANSLATED •»

(* DISPLAY EQUIVALENT *1

(• COLOR OF PIECE ♦»

(• TYPE OF PIECE •!
(• TRUE IF SMECP PIECE *>
(• FIRST DIRECTION OF HOVENENT •!
!• LAST DIRECTION OF HOVENENT •)
I* VALUE OF PIECE •!

INITIALIZE CONSTANT BIT BOARDS •)

FOR INTR la R1 TO R8 00
NEMRS(XRRSIINTRI);

FOR INTf la Fl TO FA DO
NEHRSIXRFSIINTF))t

FOR INTR la Rl TO R« 00
FOR INTF IS Fl TO F» 00
BEGIN

SET RSIXRRStINTR),XTRFSIINTR,INTFl»:
SETRS«XRFSClNTF],XTRFStIMTR,IHTFl) |

END)

FOR INTF l« Fl TO FS 00
NOTRSIXNFSIINTFl,XRFStINTfII t

FOR INTR I* Rl TO RS 00
NOTRSIXNRSIINTR),XRRSIINTRI))

INITIALIZE EDGES •)

CPYRSIEOCeiSlIiXRFSIFII)t
CPTRSIEOCElSZlp XRRSI RAD)
CPTRS<EDGEI531,XRFS[FB1)\

CPYRS(EOCEISLl.XRRSt RlI) I
10RRS(EDGElBll,E0GElSll,eDGEIS21l t
IORRS(EOGE(e2),eOGECS2l,COCefS3))t
IORRSIEDGElB3).eDGECS31.E0CEI Skill
lORRS(EDCEtBLl,EOCEISAl.EOCEtSillI
lORRS(EDGEINI),EOCEfB1),XRRSIR7111
t0RRS<E0GEIN2l,E0CC[B21*XRRSIR7ni
IORRS<eOGEtN3|,EOCEIB21,XRFSlF7)lS
|0RRS<CDGEtNLI,E0GECB31,XRFS(F7lll
IORR$<EOCE[N5l,E06ECB3l*XRRSIR2ni
I0RRS<E0CE(N6l*E0CeiB%l, XRRSIR21M
Z0RRS<EDGE[N71,E0GeiBAI,XRFSIF2)It
10RRS(C0GEfNA1,E0CE{B11.KRFStF2)l t

INITIALIZE CORNER NASK •)

XTGHPtPQ,LlTE) la LQI
XTCNPIPR.LITE) IS LR;

xTGnPiPH,LITC I M Lk:
xrcHPiPS,LirE) i> lb:

XTUCIEKI la "K“:

XTUCIEQI l» "Q"!

XTUCtER) la ~R“;
XTUCIENI !■ "H“;

XTUCIEB) la “B"5

XTUCICPI l« "P"?

INITIALIZE OTHER

XTGNPIPQ,OARK) is

XTGNPIPR,DARK I •*

XTCHP(PN,OARK| |a

XTGNPIP9,OARK1 i:

CONSTANTS •)

oo; XTGCIPQI I* “Q":

dr: XTGCtPRl I* “R*:
0N| XICCIPN) |a *N"J

OB; XTGCIPB) I* “8“;

XTBClFALSEl I*
XTBCITRUE I l»

I0RRSIINRS,XRRSlRll,XRRSIR2M)

!0RRSItNR$,tNRS,XRR$IR7l);

IORRS11NRS,INRS,X RRSIRA11;
JORRSICORNR.XRFSIflliKRFSIFZItI

lORRSICORNR.CORNR.XRFSfFTlM
lORRS(CORHR,CORNR,XRFSIFAlI\
ANORSICORNR.CORNR.INRSII

INITIALIZE DIRECTION TABLE •»

xTEDINllia 19: XT£0IN2||a 2l{

xTEOINAIls A:KrE0IBl1ia SIXTEDlSZMa 10 I XT EDI 8211 * 11: X TEDt H3) i = IZ

XTEOISllla -i; XTE0|S31ia l;
XTEOlM7 1|a-12:xTEOie4li = -ll*.*TEOISk)la-10:xTEDIfl31ls -SIXTEDINLlla “8

XTE0IN6H»-21: XTEDIM5lla-l9:

INITIALIZE SQUARE DIFFERENCE TO DIRECTION TABLE *1

OTHERILITE) la dark: XTMVILITE) l> H
OTHCRIDARKI I* LITE! XTMVIOARKl !» -i:
OTHERtNONE) ■> NONE;

XTHAILITEI la - WHITE -?
XTNAIDARKI !■ ~ BLACK
XTNAfNONE) la ~ NO ONE ”|

XTQRILS) |a -HNXTE KtN6*t
XTQAfLL) l> ~tMXTC LONG"!
XTQRtOSl I- "BLACK RtMG*t
xrQRioL) ia "Black long"i

INITIALIZE 11X12 TO BXB AND BXB

FOR INTL !• AL TO ZL 00
XTLSIINTLI la '11

INTL la 2i|

INTT I* 'll

FOR INTR la Rl TO RS 00
BEGIN

FOR INTF ta Fl TO Fl 00
BEGIN

INTT la 1NTT*1I

TO 1BK12 TRANSLATION TABLES •)

I* LOOP THROUGH LARGE BOARO *1
1* PRESET ARRAY TO OFF BOARO *1

(• INDEX OF FIRST SQUARE ON LARGE
BOARO *1

t* INDEX OF FIRST SQUARE ON SHALL
BOARO *»

!• LOOP THROUGH RANKS «)

(• LOOP THROUGH FILES *1

(• ADVANCE SHALL BOARD INDEX •)

FOR INTI ■» AZL TO ZAL 00
XLLOIINTII 1= O;

FOR INTE IS 81 TO Sk 03
BEGIN

INTO ia XTEOIINIEi;
FOR INTI la 1 TO 7 00

XLL0[IHT]»1NT01 ia INTO!
ENO;
FOR INTE 1= N1 TO NA 00

KLLOCXTEOIINTEll la XTEOtlNTEll

INITIALIZE CASTLING TRANSLATION TABLES *)

lORRSIXSQSILSI.XRSSIXTRFSIRl.FBn.XRSSCXTRFSCRltFSnM
IORRS(KSQSILLliXRSS(XTRFSIRl«Fin,KRSS|RTRPSlRl»Flll) 1
ZO«RS<X$QSIOS),XRSStXTRF$IHB.FBII,XRSSIKTRF$IRB,FfllM
lORRSIXSQSIDLl.xRSSCXTRFSIRBfFlJ),XRISIXTRTSlRBtFB)111

XORRSIXRQSOfLSI,XRSSC XTRFSIRl»FA11*IRSSIXTRFSfRltFZI111
XORRSIXRQSOILLIfXRSSIXTRFSIRltFAll#XR$SIXTRFSIR1,FSI111
I0«R$IXRQSACLS1,XRSSIXTRF$|R1,F9I1,XRQS0ILSIII
IOtR$IXRQSAILLI,XRSSIXTRF$IRl,F9ll,XR010CLllM
lORRSIXRQSOILLI.XRSSIXTRFSIRi.FEIIflRQGOILLI11

lORRSIXRQSOIDSliXRSSI
XORRSIXRQSOfOLI»XRSSI

XTRFSI RBfFB 1) tXRSSI XTRPSIM,F7) 111
XTRFSIRB.FAIItlRlSIXTRFSIRB.FBII»I

124

Listing 1, continued:

lMRS(XftQS*I0$l,XRSS|RTRr5CM,FI ||,VIU$OfOSI» }
XORRSI)(KQ$«COL)«XltSSIKTKrsiM.F$]|,KKq$0(Oi.lM
lOKRSUKQSOtDD.XKSSIKTRFSIM.rtlltXRQSOlOLlM

FOR INTO l> IS TO QL DO
WITH XRgniXNTQI DO
BCOtM

RRCR MTV
RHC* l> FALSCt
RHAC TRUEt
RMCH !• FAiSEl
RRRT i> FAISEI
RNIL IB FALSCI
RNSU IB FALSEI
RNRR |B FALSEl
RNOO IB TRUEt

end;

** XROntLSURMO IB KTRFSIRl.FFlt
XRONILLI.RNFR !■ XTRFStRl,F$]; IRQR(IL|.RHTO M XTRFStR1*F3|;

XRQRIOSI.RNFR |> RTRFStRI.FSIt XRQNrOS I.RNTO |a XTRF$(RAiFT|;

XRQNIOLI.RHFR !• XTRFS(RAtFSI: XRQNIOL I .RHTO I* XTRFStRA,F311

XROHClSI.RNQS IB false:
KRQHCLLI.RNQS l« TRUEI
XRQHIOSI.RHQS t* FALSE|
XRQHIOLI.RMS l> TRUE:

XTROCLITEI |B LS;
XTNQfDARKI Ib qsi

kTQSCLSI |b XTRFS|Ri,FSlt
xroSILL) IB XTRFSlRl.Fli;
RTQStDSI l> XTRFSIRIfFAi:
XTQStDL) ta XTRFSfRA.Fl|{

<*• INITIALIZE NULL HOVE *>

WITH NULHV DO

BEGIN

RHFR 1 B *S;
RHTQ Is as:

RHCP |B HTt
RNCA |B FALSEl
RHAC 1 B true:
RHCH |s false:
RHHT |c FALSEl
RHIL 11 false:
RHSU Is false:
RHPR la TRUE:
RHPP Is pb:

end:

INITIALIZE COhHlNO PROCESSING VARIABLES

JHTJ ■> ZJ;

ICAROIZJI i»
iLlNEtZJJ I* "f;

INITIALIZE MOVES STNTAX TABLE •>

STMCrj INTI |i
INISYNI**.- BP
INISVMI" BP/ j-M
iNtSYNIV 1*P -(I
INISYNT* •P/ R :
INISTMC-/ R Bp -It
INISYNI- BP/ Ri-»t
iNISVNI-y RlBp
INISYNI- BP/XR -M
INISYNI-/XR BP -),
INISYNI- Bp/KRX-i:
INISYNI-/KR1BP -)|
INISYNI-/ |Bp/ j«,.
INISYNI-/ R BP/ R -,j
INISYNI-/ iBp/ R
INISYNI-/ R BP, I
INISYNI-/ RlBp/ s
INISYNI-/ jBp/ Rj-||
INISYNI-/ RlBp/ R -I .
INISYNI-/ R Bp/ Rx-tI
lNtSYN|-/RR Bp/ i«||
INISYNI-/ IBp/xR -»I
IN1SYNI-/KR BP/ R {
INISYNI-/ R bp/rr -I,

INISYNI-/ IBp/KRi-ii
INISYNI-/XR1BP/ J-,

R -p/KRi-i:
lNl$YNi-/KRiap/ R
INISYNI-/ RlBp/ Rt*|*

INISYNI-/ Ribp/rr

"P/KR -II

t1!!I ' «i*p/xRi-i J
i;{|;illZ''‘«i*p/xR -It

1551!" I'**
»""'NRi*p/KRi-i:

;«xsYNi-
Jnisyni-
;"»yni-/ ..

NISYNI-; R^:

jNIsIUlv R^I

'"ISYNI-zrrj.

*" “"'TtALIZE LETS b»

=35SI,

Rl-I 5

KRl-l ;

Rl-I;
Ri-i;

<Ri“l;
•CRl-is

Rl-I 1

Rl-I;

Wl-» J

«i-i:

RRl-lt

FHAKHT IB 25(1
FNOOCL IB 111
FPAOCRIFll IB II
FPAOCfttFZI f. II
FPIPCRIFS) I. 5|
FPAOCRIFLl IB ill
FPROCRIFfl IB 151
fPAOCRiFd I. 51
FPADCRCF71 ib ||
FPAOCRCFII la It
FPOLOK IB 211
FPCONN Ib 5t

FPFLNX *• 12t
FROUOL IB (II
FRKZTH la 1201
FTRAOC set

FTROSL IB 5lS6t

FTRPOK IB Zt
FTRPttN IB Bl

FNKINO IB 5ll

FMNAJN |B II

FMMINM IB loot

FMPAHN IB lail

fnrook IB z:
MiNDOH iB so:

INITIALIZE SNITCHES •>

SNEC IB TRUE!

SNPA i« true:

SNPs i> false:

SHRE |. TRUE:

SN$u i> false:

SNTR IS false:

INITIALIZE HAIN LOOP CONTROL VARIABLES •)

COlNC is 0;

ENO: |B INICON B|

PROCEDURE INITALIVAR *|R0|

VAR

INTF

INTR
TF;
tr:

BEGIN
MITH

BEGIN

RBTH IS LITE;

DO

RBTS ls -It
RBTI IS o;

RBSQ Is ILSiLL.DStOLi;
FOR INTF |s fj TO F8 00
BEGIN

R6IRF(RZ,tNTF] i= LP;

FOR INTR IS R3 TO R6 00

RBIRFIINTR.INTFI |s nt;

RBIRFiRr,INTF) is OP]

end:

RBIRFIRl.Fll I. LR:

INITIALIZE FOR A NEH CANE •)

!• file index •!

I* RANK INDEX •!

T* SIDE TO HOVE *)

I* NO EYIPASSANT SQUARE *1

(• CANE HAS NOT STARTED •!

<* ALL CASTLINC HOVES LEGAL *1

1* LOOP THROUGH ALL FILES *1

<• SET LIGHT PANNS ON BOARD •!

I* LOOP THRU NIOOLE OF BOARD ‘J

(« SET NIOOLE OF BOARD EHPTY b)

I* SET DARK PAWNS ON BOARD *)

RBIRFIRi,FZI
RaiRFIRl,F31
RBIRF(Ri,Fi,|
R3IRFIR1.F5I

R0IRF{R1«F6I IS lb

RBIRF(Ri,f7| Is

RBIRFIRI.FSI is
RBIRFIRS.Fl} ts

RBIRflRe.FZI ts

RBIRFIRe.FSt IS

RBlRF|Ra,Fl.l is

RBIRFtRS.FS)
RBIRFIRa.FB)

RBIRF[Re,F7I

RaiRF[R8tFS]

1= ln:

IS lb:

IS lo;

in;

lr:

or:

on;

oe:
I s do:

1= ok;

SET REMAINDER OF PIECES ON
BOARD •>

|S ON;

I = OR:

MOVHS 1= - ENTER MOVE CR TYPE CO.

HRITELNtHOVHSI;

LSTNV is NULHV;

LNO:

End: i» inital •»

PROCEDURE PAUSER;

!• INITIALIZE PREVIOUS HOVE •!

|B PAUSE FOR CARRIAGE RETURN

BEGIN

IF SHPA THEN

BEGIN

nritelnc pausing "I:
REAOLN;

END :

end; I* PAUSER *1

PROCEDURE PRIMOVIAiFMl; |B PRINT A HOVE *>

BEGIN

WITH A 00

BEGIN

MRITEI" FROM ".PMFHIZ,- TO ".RMTOIZi:
IF NULMVB(AI THEN

MRITEI-, MULL MOVE-1
ELSE

BEGIN

IF RNCA THEN

MRITEI-, CAPTURE “,XTPC(RMCPt
ELSE

MRITEI-, SIMPL£i“»:

IF NOT RHAC THEN

MRITEI- NO-I5

MRITEI" ACS-i:
IF RHCH THEN

125

Listing /, continued:

MRITE(~. CHECK*M

If RMHT THEN

MRXTEt". HATE”M
If RNIL THEN

MRITEl". ILLEGAL*);
IF RHSU THEN

NRITEC, SEARCHEO”);

CASE RHPR Of
fALSEl <• NOT PROHOTION *1

CASE RHOO Of

fALSEl I* NOT CASTLE •)

If RHEP THEN

HRITEI*, ENPASSANT")?

TRUEl I* CASTLE •)

BEGIN

MRITE<“, CASTLE ");

IF RHQS THEN

MRlTE«"LONC")

ELSE
NRITE«“SMORT“);

end;

end;

TRUEl <• PROMOTION •»

BEGIN

MRITEI*. PROMOTE TO “) J

CASE RMPP OF
PQl MRITE("QUEEN”);

PRl WRITE("ROOK");

PBl MRITECBISHOP") J

PNl NRITECKMICHT")?

END)

end;

end:

ENO;

end;
MR1TELN("."»;

END; (• PRIMOV •»

PROCEDURE PRIHT8(AIRC); (• PRINT A BOARD •)

VAR

INTR I tr:

iNTF I tf:

(* RANK INDEX •)

(• FILE INDEX •)

NRlTEt" ".AlAAl,AtAA*ll);

IF B THEN
HRITELNI" ON")

ELSE
NR1TELN(" OFF") ;

END! (• PRISMl •)

PROCEDURE NBEVALt

VAR

INTI I TX;

BEGIN

IF MBLTE <> 0 THEN

IF HBLTE > 0 THEN
INTI 1= HBPHN(LITE)

ELSE

INTI NBPHNtOARXI

ELSE

INTI i> 0;

NBVALIJNTXI 1= SIGN(MINI MIN(FMAX NT.ABS(HBLTE))
♦FTRAOE-ABS(HBLTE)•(FTRDSL-MBT0T)*(4*1NTI*FTRP0K)

OIV (■••INTXtFTRPMN) OIV 2621(|l»«i6920) iHBLTE>!

END! (* MBEVAL *>

I* EVALUATE MATERIAL BALANCE *>

(• COUNT PANNS OF MXNNXNC SIDE •)

PROCEDURE MBCAPT

(AiTP):

BEGIN

MBTOT 1= HBTOr • ABS(XTPV(A]);

IF KTPU(A) = EP THEN
HBPMN(XTPH(A)1 1= HBPHNIXTPMtA])

HBLTE Is MBLTE > XTPVCAi;

MBEVAL:

end; (• MBCAPT •)

(• EVALUATE, MATERIAL AFTER

CAPTURE ♦)

(• PIECE CAPTURED *)

(• TOTAL MATERIAL ON BOARO »)

- i;
(■ REMOVE PAWN IF NECESSARY •)

(• LITE ADVANTAGE *)

(« EVALUATE MATERIAL *)

PROCEDURE MBTPAC

(AITP);

(« REMOVE CAPTURE FROM

MATERIAL BALANCE DATA. THIS

IS THE INVERSE OF MBCAPT •)

(• PIECE UNCAPTURED *)

BEGIN

nriteln;

FOR INTR l> RB OOHNTO R1 DO

BEGIN

WRITE (■ “,ORO(INTR)>lllt" ");

FOR INTF IS FI TO F« DO

WRITE (XTPC[A[XTRFS(INTR,INTf)

HRITELN;

end;
writeln (" w rnbqkbnr");

ENO; (• PRINTS •)

(• write a blank LINE *)

(• LOOP DOWN THROUGH RANKS *)

(• OUTPUT RANK LABEL *)

(• LOOP ACROSS THROUGH FILES *)

I) ;
(• OUTPUT CONTENTS OF SQUARE «)

(• WRITE OUT A RANK •)

(* NRITE OUT BOTTOM LABEL «)

BEGIN

MBTOT Is HBTOT f ABS(XTPV)AI):

IF XTPUCAl = EP THEN

HePNN[XTPH(Al) IS MBPWNIXTPH

MBLTE l« MBLTE ♦ XTPVtAj;

end; (• MBTPAC •)

PROCEDURE NBPROM

lAiTP) !

(• EVALUATE MATERIAL BALANCE

CHANGE DUE TO PAWN

PROMOTION •)

(• PIECE TO PROMOTE TO •)

PROCEDURE PRINBB(AlRS>;

VAR
INTR I tr;

INTF I tf;

BEGIN

WRITELN!

FOR INTR IS RB DOMNTO R1 DO

BEGIN

WRITE <" ",ORO(INTR)*lll." "):

FOR INTF IS FI TO F8 00

WRITE IXTeC(INR$T8(A,xrRFS(I

writeln:

end;

WRITELN (" N RNBQKBNR");

ENO; (• ■PRINBB *1

PROCEDURE PRlNAH(AiFX);

(• PRINT A BIT BOARO *)

(» RANK INDEX *)

(* FILE INDEX *)

(• WRITE OUT A BLANK LINE •)

(• LOOP DOWN THROUGH RAHKS •)

(• OUTPUT RANK LABEL •)

(• LOOP ACROSS THROUGH FILES •)

:,INTF))li; ^

(• OUTPUT CONTENTS OF SQUARE •)

(• WRITE OUT A RANK •)

(• WRITE OUT BOTTOM LABEL *)

(■ PRINT ATTACK MAP *)

BEGIN
MBTOT IS HBTOT * ABS(XTPVtA)•XTPV[XTUMP(EP<XTPMtA 11)> !

(* TOTAL MATERIAL ON BOARO *1

MBPWNIKTPMIAI) 1= MBPMNtXTPHtA1) - i;(* COUNT PAWNS •)

MBLTE IS HBLTE * XTPV[A1>XTPVtXTUHPfEP«XTPH(A111!

MBEVAL: (* EVALUATE RESULT *>
end; (* MBPROH •)

PROCEDURE MBMORP (* REMOVE PAWN PROMOTION
FROM NAT.eRIAL BALANCE DATA.

THIS IS THE INVERSE

OF HBPROM *1

(AlTPi; (* PIECE PROMOTED TO •)

BEGIN
HBTOT 1= HBTOT - ABS(XTPV(AI^XTPVIXTUHPCEP.XTPHlA]11);
HBPWN(XTPH(A11 I* H6PWN{XTPH(A11 » I)
MBLTE Is HBLTE • (XTPVtA1«XTPV[XTUHPIEP«XTPHIA!11);

ENO; <* HBHORP *)

VAR
INTR, JNTR I TR;

INTF, JNTF I tf;

BEGIN

writeln;
FOR INTR 1= RB OOHNTO R1 00

BEGIN

FOR JNTR RB OOHNTO RL DO

BEGIN
FOR INTF IS FI TO FB 00

BEGIN

WRITE(“ “);
FOR JNTF IS FI TO FB 00

BEGIN
WRITE(XTBCIINRSTBIAIXTRFS(INTR,INTF1),XTRFS(JNTR,JNTF J) 1) !

ENO ;

WRITE)" ");
end;

WRITELN;

END!

writeln:
IF INTR IN (Rl,F3,R5,R7) THEN PAUSER;

end:

end; (• PRINAH •>

;• RANK INDICES •)

(• FILE INDICES •)

PROCEDURE PR1SWI(A|PA;B|T6); (* PRINT A SWITCH ')

BEGIN

PROCEDURE ADOATK

(AITS):

VAR

INT3 I TB;

INTO I to:
XNTE I te:

INTH I TH;

INTP I tp:
IMTT I tt:

BEGIN

INTP IS NBORDIAi;

INTH IS XTPH(INTP);

FDR INTE ls XFPEIINTP) TO XLPEdNTf

BEGIN

INTT IS A;

INTB IS XSPBdNTPi;

INTO 1= XTEOdNTEi:

REPEAT
INTT %- XTLSIXTSLdNTTl 4 INTO

IF INTT »= 0 THEN

BEGIN

SETR$(ATKrR(Al,lNTT):

SETRS(ATKTOtINTTl,A);

SETRSIALATKdNTHI.lNTD ;

IF NBORDdNTTI <>- HT THEN

INTB IS false:

(* AOO ATTACKS OF PIECE TO DATA

BASE •)

(• SQUARE OF piece TO ADD

ATTACK •)

(• LOOP CONTROL BOOLEAN *)

(• CURRENT DIRECTION OFFSET •»

(• CURRENT DIRECTION INDEX *1

(• COLOR OF CURRENT PIECE •)

(« CURRENT PIECE *)

(« RUNNING SQUARE ■)

(« PIECE OF INTEREST •)

(• COLOR •)

] 00

C« INITIALIZE RUNNING SQUARE *»

I* TRUE IF SWEEP PIECE *1

(4 OFFSET •)

: (• STEP IN PROPER DIRECTION *•

126

Listing 7, continued:

eNo

ELSE

INT8 1= false:

UNTIL NOT INTe;

end:

end; c« aooatk

PROCEDURE AOOLOC

lAtTSt
8)TPi;

SECZN

CLRRSfTPLOCiHTl.AI|
SeTRSCTPL0Ct61«AI\
SETRSITHLOCIXTPH C BIJ•Al{
SETRSIALLOCtJNTKl,A>)
NBOROUl l« fit

ENOt <* AODLOC •»

PROCEDURE CLSTATt

BEGIN

WITH BOARD 00
BEGIN

RBTH Is LITE!

RBT5 ts

RBSQ is u;

end;

END; <* CLSTAT

PROCEDURE CUTATK

lAlTS):

VAR

INRS I RS;

INTS I rs;

ZNRS I RS;

INTO I to;

INTN t th;

INTL I TL!

INTT I TT!

BEGIN

CPrRSaNRStATKrOtAll;
MMILE NXTrSdNRStZNTSI DO

IF XSPBINBOROIINTSII THEN
BEGIN

INTO I* XLLD(XTSL[AI-XT5LC1NTSI

INTN |s XTPHtNBOROlINTSJl;

INTL is XTSKAHINTO;

INTT Is XTLSllNTLIt

MHtLE INTT > AT 00
BEGIN

CLRRSUTKFRtlNTSl.INTTI ;

CLRRSUTKTOI ZNTTI «INTS> 1

ANDRS(IHRS,ATKTOIiNTTJ,TMLOCt

I* AOO PIECE TO DATA BASE *)

I* SQUARE MITH NEH PIECE ON IT *1

<« NEH PIECE TO ADO •)

(* BIT BOARD OF CNPTT SQUARES *)
(* BIT BOARD OF ALL SANE PIECE •!
<* BIT BOARD OF ALL SANE COLOR *1
<* BIT BOARD OF ALL PIECES *)
(* SET NEH PIECE ON BOARD •)

1* CLEAR POSITION STATUS

WHITE TO NOVE *1

l« NO ENPASSANT •)

I* NO CASTLING LEGAL •!

!♦ CUT ATTACKS THROUGH SQUARE •»
SQUARE «»

f* ATTACKING PIECES *1

f* ATTACKING PIECE SQUARE *1
<* SCRATCH •>

I* STEP SIZE •!

<* ATTACKING PIECE SIDE *1

I* NO LONGER ATTACKED SQUARE *)

(* NO LONGER ATTACKED SQUARE

(• ALL PIECES ATTACKING SQUARE *t

t* IF SHEEP PIECE *1

EHD{
End: i

IF NULRSIIHRSI THEN

CLRRSIALATKCINTNItlNTT) ;

IF N80R0IINTTJ » NT THEN
BEGIN

INTL IS intl^intd;

INTT IS XTLSIINTLI;
END

ELSE

INTT IS at;
end:

(* STEP SIZE ON 10 X 12 BOARD

(« SIDE OF ATTACKING PIECE •!

<* FIRST SQUARE BETONO PIECE *1

<* FIRST SQUARE BEYOND PIECE ON
eXS BOARD

I* NHILE ON BOARD •!

<* CLEAR ATTACK HAP •!

INTHIM

(• OTHER ATTACKS ON SQUARE BY

SANE SIDE *)

(* IF NO ATTACKS BY THAT SIDE *1

(• CLEAR ATTACKS BY SIDE •»

<• STEP BEYOND SQUARE *1

<* STOP SCAN •>

CUTATK •)

PROCEDURE DELATK
<AiTsn

VAR

IMRS , RS;

1«RS I rs;

INTS I TS;

INTM I tn;

begin

'^'’’'RSllNRs.ATKFRtAli:

;j;;*<»tkfr[aii:

^ NXTTSUmrs.INTSJ DO

begin

'=>-R«UTKTQ,intsi,A»|

'*“^SaHRS,ATKTOIINTSl,THLOCIIHTHI

ENO; '■ HI;

ItAI i

:

• A)

DELETE ATTACKS FROM SQUARE •>

SQUARE TO REMOVE PIECE *)

SQUARES ATTACKED BV PIECE ON
SQUARE •>

SCRATCH •!

SQUARE ATTACKED BY PIECE ON
SQUARE •)

SIDE OF PIECE ON SQUARE

SQUARES ATTACKED BY PIECE

ON SQUARE •)

CLEAR ATTACKS FROM SQUARE *»

SIDE OF PIECE ON SQUARE «|

LOOP THROUGH ALL ATTACKS BY
PIECE *1

CLEAR ATTACK TO OTHER

SQUARE «)

OTHER ATTACKS BY SANE SIDE *1

CLEAR ATTACKS BY SIDE *I

CLEAR PIECE «)

CLEAR PIECE FRON SIDE •>

CLEAR PIECE FROM ALL PIECES *)

SET EMPTY *t

PROCEDURE PRPATK

lAiTSi;

VAR

INRS

INTS

INTD

I NTH

INTL
INTT

RS;

ts;

to;

tm;

tl;

tt;

BEGIN

cpyrs<inrs»atkto(A]);

NHILE NXTTSdNRS.lNTSI DO

IF XSPBINBOROIINTSII THEN

BEGIN

INTO IS XLLD(XTSL(AJ-XTSL(ZNTSIi;

INTM Is XTPMtNBOROlINTSli;

INTL IS XTSL[A]«ZNTD;
INTT IS XTLSIINTLI:

WHILE INTT >s 0 00
BEGIN

SETRSUTKFRI 1NTS1«INTTI t

SETRSIATKTOIINTTl.lMTSI ;

SETRS(ALATKIINTNl,INTTt1

IF NBOROCINTTI s NT THEN
BEGIN

INTL ts INTL^INTO?

INTT Is XTLSIINTLI;

ENO

ELSE

INTT IS .i;

END;

ENOT

end: (• PRPATK •>

PROCEDURE CAINIT

(AiRHi;

BEGIN

WITH A DO

BEGIN

AOOLOCIRMFR.NBOROtRHroll

ADOATKIRNFR)T
CUTATKIRMFRI;

OELATKIRMTO)t

AOOLOCIRMTO.RHCF);

ADDATKIRNTOI:

hbtpacinbordirhtod;
ENO;

end: <* CAINIT

PROCEDURE LOSEIT
(AiRN);

BEGIN

WITH A 00

BEGIN

MBCAPTtNeOROIRNTOl);

OELATKIRMTO);

AOOLOC(RHTO«MBORO(RMFRII

DCLATKIRMFRI;

PRPATK(RMFR);

AOOATK(RHTO);

end;

end; (• LOSEIT •»

PROCEDURE MQVEIT

(AiRM)I

BEGIN

NITH A DO

BEGIN

AODLOCIRNTOtNBOROIRMFRn ;

CUTATK(RHTO);

OELATKIRHFRI|

PRPATKIRMFR);

AODATKIRHTOI;
end:

EMO; (• MOVEIT •»

PROCEDURE RTRKIT

CAIRN):

BEGIN

NITH A DO

BEGIN

AOOLOCIRNFR.NBOROtRNTOI);

CUTATKIRMPRi;

DELATK(RHTO>;

PRPATK(RNTO);

AOOATK(RHFR);

end:

end: I* RTRKIT •)

• PROPAGATE ATTACKS THROUGH

SQUARE •)

• SQUARE •)

* ATTACKING PIECES •)

:» ATTACKING PIECE SQUARE •!

• STEP SIZE •»

:• ATTACKING PIECE SIDE «)

« NEH ATTACKED SQUARE •)

« NEM ATTACKED SQUARE •)

• ALL PIECES ATTACKING SQUARE •)

• IF SHEEP PIECE •)

* STEP SIZE ON IQ X 12 BOARD •)

* SIDE OF ATTACKING PIECE *)

* FIRST SQUARE BEYOND PIECE ■»

* FIRST SQUARE BEYOND PIECE ON
•XB BOARD •)

* HNILE ON BOARD •)

* SET ATTACK NAP •)

* SET ATTACKS BY SIDE •>

* STEP BEYOND SQUARE •)

* STOP SCAN *)

* UNPROCESS CAPTURE HOVE *1

• CAPTURE HOVE •>

• PUT PIECE ON ORIGINAL

SQUARE •)

• STOP ATTACKS AT THIS SQUARE •)

• REMOVE THEM FROM

DESTINATION SQUARE •>

• REPLACE CAPTURED PIECE •)

UPDATE SCORE *)

PROCESS CAPTURE NOVE •)
CAPTURE HOVE •)

UPDATE SCORE •)

DELETE ATTACKS OF CAPTURED

PIECE *l

AOO PIECE TO DESTINATION

SQUARE •>

DELETE ATTACKS OF MOVING
PIECE *1

PROPAGATE ATTACKS THROUGH

FROM SQUARE •)

AOO ATTACKS OF MOVING PIECE *1

PROCESS ORDINARY HOVE •)

ORDINARY NOVE *)

ADO PIECE TO NEM SQUARE «)

CUT ATTACKS THROUGH NEH
SQUARE •)

DELETE ATTACKS FROM OLD
SQUARE •>

PROPAGATE ATTACKS THROUGH OLD
SQUARE *1

AOO ATTACKS FROM NEH SQUARE •)

UNPROCESS ORDINARY MOVE •)

THE HOVE TO RETRACT «)

PUT PIECE ON ORIGINAL

SQUARE •)

CUT ATTACKS THROUGH ORIGINAL
SQUARE *)

DELETE ATTACKS FROM

DESTINATION SQUARE •)

PROPAGATE ATTACKS THROUGH

DESTINATION SQUARE *)

ADO ATTACKS FRON ORIGINAL

SQUARE «)

127

Listing 7, continued:

PROCEDURE PAWNIT

lAiRHIt

(• UNPROHOTC A PAWN *1

(• PROMOTION HOVE *1

BEGIN

MITH A QO

BEGIN
MBMORPtNSOROCRHTOJ►; <• UPDATE SCORE *1

HBORDIRMTOl \- XTUMPtEP,XTPHlNBOROtRMTOIJI?

end:

end; I* PANNIT *)

PROCEDURE PROACA

UiTSi;

C* PROCESS CASTLE STATUS

CHANGES *>

f* SQUARE *1

VAR

INRS I Rs;

IHRS i Rs;

C* SCRATCH •»

(• SCRATCH •)

BEGIN
CLRRSJCSTATIJNTKJ,A»: <* CLEAR THIS SQUARE •!

ANQRS<INRStCSTAT(JNTKltXRRSIXTSRIAnil
l» CASTLE BITS POR THIS SIDE *>

IF MOT IHRSTBaNRS.XTRFStXTSRIAl.FSl) THEN
(• IF KING HOVE

ANDRStCSTATI JNTKl tCSTATC JNTKI« XNRSI XTSRUl I»I
(• CLEAR ALL CASTLE MOVES FOR

SIDE •!
AHDRSIIMRS,INRSiXRFSIFAI>; ring rook square •!
AMORS«INRStIHRS«XRFSIFin? (• QUEEN BOOK SQUARE •)
lORRSaNRS.INRS.IMRS); I* BOTH ROOK SQUARES *1
IF NULRSlINRSI THEN t* IF BOTH ROOKS CONE

ANORS«CSTATlJMTKl,CSTATIJMrKl.KNRStXTSRIAin:

END; I* PROACA *1

PROCEDURE PROACS

(A|RH>\

(• PROCESS NOVES AFFECTING CASTLE

STATUS •>

I* HOVE NITH RNAC *)

BEGIN

HITH A DO

BEGIN
IF INRSTB(CSTATIJNTK1,RNFSI THEM <• FROM SQUARE *1

PROACA(RMFR» ;

IF INRSTa(CSTATIJNTK)iRHTO) THEM <• TO SQUARE •)

PRQACA(RHTO);

END;

end; (• PROACS

PROCEDURE PROHOT

(AiRM);

(« PROCESS PROMOTION •)

(• PROMOTION MOVE

BEGIN

MITH A DO

BEGIN
HBPROHIXTCHPt RMPP« JNTHIM

NflOROrRNFRI IS XTCNPtRHPP.JMTMn

end;
end: <* PROHOT •)

C* UPDATE SCORE *)

PROCEDURE CREATE;

WAP

INRS I RSt
INTN t th;
INTP I tp;
INTO I TQ;
INTS I ts;

BEGIN
NITH BOARD DO
BEGIN

JNTH Is AH4i;

JNTK 1= ak;
JNTH I* RBTM?

MOOES I* 0;

LINOXIJNTKI 1= JNTNT
SRCHHIJNTKI I= HO i

FOR INTS Is AS TO ZS DO
BEGIN

NEMRS<ATKFRllNTSni
NEMRStATKTOIINTSn;
MBOROtlNTSl IS HT|

end;

NENRStALLOCCJNTKI);

FOR INTP is LP TO NT DO
NEMR$<tPLOC|lNTPlM

FOR INTH ls LITE TO NONE 00
BEGIN

NENRSITHLOCCINTHIM
NENRSIALATKIINTHn;

end;

MBTOT IS OT
HBPNNILITE1 is CI
HBPNNIOARK) IS O:
HBLTE IS 01

<« CREATE GLOBAL OATA BASE *)

<• SCRATCH SIT BOARD *1

!• COLOR INDEX •»

(• PIECE INDEX *1

CASTLE TTPE INDEX •)

<• SQUARE INDEX •)

(• INITIALIZE MOVES STACK

POINTER ■»

J* PLY INDEX •»

!• SIDE TO HOVE *1

(s INITIALIZE TOTAL NODES *1

I* MOVES ARRAY LIMIT »)

<• SEARCH NODE

(• CLEAR ATTACKS FROM *1

(« CLEAR ATTACKS TO *1

!• CLEAR LOOKAHEAD BOARD *1

(• CLEAR ALL PIECE LOCATIONS *1

(• CLEAR PIECE LOCATIONS •)

<* CLEAR COLOR LOCATIONS

<» CLEAR COLOR ATTACKS •!

FOR INTS Is AS TO ZS DO

IF RBISIINTS) <> NT THEN

BEGIN
ADOLOCdNTStRBISIINTSn t

NBTPACfRBISIINTSn;
END

ELSE
SETRS(TPLOCCHTI.INTS)?

HBEVAL: <* EVALUATE MATERIAL •)

CPVRStlNRSfALLOC!JNTKII; <• COPY BIT BOARD OF ALL

PIECES •>

HMILE NKTTSdNRS.INTi) DO

AODATKCNTS) : (• ADD ATTACKS OF ALL PIECES

NENRSICSTATtJNTKl): C* INITIALIZE CASTLING SQUARES •)

FOR INTO IS LS TO OL DO

IF INTO IN RSSQ THEN
IORRS(CSTAT(JNTKl«C$TAT[JNTKl.KSQStlNTQl)$

NENRS<ENPASIJNTKJ»; 1* INITIALIZE ENPASSANT SQUARE •)

IF RBTS >s 0 THEN
SETRSIENPAS!JNTK]«RBTS);

CPYRSIGENPNIJNTK],TPLOC(xrUMPIEP«JNTHl1)t

NOTRSCCENTOIJNTKl.TMLOC!JNTH]];

NQTRSdNRS»GENPNIJNTK)i;

ANDRS(CENFRtJNTKI *TNLOCtJNTH1•INRS)i

end;

EN01 (• CREATE •>

PROCEDURE ONOATE (•

(AiRH); (•

VAR

INTS 1 TSI (•

INTR 1 TRt (•

INTF 1 TF| (•

RKFR 1 TSt (•

RKTO 1 TSt (*

BEGIN

MITH A DO

DOMNOATE DATA BASE TO BACK

OUT A HOVE *1

THE HOVE TO RETRACT •>

ROOK RANK FOR CASTLING •)

ROOK FILE FOR CASTLING *1

BEGIN

CASE ORO(RHCA)«i* * OROIRHACdZ 4 OROIRNPRI OF

0l (• ORDINARY HOVE «1

RTRKiriAd

II PAHN HOVE AMO PROMOTE •!

BEGIN '*

PAMNITIA) ;

RTRKITU);

END;

21 <• MISCELLANEOUS ACS •>

IF RHOO THEN

BEGIN (• CASTLE *)

IF RHQS THEN

INTF IS FI

ELSE

INTF IS fe;
INTR 1= xrSRIRHFRi;

RKFR IS XTRFSiXNTRiINTF);

RXTO is (RHFR4RHia) OlV Zi

AODLOCiRKFRiNBOROIRKTO)) :

OELATKIRKTOI;

PRPATKiRKTOi;
ADOATKIRKFRi:

RTRKITtAI;

END

ELSE <• NOT CASTLE •)
RTRKIT(A) ;

Sit (« NULL HOVE *)

41 (* CAPTURE •>
IF RMEP THEN

BEGIN <• CAPTURE ENPASSANT •>

INTS IS KTRFSlXTSR(RHFRl,KTSF(RMTOIi;

ADOLOCdNTStRHCP) ;

CUTATKdNTS) t

AOOATKdNTSi t
RTRKITlAi; i* RETRACT PANN HOVE •)

NBTPACtNBOROdNTSn: i* ADO PIECE TO SCORE •»

END
ELSE C* CAPTURE NOT ENPASSANT *1

CAXNITU) ;

$1 (• CAPTURE AND PROMOTE •)

BEGIN
PAMMITUd t* UNPROHOTE •*

CAINlTCAd C* UNCAPTURE •!

end; •

61 ;• CAPTURE ACS *1

GAINITU): d UNCAPTURE •»

(• ROOK ON QUEEN ROOK FILE •)

• ROOK ON KING ROOK FILE •>

• ROOK FILE

• ROOK FROM SQUARE •)

• ROOK TO SQUARE «)

• REPLACE ROOK •»

!• RETRACT KING HOVE *>

7l I* CAPTURE ROOK ACSi

BEGIN

PAMNlTiAlt

GAXNITiA);

ENDt

IS LINDX(JNTK);
end;

JNTM

JNTK is JNTK'i;

JNTH IS OTHERlJNTKi;

end;
ENOt i* ONOATE

PROMOTE *>

RESET HOVE GENERATION

POINTER «1
BACK UP PLY INDEX «)

SMITCM Sloe TO MOVE

FUNCTION UPDATE

(VAR AIRHI
iTBt

(• UPDATE OATA BASE FOR A HOVE

(• THE MOVE •)
(• RETURNS TRUE IF MOVE IS

LEGAL s)

VAR

INRS I RSt

INRS I Rs:
INTS I TSS

INTF I TFt

(• SCRATCH *>

(• SCRATCH *1

(• SCRATCH *1
(• ROOK FILE FOR CASTLING »

128

Listing 7, continued:

INTR I tr;
RKTO I rs;
RKfR t TS;

BEGIN
WITH A 00
BEGIN

JNTK IS JNTK^i;
NENRS(ENPAS(JNTK])}
CPYRSICSTATCJNTKl.CSTATlJNriC-llI !
CPYRSeACLOCIJNTKI.ALLOCC JNTIC-IM;
KBVAL(JNTK1 |: NBVALIJNTK-l1;
LiNOKtJNTKl 1= JHIm;
CASE 0R0(RMCAI*4 ♦ 0R0(RNAC>*2 ♦

0 I

<• ROOK RANK FOR CASTLING *1
!• ROOK DESTINATION SQUARE *1
«• ROOK ORIGIN SQUARE «l

«• ADVANCE PLT INDEX •!
<• CLEAR ENPASSANT OIT BOARD *1
(* INiriALIIE CASTLE STATUS •»
!• iNiriALIIE ALL LOCATIONS •)
(• INITIALIZE NATERIAL SCORE •>
!• MOVES ARRAY LIMIT •»

OROIRMPRI OF

;• PANN MOVE 2 SPACES *1

(* oroinapt move *)
IF RMEP THEN
BEGIN

SFTRSlINKS.KRSSIRMTOl.SlI ;
SFTRS(INRS,XRSSIRMTOJ, S3» \

IORRS«IMRS.INRS.IMRSI ; (• SQUARES NEXT TO DESTINATION •»
ANORSIINKS,IMRSfTPLOCrx TUMP(EP,OIHER(JNTMI H • 5
,, . f* INTERSECT NITH ENEMY PAWNS •)
IF NOT NULRSIINRSJ THEN

SETRSIENPASlJNTKI*IRHTO«RHFR) DIV 2);

(« SET ENPASSANT SQUARE •)
(• HOVE PAMN •» HOVEITUi;

END
ELSE

MOVEITIAI;
(• MOVE ANO PRONOTE •

BEGIN
PROHOTU);
MOVEITfAl;

end:
HISCELLANEOUS ACS

BEGIN
IF RMOQ THEN
BEGIN f* CASTLE *1

IF RMQ5 THEN
IMTF I* FI

ELSE
INTF IS F»;

ZNTR I* XT5RIRHFR]

!• MOVE PIECE •)

PROMOTE PAMN •»
MOVE PROMOTED PIECE •)

t* ROOK ON QUEEN ROOK FILE •!

<* ROOK ON KING ROOK FILE •!
I* ROOK ON KINGS RANK •)

RKFR l» XTRFSIINTR.tNTFlT (• ROOK ORIGIN SQUARE •»
RKTO 1= <RNFR«RMrOI DIV 2;l* ROOK DESTINATION SQUARE •»
AN0RS<C5TAT[JNrKltCSTATIJNTKliXNRSIINTRI)t

f* DISALLOW FURTHER CASTLING
8V THIS SIDE *)

AOOLOCIRKTO.NBOROIRKFRin !• PUT ROOK ON NEW SQUARE *1
ADOATKIRKTOI: aDO ITS ATTACKS •!
OELATKtRKFRI; «« DELETE FROM ORIGINAL SQUARE
NOVElTUi; (. hove KING *1

END
ELSE !• NOT CASTLE *1
BEGIN

PROACSUi:
NOVEITtA) ;

3i:

end:
end;

I* NULL MOVE •!

«• CAPTURE
IF RMEP THEN
BEGIN <• CAPTURE ENPASSANT •»

IMTS 1= XTRFSrXTSRtRMFR1,ktsFIRMTOJ1:

<• PROCESS CASTLE STATUS MOOS
(• MOVE TO OR FROM KING OR ROOK

SQUARE •!

MBCAPT(NB0R01INTS)>:
OELATKIINTS):

PRPATK CINTSJ :

NOVEIT(Alr
END

else C* CAPTURE NOT ENPASSANT
LOSEITUI ;

t* CAPTURE ANO PROMOTE •
BEGIN

CAPTURED PAMN SQUARE ■)
UPDATE SCORE *i
DELETE CAPTURED PAWN
ATTACKS •)
PROPAGATE ATTACKS THROUGH
PAWN •)
MOVE CAPTURING PAWN •)

(« PROCESS CAPTURE *)

PROMOT{AII
LOSEITIA):

ENOt

i* CAPTURE ACS •»
begin

PROACSCAI;
LOSEITtAI;

End:

PROMOTE

PROMOTIA);

PROACSCAI1
‘‘OSEITCAI ;

End:
END)

INITI4LIZE MOVE GENERATION *1

(« PROMOTE PAMN »>
(• PROCESS CAPTURE MITH PROMOTED

PIECE •»

(• PROCESS CASTLE STATUS HODS •!
(• PROCESS ROOK CAPTURE •»

PROMOTE PAMN •!
CHANCE CASTLE STATUS
PROCESS ROOK CAPTURE

CPTRSCCENpJfjLxJ!'’}* (• SWITCH SIDE TO MOVE •

*‘0TRs,5j^T0 XTOMPI EP.JHTNI 11 :

"O^tSClNRs JNTH) » |
*MORS,Jj;h;^,^r»'UNTK|»:

RUNTki.tMLOCI JMTMI, INRSI |

IMTO *** CHECK# OR MOVES

"''^ELtJNTw.j,^, , !• COUNT LEGAL MOVES *1

'• NO
SRChw searching •!

NODES l> N00es*i:

end:
END; (* UPDATE •)

l« COUNT NODES SEARCHED •)

PROCEDURE GENOME (• STACK ONE GENERATED MOVE *1
iaitt; «• FROM SQUARE *1
BiTSI: I* TO SQUARE •»

VAR
INRS 1 RSt (• SCRATCH •!

BEGIN
WITH HOVES(JNTW) 00
BEGIN

RMFR |z a: (• FROM SQUARE •>
RNTO 1= B; (• TO SQUARE •>
RMCP l> NBOROIBi; I* CAPTURED PIECE *1
RMCA IS (NBOROIBI <» HTi; (• CAPTURE •)
lORRSdNRS.XRSSI AI.XRSSISII :
ANDRSdHRS. INRS.CSTATI JNTKl 1:
RNAC IS NOT NULRSlINRS): (• AFFECTS CASTLE STATUS ♦>
RMCH |x FALSE; (• CHECJI •)
rhht i3 false; (• HATE •>
RMiL IS false: «• ILLEGAL •>
RHSU IS FALSE; (* SEARCHED >1
RMPR IS false: C* PROMOTION s)
RMOO 1= false: <• casTle •»
RMEP IS false; (• ENPASSANT •)

end;
VALUEtJNTMJ Is o: (• CLEAR VALUE *1
IF JNTH < ZN THEN

JNTM IS JNTM»i; (• ADVANCE MOVES STACK POINTER *!
end; (• GENONE *1

PROCEOURE PMNPRO; (• GENERATE ALL PROHOTION
MOVES •>

VAR
INTO 1 TC: 1 • PROMOTION TYPE •»

BEGIN
HOVESIJNTM-II.RHPR |a TRUE! I* SET PROMOTION •»
HOVESIJNTM-II.RHPP l> PQ: !• PRONOTE TO QUEEN FIRST «>
FOR INTG la PR TO PB 00 C* GENERATE OTHER PRONOTIONS •}
BEGIN

MOVESIJNTMI la H0VES(JNTM-11((• COPY LAST NOVE «l
HOVESIJNTMI.RHPP |> INTG; (• CHANGE PRONOTE TO PIECE •>
JNTM |s JNTM41; 1« ADVANCE NOVE INDEX *1

end;
END: t* PWNPRO •!

PROCEDURE CENPMN
utRs:

BiRSI;

VAR
INRS) IHRS
INTS I TS:

I RS;

BEGIN
IF JNTM s LITE THEN
BEGIN

SFTRS<INRS»A»$2I;
AN0RSI1NRS.TPL0C(HTI,1NR$)!
CPYRSCIHRS.ZNRSI;
ANORS(lNRS«StINRS»:

DO

I* GENERATE PAWN MOVES *1
:• PANNS TO HOVE *1
(• VALID DESTINATION SQUARES *1

l« SCRATCH *1
(• DESTINATION SQUARE •)

C* HHITE PANNS «l
!• ADVANCE ONE RANK *1
I* ONLY TO EMPTY SQUARES •!
(« SAVE FOR 2 SQUARE MOVES *1
{* ONLY VALID DESTINATION

SQUARES •!
WHILE NXTTSCINRStINTS)

BEGIN

GENONEIXTLSIXTSLIINTSi-XTEOtS2n,tNTS):

!• GENERATE SIMPLE PAWN MOVES *1
IF INTS >- XTRFS|R««F11 THEN

pwNPRo;

ENO:

AN0R5 < XHRStIMRS.XRRSt RSI I;

SFTRSCINRS.INRStS2l:

ANORS tlNRStlNRStTPLOCIHT M:

ANORSClNRStlNRS.B);

(• PROCESS PROMOTION •»

(* TAKE ONLY PAMNS ON THIRD •)
I* ADVANCE ONE MORE RANK *1
(« ONLY TO ENPTY SQUARES •»
<• ONLY VALID DESTINATION

SQUARES •»
WHILE NKTTSIINRS.INTS) 00
BEGIN

GENONECXTLSCXTSLIINTS1•2«XTE0(S2JI«INTSI:
C« GENERATE DOUBLE PAWN MOVES •!

MOVeSCJNTW-ll.RHEP i= TRUE; (• FLAG AS TWO SQUARES •»
end:

SFTRSClMRSiA.Bli: (• TRY CAPTURES TO THE LEFT •>
IORR5(1HRS*TMLOCIOTHERCJNTMIItENPASlJHTKI)i

(• OPPONENT PIECES ♦ EP SQUARE •)
ANDRSdHRS, IHR5«BI : l« VALID DESTINATION SQUARES *1
ANORSdNRS. INRS. IHRSI : (• CAPTURE MOVES TO LEFT *)
WHILE NKTTSlINRStINTS) DO
BEGIN

CENONCIXTLSIXTSLIINTSI'XTEDtBlII.INTS::
<• GENERATE CAPTURE MOVE •)

HOVESIJNTW-ll.RKCA i= TRUE; (• FLAG CAPTURE •)
MOVESIJNTW-ll.RHEP INRSTB<ENPASIJNTKI•INTSM

(• FLAG ENPASSANT CAPTURE •>
IF HOVESIJNTM-II.RHEP THEN

MOVESIJNTM'il.RHCP ■« OP; (* SET CAPTURED PIECE TYPE »|
IF INTS >s XTRfSIRS.Fl] THEN

PMNPRO; <« PROCESS PROMOTION •)
ENO:

SFTR5(lNRS«A»e2l; l« TRY CAPTURES TO THE RIGHT «l
lORRS(IHRS.TNLOCIOTHERIJNTM11.CNPASIJNTK)> t

(• OPPONENT PIECES 4 EP SQUARE *1
ANORSdHRS.lNRS.B) I (* VALID DESTINATION SQUARES •>
ANORSdNRS.INRS.lHRSM (* CAPTURE MOVES TO LEFT *1
WHILE NXTTSdNRStlNTS) DO
BEGIN

GENOME(XTLSIXTSLI2NTSJ‘XTEOIB2il■INTSIt
M GENERATE CAPTURE MOVE «l

129

f* INNER LOOP SOUAItt NUNKR *1

Listing I, continued:

MOVESIJNTM'll.RHCA Is TRUEt t* FLAG CAPTURE *1

HOVESIJNTN-II.RMEP l> INRSTB(ENPAS[JNTR1.XNTSIt
I* FLAG ENPASSANT CAPTURE *1

IF NOVEStJNTM-il.RHEP THEN

NOVESIJNTM«1].RNCP ■* DPt
IF INTS >3 XTRFSCRBtFLl THEN

PMNPRO;

ENOt
ENO

ELSE

BEGIN
SFTRSaNRS,A.S4i ;

ANDRSIENRS.TPLOCIHTI.INRSI;

CPYRS«INRS,lNRSt;

ANDRS(XNRS,B,lNRSi:

<• SET CAPTURED PIECE TYPE *1

<• PROCESS PRONOTtON •>

(* 8LACK PAMNS

(• ADVANCE ONE RANK *1

(• ONLY TO EMPTY SQUARES •>

(• SAVE FOR 2 SQUARE MOVES *)

(« ONLY VALID DESTINATION

SQUARES *1

NHILE NXTTSCINRSfINTS) DO

BEGIN
GENONE <XTLS|XTSLIINTS1-XTEOtS<«n« INTS) \

I* GENERATE SIMPLE PAMN MOVES

IF INTS <= XTRFSIRlfFAl THEN

PMNPRO;

end:
ANORSdNRSvlMRS.XRRSCRS)):

SFTRSIlNRS,INRS.S«i) ;

ANORStINRS«INRS.TPLOCIHTI>;

ANORSdNRS.INRS.B);

«• PROCESS PROMOTION •)

I* TAKE ONLY PAMNS ON THIRD *)

(• ADVANCE ONE MORE RANK •)

<• ONLY TO EMPTY SQUARES »»

<«*ONLY VALID DESTINATION

SQUARES *)

• I

MHILE NXTTSCINRStINTSI 00

BEGIN
GEN0NE(xrLSIXT$LtINTSl*2*xrE0(SLl1tlNTS)\

GENERATE DOUBLE PAMN MOVES *)

HOVESIJNTM-ll.RHEP l= TRUE) (• FLAG AS TMO SQUARES •)

end;

INTS I TSt

BEGIN

ANDRS(XNRS«A,GENTOIJNTK));

NOTRStINRStA):
ANDRSIGENTOCJNTKltCENTOlJNTKIiINRS)I

CPYRS(XPRS*INRS)t

(« ONLY VALID TO SQUARES *)

I* REMOVE oeSTiNATION SQUARES »>

<• SAVE FOR PAMN MOVES •) '

MHILE NXtrsdNRS.lNTS) DO <*

BEGIN
ANORSdMRS.ATKTOlINTSltGENFRI JNTKI) ;

t*

NHILE NXTTS(ZMRS«1HTS) DO <*

CENONEIIMTS.INTSM

end;
GENPHNtGENPNCJNTK)ilPRSI) (*

EN01 I* CENT5L •)

LOOP THROUGH DESTINATIONS *)

GET PIECES OF SIDE TO MOVE •!

LOOP THROUGH ORIGINS *)

GENERATE MOVE *)

GENERATE PAMN MOVES *1

PROCEDURE GtNCAP;

VAR

INRS I RS;

BEGIN
lORRSdNRStENPASI JNTKIiTHLOCt

CENTSL(INRS);

END} I* GENCAP •)

PROCEDURE GENCAS:

VAR

INTO I tq;

INRS t RS:

INRS I RS)

I* GENERATE CAPTURE MOVES *1

(• DESTINATION SQUARES •)

HER(JNTM)]l;

{• GENERATE MOVES TO
ENEMY SQUARES

(• GENERATE CASTLE MOVES *1

I* CASTLE TYPE INDEX *)

I* OCCUPIED SQUARES TEST «l
(• ATTACKED SQUARES TEST *1

SFTRS<INRS,A,83); TRY CAPTURES TO THE LEFT •»

lORRSaMRStTMLOClOTHERUNTMIltENPASI JNTKI) }

(• OPPONENT PIECES * EP SQUARE

ANORS«IMRS,IHPS,B»; <• VALID DESTINATION SQUARES *1

ANORSCINRS.INRS,INRS); «• CAPTURE MOVES TO LEFT •)

MHILE MXTTSdNRStINTS) DO

BEGIN
GEN0NE(XTLS(XTSL[INTS)«KrED[63)].INTS)t

(• GENERATE PAMN CAPTURE MOVE •>

NOVeSlJNTH-lI.RMCA I* TRUE? FLAG CAPTURE •)

HOVESCJNTM-ll.RHEP is INRSTB<ENPAS(JNTK)>INTS)|

(« FLAG ENPASSANT CAPTURE •)

IF MOVESlJNTM-II.RMEP THEN

HOWESlJNTM-ll.RNCP Is LPj <• SET CAPTURED PIECE TYPE •»

IF INTS <= XTRFSIRl,FB) THEN
P)INPRO; <* PROCESS PROHOTIIM •)

END)

5FrftS(XNR5,A,BA): TRY CAPTURES TO THE RIGHT •)

IORRSdMRS,THLOC[OTHERlJNTH])*ENPAS(JNTK|) <
(• OPPONENT PIECES * EP SQUARE •)

ANDRStlNRS.XHRSfB): I* VALID OESTINATION SQUARES •)

AN0RSIINRS*INRS«1MRS)| I* CAPTURE MOVES TO LEFT •)

MHILE NXTTSdNRS.lNTSI DO

BEGIN
GENONEIXTLSfXTSLIINTSI*XTE0|BA]1,XMTSI |

(* GENERATE PAWN CAPTURE MOVE •)

MOVESIJNTM-D.RMCA |s trues <• FLAG CAPTURE •»

MOVES!JNTH*1).RHEP |s INRSTBIENPASIJNTK),INTS)S
t* FLAG ENPASSANT CAPTURE *)

<* SET CAPTUf^O PIECE TYPE *)

(• PROCESS PROMOTION •>

C* GENERATE ALL NOVES FRON

A SET OF SQUARES •)

I* ORIGIN SET OF SQUARES *1

I* OUTER LOOP BIT BOARD •)

<• INNER LOOP BIT BOARD •)

(• PAMN ORIGIN BIT BOARD •)

<• OUTER LOOP SQUARE NUMBER •)

<• INNER LOOP SQUARE NUNBER •)

IF MOVEStJNTM'll.RHEP THEN

NOVESCJNTM-ll.RNCP l« LP;

IF INTS ** XTRFSCRl.FBl THEN

PNHPROS

ENDS
ENDS

ENDS (* CENPMN *)

PROCEDURE GENFSL

(AIRS):

VAR

INRS I RSS

IHRS I RSS
IPRS I RSS

INTS 1 TS5

IMTS 1 TSS

BEGIN
FOR XNTQ IB XTMQCJNTH) TO SUCC(XTMQfJNTH|) 00
IF XNRSrBICSTATtJNTKl.XTQSIINTQ]) THEN

I* IF CASTLING IS LEGAL •)

BEGIN
ANORSdNRStXRDSOC INTO I, ALLOC! JNTK I) S

(• CHECK OCCUPIED SQUARES •)

AND RSlIMRS.XRQSAdNTQl.ALATKt OTHER! JNTM11) S
(• CHECK ATTACKED SQUARES •!

IF NULRSIINRS) AND NULftSClHRSI THEN
(• IF CASTLING IS LEGAL AND

POSSIBLE •)

BEGIN >.
MOVESIJNTMJ 1= XRQMIINTQIS (• GENERATE CASTLING MOVE

VALUEIJNTM] 1= QS

JNTM 1= J’NTHli:

ENO;

ENDS

ENDS !• CENCAS «>

PROCEDURE CENALLS (• GENERATE ALL LEGAL MOVES •)

BEGIN

6ENFSL!ALL0C(JNTK|)t

GENCAS:

ENOS <* GENALL

!• GENERATE SIMPLE NOVES •)

C« GENERATE CASTLE NOVES •)

PROCEDURE LSTHOVI

VAR

XNTM t TM;

BEGIN

CREATEl

CENALLS
FOR INTM IS AN*1 TO JNTH>1 00

BEGIN

IF UP0ATECM0VES!1NTM1) THEN)

ONOATESNOVESIlNTMli;

ENO;

ENOS I* LSTHOV •)

PROCEDURE THENOV

(A IRN) ;

(• LIST LEGAL PLATERS MOVES •)

!• MOVES INDEX *)

<• CREATE DATA BASE •)

<* GENERATE ALL MOVES *)

<* SET ILLEGAL FLAG •)

(• HAKE THE HOVE FOR REAL *)

<• THE MOVE TO MAKE *>

BEGIN
AHORSdNRS.A.GENFRtJMTKDS !• ONLY VALID FROM SQUARES •)

HOTRSdMRS,A) S
ANDRSIGENFRIJNTKI.GENFRtJNTKI.IMRS): !• REMOVE ORIGIN SQUARES *)

ANORSdPRS.A.GENPNIJNTKDS <• VALID PAMN FROM SQUARES M
ANORSIGENPNIJNTKI,C£NPNIJNTK),IHRSI: (• REMOVE PAMNS •)

MHILE NXTTSdNRS.INTS) 00 (• LOOP THROUGH ORIGINS •)

BEGIN
ANORSdHRS,ATKFR(INTS 1, CENTO! JNTK I) S

!• GET UNPROCESSED DESTINATION

SQUARES

(• LOOP THROUGH DESTINATIONS •)

(• GENERATE MOVE

(• GENERATE PAMN MOVES •)

(* GENERATE ALL NOVES TO A

SET OF SQUARES *)

!• TARGET SET OF SQUARES •)

!• OUTER LOOP BIT BOARD *)

<• INNER LOOP BIT BOARD *)

(« PAMN BIT BOARD •)

<* OUTER LOOP SQUARE NUNBER •)

MHILE NXTTSdHRStlHTS) 00

CENONEdNTSflHTS) S

end:
CENPMNIIPRS,GENTOIJNTK1) S

ENOS C* CETFSL •)

PROCEDURE CENTSL

(AiRSIS

VAR

INRS I RSS

IHRS I RSS

IPRS 1 RSS

INTS I TSt

VAR

INTB I Tfi;

INRS I RSI
INTQ I TQS

INTS I TSS

BEGIN

LSTHV 1= A;

INTS I- UPOATEtA);
MITH BOARD DO

BEGIN

RBTM I* JNTM;

CPTRSdNRS,ENPAS!JNTKi)S
IF NXTTSdNRStINTS) THEN

RBTS t> INTS

ELSE

RBTS I* ATS
IF JNTM * DARK THEN

RBTl l> RBTX^IS

FOR INTQ l> LS TO OL 00
IF INRSTBfCSTATtJNTKI.XTQSII

R6SQ is RBSQ«dNTQ|

ELSE
RBSQ I* RBSQ-riNTQ);

FOR INTS |s AS TO ZS DO

R6ESIINTS1 IS NBOROlINTSi:

ENOS

ENOS f* THENOV •)

«• SCRATCH •)

<• SCRATCH •)

(« CASTLE TYPE INDEX «)

!• SCRATCH •)

<• SAVE AS PREVIOUS HOVE •)

!• UPDATE THE DATA BASE •)
<• AND COPY ALL THE RELEVANT

BACK OOMN *)

<* SIDE TO HOVE »)

<* FIND ENPASSANT SQUARE •)

<• ADVANCE MOVE NUMBER *)

) THEN

!• CASTLE LEGAL •)

!• CASTLE NOT LEGAL •)

(• COPY POSITION *)

130

Creating Chess Player

Part 3: Chess 0.5 (continued)

In Part 3 we conclude the listing and

commentary of Chess 0.5 begun in Part 2.
The program was written by Larry A thin,
who is coauthor with David Slate of the

world championship chess program^ Chess
4.6. The program is readily adaptable to
persona! computers having Pascal systems
such as the UCSD Pascal project software.
Part 4 concludes the series with a discus¬
sion of chess strategy and tactics.

Evaluating Terminal Positions

Another important aspect of any chess
program is the function which provides a
static evaluation of terminal positions in the
look-ahead tree. In the present program, this
routine also doubles as a preliminary scoring
function for sorting moves at the first ply, at
the beginning of the look-ahead search.
Since the evaluation function is used repe¬
titively in the search, efficiency demands
that it be carefully engineered. We have left
this task as an exercise for the reader. Our
function presently includes only a few basic
essentials.

The most important feature is material,
e employ essentially the same function for

t IS that is used by Chess 4.5. A trade-down
onus is also incorporated, ie: trade pieces
tit not pawns when ahead in material. A

which is considered is piece

Bkh'rnobitity of Knights and
for 'weighted more heavily than that

given Queens. Special credit is
the ^ *^'^8 which is located in one of

squares in each corner of
^*■0, ie: 16 squares total. This encour-

Peter Frey
Larry Atkin

ages early castling. Pawn structure is con¬
sidered by providing a bonus for advancing
the pawns in the four center files, for hav¬
ing a pawn near the King, and for having a
pawn adjacent to or defended by another
pawn. This indirectly penalizes isolated or
backward pawns. There is a direct penalty
if the square in front of a pawn is occupied.
The position of the Rooks is considered by
providing a bonus for placing a Rook on the
seventh rank and for attacking another Rook
of the same color (ie: doubled Rooks). The
executive routine for these assessments is
EVALU8.

The look-ahead procedure is controlled
by an executive routine called SEARCH.
Several subprocedures are also defined
which handle specific tasks. NEWBST
keeps track of the move which is currently
thought to be best, and dynamically re¬
orders the moves at the first ply level each
time a new best-move is selected. MINMAX
determines whether the move under con¬
sideration will produce an cutoff.

SCOREM is called into action when the
program can find no legal moves at a node.
It determines whether the position should

be scored as a checkmate or as a stalemate.
SELECT is responsible for move ordering at

each node. It determines whether there are
any more moves to be searched and if so,
makes sure that they are generated in the
correct order (ie: captures, killers, castling
moves, and then the remaining moves).

SEARCH incorporates a number of im¬
portant features which make the look-ahead

search more efficient. These include staged
move generation, preliminary ordering

The Look-Ahead Procedure

scores, setting a narrow window at the
beginning of the search, conducting the
search in an iterative fashion, and dynami-
caily recording moves at the first piy as
the search proceeds. Because of these fea¬
tures, the full-width search takes a long time

instead of taking forever.

User Commands

For the user’s convenience, the program

should be able to respond to a few simple
commands. Inputs to the program are pro¬
cessed by a lengthy routine, READER,
which has many component subprocedures.
The translation of the input string is handled
by agroup of routines: RDRERR, RDRGNT,
RDRSFT, RDRCMP, RDLINE, RDRMOV
and RDRNUIVl. Each of the commands is

executed by a separate routine.

When the human player wishes to termi¬
nate the game before it has reached its con¬
clusion (eg: when he is hopelessly lost and
does not want to stay around to be crushed),
he can simply type an END command and
the ENDCMD routine will terminate the
program. If the user simply wishes to start a
new game, he can type I NIT and the
INICMD routine will set up for a new game.

If the user would like to set up a specific
position from the previous game or some
other game, he can call the BOACMD rou¬
tine, which will set up any position he de¬
sires. To use this instruction, the pieces are
designated in the standard way (eg: K, Q,
R, B, N and P) and the colors are designated
by L for light and D for dark. The board is
described by starting at the lower lefthand
corner and listing, row by row, the 64
squares. Numbers are used to represent con¬
secutive empty squares. The command to
set up the position after 1. P-K4, P-K4, 2.
N-KB3, N-QB3 is: BOARD, LRNBQKB1
RPPPP1PPP5N24P34DP33N4PPPP1PPPR1B

QKBNR.
If the human player is lazy or simply

wishes to test the program, he or she can
type GO and the machine will select a
move. By repeatedly typing GO the user
can sit back and watch the machine play
against itself. The routine that handles
this is GONCMD. To specify a value for
selected program parameter variables, the
player can use LETCMD. For example, the
amount of time the machine spends calcu¬
lating a move can be controlled by specify¬
ing a limit for the number of nodes to be
searched. The command LET FNODEL =
1000 will cause the machine to set a target
value of 1000 for the number of nodes to
be searched. In this case it will not start an¬
other iteration if it has already searched
1000 nodes. If the user is confused about
the current board configuration, the com¬

mand PRINT will activate PRICMD which
calls PRINTB for a representation (8 by 8
array) of the board. For diagnostic purposes
the user can also ask for other information.
The routine PAMCMD is activated by PB
and provides an 8 by 8 attack map for each
of the 64 squares. The routine POPCMD is
activated by PO and gives information con¬
cerning the side to move (White or Black),
the en passant status after the last move, the
present castle status and the move number.
If the user types PM, the routine PMVCMD
will provide a list of all moves which are
legal for the side to move in the current posi¬

tion. The command PL activates PLECMD
which prints the value of a designated vari¬
able; for example, the user can determine
the present limit for the number of nodes to
be searched by typing PL FNODEL.

The user also has control over several
switches. He can ask the machine to repeat
(echo) each entry, to pause after 20 lines of
output, and to reply automatically each
time the opponent enters a move. These
switches are set by the switch commands
(eg: SW EC OFF), and are processed by
SWICMD. If the user wishes to manually
alter one or more of the status conditions

(eg: side tb move, move number, en passant,
castling), this can be done by activating

STACMD.

Notes on Notation

The program also processes standard
chess notation. This is not strictly necessary.
Many programs use their own convention for
entering and reporting moves. A common
procedure is to denote the squares using a
number (1 through 8) for each row and a
letter (A through H) for each column. A
move is defined by listing the present square
of the piece and then the destination square.
For example, the common opening move,
P-K4, would be E2E4. Moving the White
Knight on the kingside from its original

square to KB3 would be G1F3. This con¬
vention works nicely but it forces an ex¬
perienced chess player to learn a new sys¬
tem, Most would prefer standard chess

notation.
Because there are multiple ways to ex¬

press the same move in standard notation,
the translation routine needs to be fairly
sophisticated. Consider a position
which the White Queen’s Rook is on its
original square and the neighboring Knight
and Bishop have been moved. A move whic
places the Rook on the Queen Bishop ^ ®
can be designated as R-Bl, R-QB1, R/1'f '
R/1-QB1, R/R1-B1,or R/R1-QB1. It is
portant that the program recognize that eac
of these character strings represents the sarti

move. How is this done?

One way is to have the machine generate
a list of all legal moves and then compare
each of these with the move entered by the
player. If his move matches one on the list,
that move is noted. The rest of the list is
then checked and if no more matches are
found, the noted move is assumed to be the
correct one. If no match is found, the ma¬
chine prints “illegal move." If a second
match is found (eg: P-B3 matches both
P-KB3 and P-QB3), the machine prints
“ambiguous move." The process of trans¬
lating the opponent’s move into machine

compatible form and checking its legality
or ambiguity is done by YRMOVE. The
process of translating the machine’s move

into standard notation is handled by
MYMOVE. Both of these procedures call

MINENG, which is responsible for con¬
structing the appropriating character strings.

Final Thoughts

This completes our listing of our dem¬
onstration chess program. Despite the pro¬
gram’s length, there are many desirable fea¬
tures which have been omitted. The reader
with an interest in chess and programming
should use this listing as a starting point for
developing a program. The time required
for move calculation can be reduced by
writing machine dependent code for some
of the frequently used routines. There are
also features which can be added to improve
the level of play.

One useful addition would be an opening
library. An effective technique for this is de¬
scribed by Slate and Atkin in their chapter
in Chess Skill in Man and Machine (P W

Frey, editor, Springer-Verlag, New York,
1977), An opening library provides the user
with a challenging set of opening moves and
directs the game into situations which are
familiar to the experienced chess player. By
including various options at the early choice
points and using a random selection pro¬
cedure, the programmer can insure that the
niachine will not always select the same
niove sequence. The programmer can also
8‘ve the user the option of specifying a
Particular opening against which he would

to practice. For important matches, the
programmer can prepare surprise openings
Or the machine in order to gain a psycho-
ogical edge on the opponent.

second and somewhat more challenging

tab^^ fbe to develop a transposition
® *OT the program. This requires the

availability of unused memory (at least 8 K
bytes and preferably 16 K or 32 K bytes),
an efficient hashing scheme, and a set of
decision rules to select among positions
when a collision occurs (ie: two positions
hash to the same address in the table).
Another problem is that the use of a staged
evaluation process and the a-p algorithm
often provides an imprecise evaluation score
(ie: the machine has determined that a posi¬
tion was not optimal but has not invested
the time to find out exactly how bad it was).
If the programmer succeeds with the trans¬
position table, however, move calculation
will take 30 to 50 per cent less time in most

middle game positions and 60 to 90 per cent
less time in many end game positions.

A third area for improvement is the eval¬
uation function. Our program presently has
only a rudimentary function. The reader
should compare it with the one used by
Chess 4.5 which is described in detail by
Slate and Atkin. Their evaluation function
provides an excellent starting point for re¬
vising our present function. In part 4 we will

discuss the advantages of using a conditional
evaluation function, ie: one that changes de¬
pending on the stage of the game and on the
presence of special features. One implemen¬
tation of this strategy is the special end game
program described by Monroe Newborn in
Chess Skill in Man and Machine.

It is appropriate for us to add two impor¬
tant disclaimers at this juncture. Although
we have carefully tested each of the rou¬
tines in the program and played several chess
games, it is still possible that there are a few
minor bugs in the program. If you find one,
a letter to one of us or to BYTE would be
appreciated. Secondly, our chess program
was written primarily for pedagogical pur¬
poses. For this reason it is not a production
program and does not run very efficiently.

If you arc the competitive type, our program
should provide many useful ideas, but you
should not expect It to compete successfully
In tournament play unless you make exten¬
sive modifications and additions.

A chess program has a tendency to grow
and change its personality as the program¬

mer becomes more familiar with each of its
many limitations. It provides a constant
challenge for those of us who are too com¬
pulsive to tolerate obvious weaknesses. In
fact one must be careful not to become
totally obsessed with this project. We do not
wish any of you to lose your job or your
spouse because of a chess program."

Listing 1: The second haif of Chess 0.5, written in Pascal. This portion of the

program covers evaluation of terminal nodes, the iook-ahead procedure and

user commands.

PROCEOUKE EVALUt;

VAR
INTV I rv;

FUNCTION EVKINC
(AiftS;

BIRSIITVT

VAR
INTS I TSt
INftS I RS;
IMTV I TVI

BEGIN
ANORSdNRSf A.CORNRIt
IF NULRSUHRSI THEN

XNTV !■ 0
ELSE

INTV !• FVSANQt

I* EVALUATE CURRENT POSITION •>

I* SCORE *1

<• EVALUATE KINS •»
<• RING BIT MAND *1
(• FRIENDLY RANN BIT BOARD •»

I* SCRATCH •)
<• SCRATCH •)
<• SCRATCH •>

l« RING NOT IN CORNER *1

I* RING SAFELY IN CORNER *i

INftS i> A;
IF NXTTSlINRSfXNTSI THEN
BEGIN

ANORSnHRStATRFRI iNTSltBI \ (* FINO FAMNS NEXT TO KING

XNTV

ENOt

t> INTV * CNTRS(INftS>«FKP$HOT

EVKING I* INTV:
ENO] (* EVKING *1

FUNCTION EVHOBL
(AtBITF)ITV:

VAR
INRS I RS«
INTS I TS)
INTV I Tv:

(* CREOXT EACH CLOSE PAMN •»

(• RETURN XING SCORE *1

<• EVALUATE HOBUITT
<• PIECE TYPES TO EVALUATE *1

I* SCRATCH •)
<• SCRATCH *»
<• SCRATCH

BEGIN
10RRS(INRS«rPL0C(AItTPLOCfBll : ('
INTV t- o; <'

NNILE HXTTSnNRS.lNTS) 00 ('
INTV la JnTV * CNTRSiATKFRfINTSIM

HERGE PIECE TYPES •!
INITIALIZE COUNT *T
COUNT ATTACKS *1

EVHOBL ta INTV:
END; I* EVHOBL •

FUNCTION EVPAMN
(AiRS;
BiTE{
CITR)ITV;

VAR
INNS ■ RSI
INRS I RS|
INTS t TSI
INTV I TVI

<• RETURN TOTAL ATTACKS •)

I* EVALUATE PAWNS *1
(« LOCATION OF PAWNS •>
!• PAWN FORMARO DIRECTION •»
I* PAMN HONE RANK •!

BEGIN
SFTRSIlNRSiA.SDt
ANORSIINRS»INRS.AI|
INTV la CNTRSnNRS)*FPFLNKT

I* SCRATCH •!
(• SCRATCH •!
I* SCRATCH *1
I* SCRATCH •!

1* BIT SET FOR SIDE BT SIOE •)
I* SCORE PHALANX *1

SFTRSiINRS.A»BS> t
ANORSlINRStlHRSfAli (• BIT SET FOR PAHN DEFENSE «)
INTV la INTV » CNTRSItNRSI»FPCONNt I* CREOXT CONNECTED PAWNS *)

SF1N$<XNRS«A,B2II
ANOR$(INRS«lNRSfA)$
INTV t> INTV • CNTRSItNRS)*FPCONNt <• AND OTHER CONNECTED PAHNS •!

SFtRS(tNRS«A«B»; (* HOVE FORWARD *1
NOTRSdHRSiTPLOCIHTlI I (■ OCCUPIED SQUANES *1
ANORS<XHR$«lNRS«ZNR$U (* BLOCKCO PAWNS *1
INTV la XNTV • CNTRStZNRSI*FPBLOKT (• PENALIZE OLOCKEO PAWNS •)

CPVRSdNRSt A| T
WHILE NXTTSIIHRS.INTSI DO (• FOft EACH PAWN •)

INTV la INTV « <ABS(OROICI-ORD(XT$R|IHTS|1 n«FPAOCRI XTSFt INTSI11
I* CREDIT PAHN AOVANCENCNT •)

EVPAMN |B XNTVI
ENOI I* EVPAWI •)

(ETUI \m SCORE ■>

FUNCTION EVROOK !•

lAiRSI !•

BIRSMTVI !•

WAR
XNTV 1 TVI I*

INTI 1 TX| !•

INTS 1 TSI !•

INRS 1 RSI !•

BEGIN
INTV ia 01 I*
INRS la At
IF NXTTSIIHRS.INTSI THEN !•
BEGIN

EVALUATE ROOKS ••
ROOK LMATXONS *1

INITIALIZE

IF NOT NUURSIINRSI THEN
INTV la INTV * FROUBtl

ENOI

!• ROOK ATTACKS FRICNOLV ROOK •>
l« GIVE DOUBLED ROOK CREDIT *1

(• ROOKS ON SEVENTH •) ANORSIINRS,A,BII
INTI |a CNTRS(lNRS)|
EVROOK la IMTV ♦ INTiaiHTiaFRXFTHI «• CREDIT ROOKS ON SEVENTH •»

end: (* EVROOK *1

BEGIN
IF ITHVIJNTN)aHBVAL(JNTK

INTV la
ELSE
BEGIN

XNTV la I

« HAXPS «a BSTVLIUNTK'ZI THEN
<• NDVE WILL PRUNE ANYWAY •!

XTNVIJNTNl • HBVALIJNTKl

FWPAWN*(CVPAWNITPL0CILPI,S2«R2I*CVPAWM<TPL0CCOPItSA.RTII
FWNXNH*(EVNOOLfLD»LHI -CVNOBLIDB^OHI I

» FWHAJH*(EVNOOLILRfLQI •EVNOBL(OR«DQI I
» FWRaOK*(EVROO«(TPLOCILRI»XRRSIRFII

•EVROOK(TPLOeiORI«XRRSIR2II I
» FMKIHC*<EVKING(TPL0C(LRltTPLOClLP|l

•EVKIN6ITPLOCIOKI»TPLOCIDP1> <
I OlV 641

HAXPS la HAXIHAXPSvABSlINTVIM
INTV la XTNVCJNTm1*(NBVALIJNTK)*INTVII

ENOI
IF SWTR THEN
BEGIN

WRITE(* EVALUB^fJNTKtJNTW.XNDCXlJNTKltIHTVII
PRIHOVINOVESI XN0EXIJNTK11M

ENDI
VALUEIINDEX(JNTKl) la INTVt T* RETURN SCORE *»

GNOl (* EVALU8 *1

FUNCTION SEARCH
iTw;

LABEL
ill

iZt
13,

14,
15,

161

PROCEDURE NCNBST
(AiTKII

VAR
INTM I TM|
INRH I RHI

I* SEARCH LOOK-AHEAD TREE *1
f* RETURNS THE BEST HOVE •(

I* START HEN PLY •»
I* TRY OlFFERCHT FIRST HOVE «)
I* FLOAT VALUE BACK UP •!
f* FIHO AHOTHCR HOVE «l
(• BACK UP A PLY *1
(• EXIT SEARCH »l

(• SAVE BEST HOVE INFORHATION *1
(• PLY Of BEST HOVE *1

(• NOVES INDEX *1
I* SCRATCH •!

t* SAVE BEST HOVE '
(• AT FIRST PLY •»

BEGIN
BSTHVIII la IMOEXIAaill
IF A a AK THEN
BEGIN

IHRH ia nOVES(6STHV(AIII I* SAVE BEST HOVE •)
FOR IHTM la BSTHVlAl-i OOWNTO AH«1 00

HOVEStZNTMAl) |a HOVE^INTMII I* HOVE OTHER HOVES DOWN •)
HOVESIAN*!! I* INRHI (* PUT BEST AT BEGINNING *(
BSTNVIAKI l« AH*1| <• POINTS TO BEST HOVE »)

END
ELSE

IF NOT HOVESiaSTNViAlI.RHCA THEN
KILLRIUNTKI la HOVESIBSTHVIAIIM* SAVE KILLER HOVE •)

ENOI (* NEMBST •>

FUNCTION NXNHAX
TAITKI

iTBt

I a PCIPOIM NtNlNAI OPCRATXON
(• PIT TO MHtNAI AT *1
I a TRUE IP RIPUTATION •!

I* DEFAULT If HO PRUNING *1
BCBZN

HtIMAX la PALSEI
IF SWTR THEN

WRITE!- N|NHAX-,A,-BSTVLCA-Ll,eSTVLIAI,-BSTVLIA«iIM
IF -tSTVLCA*!! » BSTVLIAl THCN
BEGIN

NI».» .. •ST.tL.ll .. •1T,L1.-1|. «,„T.TIO« •'

IF SWTR TNCN
WRITE!- NEW BEST. PRUNEl ■•BSTVLCAAll <■ BSTVL|A*l|lt

ENDI
IF SWTR THEN

WRITILNI I* PRINT TRACE LINE
ENOI I* NINNAX *1

ANORSCINRS, A,ATKFR|INTSn I

PROCEDURE SCBRENl

BEGIN
NOVESIlNOElIJNTKII.RMir ■■ TRUCl
IF NOVESIINKXIJNTKII.RNCN THEN

VALUE!INDEX!JNTK11 !■ BAajNTK -
ELSE

I* SCORE NATE •!

«• INDICATE NATE *1
I* CNCCINATE *1
ZV
!• STALENAfE *1

134

(* SCMCH ALL NOVCS *1

VALUCIINOCKJNTKI} la It
IF SMTK TNCN

MITELMt- SCOAEH**JNTK,JNTII,INOexCJNTK],VILUC(INOEIIJMrRll»|
ENOt <* SCOREH *1

FUMCTtON SELECT
iTIt

<* SCLECT NEXT HOVE TO SEARCH «)
<• TRUE IF MVC RETURRCO *1

LABEL
zit

22t

I* NCM SEARCH PIOOE •>
<• EXIT SELECT •»

VAR
INTB I

INTK I
INTH I
rNlH I

tNTV I

(• RETURN VALUE •)
I* SCRATCH •!
!• HOVE INDEX •>
<* SCRATCH •)
<• SCRATCH a)

ENOI
SELNXTIHA)I

CMDt

HLl (« XRXTXALIEC AT NEN DEPTH •>
•ESXN

HVSELIJNTKI ta || l» CLEAR NOVfS SfARCNCO *1
XF JHTX » JNTR THEN
•E«XN

EVALUAI
INDEXIJNTX411 la AM]
ISrVLlJHTXail |a 'VALUEIXNOEXIJNTK111
IF HINNAXIJNTKI OR (JNTK > {K) THEN

(• EVALUATE CURRENT POSITION •»

SElOONt
SRCHHIJNTKI !■ H2t

END
ELSE

SRCHHIJHTXI la H3I
GEHCAPt
SELNXTI5RCHHIJNTK|I ;

SHOT

<• THIS HOVE PRUNES «l
I* CAPTURE SEARCH a)

<• CAPTURES IN FULL SEARCH «»
<* GENERATE CAPTURES *1
(* CHANGE SEARCH MODE *1

PROCEDURE SELOONt 4* SELECT EXIT > DONE.
CALLED NHEN NO FURTNER
NOVES ARE TO IE SEARCHED
FRON THXS POSITION.
THE CURRENT POSITION MUST
HAVE SEEM EVALUATED. *1

BEGIN
INTS la FALSEl (• RETURN NO HOVE SELECTED
IF SMTR THEN

MRITELNI- SCLECT",UNTXt" END."M
GOTO 22| <a EXIT SELECT •)

ENOI f* SELDOM *1

PROCEDURE SELNOV

UlTMl 1

(• SELECT EXIT • SEARCH.
CALLED NHEN A HOVE TO
BE SEARCHEO HAS BEEN
FOUND, a I

I* INDEX TO SELECTED HOVE •!

BEGIN
INTB la TRUCl
INOEXIJNTlCail t« At
NOVEStAI.RNSU •> TRUE!
IF SMTR THEN
BEGIN

NRITEI" SELECT",JNTK,OROt
PRlMOVtNOVeSIAIIt

ENOt
GOTO 22t

ENOI (• SELHOV •!

I* RETURN HOVE SELECTED •»
<• POINT TO SELECTED HOVE *1
t* FLAG NOVE AS SEARCHED ■>

JNTXn ,A| I

<• EXIT SELECT •!

PROCEDURE SELHXT

(AlTHI ;

(• SCLECT EXIT • NCR NODE.
CALLEO NHEN A NEH SEARCH
NODE IS TO BE SELECTED *1

4* NEH SEARCH NODE *1

BEGIN
INOEXIUNTK*!) I> LiNOXiJNTXI*1I
SRCMNtJNTK) 1= a:
GOTO 2i|

EHO: (• SELHXT •»

4* RESET NOVCS POINTER •)
I* CHANCE SEARCH NODE *>
I* EXECUTE NEXT NODE •!

PROCEOURC SELANT: <* SEARCH ALREADY GEHERATEO
AND NOT ALREADY SEARCHED •!

VAR
INTH I TM| (• HOVES IHOEK

BEGIN
FOR IHTM II INOEX|JNTK«L)«L TO JNTH*1 DO

IF NOT NOVCS!INTNI.RNSU THEN
SCLHOVlINTNi;

ENOI !• SELANY *1

begin

MEN SEARCH NODE •!
CASE SRCHHfJNTKI OF

HOI (’ INITIALIZE FOR NEN HOVE •»
BEGIN

HVSELIJNTKI tz o; !•
INTV l« BSTVLIJNTK*2] : !•
BSTVLUHTX»|I la •IV| I*
NAXPS la It f*

GCNALLI 4*

FOR INTH la ANai TO JNTH-1 DO
BCGZN

IF UPOATEINOVCSClNTMh THEN
begin

INOEXIJNTKI la ININl
evaluii

CNOI
ONDATEIMOveSlINTNlI |

ENOI
JBTVLIJNTX-IJ la XNTVI
SORTITIVALUE,NOVCS.JNTM'l

^OR INTK la IK TO ZK DO
XILLRIINTKI I. NULNVl

CLEAR MOVES SEARCHED *1
SAVE ALPHA «l
INHIBIT PKUNINC IN EVALUB a|
XNITXALXZC NAXXNUM POSITIONAL
SCOtC *1
GENERATE ALL NOVCS *1

I* POINT TO CURRENT NOVC a|
la SCORE POSITION •!

(a RESTORE ALPHA *1
I
|a SORT PRCLXNINARY SCORES *1

<• CLEAR KILLER TABLE *1

I

VJJ’J then

•«G|n"^* »■ TO JNTN-t 00

IF «• P4«LlHlNAItf SCORES •!
^BUSER*'^ ■ INTH DXV LPP THEN

H2i I* CAPTURE SEARCH »l
BEGIN

INTM la AMI |a gcsT MOVE POINTER aj
iNTV la AVI la tEST VALUE a|
FOR ZHTH |a IINDXCJNTKI TO JNTH-1 00

NITH HQVESIXHTNI 00
IF NOT RNSU THEN

IF ABSIXTPVIRNCPl) > iNTV THEN
BEGIN

INTV |a ABSIXTPVIRNCPl!t

INTH la IHTHI
ENOI

IF INTH <> AN THEN
SELMOVItNTMl

ELSE
SCLOONf

CNDt

(• NOVE FOUND *1
I* SELECT BIGGEST CAPTURE *1

|a quit a|

H3I 4* FULL NIDTH SEARCH • CAPTURES •!
BEGIN

INTH la AN| <a kst mve POINTER a)
INTV la AVI I* BEST VALUE •!
FOR INTH la LXNDXCJHTKl TO JHTN-1 DO

NITH NOVCSfXNTHl BO
IF NOT RNSU THEN

IF ABSIKTPVIRNCPIl > INTV THEN
BEGIN

INTV la ABSIXTPVtRNCPIll

INTH l> IMTMI
ENOI

IF INTH <> AH THEN f« HOVE FOUND *1
SELH0V4INTH1 I* SELECT BIGGEST CAPTURE •!

ELSE
IF NOT NULNVB4KILLRIJNTK11 THEN
BCCII,

INTH la JNTHI (• SAVE CURRENT NOVCS INDEX •!
CENFSLCIRSSIKlLLRIJNTKl.RNFRIII

4* GENERATE HOVE BY KILLER «)
SRCHHtJNTKl la HAt €• SET NEXT SEARCH NODE »l
FOR INTH |a [hTH TO UNTM-i 00

4* LOOK AT NOVES BT KILLER •>
IF KtLLR4JHTKI.RNTO > HOVESIINTMl.RNTO TMCH

SCLNOVIlHTHIt 4* SELECT KILLER HOVE •)
ENOt

SCLNXTlHAIt (• 60 TO HEXT STATE •>
ENOI

HAI I* INITIALIZE SCAN OF CASTLE HOVES AHO OTHER MOVES
BY KILLER PIECE •>

BEGIN
GCHCASI I« generate castle NOVES *1
SCLNXriHSIt I* 60 TO NEXT STATE »l

END I

H$1 !• FULL HIQTH SEARCH •
PIECE ■)

BEGIN
SCLANYI
GCHFSLULLOCIJNTK)) I
SELHXTIH6II

CNOI

H6t !• FULL HIOTH SEARCH • REMAINING MOVES •>
BEGIN

SELANYl
IF HVSELIJNTKI a Q THEN

C* SELECT ANYTHING ON LIST

SCOREMI !• SCORE HATE •>
SELDON]

ENDI

1 • EXIT SELECT «l

<• RESEARCH FIRST PLY
BEGIN

JNTM la LINOXIAK^LII !• POINT TO ALREADY GENERATEO
HOVES •>

HVSELtAK) la 01 !• RESET HOVES SEARCHED •)
FOR INTH !■ ANAI TO JNTM-1 00

NDVISCXNTNI.RNSU la FALSE!
I* CLEAR SURCNCO BIT •!

IF SMTR THEN
NRirCLNI* REDO ",JNTK,BSTVLIAX-EI»BSTVLCAC-1|!f

SELNXTINBIt 4a BEARCN ALL NOVES •!
CNOI

CNOI

CASTLES ANO OTHER NOVCS BY KILLER

I* SEL'ECT ANY HOVE •!
I« GENERATE RCHAlNINC MOVES •>
C* NEXT SEARCH NODE *1

><l 4a SELECT EXIT a|
SELECT la XNTBI

END! 4* SELECT «t

BEGIN I* SEARCH •!
BSTHVCAKI la AHt
ZNOElCJNTKt la AHt

<* RCTMtN VALUE •!

4* INITIALIZE NOVC •!
4a INITIALIZE TREE •»

135

Listing 1, continued:
FUNCTION NOMNTIVai CINAIITOI

NOVCSCAH) |> LSTNVI
eVALUit
•STVLCAA'Il •• mUCIANI - NINOONI

•STVIIAK*1I ■■ ' VALUeiAHI • ■INOOUt
JNT« l> »K*il
HHXLC INOOCS < FNODELI ANO (JNTK c N
•COIN

I* INITXAkllC MVC *1
t* SNITXU OUCtt AT KOM *1
(• XNITIALXK AiFNA*MTA

MXNOOH •»

(• XNITtALXXC XTMArXON NUNtCN •»
illZR DXV t* »••»> 00

111 <* START NEN FIT *1
iSTWtCJNTKJ !• iSTVLIJNTR-XM «• INXTIAtIZC ALFMA •!

IZl <• DZFFCRCNT FIRST NOTC *1
IF NOT SCLCCT THEN
•E6IN

iSrVLIJNTRI f VALUEtXHOEIfJNTCnt
NENRSTIJHTKtI

END
ELSE
OEGIM

IF UFOATE«HOVeS(INOCXlJNTK*tin THEN
GOTO 11 ** START NEN FLT *»

ELSE
OCA IN

DNOATE<NOVES(lNOEX|JNTK1|i|
GOTO 121 ANOTNER HOVE

ENOl

L3l I* FLOAT VALUE BACK *1
IF NINNAKIJNTKI THEN

GOTO 1*1 PRUNE *1

l«l (• FIND ANOTHER HOVE AT THIS FLY *)
IF SELECT THEN

If UF0ATCIN0VESIINDEX(JN1K*ini THEN
SOTO 11 «• START NEN FLT *1

ELSE
BfiSXN

DNOATEINOVESIXNOEKIJNTKIM1
GOVO it,} !• FIND ANOTHER HOVE •>

END1
ENOl

I* SET NfIT TOKIN FRON COMIANi
RCTUtm TOREN X« A.
RCTURIIS T«fC IF l•OII*»CHRTT
TORIH*
A TOREN IS ART MMEeUTSVE
COiLSOTXOH OF AkFNAMUTCRXC
CHARACTERS.
tEAOlNS SFECXAt CNARACTERS
XCMRIS* •!

VAR
XRTJ I TJt I* STRING SNOEK *1

OEOXN . .
HNILE IJNTJ « ZJI AND lOROULXNCIJNtJU

JNTJ JNTJ«1I

»■ OROI****n 00

A !■ “ “I
INTJ •• AAI
HNXLC <^TJ < ZJ) AND IZNTJ «
BEGIN

AIINTJI ILXNCIJNTJII
INTJ M XNTJ*lt
JNTJ !■ JNTJ*lt

CNO|
RDR6NT !■ INTJ <* AAI

HHILE fINTJ < ZJI ANO IlLINEl
JNTJ M JNTJAlt

ENOl I* RORGNT •)

ANO IILXNECJNTJI XN l*A”..*f"ll OO

!• COFT CHARACTER TO TOKEN •!
1* advance FOINTERS *1

!• RETURN TRUE IF ANTTHlM
NOVEO *1

IN ^•A■.••0"|l 00
I* SKIF REST OF TOKEN •!

FROCEOURE RORSFTl «• SKIF FIRST TOKEN IN CONNANO
LINE *1

VAR
INRA I RAl
INTO I TBl

I* SCRATCH *1
!• SCRATCH •)

BEGIN
JNTJ I* AJ|
INTO I* RORGNTIXNRAM

ENOl I* ROflSFT •!

I* INITIALIZE SCAN •!
f* TNRON ANAY FIRST TOKEN *1

PROCEDURE RORCND (* TEST FOR AND ERECUTE CONNANO
CRITS TO CONNANO EXIT IF
CONNANO IS PROCESSED. *1

1*1 4* BACK UP A PLY *1
IF JNTK » AK TNEN
BEGIN (• NOT GONE HXTN ITERATION *1

ONDATEINOVESIIMEXUNTRIIII RETRACT HOVE •!

GOTO ISl
ENOl

I* DONE MXTH ITERATION *1
IF liSTVLIAK] <• OSTVHAK-Zll OR lOSTVLCAKI *• -OSTVLlAK-ll I TNEN
BEGIN f« NO NOVE FOUND *1

IF NVSELCAKI > B THEN
KGIN t« NO LEGAL NOVES *1

GOTO IAS
ENOS
tSTVL(AK-Zl !• 'ZVI
tSTVLIAK-11 !• 'ZVl
SRCHNIAKl l> H7I
JNTN |a AK»1S
GOTO IIS

■STVL(AK*Z| t> BSTVLfAKI - HIHOONI I* SET ALPHA OCTA HXNQON •»
OSTVLIAKMI t> - BSTVLfAKI - NINOONI
JNTK I- JHTK«11 f* advance ITERATION MUNBER *1

SRCHNIAKl l> H7t
ENOl

I* GIVE UP •>

I* SET ALPHA'OETA NIHOON LARGE •!

I* TRY AGAIN •>

lAl (« EXIT SEARCH *1
SEARCH l> BSTNVCAKi:

END! I* SEARCH *1

PROCEDURE REAOERl

LABEL
111

(• RETURN BEST HOVE •>

«• READ INPUT FRON USER *1

(• CONNANO FINISHED EXIT *1

VAR
INRA I RAl
INTJ I TJl

t* SCRATCH TOKEN *1
(• ECHO CONNANO INDEX *1

lAlRAt
PROCEDURE XXXCNOII

BEGIN
IF INRA • A THEN
BEGIN

XXXCNOl
GOTO 111

ENOl
ENOl I* RORCND *1

PROCEDURE ROLINE:

VAR
INTC I TCI
INTJ I TJl

BEGIN
READLNI
INTJ M AJl
HNILE HOT EOLN ANO fINTJ c ZJI
BEGIN

REAOtXCIROtINTJIM
INTJ l« INTJ*!1

end;
MHILE NOT EOLN CO

READ I INTO I
while INTJ * 2J 00
BEGIN

ICARDIINTJI l« * "1
INTJ l> INTJ^lt

ENOl
ICAROfZJI IS *<**1
JHTJ l> AJl

ENOl I* ROLINC *1

I* POTENTIAL CONNAW KETMORO •!
!• PROCfOURC TO EXECUTE

CONNANO *1

I* EXECUTE CONNANO •!
!• EXIT •!

(• GET NEXT INPUT LINE FRON
USER *1

!• SCRATCH •!
I* STRING XNOEH *1

I* ADVANCE TO NEXT LINE *1

C* COPY INPUT LINE *1

<• SKIP REST OP INPUT LlIC *»

I* OLANK REST OF LINE *1

<• SET END OF CONNANO •!
(• RESET INPUT LINE POINTER

PROCEDURE RORCRRUIRNII

VAR
INTJ I TJl
INTN I TNI

•EG IN
IF NOT SMEC THEN

BEGIN
NRITEr "ll
FOR INTJ !■ AJ TO ZJ-1 00

MRITEIXLINCIXNTJII|
HRITELNI

ENOl
FOR INTJ ■■ AJ TO JNTJ DO

KRITEI" "11
NRITELNC—II
FOR XNTN la AN TO ZN 00

MRXTEIAtlNTNin
URITELNI
GOTO 111

ENOl I* RDRERR *1

(• PRINT OXAGNOSTtC ANO EXIT •!

1* STRING INDEX *1
I* NESSAGE XNOEX *1

<• ECHO LINE IF NOT ALREADY
DONE *1

4* HRXTE INPUT LINE •!

I« LEADING BLANKS BEFORE ARROM *1
!• POINTER TO ERROR *1

4* HRXTE DIAGNOSTIC *1

!• CONNANO EXIT *1

FUNCTION ROFHOVITBI !• EXTRACT NEXT CONNANO
FRON INPUT LINE.
RETURNS TRUE IF NON-EHFTY
CONNANO. *1

VAR
INTJ I Tj: 4* STORING POINTER *1

BEGIN
MHILE (JHTJ < ZJI ANO IICARO(JNlJI * ” "I DO

JNTJ l> JNTJ«11 4* SKIP LEADING BLANKS *)
INTJ II AJl
while (JHTJ « ZJI AND lICAROfJNTjl «> "I"! 00
BEGIN

iLtNClIHTJ] la ICAROIJNTJIl
INTJ !• XHTJ»11
JHTJ la JNlJ*i;

ENOl
IF 4ICARD(JHTJ)

JNTJ M JNTJ*11
RDRHOV la IhTj <» AJ;
WHILE IHTJ « ZJ 00
BEGIN

iLlNEdNTJI IS “ ■;

1*1 ANO (JHTJ « ZJI THEN
(• SKIP SENI-COLON •!
!• RETURN TRUE IF NOH-CNP'»

(• BLANK FILL LINE

• I

136

XNTJ la

ENOt
ILXMEI2JI I. -s-i

JNTJ !■ Aj;

ENO| <• KOMOV •)

rUNCriON KORNUHlTIt

(* STORE CONHANO TERHINATOR
f* PRESET eOMNANO SCAN •)

(• CRACK NURKR from eONMNO
LINE. RETURNS NUNKR IF NO

ERROR. EXITS TO COMNANO EXIT
IF ERROR. •)

VAR
XNTB

INTI

BEOIN

NHILE UNTJ < ZJI AND tILINEIJNfJ]

JNTJ l« JNTjAit

IF ILIHCCJNTJ) a THEN

0E6IN

XNTB !■ TRUE;
iNTJ la JNTJIIT

END

ELSE
BEBIN

into la FALSEt

IF ILINEIJNIJI a THEN

JNTJ la JNTJ«1S

ENOI
INTt la Bt

NHILE IIINEIJNTJI IN 00

BECZN

IF INTI < NAllNT/lQ THEN

INTI la 10*lNTX*ORO<tLXNEtJNrj
ELSE

RORERRl* NUMBER TOO LARGE
JNTJ la JNTJ»SI

ENOy

IF ILINEIJNTJI IN I-A-,.-Z-J THEN

RORERRT" OlCn EXPECTED
IF XNTB THEN

INTI i« -inti;

RORNUH la INTI:

ENOl <* RORNUH •)

PROCEDURE eOACHOt

(• SION •!

I* VALUE *1

. - 00

(• SKIP LEA0XM6 BLANKS *}

I* NUMBER IS NCBATIVE «l
I* ADVANCE CHARACTER POINTER *1

I* NUMBER IS POSITIVE *1

<« SKIP LEAOlNS * *1

ll-OROI“0“>

"IT
(• ADVANCE •>

<• CONPLEMENT IF NEGATIVE «l

I* RETURN NUNBER •)

I* CONHANO • SET UP POSITION •!

<• COLOR

I* POSITION ON BOARD •)

(• ADVANCE N FILES •!

(• STORE PIECE ON BOARD «)

VAR

INTN I TNI

INTS I TSy

PROCEDURE BOAAOVfAiTIIt

BEGIN

IF INTS4>A « IS THEN

ZNTS la INTSaA

ELSE

ZNTS la 2St

END! I* BOAADV •)

PROCEDURE BOASTOUITPM

BEGIN

BOARD.RBISIZNTS) la Al

IF INTS * 1% THEN

INTS I* 1NTS*1 :

end: !• 60AST0 ■!

BEGIN <• BOACMD •!
CLSTATI
LSTHV la NULMv:

FOR INTS |> IS TC ZS DO
BOARO.RBISIINTSI la ht;

INTH la LITE!

INTS I. ||

repeat

TF ILINEIJNTJI IN t"P","R-,-N"

CASE ILINEIJNTJI OF

••“I BOASroixrUNPIEP.IMTHIIt
"R"l BOASTOIlTUNFIER.INTNIIy
■N"! BOASTOixrUNPlEH.iNrNIM

boastoiitunrieb.INThI)I
^0*1 BOASrOIxruNPlEQ.INTnil I

K I boastoixtuhpiek.intnim
"t-I INTH I. LITE!
^0*1 iNTH la OARKI

End ®®**®'''®AO‘lLlNCIJNTjyi-OROI“C-»»:

else

BEGIh*^^*'^"^'" "S"! them

'■ to 2S do
. ®5J'^0.RBIStXNTSI U NT;

rdbcbII- •• CLEAR STATUS •»
END: illegal BOARD OPTION "M

I* CLEAR STATUS FLAGS *1

(• CLEAR PREVIOUS NOVE •!

<• CLEAR BOARD •!

•K-.n".-0"»"l"..*B-| THEN

1= JNl

BOACMD •»

exocxo,

begin

ENOCHD ai

*‘Bocedure
^OHCHDl

!• CONHANO • ENO PROGRAM >1

(• ENO PROGRAM •!

I« COMMAND • GO N MOVES •)

BEGIN

GOING 13 rornum:

IF GOING <a 8 THEN

GOING l> i;
GOTO El

ENOy !• 60NCN0 *1

PROCEDURE INICMOy

BEGIN

GOTO ii

END! <• XNICM »l

PROCEDURE LETCMOy

LABEL

Elt

PROCEDURE LETOMC

lAlRAl

VAR BiTZiy

BEGIN

IF A a INRA THEN

BEGIN

B la RORNUHt

GOTO Ely

ENOI

ENOI 4* LETONC •)

BEGIN

IF R0RCNT4ZNRA) 1

BEGIN

LeTONef”FKRSHO

LETONEI"FKSANQ

LETONEt*FHAXNT

LCTONE("FNOOEL

LETONEI"FPAOQR

LETONEI*FPAOQN

LETONei”FPAOQB
LETONE(”FPAOQF

LCTONE<"FPAOKF

LCTOHE("FPAOKB
LETONECf PAOKH

LET0NE4*FPA0RR

LCT0NC4*FPBL0K
LETON£f"FPCONN

LETOMCI*FPFLHK

LETONCl*FROUBL

LCrONCI"FRK7TH

LCrONCIVTRADE

LCTONCl"FTRDSL
LETONCI"FTRP0R

LCrONEl’FTRPMN

LCT0NE<"FM(ING

LCT0HC4”FHHAJN

LETONC("PHMINH

LErONE("FMPANN
LCrONC('*FHROOK

LETOMC t*lllNOaN

(■ CRACK NUMBER *1

(• EXECUTE MACHINES HOVE *>

I* CONHANO * IMITXALZZC POR A NCM
GAME •!

<• INITIALIZE FOR A NEW 6ANE *1

4* CONHANO • CHANGE .e *1

4* LET CONHANO EXIT •!

4* TEST FOR AND SET ONE

VARIAKC *1

4* VARIABLE MNE *1

I* VARIABLE •>

4* GET VALUE •)
4* EXIT •!

".FKPSNOI1
".FKSANQII
".FNAXNTI;
".FHOOELM
"*FPAOCR(Fl||y

".FPAocRifzn:
-,FPA0CR(F3|ly
"tFPAOCRIFAliy

-,FPA0CRIF9|I I
".FPAOCRIFBIIy
"•rPAOCRCFTlly
-•FPAOCRCFBIiy
"•FPOtOKly
-.FPCONNIt
“.FPFLMXH
".FROUBLIy
-.FRKTTHII
"fFTRADCM
".FTROSLtI
".FTRPOKiy
"•FTRPNNII
"•FNXtNGM
"•FHNAJHIy
".FHNlNHty
"•FHPANMII
"aFHROOKII

.NtHOOIII I
RORERfty* ILLEGAL LET VARIABLE NANE

ENOy

Zll 4* LET CORIUHO EXIT *1

ENOy I* LCTCHO •>

PROCEDURE PLCCMOl

LABEL
211

PROCEDURE PRXONC
lAlRAy
BiTI) I

BEGIN
IF INRA a A THEN
BEGIN

MRITCLNIA.e) I
GOTO 2iy

EHOX
ENOy (• PRIONE •!

BEGIN (• PLECMD •!

WHILE RQRGNTdMRAI

BEGIN
PRIONEf"FKPSH0
PRIONE<~FKSANQ

PRXONC yFHAXNT

PRI0NC4~FN0DCL
PRI0NC4"FPA0QR

PRIONE4*FPA0QN

PRZONE4”FPA0Qe
PRtONEI*FPAOQF

PRI0NE4”FPA0KF

PRI0HE4"FPAaKB
PRZ0NE4"FPA0KN

PRIONE("FPAOKR

PRIONE4"FPBL0K

PRIONEfFPCONN

PRIONE<"FPFLNX

PRIONE4"FR0UBL
PRIONEf’FRKFTH

PRIONE«"FTRAOE

PRI0M£4"FTR0SL

PRIONE fFIRPOK
PRIOHEf"FTRPHN

PRI0NE("FMK[NG

4* CONHANO - PRINT VARIABLE •!

4* PRINT LET CONHANO EXIT •>

4* TEST FOR AND PRINT VARU

4* TEST VARXAlLC NANS *1

4* VARIABLE *4

<• EXIT •>

00

.FKPSHOIy

.FKSANQli

.FNAXNTIt
iFNODCLiy
.FPAOCRIFIH I
,FPAOCR(FZliy
.FPA0CRIF3IM
.FPAOCRIFAIM
.FPAOCRIFSIII
• FPA0CRIF6IM
,FPA0CRCF711y
«FPAOCR[F«|iy
.FPBLOKI;

.FPCONNI;

.FPFLNXIy

.FROUBLIy
,frk7thh

.FTRAOEIy
•FTROSLIt
.FTRPOKI:
.FTRPNNIy
•FMKlNCI;

137

Listing h continued:

SHIONECEC ".sNECi:
SHIONEI'PA ".SMPAi:
SMIONEI"PS "•SMPSI;
SNIONE4"RE ".SMREI:
SNIONE4"$U "tSNSUl1

PRIONEfFNHAJH ■.FNNAJM) 1 SNIONEl"TR ".SMTRI1
PRXOMEfFNMINH ".FNMlNMI 5
PRIONECFHPANN "irNPANNI ;
PRIOMEI*FHROOK -.FNROOKM

RDRERRf" INVALID
ENOl

ENOl I* SHICHO •»

SHITCH OPTION

PRIONEI*NINDOM ".NlNOOHI{
RDRERRf ILLEGAL VARIABLE NAME ■I;

211 I* PRINT LET CCMHANO EXIT •> PROCEDURE STACHO:
ENOl

EHDI <• PLECMO *1 LABEL
211

VAR
INRA 1 RA1

PROCEDURE PRICMOI I* COHHANO • PRINT BOARD *> INTN 1 TNI

BEGIN
IF RORGNTIINRAI THEN

PRINTBINBOROI PROCEDURE STAEPF
ELSE (AIRAI

PRlNlSIBOARD.ReiSIt BlTFl 1
ENOl !• PRICND •)

BEGIN
IF A ■ INRA THEN

PROCEDURE PANCMOl «• COMMAND > PRINT ATTACK HAP •!
BEGIN

IF INTM s LITE THEN
BOARD.RBTS l« XTRFSIRGill

•C6tN
MNILE ftDt«NT<|NRAI DO

If INRAtlAI • "T" THEN
filMAHUIKTO)

ccsc
If INM(*AI • TMEN

fRINANUTKfRt
ELSE

RORCRRI* ATTIC* MP MOT MO' OR MROM'-M
CNO} <* RANCMO *1

BEGIN <• SMlCnO •!
ill SNITCH OPTION EKll

MHILE RORGNTIlNfAl 00
BEGIN

RROCCDORE ROPCHOl

VAR

INTO I TQl

I* CONMAHO * PRINT OTHER STliff •)

!• CASTLE TYPE INDEX *>

'1:

BEGIN

MlTH BOARD 00
BEGIN

HRirELNIlTHAIRBTNI." TO HOVE

MRITCLNIRBrSi** EMPASSANr.*)}
N*ITILNI*NDVE HuNKR*»RBT111
fOR INTO !■ LS TO X 00

If INTO IN RBSQ THEN
MRtTCLNIVTQAlXNTQI.” SIDE CASTLE LEGAL."M

ENOt
CHOI I* POPCHO •!

ELSE
BOARD.RBTS I* KTRrSIRSiBII

GOTO 211
END I

ENOl !• STAEPf •»

PROCEDURE STACARI <

BEGIN
IF INTM > LITE then

BOARD.RBSQ l> BOARD.RBSQ » |LS)
ELSE

BOARD.RBSQ ■■ BOARO.RBSQ » lOSM
ENOl (• STACAK *1

PROCEDURE STACAOt I*

BEGIN
IF INTM > LITE THEN

BOARO.RBSQ !• BOARO.RBSQ * ILLI
ELSE

BOARO.RBSQ M BOARO.RBSQ • IDLII
ENOl I* STACAQ •»

PROCEDURE PHVCN01

VAR
INTM I TMI

!• COmAin • PRINT NOVE LIST •!

<• MOVES LIST INDEX •)

PROCEDURE STAORKI

BEGIN
INTN !• DARKI

ENOl (« STADRK *1

!•

BEGIN
LSTNOVS I* LIST LEGAL MOVES *1
FOR INTN !• AH TO JNTH-1 00
BEGIN

HRITETlNTMlGi* *11
PRIHOVIHOVESrINTNI)\

IF INTH/LPP ■ INTM OlV LPP THEN
PAUSERI

ENOl
ENOl I* PNVCNO •>

PROCEDURE SMICNOI

LABEL
211

I* COMMAND - FLIP SNITCH *1

f* SNITCH OPTION EXIT *1

PROCEDURE SNIONE
lAlRAI

VAR BITBM

I* PROCESS ONE SNITCN •»
I* SNITCH NAK *1
<• SNITCH •»

PROCEDURE STAEHPI (*

BEGIN
IF NOT RORGNTIINRAI THEN
OEGXN

CLSTATT t*
RORERRI" ENPASSANT FILE OMITTED

ENOl

STAEPFrOR •.Fill
STAEPFI-QN •,F2)1
STAEPF|■4M "*F3Il
STAEPF CQ "■FGI1
STAEPF«*R “•FGII
STACPFI"KB -•FGII
STAEPF|■KH ■tF/ll
STAEPFI-KR ".FBM
CLSTATl
RORERRI" ILLEGAL ENPASSANT FILE

ENOl <• STAENP •!

VAR

IHTJ • TUI (• SAVE COMMAND INDEX *1 PROCEDURE STAGOSI I

BEGIN
IF INRA > A THEN
BEGIN

INTJ IS UNTj;
IF RORGNTIINRAI THEN
BEGIN

IF INRA a "ON
B IS TRUE

ELSE
If INRA s -OFF

B I" FALSE
ELSE

JHTJ IS IHTj:
PRISNKA.Bi:

END
ELSE

PRlSNlU.Bi:
GOTO 211

ENOl
ENOl M SNIONE •)

<• SAVE CURRENT POSITION *1

THEN
{• TURN SNITCH ON •>

- THEN
fs TURN SNITCH OFF *1

|s RESTORE CURRENT POSITION
I* PRINT SNITCH VALUE •)

(• SNITCH OPTION EXIT •!

BEGIN
BOARD.RBTM l« INTH|
JNTH !■ INTHt

ENOl (* STA60S «l

PROCEDURE STALIT; <

BEGIN
INTH |a LITE)

end; <• STALIT •»

PROCEDURE STANUH: I

BEGIN
BOARD.RBTI !■ RORHUHI

END; I* STANUN •!

“» 1

■ COMMAND - STATUS CHANCES «>

• STATUS COMHANO OPTION EXIT

• CURRENT TQNEM •!
• SIDE BEING PROCESSED •»

• PROCESS EP FILE •)
• TEST TOKEN •)
• EQUIVALENT FILE •>

• EXIT STATUS OPTION •!

• ALLON CASTLE KING SIDE *1

ALLON CASTLE QUEEN SIDE *1

SET BLACK OPTIONS •»

SET ENPASSANT FILE *)

CLEAR STATUS *1
“»I

CLEAR STATUS •»
■II

SET SIDE TO HOVE *1

SET NHITE OPTIONS •)

• SET HOVE NUNBER *>

138

PROCEDURE STAOPT
lAlRAt
PROCEDURE STAXXX):

THEN
BECIH

If ZNRA
BEGIN

STIXXXt
GOTO 211

EN01
ENOl (• STAOPT *)

BEGIN <• STACHO «)
CLSTAT;
INTH l> LITE;

2H I* STATUS OPTION EXIT
NHILE RORCNTdNRAI 00
BEGIN

STA0PT<“0
STAOPT<"£P
STAOPT<*6
STAOPTl*L
STAOPTl~N
STAOPT<~00
STAOPTI*Oeo
CLSTATt
ftORERRI* INVALID STATUS OPTION

end;
CNOI {* STACHO •!

PROCEDURE MHACHOI

«• TEST STATUS OPTION •!
(• TEST OPTION •»
<< PROCEDURE TO EXECUTE If

EQUAL •)

(« EXECUTE PROCEDURE •)
(« EXIT STATUS OPTION *1

(• CLEAR STATUS *1
<« DEFAULT SIDE MNITE

"•STAORKIi
~»STAENP);
*tSTAGOS>|
"tSTALITII
"•STANUNII
<*,$TACAi(M
"•STACAQI;

BEGIN
WRITCLNINOVHSTI

ENDI I* NHACNO *1

BEGIN (* READER •!
lit (• CONNANO EXIT •)

MHILE NOT RORMOV 00
RDLINEI

(• CONNANO • HHATt •)

i* PRINT LAST NCSSABC •}

IF SHEC TNEN
BEGIN

NRITE<- •>;
FOR INTJ !• AJ TO ZJ*i 00

MtlTEIlLlNEllNTJIl!
nriteln;

CNOI
IF XLXNElA^ll IN |-A-..-M-,-f,-2-I THEN
BEGIN

INNA tm * -}
XNRACAil tm ILXNECAJH
XMAIAAtl] la tLXNE(AJM);
RORSPTI

<• ECHO LXNC •»

l« EXTRACT RCVHORO •»

RDNCNOI**BO
RORCNOI*EN
RONCNOI"CO
RORCNOT^XN
RDNCNOmC

RONCNOI*PB
RORCNOC*PO
RORCNOI**PL
RORCNO«*PH
RDNCNO<-PR
RORCNO<”ST
RORCHOf"SM
RDRCHOI'NH

<• SNIP PXRST TOKEN *1
vBOACNOI;
tENOCNOII
•GONCNOM
iINICNOM
tLETCNOM
•PANCNOM
•POPCNO)1
•PLECNOM
•PNVCNOIf
fPRlCNOII
• STACNOM
tSMiCNO);
•NHACNOlt

RORERRI** INVALID CONNANO
ENOi

end; (• reader •>

PROCEDURE HINENC

<Airn;
BIRAII

ViP

IMTN I TNI

HROCEDURE aoochr
(AITCM

begin

HOVNSdNTNl I- a;
IF INTN < IN THEN

XNTN la 1NTN*1|
END, ;■ ADOCHR *1

procedure aoosqr
*A«TSt

BiROi;

begin

HITH B qq
begin

RDPC TNEN

« XT UC(XTPUl NBOROI A 11] I
Rdsl then

^^bdochrc-^-,.

Roxq then

" ;0N. TH£H '

C*SE XTSflAl OF
l.F«i ADOCHRl-R-ij

d,F7i ADOCHR<-N-»,

<• GENERATE HXNXHUN
ENGLISH NOTATION •>

(• NOVC TO NOTATE •>
<• LEADING COHNEMT *1

!• MESSAGE XNDCI *1

(• ADO CNARACTCN TO NCSSA6C *1
I* CNARACTER •!

(• AOO CNARACTER *1

<• ADVANCE POINTER *1

(* ADD SQUARE TO NESSAGE *»
I* SQUARE TO AOO *1
(• SQUARE SYNTAX •)

FSfFGl AOOCHR<-B"l|
fk 1 AOOCHR<*Q-|;
F5 I AOOCHRf"K-)|

ENOI
IF RORK THEN

IF JNTN a LITE TNEN
CASE XTSRIAI Of

Rll AOOCHRI"i*>i
R2i A00CHR|'‘2-|:
R3i AOOCHR("S-Ij
RLI AOOCHR«%*);
RSl AOOCHN<*S"M
R6l AD0CHR1-G”t;
RTi aoochr;**?-)I

. RBI A00CHR(-B")1
END

ELSE
CASE XTSRfA) OF

Rll AOOCHR<**|-)|
R2l AOOCNR<-?-»:
R3| AODCHRI-B-);

aoochr;”5”»;
R5t AODCHR("i(-)t
R6l A00CHRf-3-)t
R?l AD0CHRI-2-);
RBI AODCHRI-l-i;

ENOi
end;

end; i* AOOSQR •)

PROCEOUNE ADOMIO
UlRAI
•ITA»|

VAR
INTA I TAT

BEGIN
FOR XNTA I- AA TO • 00

AOOCHR(A(IMTA|I|
CNOI I* AODMRO •)

I* AOO MtB TO NtSSAGC •!
I* TEXT OP MCRO *1
I* LEHGTN OP HOIO •!

<• CHARACTER ZNOCX •!

FUNCTION DIFFER
lAtBiRNI
ITil

VAR

XNTB • TBt

I* COMPARE ROVES »l
f* MOVES TO COMPARE •»
<• TRUE IP MOVES ARC OSPPERCMT •>

4* SCRATCH •)

BEGIN
XNTB M lA.RMPR 4> B«RirRI OR

lA.RMTO <> B.RNTOI OR
<A«RNCP <» B.RNCPM

IF A.RNPR a B.RNPR THEN
IF A.RNPR THEN

DIFFER la INTB OR 4A.RNPP <> B.RHPPI
ELSE

IF A.RNM • B.RMOO TNEN
IF A.WOO THEN
^^OIFFCR INTO OR lA.RNQS «» B.RMOS)

DIFFER la into
ELSE

DIFFER !• TRUE
ELSE

DIFFER !• TRUE!
ENOI I* DIFFER «)

PROCEDURE SET5Q0

lAtrsi
BiROl
VAR CISRI
VAR DiSFIi

BEGIN
C la (RL..RBI;
0 t> (FL..Fai|
MITH B 00
BEGIN

IF RDKQ AND RDNB THEN
D I" (XTSFIAllI

IF (HOT ROKQI AND RDNB THEN
CASE XTSFIA] OF

FlfFBl 0 la IFl.FBII

F2iF?| 0 |a CF2«r7lt

PlfFGi 0

FV I 0
F9 I 0

ENDI
IF RDRK THEN

C IB IXTSRIAlll
ENOI

ENO; (* SETSQO •)

PROCEDURE HINCCN

f DEFINE SPECIFIC SQUARE
DESCRIPTOR •!

(• SQUARE TO DESCRIBE «)
4* SYNTAX TO USE •!
I* SET OF POSSIBLE RANKS •)
4* SET OF POSSIBLE FILES •)

4* INITIALIZE TO DEFAULTS *>

I- IFStFGlI
M IFAII

l« IFSlt

4AIRNI
BITII
CiTI)I

LABEL
21t

221

VAR
INTO
INTI

TGI

Til

4* PRODUCE NZNXMUH
ENGLISH NOTATION FOR
MOVES AMO CAPTURES •»

4* MOVE OR CAPTURE *1
I* FIRST SYNTAX TABLE ENTRY *1
4* LAST SYNTAX TABLE ENTRY *1

4* EXIT AMBIGUOUS HOVE SCAN •»
4* EXIT MXNGEN •!

4* PRONOTION PIECE •)
4* SYNTAX TABLE INDEX *1

139

Listing 1, continued:

XNTM I TMt
INLR I SRt
iNKR I sr;
INLF I SFt
INRF t sf:

MOVES INDEX •)
RANKS OEFINEO ON LEFT •)

RANKS OCFINEO ON RIGHT •

FILES DEFINED ON LEFT •!

FILES DEFINED ON RIGHT •

e£CIN
FOR INTt IS B TO C 00

MITH SYNTXIINTII 00

BECIN-
XF A.RHPR THEN

INTO ts B.RHPP

ELSE
INTO IS pb:

SCTSQOU.RHrR.RVI.SiINLRtINLF>
SETSQOI*«RMTOtRTRS«lNRRttNRF);
FOR INTM IS *il«I TO JNTM«1 00

IF OlFFERINOVESIXMTWlfAl THEN
IF (NBOROIA.RHFR) s MfiOROlNOWESCIMTnI.RNRR|l ANO

(A.RNCP - HOVeSIlHTMi.RNCPt THEN

MITH HOVEStiNTMi 00

IF IXTSRll«HFR| IN INlRI

UTSRIRMTO) IN XMRRI

(XTSFIRHFRl IN IHLF)

(XTSFIRNTOI IN INRFI

MRNPR ANO (INTO

GOTO 21:

(• FOR EACH SYNTAX ENTRY

(• SET SQUARE SETS •>

AND
AND
AND
AND

RNPPM OR (NOT RNPR>> THEN
(* ANOTHER HOVE LOONS THE SANE •>

|s NO OTHER HOVE LOOKS THE
AOOSQRCA.RHFR.RYLSIl
AOQCHRtRYCHI\
AOOSQRtA.RHTO.RYRS);
GOTO 221

211 (* TRY NEXT SYNTAX •!
ENQ1

221 (• EXIT HINCEN ♦!
EN01 <« NXMGEH •»

5AHE •)
(• AOO FRON SQUARE *)
I* ADO NOME OR CAPTURE *)
(• AOO TO SQUARE •>
C* EXIT NXNCEN *»

BEGIN (• NXNENG *1
NOVNS •« ■

INTN Is AN*1T
AOOMROiB.ZAIt
AODNROC- “.2H
WITH A 00
BEGIN

IF RNOO THEN
BEGIN

AD0llt0<*0-0 "sSM
IP RfiaS TMCN

A0DM0<”-0
CNO
ELSE

If RNCA then
NXNGENU.STNCF.SYNCLI

ELSE
NXNGENIA.SVNNF.SYNNLM

IF RNPR THEN
BEGIN

AOOCNRI~s*M
AOOCNRIXTGCCRNPPIM

ENOI
AOOMROl”. “.3M
IF RNCN THEN
BEGIN

AD0MRO<"CHCCK t
IF RNNT THEN

AOONRO<~NATe
A0DCHR1”*”)t

CNO
ELSE

IF RNNT THEN
AOOURO('*STALEHATC.~flO) :

end;
ENOT (* NINENC *1

•I
(• CLEAR HCSSAGC *»
<• INITIALIZE NCSSAGE INDEX •!
<» AOO INITIAL CONNENT «>

(• CASTLE •>

|« not CASTLE *>
I* CAPTURE *>

(• SINPLC NOVC •»

(• PROHOTXON *1

(• CHECK *1

(• CHCCKHATC *1

(» STALENATE *1

PROCEDURE HYNOWET

VAR
INRN I rh;

eCGIN
create:
INRN IS HOVESISEARCH!*.
IF IIMN.RNIL THEN
BEGIN

GOING IS o:
IF LSTMV.RNCH THEN

MRITELNC* CONGRATULATIONS.")

ELSE
NRXTELNI" ORANN. ")

ENO
ELSE
BEGIN

MUCNBIlNtm* NY NOME *11
MRXTCLHINOVNSII
THCNOVIINRHII
IF SNSU THEN

MtTCLHtBOARO.RBIZ.".*»NOOCS."

ENOI
ENOI I* NTNOVC •)

(» HAKE NACHINES HOVE *)

(• THE NOVE •)

(• INITIALIZE DATA BASE •>
|s FIND the BEST HOVE •>

(• NO HOVE FOUND *)

(• CHECKHATE *1

(• STALENATE •)

!• TRANSLATE MOVE TO ENGLISH *1
«• TELL TNI OLATtR •»
I* MAKE TNI NOVC •!

NOOES.^BSTVLIAKIH

PROCEDURE VRNOVEI <s mRC PLATERS NOVC *1

lit

IF*
lAt

VAR
INTB I TBI
XNTC I TCI
XNTM I rj|

XNTP I TPI
INCP I TPl
IFCA I TBI
XFPR I TBt
IFOO I TBl
XFQS I TBI
INTG I TGT
IFNV I TBl

IFLO I Ts;
IFLF I tb:
IFRO I TBI
IFRF I tb:

INLF I SFI
INLR I SRI
INRF I SFi
INRR I SRI

INRN I RH;

FUNCTION NCMIN

<Aisc;
PROCEDURE YRNXXXI

ITBI

VAR
INTB I TB;

BEGIN
INTB IS HOT (INTO IN Al;
IF MOT INTB THEN
BEGIN

YRNXXXI
JNTJ IS JNTJsi;
MHlLE IJNTJ < ZJl

INO (lUXNCIJNTJI s - -I

JNTJ IS JMTJsil
XNTC I* ILlHCtJNTJII
IF IXNTC • •••» OR AINTC s •

GOTO IBt
CNOl

NCHIN IS INT01

CNOl f* NCHIN •)

PROCEDURE YRNHITt

BEGIN
IF IFNV THEN GOTO 17|
IFNV IS TRUE!
INRN IS NOVCSIXNTMIt

ENOI (• YRNHIT *1

PROCEDURE VRNCOnt

BEGIN
MITN NOVESIINTMI 00

IF IxrSRiRNFRi IN INLRI AND
IXTSFIRNFRI
ixrsRiRNTOl
IxrSFlRHTOl
INOT RNXLI ANO
(BQARO.RBISCRNFRI

IF RNCA s IFCA THEN
IF RNCA THEN

IF (WCP * INCP TNEN

IN INLF) ANO
IN INRRI AND
IN INRFI ANO

XNTP

ENOI

YRNHIT
ELSE

ELSE
YRNHITt

(• YRHCOH •)

PROCEDURE YRNCAP;

eeciM
IFCA IS true:

ENOI I* YRNCAP *1

PROCEDURE VRNCASt

BEGIN
IFOO IS TRUE!

end: I* YRNCAS *)

LABEL
11* 12* is* lA. 1$« |s SYNTAX NODES *> PROCEDURE YRHCPC:

I* SYNTAX ERROR •)
(• ANBX6U0US NOVC *1
(• NORHIL CUT •)

(• VALID NOVE FOUND •)
I* CURRENT CHARACTER •)
(« NOVES XNOCI *)

fs NOVING PIECE
|s CAPTUtCO PIECE *)
|s CAPTURE *1
|s PRONOTXON •)
(« CASTLE •!
(• QUEEN SZK CASTLE •)
|s PRONOTXON TYPE •)
<» HOVE FOUND *1

(s R, N« OR 0 ON LEFT «)
(• K OR Q ON LEFT •)
<s K, N. OR B ON RIGHT «»
|« K OR Q ON RIGHT •)

I* FILES ON LEFT •)
(• RANKS ON LEFT •)
I* FILES ON RIGHT »»
C* RANKS ON RIGHT *)

(• THE NOVE «)

(• OETERNXNC IF NEXT INPUT
CHARACTER IS NOT IN A GIVEN
SET •)

I* SET OF CHARACTERS TO CHECK •)
I* SENANTXCS ROUTINE TO CALL

IF NEXT CHARACTER IS IN SET *1
|s TRUE IF CHARACTER IS NOT IN

SET •>

|s SCRATCH •)

(• EXECUTE SENANTXCS ROUTINE •>
<« ADVANCE PAST CHARACTER •»

OR lOROIlLXNCIJNTJI) » OROIZCDI 00
!• Slip OLAM •»
!• NCRT CMBAMTKR *»

1-1 THEN
I* HIT KM •!

I* RETURN TRUE tP CHAlACTCR IS
NOT IN STRING •!

!• FOUNi A NOVC. EKITS
TO ANitGtfiUS NOVE IF TNlS
IS THE SECOND POGSIOLE NOVE.
SAVES THE NOVC IN INRN
OTNERMISC. •)

f* SECOND POSSIOLC HOVE *1
(• FXRT POSSIBLE HOVE *1
I* SAVE NOVE •)

I* CONPARE SQUARES. CALLS YRNHIT
IF HOVESI IHTIII NOVES THE
RIGHT TYPE OF PIECE* CAPTURES
THE RIGHT TYPE OF PIECE* ANO
NOVES TO ANO FRON POSSIBLE
SQUARES •)

I THEN

(• SENANTXCS • CAPTURE *)

I* SENANTXCS • CASTLE *>

I* SCHANTXCS - CAPTURED PlG®^

140

accXN

CASE inrc OF
INCP I- XTUN^ICPtOfMCKUNtNllI

-irt INCP l« iTUNPIERfOtKCtlJMTNJII
-N^t INCP l> RTOflPIEN.OTWRUNTNlIt
*8"l INCP l>)(TUNPiee»OTHilllJNTH}||
*0*1 INCP l« KTUKPfEQ.OTHERIJNTNIII

ENOt
END; (* rtNCPC *»

PROCEOUM VSNCOSt (• SEMANTICS • CASTIE LONG *1

BEGIN
IFQS l> TRUE!

CNOt C* rUICQS •)

XPRr la TRUE1
ENOT f* VRNLKQ

PROCEDURE VRNRRBI

BEGIN
CASE INTO Of
“R"l XNRF la (Fl.FAl • INRFI
”N*| ZNRF la (P2*F7] • tNRF|
*B-I ZNRF la (FS.FGI • INRFI

ENOt
ZFRO la TRUEI

ENOI I* FRMLRB •)

PROCEDURE YRHCKQI

BEGIN
CASE ZNTC OF

*K**I INLF la CPS..FAI
-0-1 INLF la CFS..FLI

ENOI
IFLF la TRUEI

ENOI I* VRNLKQ »>

PROCEDURE VRNLRBI

BEGIN
CASE INTC OF
-R-l INLF la IFl.FBI
-N-l INLF la tF2«F7l
-B-t INLF |a IF3,FB]

ENOI
IFLO la true;

end; <* YRNLRB »l

I* SEMANTICS • K OR Q ON LEFT «l

• INLF I !• KING SIDE *1 -1-1 INRR ta laiii
INLF I <• QUEEN SIDE »l -2-1 INRR la lR2lt

“3-1 INRR IB tR3ll
-<•-1 INRR ta (RAlt
-5-1 INRR 1- IRSII
-6-1 INRR la (RBi;
-7-1 INRR la iR7i;
-S“l INRR la IRBlt

1« SENANTICS • R, N, OR 6 ON END
LEFT *1 ELSE

CASE INTC OF
“l“l INRR la IRBII
“2“i INRR |> IR7IJ

• INLF I 1* ROOK FILE •) -3-1 INRR l> iRBi:
• INLFI l« KNIGHT FILE *1 "*•“1 INRR |a IRSli
« INLF I <■ BISHOP FILE *1 “S“i INRR la (RLi;

-6-1 INRR la iRSi;
-7-1 INRR 1- [R21I
“B"l INRR la IRIII

end:
ENOI (• YRNLRK •!

PROCEDURE TRHRR4CI

BEGIN
IF JNTN a LITE THEN

CASE ENTC OF

PROCEDURE YRMLRKl <• SEMANTICS • RANK ON LEFT *»

BEGIN
IF JNTN a LITE THEN

CASE INTC OF
-1-1 INLR ta IRllI
-2-1 XHLR la IRZII

INiR IRSI1
ZMLR la IRB11

fl 1IH.Q |a (Mil
tllLII la IRill

•r-l INLQ la IR7II

END
LIE

IHLQ ■ a IRGII

CASE INTC or
-l-l ZULU la IIBII
-2-1 INLR la IRTII
•J"l INLR ta IIBII
-A-l ZHLR la iRSif
-s-i INLR la IRBII
“l“l INLR la IMII
-7-1 INLR la IISII
•B-l

ENOI
INLR la iRin

CNOl !• rtNLRK •>

PROCEDURE TRMNULI (« SENANTICS • HULL *1

begin
CNDI TRNHUL •)

PROCEDURE YRNPCNt

AEGIN
CASE INTC OF
■P*l INTP la
•R“l XMTP la
■R"l INTP la
•B-l INTP IB

INTP la
•R"I INTP la

ENOI
ENOI (a

iTUNPlEf.JNTMII
ITUNPIERfUNTMII
XTUNPIEN.JNTMIt
KTUNPCEiaJNTMIl
XTUMPIEQ.JNTMII
RTUNPtEK.JNTMII

•I

I* SENANTICS • PIECE NOVCO •»

f« PAMN *1
I* ROOK •!
I* KNZCNT *1
I* iZSMOP *1
<* QUEEN •»
I* KING *1

^ROCEQurc TRHPROI

PA I
PN|
»B|

PQI

•I

l« SENANTICS - PROMOTION *1

I* ROOK
I* KNIGHT *1
I* OISNOP •}
IF QUEEN «>

^aoceo

•Win

CASE
’■K"

•no I

VRNRKQ,

INTC
I INRF
* INRF

OF
la (FS.

IFl.
• FBI « INWri
• FM • INRFI

!• SENANTICS - K OR 0 ON RIGHT •!

!• KING SIDE «l
!• QUEEN SIDE •)

BEGIN 4* VRNOVE
INTB la FALSEI
NHlLE NOT INTB DO
BEGIN

REAOCRI
LSTHOVI
IfCA FALSEI
IFPR FALSEI
IFOO FALSE!
IFQS FALSEI
IFLO FALSEI
IFLF FALSEI
ZFRO FALSE!
IFRF FALSEI
INTP HT|
INCP HTI
INLf IF1..FB1I
ZNRf (Ft..Fill
INLR IR1..RBII
INRR (R1..RBII

INTC la iLlNEIJNTJlt

IF NCHiHIl-p-.-R-
IF NCHINII-/-I
IF NCHINII-K-,-Q-
IF NCHINII-R-,-M-
IF NCMINI|-l-,,-B'

ill (• LEFT SIDE DONE
If NOT NCHINI(*'--|
If NCNXNU***f-K-|
If MCMXNIt-P-,-R-,-H-,-B-«-Q-I
If NCNINU-/-1

12l I* RIGHT SIDE SQUARE •)
IF NCHlNII-K-*-Q-|
If NCHXNU-R-t"N-,-B-|
If NCHlNfI-l-.,-i-l

Ul I* PROHOTION •»
If NCMIN4(”a-]
If MCHlNI|-fi-,-N-,-Q-,-a-|
GOTO IS I

INI !• CASTLING *1
If NCHlNII-0-t-B-|
If NCHlNIC*-!
If NCH|NI(-0-»“fl-|
If NCHINII-*-]
If NCMlN4C“0-.-i-»

151 ;• SYNTAX CORRECT

IF IFRF ANO MOT IFRO THEN
INRF la INRF a [FL.FSII

IF IFLF ANO NOT ZFLO THEN
INLF |a INLF * IFN,FS1|

IFHV la FALSEI
INTM la AMI
NHILE INTM < JNTM 00

NITH NOVESIXNTH) 00
BEGIN

IF RNPR a IFPR THEN
IF RNPR THEN

IF RNPP a INTO THEN
TRHCOM

ELSE
ELSE

IF RMOO a IFOO THEN
IF RNOO THEN

IF RNQS a IFQS THEN
TRNHXT

(« SENANTICS - R. N, OR B Ql
RIGHT *1

t« ROOK FILE *»
(• KNIGHT FILE «l
I* BISHOP FILE *1

«• SEMANTICS • RANK ON RIGHT •»

(• READ NEXT HOVE
f* LIST LEGAL MOVES »l

K-I.YRNPCIII THEN GOTO ILt
•TRMNULI THEN GOTO lit
•YRNLKQl THCNI
•YRMLRBi THEN!
•YRMLRKl THENI

•TRMNULI THEM GOTO 121
•TRNCAPI THEN GOTO III
• YRNCPCI THEN GOTO It I
•YRNNULI THEN GOTO ill

•YRNRKQI THENI
•YRNRRBI THENI
•YRNRRKI THENI

• YRNNULI THEN GOTO IS I
•YRHPftOI THEN GOTO SB!

,YRNNULI THEN GOTO lAl
•YRNNULI THEM GOTO IGI
• VRHCASI THEN GOTO IB I
• VRNCOSI THEN GOTO IS I
•YRNNULI THEN GOTO iB|

(• SELECT K OR Q FILE •>

t* SELECT K OR Q FILE •!
I* NO HOVE FOUND YET •!

I* INITIALIZE INDEX •>

I* CORRECT PROHOTION TYPE *1
(• COMPARE SQUARES ANO PIECES •!

I* NOT PROHOTION •»

(• CASTLING *1
4* CASTLING SANE MAY •»

141

Listing 7, continued:

ELSE

ELSE

rRHCOM;

INTH IS INTHilt

EMO(

IF IFNV THEN

tEQlN
M1IIENCIXNW«*’V0UR NOVE *11

MITELN(NOVNSM
THEMOVIXHIINI I

XNTe t> true;
END
ELSE

NRITELMI- ILLEGAL NO¥E,“»l

GOTO ii;

161 C* SYNTAX ERROR *»\
mrxtelni" syntax error.
GOTO If}

in (• AN8XCU0US NOVE *1
MRITELNI** ANOIGUOUS HOVE.*! t

lAl I* EXIT

CNOI

end; <* YRNOve •)

SCCIN <• THE PROGRAN *i
HRITELNC- HX. THIS IS CHESS .*-»
xnicon;

II <• INITIALIZE FOR A NEM GAME
INXTAL (fOAROn
REPEAT

REPEAT
YRNOVE:

UNTIL SMREl

21 (• EXECUTE NACHINES NOVE •>
REPEAT

HYNOVEI
IF GOING > 0 THEN

GOING IS GOING*!}
UNTIL GOING ■ 8}

UNTIL false:

91 (* END OF PROGRAN *1
END.

I* MOT CASTLING •)
1* COMPARE SQUARES ANO PIECES •%

<• ADVANCE MOVES XNDE1< *1

I* ONE MOVE rOMNO •>

|« CONVERT TO OUR STYLE •>
<• PRINT mVC •!
(• MAKE THE MOVE
I* EXIT YRNOVE *1

<• NO MOVES POUND *>

!• EXIT •»

EXIT •»

(• INITIALIZE CONSTANTS *>

<• INITIALIZE FOR A NEN CANE *»

<* EXECUTE PLATERS NOVE •»

142

Creating a Chess Player

Part 4: Thoughts on Strategy

Peter W Frey

Larry R Atkin

The chess program that we have presented
in parts 2 and 3 of this series (November

1978 and December 1978 BYTE, pages 162^
and 140^, respectively) represents a modern
implementation of the basic type A strategy

described by Shannon in 1950 (see refer¬
ences). If run on a powerful computer, this
type of program can play a reasonably good
game of chess. Its major weakness lies in its
inability to engage in long-range planning.
In many middle and end game positions, it
will make seemingly aimless moves. Once it
attains a position which optimizes the
general heuristic goals of its evaluation
function, it is faced with the prospect of
finding a move which alters the position
as little as possible. If the opponent is
skillful in developing a long-range attack
while not providing any immediate targets,
the machine may simply shuffle its pieces
back and forth until its position becomes
hopeless. The absence of reasonable goal
directed behavior is a common limitation
of problem solving techniques which are
based solely on forward search. The solution

? problem would have important
I^P [cations for a wide variety of artificial
'otelhgence tasks.

° a strong game of chess, it is nec-

patt* P'"og>'am must recognize specific

goair^Tk-^^*^ relate them to appropriate
gram h ’’o^^'res that the pro-
^bess ^^t:ess to the detailed kind of
'—_^^J^^o^edge which is characteristic of

'his edition,

of this edition.

the skilled human player. Thus, we seem to
have come round in a circle. In order to
avoid selective searching, we have adopted a
strategy which does not require very much
chess knowledge. In examining the weak¬
nesses of this approach, we discover that the
forward search can only be truly successful
if we have a clear idea of what we are look¬
ing for. To know what we are looking for,

however, we must have more knowledge
about chess.

So where do we go from here? The highly
skilled players who are familiar with the
chess programming literature (notably, Ber¬
liner, Botvinnik and Levy) are unanimous in
their enthusiasm for a selective search strat¬
egy. Berliner (see references), for example,
advocates a procedure in which very small
(for a computer) look-ahead trees are gen¬
erated, eg: 200 to 500 nodes. His idea is that
the program should make an intensive analy¬
sis at each node "in order to ascertain the
truth about each issue dealt with.” Chess
knowledge should play a primary role in
directing the tree search. The search itself
would discover additional relevant informa¬
tion and this would provide an even more
knowledgeable focus for the search. This
procedure is analogous to the progressive
deepening technique which de Groot dis¬
covered in the human grandmaster and is
the exact antithesis of the brute force (type
A) strategy (see October 1978 BYTE,
"Creating a Chess Player, An Essay on
Human and Computer Chess Skill,” page
1823).

The efforts of the last decade have
demonstrated that the selective search strat-

143

egy is harder to implement than the full-
width approach. In addition, full-width
searching has consistently produced superior
chess. Despite this, there is hardly anyone
familiar with chess programming who does
not believe that furlhcr progress depends on
increasing the amount of chess knowledge
in the program. I he key question is not
whether this should be done but how to do
it. Since the selective search approach has
not led to notable progress, perhaps it is
time to consider a different approach.

We believe that a viable alternative exists
which combines the proven virtues of the
full-width procedure with the potential ad¬
vantage of a goal-directed search. The central
idea is the development of a unique evalua¬
tion function for each position. In addition
to the general heuristics which are presently
employed, evaluations should consider fea¬
tures which are germane to appropriate

goals.
According to this plan, move selection

would involve two separate stages. In the

first phase, a static analysis of the position
would be made in an attempt to discover
key patterns. This process would involve a
hierarchical analysis in which the features
of the position would be compared with a
general set of library patterns. Highly spe¬
cific features would be identified and rele¬

vant chess-specific knowledge would be
accessed. This information, including appro¬
priate short term and long term goals, would
be used to construct a conditional evaluation
function which would assess the usual gen¬
eral features (eg: material, mobility, King

safety, etc) and also other features which
are meaningful only in specific situations.
Once the conditional evaluation function has
been constructed, the second phase of analy¬
sis would begin, a conventional full-width
tree search employing the special evaluation

function.
The first phase of this process would rely

heavily on domain specific knowledge (ie:
information about chess). It would require
a pattern recognition facility and an organi¬
zational plan for storing a vast amount of
chess knowledge in a manner conducive to
rapid retrieval. When this first phase was suc¬
cessful in identifying appropriate goals and
producing relevant modifications in the eval¬
uation function, the full-width search which
followed would select a move which was
thematic with the appropriate goal. If the
first phase were unable to identify a key fea¬
ture, the evaluation function would employ
the same general heuristics which it pres¬
ently uses. For this reason, the pattern
recognition and information retrieval
modules can be gradually implemented
without a lengthy period in which serious
blunders are frequent occurrences. This is a

major advantage that the conditional evalua¬
tion function has in comparison to a selec¬

tive search strategy.

Chess Structure

To implement a conditional evaluation

functionj- it is necessary to develop a hier¬
archical descriptive structure for chess. At
the top level, one can make the conventional
distinctions between the opening, the middle
game, and the end game. Within each of
these three major divisions, there would be
many specific subdivisions. Within each
subdivision, there would be many specific

variations.
The opening has three major themes: to

develop a pawn structure which is favorable

for you but unfavorable for your opponent;
to increase the mobility of your minor
pieces and limit the mobility of your oppo¬
nent’s minor.pieces; and to castle as soon as
possible and delay your opponent's oppor¬
tunity to castle. These genera! goals provide
a framework for evaluating specific varia¬
tions. They do not provide a specific pre¬
scription for selecting a move because a
sequence of moves which is thematic with

these goals may have a tactical refutation.
An apparently good move may not work
because it loses material. For this reason,

general principles are best applied at the
terminal points of a look-ahead search rather
than being used as a checklist for selecting
the most thematic move as advocated by

Church and Church in Chess Skill in Man

and Machine (see references).
The tournament player who knows open¬

ing theory as well as many specific move
variations will have a clear advantage over an
opponent who knows the general principles

but is not familiar with the specific varia¬
tions. For this reason, tournament players
and good chess programs rely on a library
of memorized opening variations. The

contestant who has carefully planned his
opening variations can often gain an im¬
portant advantage early in the game. To
maximize the benefit of a well-prepared

opening library, it is also necessary to
continue the general theme of the opening
once the predigested move sequences have
been exhausted. At this stage it is neces¬
sary to have a conditional evaluation func¬
tion. When the machine leaves the library
and starts to use a look-ahead procedure to

calculate its move, it should use an evaU^
ation function that augments general open^
ing principles with special goals \vhtch a

thematic with that type of opening.
A portion of the work

implement this proposal has already ®

started. Chess specialists have
highly detailed analyses of specific opc

variations and have developed well-defined
rules for categorizing different move
sequences into specific subdivisions. For
example, a game which starts (1) P-K4,
P-K3 is labeled as the French defense. If

the game continues (2) P-Q4, P-Q4;
(3) N-QB3, B-N5, it is called the Nimzovich
(or Winawer) variation of the French defense.
If it continues (2) P-Q4, P-Q4; (3) N-QB3,

N-KB3, the game is labeled as the classical
variation. A continuation of (2) P-Q4,
P-Q4: (3) N-QB3, PxP is called either the
Rubinstein variation or the Burn variation
depending upon subsequent moves. A
different approach develops from (2) P-Q4,
P-Q4: (3) N-Q2, which is labeled as the
Tarrasch variation. And there are many
more. The important point, however, is
that each of these variations can be object-
ively identified, and that for each there

are well-developed strategical ideas and
specific immediate goals. These ideas can be
stored in the opening library and can be
retrieved when the machine ieaves the
library. In addition to general opening
heuristics, the evaluation function would

reflect the specific theoretical ideas which
are appropriate to the particular opening

at hand. In principle, this idea can be
implemented without difficulty. In practice,
however, a tremendous amount of chess
knowledge is needed and hours and hours of
effort are required. To our knowledge no

an extra bonus for moves which augment
the attack on that side and for moves which
increase the pressure on critical squares.

Pattern analysis is also important in
detecting an appropriate target. There are
several well-known chess relations which
provide obvious targets for attack. One is
the backward pawn which is prevented
from advancing by a pawn or a minor
piece. Another natural target is the minor
piece which is pinned to the King or Queen.
The third is the overworked piece, a key
element in the defense against two or more
different attacks. If the latter is removed
in an exchange, the pieces it is defending
will be open for attack. A fourth natural
target is a square which would permit a

Knight to fork two major pieces (ie: Rook,
Queen, King) or a Bishop to skewer two

major pieces. If the machine threatens to
control that square and to locate an appro¬
priate piece there, the opponent will be
forced to devise a defense. Once one of these

targets has been detected, the evaluation
function can be modified to give a bonus
for moves directed at the target. In addition,
a plan might be devised to encourage the use
of a decoy (a pawn or minor piece which is
sacrificed to bring an important piece to a
particular square) or to capture a piece
which is serving an important defensive
function.

serious attempt has yet been made to imple¬

ment this strategy. The information on
opening theory is needed only once during a
game and thus could be stored on disk,
since rapid access is not critical.

Pattern Recognition and the Middle Game

From a conceptual point of view, the
application of chess knowledge to the eval¬
uation function in the middle game is much
niore challenging. In this case, pattern
recognition becomes an important ingredient.
In implementing a goal oriented move
flection strategy, Church and Church

limiied their middle game strategy to either
^ Kingside attack, a Queenside attack, or
concentration on a weak point (ie: a target).

c Kingside or Queenside attack is trig-
Sered when the machine determines that it

3s superior forces on one side or the other.

^ IS determination can be based on who

l^^y squares. In calculating the

give^^ of different pieces over
less V it is important to note that

valuabt^^^-*^ control than
over A P^wn has greater control

harder ^ Queen because it is
the ° If an attack on one side

®''^iuatio° deemed appropriate, the
^ onction can be modified to give

A Chess “Snapshot”

In the past, programmers have attempted

to implement such plans by using a selective
search (eg: Berliner, Zobrist and Carlson) or
by using no search at all (eg: Church and

Church). Zobrist and Carlson (see references)
have developed an innovative technique in
which “computer snapshots” are devised
which summarize important piece relation¬

ships such as attacks, pins, skewers, forks,

etc, which presently exist in the given posi¬
tion, or which could occur after one or two
moves. Each snapshot is given a weight based
on the relative values of the pieces involved

and the location of the pieces in respect to
the opposing King and the center of the
board. The weighted snapshots are then used
to select moves for inclusion in a Shannon
type B tree search. This procedure provides
considerable goal direction to the move
selection process.

Although the Zobrist-Carlson snapshot
procedure has much to offer (including a

highly efficient bit map implementation
strategy), it incorporates a common problem
shared by all selective search techniques.
Occasionally an important continuation is
overlooked and this results in the selection
of an inappropriate move which may be a
gross blunder. By implementing the plans

145

derived from the computer snapshots in the
form of a conditional evaluation function,
instead, the program can benefit from goal
dircctcdncss without risking the oversights
which arc characteristic of selective search¬

ing. In this way, the machine can retain
the hcnelits of the full-width search and at
the same lime engage in strategic planning.

There is a special class of positions for
which this approach is especially appropriate.
In his thesis at Carncgie-Mellon University

Berliner described a special problem, the
horizon effect, which plagues the con¬

ventional look-ahead approach (see Chess
Skill in Man and Machine, pages 73 thru
77). One version of this problem involves

a piece which is trapped and cannot be
saved. I'orward searching programs often

engage in a bit of foolishness by making
forcing but poor moves (such as attack¬
ing pieces with pawns or sacrificing

pawns for no advantage) which delay the
capture of the trapped piece and push its
eventual loss beyond the horizon of the

tree search. By doing this, the program
erroneously concludes that the piece is safe,

when in reality the planned move sequence
weakens a reasonable position and is still
insufficient to save the piece. In this type
of situation, the trapped piece should be
given up for lost and the program should
do its best to take advantage of the tempo
required by the opponent to capture the
piece. A piece whose time has come is some¬
times referred to as a desperado. The only
option available is to make the opponent
pay as dearly as possible for the capture.

If the desperado can be traded for a pawn
or a piece of lesser value, this is preferable

to being given up for nothing.
This strategy can be implemented with a

conditional evaluation function by simply
assuming that the trapped piece has a
material value of zero. This change would
cause the search process to trade the piece
for the highest valued candidate that can be
found. This is obviously better than having
the program engage in useless sacrifices of
position and material in a hopeless attempt
to resurrect a lost piece. The key element to
this implementation is the ability to deter¬
mine when a piece is truly lost and can be
labeled as a desperado. This is a very diffi¬
cult problem even for a very sophisticated

pattern analysis facility.

End Game Considerations

The most interesting application of the
conditional evaluation function is in the end
game. Because end game strategy is highly
dependent on the specific characteristics of
the position, a general purpose evaluation

function is not very effective. It is necessary

to understand what is required in a given
position and then select moves which are
clearly directed at an appropriate goal.
Church and Church list three common goals
in the end game: to mate the opponent's
King, capture a weak pawn, or promote a
pawn. In this case, pattern analysis is im¬
portant. First the machine must be able to
identify the position as one belonging to the
end game. Then it has to determine whether
a mate attempt is reasonable or whether a

pawn can be captured or promoted. Church
and Church (see Chess Skill in Man and
Machine, pages 151 thru 154) describe

a general strategy for identifying and cap¬
turing a weak pawn. Although their
approach does not involve a forward tree

search, the specific techniques which they
describe can be adapted to the full-width

search strategy. Let us consider several
specific end game positions involving either

a rfirate, a pawn capture, or a pawn

promotion.
For a number of mating situations, a

specific algorithm (step-by-step instructions)
or a complete lookup table can be developed
to produce mate in a minimum number of
moves. Typical applications would be King
and Queen versus King; King and Rook ver¬
sus King; and King, Bishop, and Knight ver¬

sus King. The mating algorithm for each case
would include rules for assigning the poten¬
tial piece relationships into a few genera!
categories, and a prescription for an appro¬
priate type of move for each category. This
approach requires no search. A second
approach involving a lookup table is even
more explicit. An appropriate move is stored
in a table for every possible piece configura¬
tion. To play the mate perfectly, the ma¬
chine uses the position to determine an
address in the table and then simply reads

the correct move.
Both of these procedures are perfectly

feasible and avoid many problems which can
be encountered in the end game. The limita¬
tion of this approach Is that there are a very
large number of mating situations and a tre¬
mendous amount of work would be required

to make a detailed analysis of each one. In
addition, this strategy requires the storage or
a great deal of information which would be

used only infrequently.
A third approach, and one which >5

thematic with the idea of conditional evalua¬

tions, is to make a small modification in tne
evaluation function for each specific mating
situation. The notion is that a shallow searc^^

combined with a few key ideas should
fice to produce a mate in a reasonable nu

ber of moves. With King and Queen ox *
and Rook versus King, it is sufficient
program to “know” that the defending
must be forced to the edge. To do thiSj

program simply needs to add bonus points
to the evaluation function when the defend¬
ing King is near the edge. The size of the
bonus should be a linear function of closeness
to the edge. This modification of the evalua¬
tion function causes the minimax search to
select a pathway in the look-ahead tree
which forces the defending King to the edge.

With King, Bishop, and Knight against
King, the job is slightly more complicated.
In this case it is important to know that the
defending King must be forced to one of the
two corners having the same color as the
Bishop’s squares. The trick Is to add a large
bonus when the defending King is on the
appropriate corner squares and a smaller
credit when it is near these corners. This
modification will cause the minimax proce¬
dure to find a sequence of moves which
forces the defending King into one of the
appropriate corners. The general theme is
that the full-width search is a powerful
device by itself and that the addition of a

small amount of chess knowledge is suffi¬
cient to produce the desired outcome.

Kings and Pawns in the End Game

Some of the most challenging positions
in the end game involve only Kings and
pawns. Many of these require an approach
which is more sophisticated than those
described previously. Consider, for example,
the position diagrammed in figure 1. This is

a modification of a position presented in
Berliner’s thesis which demonstrates one of
the major weaknesses of a full-width forward
search. White has a pawn on f6 which could
advance and be promoted if the Black King
were out of the way. [Algebraic notation is
used throughout this article to designate

chessboard squares. The horizontal rows
(ranks) are numbered from 1 to 8, starting
at the bottom (White). The files are labeled
a through h from left to right.... CM/ To
'^in, White must do an end run with his King
and bring it to the aid of the pawn. Since

“lack cannot attack White’s pawns on c3 or
8 without leaving the passed pawn, he is

e pless to stop While’s maneuver. Although
's analysis is obvious at a glance to an

player, a program that discovers

with a full-width search is faced
rnin problem. In order to deter-

then promotion of
search'^^fcomplete a look-ahead

beyond°th 35 plies. This is
*^^Puter of" even the most powerful
Purpose ' / machine employs a general

which encourages the
position during the end

®''ent'uallv i a pathway which
one of present square (f4)

me neighboring squares (e3 or f3).

Because of this, the correct sequence of
moves would never be discovered.

In order for a full-width search to make
progress in this type of position, the evalu¬
ation function must produce goal direction.
One way to do this is to provide a bonus for
moves which reduce the distance between
the White King and the passed pawn. A sec¬
ondary goal is to reduce the distance be¬
tween the White King and any Black pawns
which are not defended by another pawn.
A tertiary goal is to centralize the White
King. The first step in developing a specific

implementation of this plan is to identify
the territory which is denied to the White

King. For this purpose, we wish to deter¬
mine which squares are controlled by the
pawns. The White King cannot move to a
square occupied by one of its own pawns,
nor can it move to a square attacked by an
opposing pawn. Figure 2 presents a map of

the position with each of the forbidden
squares darkened. The location of these
"taboo” squares provides the defining
boundaries for potential access routes to
the desired goals. The second step in imple¬
menting this plan is to use a technique
described by Church and Church. Starting
at each goal object, work backward toward
the attacking piece(5). In our case, we are
interested in creating a reward gradient
which encourages the White King to ap¬
proach its own passed pawn and the target
pawns. To do this, we consider one goal
object at a time. All passed pawns are identi¬
fied. In our example, only the White pawn at
f6 qualifies. The two squares diagonally in
front of it (e7 and g7) are each credited with

8 "points" each. All squares immediately
adjacent to these squares (but not including
squares inaccessible to the White King) are
credited with 7 points. Next all squares ad¬

jacent to these squares (excluding inacces¬
sible squares) are credited with 6 points.
This process is continued until we run out of
squares or until we have assigned all credits
down to and including 1.

The next step in the process is to identify
Black pawns which are not defended by
other pawns (ie: targets). In this case, the
pawns at e6 and g6 qualify. Credit these two
squares and the adjacent ones with 5 points

each, excluding darkened squares. Next,
credit squares adjacent to these with 4

points. Continue this process until all avail¬
able squares have been exhausted or until
the value of 1 has been assigned. This pro¬
cess is executed independently for each
target pawn. The last step involves credit for
centralization. The four most central squares
(d4, d5, e4, e5) are credited with 3 points.
The squares which surround these squares
are credited with 2 points. The squares
which surround those squares are credited

147

BLACK

Figure 1: Chess position which demonstrates
a weakness of the full-width forward search.
In this example, White has a pawn on square
f6 which could advance and be promoted if
the Black King were out of the way. To win,
the White King must come to the aid of the
pawn. Since Black cannot attack White's
pawns on c3 or gS without leaving the
passed pawn, he is helpless to stop White's
maneuver. Although this analysis is obvious

to an experienced player, a program using a
full-width search would have to search its

decision tree to a depth of 35 piles (ie: 35
half moves; a ply is defined as a move by one
side) in order to come to the same con¬

clusion.

BLACK

WHITE

Figure 2: Forbidden squares in the figure 1
position used to help White (the computer)
evaluate the position more efficiently. The
White King cannot move to a square oc¬
cupied by one of its own pawns, nor can it
move to a square attacked by an opposing

pawn. All of these squares are darkened in
the figure. This diagram is used in imple¬
menting the goal directed technique de¬
scribed by Church and Church (see figure

3).

BLACK

Figure 3: Bonus map for the White King in

the position of figure 1, based on a tech¬
nique described by Church and Church (see
references). A goal is established for a parti¬

cular attacking piece, in this case the White
King, and an iterative numerical technique is
used to implement it. The goal is to encour¬
age the White King to approach its own
passed pawn and the target pawns. (A target
pawn is an enemy pawn not defended by
other pawns.) Numerical figures of merit are
assigned to strategic squares close to White's
passed pawn and Black's undefended pawns.
Points are also awarded or subtracted for
positional characteristics such as centrali¬

zation of squares, etc. A type of flow
algorithm assigns lower and lower values to
squares in direct proportion to their
distances from the strategic squares, avoiding
any forbidden squares. The resulting map of
numbered squares enables the King to find
the right pathway by constantly searching
for ascending values of squares whenever

possible.

with 1 point. Points are then removed |
from any square which is inaccessib e i

to the White King. When this process h^ j
been completed, the credits are totae^ -

for each square to provide a bonus . I
the White King. This map is presented ' 1
figure 3. By applying this bonus map to tn ■
terminal positions of the look-ahead I
the evaluation process will select I
sequence which causes the White I
gravitate in the proper direction, ifi 'I

the correct sequence of moves will be selec¬
ted even if White is restricted to a 5 ply
search each time a move is selected. The
bonus map, though simple in concept,
has a tremendously beneficial effect.

There is an additional point which needs
consideration. In our exposition, we have

assumed that the pawns remained stationary.
If a pawn were to move, the bonus map
would have to be changed. This is not a
major problem, however, since there are
only a small number of positions that can
result from pawn moves, and once the bonus
map has been computed for a given configu¬
ration, it can be stored and used each time
that configuration is encountered in the iook-
ahead tree. For this reason, the calculations
which are required will not be particularly
time consuming.

Another example of this strategy is based
on the position presented in figure 4. This
is a slight modification of figure 6.7 from
the chapter of Chess Skill in Man and
Machine by Church and Church. To apply
our technique with respect to the bonus
map for the White King it is necessary to
determine which squares are not accessible
to the White King by virtue of pawn control.
As before, these include squares occupied by
White pawns and squares attacked by Black
pawns. The relevant squares are darkened in
figure 5.

The next step is to locate passed pawns
for White. There is only one and it is located
at c6. The two squares diagonally in front
of this pawn (b7 and d7) are credited with
8 points. Squares adjacent to these squares
which are not among the darkened squares
in figure 5 are credited with 7 points.
Squares adjacent to these receive 6 points.

This process is continued until there are
no more available squares or until the credit
value of 1 has been assigned. The next step is
to determine whether any Black pawns are
potential targets. As before, a target pawn is
defined as one which is not defended by a

friendly pawn. In the present example, there
are three candidates: the pawns at a6, d6
and h7. For each pawn, the value of 5 is
credited to the pawn's square and the adja¬
cent squares. Then the value of 4 is credited
to each adjacent square. This process of
establishing a gradient of decreasing values
rom 5 down to 1 as distance increases
orn the target is continued until the last

each^^ *^een assigned. This is done for
dark *0 each case, squares

fronf^t^ figure 5 are always excluded
Cess ‘ Pf'oeess. The last assignment pro-

centp'^ conducted for centralization, with
3 receiving

eeiving o neighboring squares rc-
^•■orn ih squares one move in

c edge are assigned the value of 1 and

BLACK

WHITE

Figure 4: Another end game position,
analyzed by the method of Church and
Church in figures 5 and 6.

BLACK

WHITE

Figure 5: Forbidden squares for the position
in figure 4.

then credits are removed from any square
which has been darkened. The final step in
developing a bonus map for the White King
is to total the credits for each square.

The composite map is presented in
figure 6. This set of bonus points will en¬
courage the White King to move in the

appropriate direction. Without this strategy
an n ply search would be required for
White to discover that the pawn at a6 can be
captured. With the implementation of these
attack gradients for the White King, how¬
ever, the correct move can be selected with
only a 3 ply search. As was the case in the
previous example, the establishment of a

Figure 6'. Bonus mop for
the position of figure 4.

Without this map, an 11
ply search would be re¬
quired for the computer
(White) to discover that
the pawn at a6 can be
captured. Using the map,
only a 3 ply search is

required.

BLACK

plan within the evaluation function produces
a goal directed search without requiring an
enormous look-ahead tree. This increase in

efficiency is highly desirable.
Because the process is directed by the

location of the pawns, changes in the map
will occur infrequently and therefore only a

relatively small number of bonus maps will
be required for any one search. Once a map
has been calculated for a particular pawn
configuration, it can be stored and used later
whenever it is needed. Although this strategy
seems to work well in the examples we have
presented, it is reasonable to ask whether
this procedure will work in all end game

situations. Unfortunately, the answer is no.
Consider the position presented in

figure 7. This is a famous end game problem
which appears as diagram 70 in Reuben

Fine’s classic chess book, Basic Chess
Endings (see references). It was analyzed
in 1975 by Monroe Newborn to deter¬
mine if his special end game program,
Peasant, could solve it. After several unsuc¬
cessful efforts, Newborn concluded that

the problem would require about 25,000
hours of processor time before a solution
could be found (see Chess Skill in Man and
Machine, page 129). The problem is diffi¬

cult, but not as impossible as Newborn
suggests. Because Peasant does not have a
transposition table, the program did not take
advantage of the tremendous number of

identical terminal positions which are
encountered when an exhaustive search is

made of this position. Because the pawns
are locked, the only moves which are pos¬
sible are King moves, and this greatly in¬
creases the potential number of

transpositions.
The position was submitted to North¬

western’s chess program Chess 4.5 running

on the CYBER 176 system at Control Data
headquarters in Minneapolis. David Cah-
lander discovered that Chess 4.5 could solve

the problem after a 26 ply search! This re¬
quired ten minutes of processor time on the
powerful CYBER 176. Although it is inter¬

esting to know that the problem can be
solved by a brute force search, this type of
solution is not particularly elegant and it
requires a level of hardware sophistication
that is not likely to be available in the small

system for a few years yet.

The Coordinate Squares Approach

BLACK

Q b c d e f g

WHITE

Figure 7: A chess position which can be analyzed efficiently by means of the
coordinate square concept proposed by Ken Church (see references). In this
approach, the Black King must coordinate precisely with the White King in
order to successfully defend its pawns. The technique is illustrated in table 1.

What can be done to make this problem
more manageable? Interestingly enough,
there is a rather neat approach to problems
of this type which has been examined in
some detail by Ken Church in his under¬
graduate thesis at MIT. Working with Richard
Greenblatt as his advisor, Church applied
the chess concept of coordinate squares to
this position. The basic notion is that the
Black King must coordinate precisely with
the moves of the White King in order to
successfully defend its pawns. For any

particular square which the White King
occupies, there are only a limited number of
squares which the Black King can occupy

and still hold his act together.
In his thesis, Ken Church presents a fainV

extensive analysis of King and pawn en
games. For our present purpose, we
limit our analysis to King and pawn en
games in which the pawns are locked and we
will modify Church’s approach to suit ou^

conditional evaluation strategy. The
difference is that Church attempts to

150

cover a complete solution to the problem
using the coordinate squares idea. We pro¬
pose, instead, to use the coordinate squares
approach to provide the evaluation function
with additional chess knowledge. With this
modification, a full-width search of reason¬
able depth can find the correct move.

Using figure 7 as an example, the first
step in this process is to determine which
squares are denied to each of the Kings by
the existing pawn configuration. By noting
that each King cannot move to a square that
is occupied by its own pawn or that is at¬
tacked by an opponent’s pawn, one can
easily determine that squares a4, b4, c5, d4,
d5, e4, e5, f4 and g4 are denied to the White
King. Likewise, squares a5, b5, c5, c6, d6,
e5, e6, f6 and g6 are denied to the Black
King. Neither side has a passed pawn, but
there are multiple targets, since none of the
pawns are defended by friendly pawns.

By applying the strategy described earlier,
it is possible to calculate a composite attack
map for the White King on the basis of the
target pawns at a5, d6, and f5 and taking
into account the centralization subgoal. The
resulting map for Fine’s position is presented

in figure 8. The squares without a number
are the squares which are denied to the
White King because of the pawn structure.

Given the position of the White King (al), a
shallow search using this attack map as part
of the evaluation function would encourage

the White King to approach the target pawn
at a5 (eg: b2, c3, c4, b5, a5). If the Black

King were more than five moves from a5,
this sequence of moves would lead to suc-

BLACK

« c d e f g h

WHITE

7 position of
^ ^^^posite attach map for White

tak' ^^^9et pawns at a5, d6 and f5,
the centralization

Figure 9: The square control concept applied to the position of figure 7.
Each of the squares is assigned to one of three categories: under the influence
of the Black King, under the influence of the White King, or contested. To
do this, the distance from each King to each square is computed, given the
constraints imposed by the existing pawn structure. Each square closer in
moves to the Black King and not denied to the Black King is assigned to

Black, and vice-versa. The remaining squares are labelled as contested.
Through a complex series of manipulations and the use of so<ailed frontier
squares (see text), White is actively directed to attack Black's pawns using the
strategy of trying to prevent Black from moving onto strategic coordinate
squares which are vita! to Black *s defense.

BLACK

cess. Given that the Black King is at a7,
however, this plan is doomed to failure. In
fact, the first move in the sequence, b2, is

fatal and transforms a winning position into
a draw. There are two important conclusions
that follow from this discovery. The first is

that our simple goal-gradient approach does
not always work. The second is that chess
end games are much more difficult than a
novice player might suppose.

Let us extend Ken Church’s ideas and
apply the concept of coordinate squares to
this position. First, we wish to assign each of
the squares to one of three categories; under
the influence of the Black King, under the
influence of the White King, or contested.
To do this we compute the distance from
each King to each square, given the con¬
straints imposed by the existing pawn struc¬
ture. This creates two distance maps, one for
the White King and one for the Black King.

For squares which are not accessible to one
or both of the Kings, we assign a distance
score based on the number of King moves re¬

quired to reach that square by traveling
across accessible squares. Next, each square
which is closer in moves to the Black King
than to the White King and is not denied to
the Black King is assigned to Black. Each
square which is closer to the White King
than to the Black King and is not denied to

151

the White King is assigned to White. The re¬
maining squares are assigned to the con¬
tested category. The results of this proce¬
dure are summarized in figure 9. The squares
assigned to Black are indicated by the letter
B and the squares assigned to White are in¬
dicated by a W. The blank squares belong in

the contested category.
If the territory under the influence of

either King is adjacent to an opponent’s
pawn, the contest is essentially sctllcd since
that pawn would be open for capture. Since
this is not the case for the present position,
we wish to define a special category of
squares called frontier squares. A frontier
square is any square under your influence
that is adjacent to an accessible contested

square or is adjacent to an accessible square

under the influence of the opponent.
For the position diagramed in figure 7,

the frontier squares for White are c4 and h4.

The next step is to determine, for each of
these frontier squares, the set of squares
under Black’s influence which, if the Black
King were located on that square, would
prevent the White King from moving from
the frontier square to any of the contested

squares or to any of Black’s squares. For the
frontier square at c4, the Black King would
have to be at either a6 or b6 to prevent the
White King from penetrating to b5. For the
frontier square at h4, the Black King would
have to be at g6 or h6 to prevent penetration

by the White King. (Note that the Black
King could not legally be at h5 if the White
King were at h4.) These defense squares for
Black can be determined by the machine by
placing the White King on the frontier
square and conducting a shallow tree search
with White to move first and determining
empirically which locations for the Black

King successfully repel the invader.
The next step in this process is to deter¬

mine the shortest distance between each pair

of frontier squares. For the present position,
there are only two frontier squares and thus
one minimal distance. Five King moves are
required to travel between the two frontier
squares. If Black is to be successful in de¬

fending, the Black King must be able to
move from a defense square for h4 to a
defense square for c4 in the same number or
in fewer moves than it takes the White King
to travel between the two frontier squares.

For this reason, each square in Black's
defense set for c4 must be five or fewer
moves from one of the defense squares for
h4. Also, each square in the defense set for
h4 must be five or fewer moves from one of
the defense squares for c4. This requirement

places a further restriction on those squares
which satisfy the necessary defense condi¬
tions. One will note that a6 is six moves
from the nearest square in the defense set

for h4. Also, h6 is six moves from the nearest
square in the defense set for c4. Therefore,
the true defense set for c4 contains only b6
(a6 will not suffice). The true defense set
for h4 contains only g6 (h6 will not suffice).
Thus, we have determined that when the
White King is on c4 and has the move, there
is one, and only one, coordinate square for
the Black King (b6). If the White King is
on h4 and has the move, there is one, and
only one, coordinate square for the Black

King (g6).
The next step is to generalize this analysis

to squares in White’s territory which are
immediately adjacent to the frontier squares,
in this case, squares b3, c3, d3, g3 and h3.
The square at b3 is one King move from the
frontier square at c4 and six moves from the
frontier square at h4. If the White King is at
b3, therefore, the Black King must be on a

square which is simultaneously one move
from b6 and six or fewer moves from g6.
The squares which satisfy this condition (ie;

the coordinate squares for b3) are a6, a7, b7,
and c7. This same set of calculations can be
made for the other adjacent squares. The
coordinate squares for c3 are b7 and cl. For
d3, there is only one coordinate square,

namely c7.''' Since the White King can move
directly from c3 to d3 and Black must move

to c7j and only cl, to maintain his defense,
it is not possible for him to be on c7 when
the White King is on c3. If he were, he
would not be able to move when White
moved from c3 to d3 and still satisfy the de¬
fense requirements. For this reason, only
square b7 is sufficient for Black when White
is on c3. In addition, since b3 is adjacent to
c3, the coordinate square for c3 is not avail¬
able for b3. Thus the set for b3 is further re¬

stricted to a6, a7 and cl.
If we examine g3, we will discover that

it is one move from the frontier square at h4
and four moves from the frontier square at
c4. This implies that the Black King must be
on a square which is one move from b6 and
four or fewer moves from g6. There are only
two squares which satisfy this requirement,

namely, f6 and f7. Therefore we can con¬
clude that no square other than f6 or f7 will
serve as a coordinate for g3. When we ex-

- amine h3, we will find that there are three
potential coordinate squares: f6, f7 and g7*
Since this set shares f6 and f7 with the
defense squares for g3, further restrictions

are implied. It is not possible for the same
square to serve as a coordinate square fo’’
two adjacent squares since it is not possible
for Black to pass when it is his turn to move.
Therefore if f6 is assigned to h3, then i
must be assigned to g3. If f7 is assigned m

h3, then f6 must be assigned to g3.
The next step in this process is to dete^

mine the set of coordinate squares fo^*

152

3 of the Coordinate Squares for the
9-King Black King

b3 a6, a7. c7
c3 b7
c4 b6
d3 c7
e2 d7,d8
e3 d7, d8
f2 e7, e8
f3 e7, e8
g3 f6,f7
h3 f6,f7,g7
h4 g6

Table 1: Results of the coordinate square
analysis for the position of figure 7. Shown
are the potential squares for the Black King
which defend against the White King’s
threats when it is White’s turn to move.

square on the minimum pathway(s) between
the two frontier squares for which the coor¬
dinate squares have not yet been deter¬

mined. The new squares are e2, e3, f2 and
f3. By following the same analysis as before,
we can determine that the coordinate
squares for e2 and e3 are d7 and d8. The

coordinate squares for f2 and f3 are e7 and
e8. Because of the adjacency restrictions, the
assignment of one of these values automati¬
cally restricts the other square to the remain¬
ing value.

The results of our coordinate square
analysis are summarized in table 1. When it
is Black’s turn to move and White has moved
to one of the squares listed in the table,

Black must be able to move to a coordinate
square. For this reason, the evaluation func¬
tion for the machine can be modified to give
a bonus of 20 points to White for any termi¬
nal position in the look-ahead tree where it
is Black’s turn to move and the Black King
is more than one move from a necessary
coordinate square. If it is White’s turn to
move, a 20 point bonus will be awarded to

any terminal position in the look-ahead tree
where Black is not located on a necessary
coordinate square.

Let us consider how this in combination
with the White King attack map (figure 8)
will affect the outcome of the look-ahead
search. The machine will try to find a path-
Way to squares c3 or d3 because their attack
value of 7 is higher than any of the sur-
•'ounding squares. Even better would be a
pathway to c4, since its attack value of 10 is
^tger than 7. In each of these cases, the

that also try to satisfy the condition
Black cannot be on a proper coordinate

or ^4^ the White King reaches c3, d3,
is al additional 20 point bonus
Will ? In attempting to do this, it
al [the White King moves from

20 ^***^*' tnove, the
Son is Th lt)st forever. The rea-

3t either of these moves allows the

Black King to coordinate and, because of
the minimax strategy, the tree search will
always assume replies for Black which main¬
tain this coordination. If the White King’s
first move is to square bl, the Black King
cannot coordinate and the 20 point bonus
will still be available at some of the terminal
positions in the tree. It is not surprising,
therefore, to find Reuben Fine advising that
K-Nl is the only move for White which pre¬
serves the win.

In order for the machine to find this
move, assuming that both the attack map

and the coordinate squares information are
Incorporated in the evaluation function, a
search of nine plies is required. This is a tre¬

mendous improvement over the 26 ply
search required by the unmodified program.
In order to actually win a Black pawn, the
White King must move to c3 or c4 with

Black not in coordination and make a 13 ply
look-ahead search. If the White King moves

to d3 with Black not in coordination, an
11 ply search will suffice. In order to pre¬
vent a draw, White will avoid repeating

identical positions and thus will eventually
travel to e3. From this vantage point, the
win of a pawn can be visualized with a 9 ply
search. Therefore, the problem could be
solved by the machine if it searched to a
depth of nine plies for each move calcula¬
tion. With a program such as Chess 4.5, a
9 ply search for this position can be con¬
ducted In less than two minutes on even a
medium power computer.

The procedures which we have described
are applicable to a wide range of end game

positions. The coordinate squares analysis
demonstrates that even highly complex end
game positions are manageable when the
full-width search employs a sufficiently
knowledgeable evaluation function. Al¬

though the examples we have discussed en¬
compass only a few types of chess positions,
we hope that the reader will envision the
power which is potentially available when

the evaluation function is modified to incor¬
porate relevant chess knowledge. The imple¬
mentation of this approach on a broad scale
should eventually produce chess programs
which can be run on medium power ma¬
chines and still compete on equal terms with
strong human players.

Quiescence

Another important area for the applica¬
tion of chess knowledge is the problem of
quiescence. It is essential that the static eval¬
uation function not be applied to a turbu¬
lent position. If the next move has the
potential to produce a major perturbation
of the situation, the evaluation which is ren¬
dered will not be accurate. For example, it

makes little sense to apply a static evaluation
function in the middle of a piece exchange
or when one of the Kings is in check. In each
case, the judgment which is rendered will
not be reliable. For this reason Chess 4.5
presently goes beyond the predetermined
search depth at “terminal” positions where a
capture might be profitable for the side
whose turn it is to move, where certain types
of checking moves are possible, or where a

pawn is on the seventh rank. This extended
search facility is called the quiescence
search, and its major objective is to produce

reasonably static positions for which the
evaluation function can provide accurate

assessments.
A weakness of this present implementa¬

tion is that the definition of a turbulent
position is much too narrow. There are
many situations in addition to capture

threats, checks on the King, and pawn pro¬
motion threats which are clearly turbulent.
Larry Harris has characterized some of these

in chapter 7 of Chess Skill in Man and
Machine, Harris includes in this category
positions which involve a pawn lever, a back
rank mate threat, or sacrifice potential. The
interested reader can consult Harris’ chapter
for operational definitions of these patterns.
It is essential to note that these and other
important patterns are not easily detected.
In each case, a fairly sophisticated pattern
analysis capability is required, A reasonable
goal for improving the present forward
search chess programs would be the develop¬
ment of an efficient procedure for detecting
potential sources of turbulence. The central
objective would be to use this information

as one of the decision criteria for terminat¬
ing search at a node. If the position is not
quiescence in respect to a potential perturba¬
tion which has been detected, the look¬

ahead process should be continued.
For example, during the opening when

the machine leaves its library with informa¬
tion that the control of a particular square is
an important objective, the decisions about
search termination can consider whether the

position is quiescent in respect to perturba¬
tions which might influence control of the
key square. Another example of this idea
involves the end game. If the preliminary
analysis indicates that a particular pawn
should be an attack target, the decision for
search termination should consider whether
each position is quiescent with respect to
this goal. Positions at the predetermined
depth level will be evaluated only if all po¬
tential attackers are more than two moves
away from the target. When one or more
attackers are close to the goal, the search
process will be continued to determine if

capture is feasible. This modification of the

search process introduces a goal directed

selective search at the terminal positions of
the full-width tree. The addition of several
extra plies of search at relevant nodes in the
tree can mean the difference between find¬
ing and just missing an important continua¬
tion. This type of facility is difficult to
implement and difficult to control properly,
but the potential gains are such that the

effort is worthwhile.

EstabIishing Appropriate Goals

In order to implement this goal direction

feature in the evaluation function and qui¬
escence search, it is necessary to recognize

that a goal which may be of paramount
importance at the base node of the look¬
ahead tree may no longer be relevant at

some of the terminal nodes. Intervening
moves may accomplish the necessary goal

or may alter the situation such that it is no
longer possible. In these cases, the condi¬
tional evaluation function would be directed

at an inappropriate goal. One way to deal
with this problem would be to select goals
which were both general and long range. In
this case, they should continue to be rele¬

vant at the terminal nodes of the look-ahead
tree. Unfortunately, this is a fairly severe
limitation on the goal directed search and is

therefore not desirable. A second approach
would be to apply pattern analysis at each
terminal node instead of at the base node
only. In this case, the goals which were
selected would always be relevant to the

position. This procedure would be very time-
consuming, since feature analysis is a com¬
plex process. The essential aspect of the
problem is a time relevance trade-off in

which a guarantee that relevant goals are
being pursued requires a heavy investment in
additional computing time. The third and
most reasonable approach would be to desig¬

nate which features of the position are
crucial to each particular goal and to incre¬
mentally update our goals (and thus the
evaluation function and the decision rules
for the quiescence search) whenever these
features change. This is a highly sophisti¬
cated approach which would be difficult to

implement.

Conclusion

Let us summarize our conclusions and
relate them to the world of personal com¬
puting. We have attempted to argue that a
full-width search strategy is feasible with a
small computer, and that ultimately this
approach will produce better chess than a
selective search strategy. For this plan to be
successful, it is necessary to employ software
and hardware suited to the task. The so t

ror#»nt imnrovemen

in tree searching strategy (ie: pruning,

the capture and killer heuristics, iterative
searching, staged move generation, incre¬
mental updating, serial evaluation and trans¬
position analysis) as well as other refine¬

ments such as conditional evaluations which
provide goal direction to the search process.

On the hardware side, it is necessary to
have a reasonably powerful system. Al¬

though there have been a number of recent

efforts to program microprocessor systems
to play chess, the games which have resulted
have not been comparable to those played

by established large system programs. Al¬
though it is quite an accomplishment to pro¬
duce even rudimentary chess from a micro¬
processor system, the level of play to date is

not very encouraging. An example of this

type of game appeared in March 1978 BYTE,
“Microchess 115 versus Dark Horse, ” page
166,

The type of chess program described in
this article requires reasonably powerful
hardware in order to provide an interesting
game. Because of the many operations re¬
quiring bit map manipulation, a 16 bit pro¬
cessor is much more desirable than an 8 bit

processor. It is more efficient to represent
a set of 64 squares with four 16 bit words
than with eight 8 bit words. With a need for
computing power In mind, one might select
a microprocessor system based on one of the
new high-speed 16 bit processors such as the
Zilog Z-8000 or the Intel 8086. In addition,

this type of program will require quite a bit
of memory. The program itself will require
about 20 K bytes and the transposition
table, if implemented, will need at least

another 20 K bytes. If the programmer plans
to add chess knowledge for conditional eval¬
uations, a total of 64 K bytes is desirable.

An opening library which is sufficient to
keep a skilled opponent on his toes requires
disk storage.

These considerations may dampen the
enthusiasm of many would-be chess pro¬
grammers. On the other hand, a realistic
orientation at the start could save a great
deal of grief along the way. When imple¬
mented on fairly sophisticated hardware, our
demonstration chess program will usually
provide a reasonable chess move after two
or three minutes of computation. If more
time is available (eg: selecting a move for a
postal chess game by letting the machine
“think" for several hours), a fairly respect¬
able level of play can be anticipated. With

future hardware improvements, this type of
program may soon become reasonably com¬
petitive at tournament time limits, even on
a personal computing system."

REFERENCES

1. Berliner, H, Chess as Problem Solving: The
Development of a Tactics Analyzer, unpub¬
lished doctoral thesis, Carnegie-Mellon Univer¬
sity, Pittsburgh, 1974.

2. Church, K W, "Coordinate Squares: A Solution
to Many Chess Pawn Endgames," under¬
graduate thesis, Massachusetts Institute of
Technology, June 1978.

3. Church, R M, and Church, K W, "Plans, Goals,
and Search Strategies for the Selection of a
Move in Chess," Frey, P W led). Chess Skill in
Man and Machine, Springer-Verlag, New York,
1977.

4. Fine, Reuben, Basic Chess Endings, David
McKay Company Inc, New York, 1941.

5. Harris, L R, "The Heuristic Search: An Alter¬
native to the Alpha-Beta Minimax Procedure,"
Frey, P W (ed). Chess Skill in Man and Machine,
Springer-Verlag, New York, 1977.

6. Newborn, M, "PEASANT: An Endgame Pro¬
gram for Kings and Pawns," Chess Skill in Man
and Machine, Frey, P W (ed), Springer-Verlag,
New York, 1977.

7. Shannon, C E, "Programming a Computer for
Playing Chess," Philosophical Magazine, volume
41, 1950, pages 256 thru 275.

8. Zobrist, A L, and Carlson, F R Jr, "An Advice-
Taking Chess Computer," Scientific American,
volume 228, number 12, June 1973, pages
92 thru 105.

An APL Interpreter in Pascal
Alan Kaniss

Vincent DiChristofaro

John Santini

For our APL interpreter we used
Michael Wimble's flowcharts (see "An
APL Interpreter for Microcomputers,"
BYTE, Aug, Sept and Oct 1977) as
generalized guidelines rather than
coding directly from them. We used
most of his ideas on function implemen¬
tation, table storage, input scanning,
and statement parsing. There were a few
minor errors in logic, but for the most
part the flowcharts were clear and easy
to work with. We expanded the inter¬
preter to include functions that Wimble
made reference to but did not flowchart
— inner product, outer product,
catenate, and index-of. We made the in¬
terpreter extremely portable by making
the character set machine (as well as
keyboard) independent. We accomplish¬
ed this by having the program read in

the installation's character set from a
file at the start-up of the program.

Values

We store all values as real numbers.
We decided to do this based on the fact
that although API's data structures are
weak (eg, reals and integers can be
stored in the same array), Pascal's data
structures are very strongly typed.
Numbers are checked to be whole
numbers (nonfractional) for certain
operations such as index generation
(monadic iota) and reshaping (dyadic
mo). Numbers are checked to be
Boolean for such operations as logical
negation (tilde). ANDs, and ORs.

Tables

Rather than using Wimble's method
storing tables in arrays (variable table,

t^ble, token table), we took ad-
tiir Pascal's data struc-

/'nked list. This offers two big

Preter^^^^ to the design of the inter-

Array sizes do not have to be
^ c ared anywhere in the program,

is no way of telling which

tables will grow very large and which
ones will stay small; this is dependent
on the calculations being performed
with the interpreter and will vary
from one terminal session to another.
With linked lists, storage allocation is
dynamic and can be used for each
table as needed (storage is taken from
a common pool of storage reserved
for linked lists).

• It is a simple procedure to deallocate
storage (using the standard procedure
"dispose" in Pascal) so that it can be
re-used by the program as needed.
This helps to keep the size of the run¬
ning program to a minimum.

Character Sets

In keeping with the goal by easy
transportability, the character set is
installation (as well as keyboard) in¬
dependent. This is accomplished by stor¬
ing the character set on a file (created at
installation time] and reading it into
storage each time the interpreter is acti¬
vated. Due to the development in a CDC

environment some special considera¬
tions had to be made;

• The normal CDC character set con¬
sists of 64 characters — letters, digits,

and special characters. These char¬
acters are represented by 6 bit bytes
[octal display codes 00 thru 77) stored
10 to a computer word (60 bits).

• The APL interpreter requires 89
distinct characters excluding over-
strikes (over-strikes are considered
APL characters, but are not im¬
plemented in this version of APL).

CDC's ASCII mode fulfills this re¬
quirement in that in ASCII mode,
upper and lowercase letters are dif¬
ferentiated (in "normal" mode, they
are not), thus yielding the extra 26
characters needed.

• In ASCII mode, characters are

represented in one of two ways — a
6 bit display code (uppercase A: octal
01, uppercase Z: octal 32, etc), b) a 6
bit prefix (octal 74 to 76) and a 6 bit
root (lowercase a: octal 7601, lower¬

case z: octal 7632, etc.).
• CDCs version of Pascal (obtained

from University of Minnesota with

local modifications made at NADC)
does not recognize the special ASCII
mode (i.e., octal 7601, the lowercase
a, would be picked up as two distinct
characters — the circumflex (^) and

capital A).
• To compensate for this, the program

does two things:

A test is made for the special prefix
when characters are read in (the

"ORDs'" of these prefixes are 60 and

62 respectively).
Rather than the characters being

stored, their "ORDs"' are. If a
character has a prefix, it is stored as
(100 times the "ORD'" of the prefix
plus the "ORD"' of the character root)
— thus lowercase a, (octal 7601

display code) would be stored as
100XORD (^) + ORD (A). Characters

without prefixes will be stored by

their ORDs.

• Characters will be packed five to a
word. Characters with prefixes will

have a value greater than 6000, thus
flagging them for special input/out¬

put (I/O) consideration.

Due to the fact that DCD's interactive
system responds to the user in upper¬

case letters only, (and in APL, the upper¬

case are special symbols,
□ , etc], the lowercase are capital letters
A...Z), the messages to be returned to
the user [diagnostics, etc.) are also typed
in lowercase into the character set file at

installation time.
These local considerations and ad¬

justments will be removed or will be
transparent (in input routines, two sec¬
tions of code will be removed; in output
routines, the code will be transparent)

for another system.
This implementation of APL will use

all of the correct APL symbols (^ for
assign, p for reshape, « for null, etc.) with
the exception of log-to-a-base [O

overstruck with *] — it will be O (large

circle) only.

Procedures and Functions

INITIALIZE CHARACTER SET -
Reads installation character set from

a file, stores"orders" of characters in
character set array (APLCHARSET)

which is indexed by the name of the

characters.
READINERROR MESSAGES - Reads

user-feedback and error messages in
from a file and stores them in a two
dimensional array (ERRORMSGS).

FILLUP TABLES — Initializes tables
of monadic, dyadic, and reduction
operators and special characters with

the orders of characters from the

character set.
PRINTAPLSTATEMENT — Echoes an

input statement back to the user.
SERROR — Scanner error-handling

routine. Invokes echo of statement

causing the error and prints a pointer
to the Item causing the error.

GETAPLSTATEMENT — Reads in and

stores (in APLSTATEMENT) an input
line from the terminal. Checks input
line for being null (carriage return
only) and being too long (greater than
MAXINPUTLINE).

SKIPSPACES — Self-explanatory.
ITSADIGIT — (Boolean function) —

Determines whether a character

passed,to it is a digit (0..9).
ITSALETTER — (Boolean function) —

Determines whether a character

passed to it is a letter (A..Z).
CHARTONUM — (integer function) —

Returns the integer representation of
a number in character representation.

NAMESMATCH — (Boolean function)
— Determines whether the two names

passed to it are identical.
TABLELOOKUP — Determines whether

the character passed to it is contained
in the table passed to it (MOPTAB,
DOPTAB, REDTAB, CHARTAB,
SPECTAB). If contained, the index
(array position) of the character is
returned; 0 otherwise (TABLEINDEX).

IDENTIFIER — Determines if the next
token of the APL statement is an
identifier (variable name). If so, the
identifier is returned (NAME). The
length of the name is checked for
length error (greater than MAXVAR-

NAMELENGTH).
MAKENUMBER — Determines if the

next token of the APL statement is a
number. If so, the number is return¬
ed (REALNUMBER). The number is
checked for validity (digit must follow

a minus sign; digit must follow 3

decimal point).
MONADICREFERENCE - (Boolean

function) — Determines whether an
operator passed to it is monadic
the context of line (operator canno
be preceded by a FORMAL AR^

158

Table 1: Six legitimate function headers.

Number of Arguments 0 (NILADIC) 1 (MONADIC)

No explicit result NAME NAME B

explicit result Z-f-NAME Z-^-NAME B

MENT, FORMAL RESULT, GLOBAL
VARIABLE, CONSTANT, PERIOD,
LEFT PAREN, or LEFT BRACKET to be

considered monadic in context],

DYADICOPCHECK — Checks to see if
next character in input line is a
dyadic operator, special character,
comment delimeter [rest of statement
is ignored), or invalid character. If

valid, the operator/special character
is stored in TOKENTABLE.

CHECKOTHERTABLES — Checks to see
if next charcter in input line is a

valid reduction operator or a valid
monadic operator. If so, it is stored
in TOKENTABLE.

TRYTOGETANUMBER — If next token
in input line is a number (scalar or

vector], it is assembled and stored
in VALTAB (value table]. It is also
stored in TOKENTABLE.

NAM E I N VARTA BLE — (Boolean
function] — Checks to see if the
identifier (name) passed to it is in
VARTAB (variable table), If so, the
address (pointer] to the name is
returned.

ADDNAMETOVARTABLE Adds the
name (identifier] passed to it to the
variable table (VARTAB).

FUNCTIONALREADYDEFINED -
(Boolean function] — Checks to see
if the function name passed to it is
in the function table (FUNCTAB). If
so, the pointer to its address in
FUNCTAB is returned.

MAKETOKENLINK — Sets up a new
link of storage in TOKENTABLE and
ties it to the rest of the table.

PROCESSFUNCTION HEADER - Scans
function header to check for

characteristics of function and the
validity of the header. There are six

legitimate types of function headers
as shown in table 1.

The procedure checks the validity of
the result (if present], arguments (if

present), the function, extraneous
characters following function header,
the function being previously defined,
t the header is valid, it is stored in

the function table (FUNCTAB).

fj.'^'^OYSTATEMENT - Returns
t«isposes) links of TOKENTABLE after

c statement is scanned and parsed
' in immediate mode). This releases

unneeded storage for further use.
Also, returns links of subroutine
call information from the parser.

SCANNER ~ (main program) — Drives
above routines until /* (slash asterisk)
appears as the first two characters
on an input line.

Parser Routines

The parsing and execution of a string

of tokens is accomplished utilizing the
following routines:

ERROR — Given control upon detection
of improper syntax within either the

SCANNER or PARSER. An error code
is printed accompanied by an appro¬

priate diagnostic message. (See table
2 for error messages.)

PARSER — Controls all parsing; calls
RELEASE, EXPRESSION, RETURNTO-
CALLINGSUBR, OUTPUTVAL to print
last resultant (O PE RTA B PTR'].
Whenever an assignment has not been
detected in current statement,
detects function completion and
returns control to calling token via

RETURNTOCALLINGSUBR's action
upon current subroutine table pointer
(SUBRTABPTS^); SPECSYMBOL
detects branching directive

ERROR
PARSER

RELEASE

EXPRESSION

RETURNTOCALLINGSUBR
SPECSYMBOL
CALLSUBR

FUNCALL
NUMWRITE
OUTPUTVAL
INPUTVAL

CETARRAYPOSITION

LINKRESULTS

STACKPOINTERS
SIMPLEVARIABLE
INDEX
VARIABLE
PRIMARY

VECTOR
ASSIGNMENT
MOP
DOP
FUNCTCALL

2 (DYADIC)

A NAME B

Z^ANAME B

159

prior to exiting parser RELEASE
clears unneeded memroy allocations

to the resultant table (OPERTAB).
RELEASE - Calls upon PRIMARY,

FUNCALL, EXPRESSION (recursive),

ASSIGNMENT, MOP, MONADIC,
DOP and DYADIC to interpret a
valid expression. The parsing of all
expressions and their components
proceeds from the right most token
to the left. PRIMARY is first called
to process the right most token
which is required to be in primary
component; FUNCALL then detects

and executes a monadic or dyadic
function with a recursive call to EX¬
PRESSION, else; an assignment, if

found, is processed by ASSIGNMENT

else; MOP detects a monadic
operator and PRIMARY is called to
distinguish the preceding primary
else; the previously found primary

returns the call from EXPRESSION
with a valid indication.

RETURNTOCALLINGSUBR - Called

from PARSER; returns control from
the current function to the calling
function or, if none, to the current
subroutine table pointer (destroys

old pointers; utilizes NAMEINVAR-
TABLE to check result name).

SPECSYMBOL — Called from various
parser modules, detects various

special symbols [:/-*/ —/°/./(/)/[/]/;/n)
yielding a true if the passed symbol

is found in the current token.
CALLSUBR — Called from PRIMARY

or FUNCTCALL to provide necessary
subroutine table (SUBRTABT pointers,
pass function parameters, and ex¬
ecute branch to called function's
first token. (Utilizes NAMEINVARTAB

to check argument names.)
FUNCALL - Called from EXPRESSION,

Table 2: Error messages displayed by APL interpreter.

00002 DIGIT MUST FOLLOW A DECIMAL POINT
00003 EXTRANEOUS CHARACTERS FOLLOW FUNCTION

HEADER
00004 INVALID CHARACTER ENCOUNTERED
00005 FUNCTION ALREADY DEFINED
00006 ILLEGAL NAME TO RIGHT OF EXPLICIT RESULT
00007 INVALID FUNCTION/ARGUMENT NAME
00008 RESULT OF ASSIGNMENT NOT VALID VARIABLE
00009 INVALID FUNCTION RIGHT ARGUMENT NAME
00010 INVALID EXPRESSION
00011 SYMBOL NOT FOUND
00012 STATEMENT NUMBER TO BRANCH TO NOT INTEGER
00013 DYADIC OPERATOR NOT PRECEDED BY PRIMARY
00014 INVALID EXPRESSION WITHIN PARENTHESES
00015 MISMATCHED PARENTHESES
00016 NOT USED
00017 LEFT ARGUMENT OF DYADIC FUNCTION NOT A

PRIMARY
00018 NOT USED
00019 VALUE NOT BOOLEAN
00020 ATTEMPTED DIVISION BY ZERO
00021 ARGUMENT NOT A SCALAR
00022 ARGUMENT IS NEGATIVE
00023 ARGUMENT IS NOT AN INTEGER
00024 ARGUMENT IS A SCALAR OR EMPTY VECTOR
00025 NOT USED
00026 INVALID OUTER PRODUCT EXPRESSION
00027 INVALID INNER PRODUCT EXPRESSION
00028 NOT USED
00029 LEFT ARGUMENT IS NOT A VECTOR
00030 NOT USED
00031 NOT USED
00032 ERROR IN FUNCTION ARGUMENT
00033 ERROR IN FUNCTION ARGUMENT
00034 INVALID INDEX EXPRESSION
00035 NON-SCALAR INDICES
00036 ASSIGNED EXPRESSION NOT A SCALAR
00037 NON-INTEGER INDICES
00038 INDEX OUT OF RANGE
00039 INVALID INDEX EXPRESSION
00040 NOT USED
00041 NOT USED
00042 NOT USED
00043 NOT USED
00044 NOT USED
00045 NOT USED
00046 NOT USED
00047 NOT USED
00048 NOT USED
00049 NOT USED
00050 NUMBER AND BASE OF DIFFERENT SIGN

00051 ARGUMENT IS A VECTOR OF LENGTH ONE
00052 ARGUMENTS NOT COMPATIBLE FOR INNER PROD¬

UCT
00053 ARGUMENT(S) WITH RANK GREATER THAN ONE
00054 ATTEMPTED INVERSE OF ZERO
00055 ARGUMENTS INCOMPATIBLE FOR DYADIC OPERA¬

TION
00056 LEFT ARGUMENT NOT A VECTOR
00057 NOT USED
00058 NOT USED
00059 NOT USED
00060 GREATER THAN THREE DIMENSIONS
00061 nil
00062 RE-ENTER LAST LINE
00063 INPUT
00064 NOT USED
00065 NOT USED
00066 NOT USED
00067 NOT USED
00068 NOT USED
00069 NOT USED
00070 IDENTIFIER TOO LONG
00071 INPUT LINE TOO LONG
00072 INVALID REDUCTION OPERATOR
00073 DYADIC REDUCTION REFERENCE
00074 MONADIC REFERENCE TO DYADIC OPERATOR
00075 FUNCTION DEFINED WITH NO STATEMENTS
00076 NOT USED
00077 NOT USED
00078 NOT USED
00079 NOT USED
00080 NOT USED
00081 NOT USED
00082 NOT USED
00083 NOT USED
00084 NOT USED
00085 NOT USED
00086 NOT USED
00087 NOT USED
00088 NOT USED
00089 NOT USED
00090 NOT USED
00091 NOT USED
00092 NOT USED
00093 NOT USED
00094 NOT USED
00095 NOT USED
00096 NOT USED
00097 NOT USED
00098 NOT USED
00099 VARIABLE NOT ASSIGNED A VALUE

160

calls FUNCTCALL, PRIMARY, and
CALLSUBR; if FUNCTCALL finds a
function name, PRIMARY is called to
get a primary component if function
is dyadic; CALLSUBR is used to
establish function pointers in
SUBRTAB'. Having transferred con¬
trol to the called function a valid
function indication is returned to
EXPRESSION.

NUMWRITE — Prints a signed numeric
value, yielding the APLFILE define
negative symbol.

OUTPUTVAL — Prints the vector indi¬

cated by the last stacked resultant

(OPERTABPTR'); greater than three

dimensions are not printed, nil vec¬
tors are not printed; calls NUMWRITE
to ensure correct printing of sign.
Called by PARSER and VARIABLE.

INPUTVAL — Called from VARIABLE;
inputs vectors of one dimension or
SCALARS via keyboard. Input is re¬
quested with the prompt "input/' a
carriage return, and a line feed.

GETARRAYPOSITION - Called from
LINKRESULTS and STACKPOINTERS;

produces a pointer to an array value
given the indices of the value and a
pointer to the array.

LINKRESULTS - Called from

VARIABLE, places results (OPERTAB')
into its assigned position, utilizes
GETARRAYPOINTER if result is to be
positioned within an indexed array.

STACKPOINTERS - Called from
VARIABLE; places a result on the

stack (OPERTAB'}, utilizes GETAR¬
RAYPOINTER if result comes from an
indexed array.

SIMPLEVARIABLE - Called from

VARIABLE; detects a variable's name
and type and assembles a pointer to
the variable's values; returns a
valid indication if variable found.

INDEX — Called from VARIABLE;

determines indices utilizing EX¬
PRESSION and stacks the indices in
the resultant table (OPERTAB'); SPEC-
SYMBOL insures that the indices are
delimited by semicolons.

Variable — called from primary
and ASSIGNMENT; calls SPEC-

SYMBOL, INDEX, INPUTVAL, OUT¬
PUTVAL, SIMPLEVARIABLE, LINK-
RESULTS, STACKPOINTERS in order

parse a valid variable, which is
comprised of: a simple variable, a
quad indicating I/O or an indexed
variable.

primary - Called from EXPRESSION

and FUNCALL; calls VECTOR,
variable, specsymbol, expres¬
sion, FUNCTCALL, and CALLSUBR:

The primary may be a vector, a
variable, an expression enclosed in
parens, or a niladic function call; if
any are found a valid indication is
returned to the calling procedure.

VECTOR - Called from PRIMARY;
yields a valid indication if SPEC-
SYMBOL detects a left arrow (■^) and
VARIABLE finds a valid variable after
the arrow.

ASSIGNMENT - Called from EXPRES¬
SION; yields a valid indication if

SPECSYMBOL detects a left arrow
(■^) and VARIABLE finds a valid
variable after the arrow.

MOP - Called EXPRESSION; deter¬

mines if the current token points to a
reduction operator; if found, a valid

indication is returned to EXPRES-
SION-

DOP - Called by EXPRESSION;

determines if the next grouping of
tokens indicate a dyadic operator, an
inner product or an outer product; if

one of these are found, a valid in¬
dication is returned to EXPRESSION.

FUNCTCALL - Called by PRIMARY and
FUNCALL; calls FUNCTION-
ALREADYDEFINED to determine if
current token is a function name, if
true a new subroutine table (SUB¬
TAB') is created and a valid in¬
dication is returned to the calling
procedure.

Implemented Operators and Functions

DYADCOMP — Routine that performs
mathematical and logical operations
for reduction and dyadic computa¬
tions

INDEXGENERATOR — Routine that
performs the index generator function
(also referred to as the monadic iota
operator). Produces a vector of the
first ARC integers.

RAVEL — Routine that performs the

ravel function (also referred to as
monadic comma operator). The result
is a vector containing all elements
of ARC in odometer order.

SHAPEOF — Routine that performs the
shape of or size function (also refer¬

red to as the monadic rho operator).
The result is a vector containing the
dimensions of ARC.

REDUCTION — Routine that performs
the interpretation of the reduction
monadic argument and calls DYAD¬
COMP to perform the indicated
mathematical or logical operation

MONADIC — Routine that performs the
interpretation of valid monadic
operators or calls the necessary rou-

tines for reduction or mixed monadic

operations.
CATENATE — Routine that performs

the concatenate function of joining
two arguments (also referred to as
dyadic comma operator).

INDEXOF — Routine that performs the
index-function which returns for each

element of vector RIGHTARG the
least index I in the vector LEFTARG
for which RIGHTARG [1] equals the
element. If no value in LEFTARG is

equal, the result element is 1 plus
THE SIZE OF LEFTARG (also refer¬

red to as dyadic iota operator).
RESHAPE — Routine that performs the

reshape function which forms a result

having the dimension specified by
LEFTARG and having elements taken
from RIGHTARG in odometer order

(also referred to as dyadic rho

operator).
INNERPRODUCT — Routine that per¬

forms the inner product function
which applied a scalar dyadic func¬
tion (associated with RIGHTARG) be¬
tween each vector along the last
coordinate of LEFTARG, and each
vector along the first coordinate of
RIGHTARG, then performs a reduc¬

tion using the scalar dyadic function

(associated with LEFTARG) to that

result.
OUTERPRODUCT - Routine that

performs the outer product function
which applies a scalar dyadic func¬
tion using all elements of LEFTARG
and all elements of RIGHTARG where
the rank of the result is the number of
coordinates of LEFTARG plus the
number of coordinates of RIGHTARG
and the dimensions of the result are
size of LEFTARG, size of RIGHTARG.

DYADIC — Routine that performs the
interpretation of valid dyadic
operators and calls DYADCOMP to
perform the operations for simple
dyadic operators or calls the
necessary routines to perform inner
and outer products, index-of, reshape,

or concatenate.
REVERSELINKLIST - Routine that

performs the reversing of the order of

the elements in the value table

(VALUES).

The entire interpreter, written in
Pascal for the CDC 6600 is given in

Appendix C, page 291. Since Pascal is a
portable language, it should be possible
to run this program on other Pascal

systems.!

A Pascal Print Utility

by Carl Helmers

A personal computer system is only
useful when it is programmed to per¬
sonal tasks, whether by purchasing can¬
ned software or by using one's ingenuity
to write original software. Since I am the
type of person who tends to like to pro¬
gram as a recreation as much as for get¬
ting the final job done, I prefer to write
my own applications. One of the first
such applications for my UCSD Pascal

oriented machine was a file printing
utility, begun with its earliest versions
within a month of delivery of the com¬
puter.

In my occupation, I do a lot of
writing. Whether the subject Is an

editorial for BYTE magazine, a memo
for circulation within our company, or a
letter to an author, I tend to write the
text using the excellent large file (L2}
editor of the UCSD Pascal system. But
being able to edit texts does not com¬
plete what I need to get done with the
computer. ! also have to be able to print
out the files in a formatted manner, so

that annoying creases in the fanfold
paper do not come in the middle of lines
3nd so that I keep track of page counts.
The program described here, called
PRINT, is what I have contrived. It
'‘^presents several months of evolution

its functions toward what I actually

The print program is written with a

list orientation for all main func-

their selection. In the notes

tio*^ I cover the main func-
nor^fk the print program, but

he details of the Pascal code of the

program. Within the program (see listing
1), verbal comments are made at the
beginning of most procedures to docu¬
ment purpose and point out any
machine dependencies or subtleties of
the code (yes, such can exist even in
Pascal], When going through the menu
lists, references to procedures in the pro¬
gram are made by name enclosed in
quotation marks.

The main functional menu of the pro¬
gram Is shown in figure 1 as it would ap¬
pear on computer. This menu contains
the highest level functions of the pro¬
gram. For aesthetic purposes, the list of
functions has two parts. The upper list of
functions are single letter commands
which change options and standard data
for the program. The lower list of func¬

tions are executable actions the pro¬
gram may take. The menu is printed out
by the procedure print_menu, found on
page 20 of listing 1.

The actual main routine of the PRINT
program consists of a WHILE loop. This
loop starts out by performing print
menu. Then it reads a single character
from the keyboard. This character is
checked to see if it is an ASCI I < ESC >
character (decimal equivalent "27"). If it
is not an escape character, then a CASE
statement is used to decode which ac¬
tive key was pressed.

If a "D" is pressed, then the program

executes a procedure called diablo
which sets up the printer spacing con¬
stants for my Diablo printer. In using this
program with another system, a custo¬

mized version of this setup may be re-

quired if the printer is not a Diablo
HYTYPE II. This diablo procedure pro¬
vides facilities for either 10 or 12 pitch
horizontal spacing, and either single or
double spacing vertically on the paper.
The setup here applies to all the print
functions.

The option is used to preset a
page number different from the one cur¬
rently listed. On entering the program
for the first time, a starting page count
of 1 is guaranteed by initialization to 0.
Typing followed by a carriage return
will cause the page number to be
cleared to 0 again. The procedure
pagenumber, which sets the page
number, is found on page 19 of listing 1.
It contains its own menu of three op¬
tions: clearing (<return>), initializing
(!), or keeping the previous value
(<ESC>).

Printing always assumes we will have
a file specified. The "N'' option is used
to specify a file name for the program to
use. When the program is first activated,
a default value of the system work file
SYSTEM.WRK.TEXT is initialized. Then,
when actually using the program, this is
usually changed. When '"N" is pressed,
the routine namefile is executed, which
asks for the new file name. The program
always assumes a ".TEXT" file name
extension. Thus when it was set up to
print its own listing, after pressing "N", I
simply entered the word "PRINT,"
resulting in the name "PRINT.TEXT" as
seen in the menu of figure 1 and in
listing 1.

Now since I am involved in a pub¬
lishing occupation, one of the options I
put into the program is that of speci¬
fying copyrights. For my own version of
the program, I use either no copyright
(rarely), BYTE Publications Inc. for
business applications of the printer, or
(most often) a personal tag of Carl T
Helmers Jr. The menu list of figure 1 was
made using my personal version of the
program to produce listing 1. It thus

Figure 1: This is a printed
image of the disptay of the
main menu for the print
program^ as compHed from
the author's custom ver¬
sion, The options have ail
been set up to refer to
die file PRINT.TEXT
which contains listing
as printed on July 201979.

Carl's printing program.., 7/18/79

Pick an option from the following list...

D —> printer spacing = normal text
—> set starting page niinber = 0
N -“> file nane * PRINT.TEXT
C —> copyright « Carl T Helmers, Jr.
Q —> toggle PROCEDURE search option = YES
W —> date = July 20 1979

P —-> print routine
L —> print as personal letter
B —> print as business letter
T —> enter typewriter routine
R —> prepare return addresses on envelopes

Type <esc> to leave the program

shows my own personal option as the
copyright option. (In the actual listing
and in the version to create the samples
of figures 2 and 4, I recompiled the pro¬
gram using generic forms of strings such
as "< < < your name > > >".) This
copyright option is invoked by use of the
command character "C" in response to
the main menu. The procedure get-
copyspec performs these actions.

The option "Q" in the main menu is
one which controls whether or not the
print program should search for the
keyword "procedure" in lines which
happen in the last fourth of the page.
Each time the "Q" command is given,
the option toggles between "YES" and
"NO." The "YES" form of the option is
used to implement a very crude form of
Pascal pretty printing. A heuristic rule is
used, that if a procedure begins in the
last quarter of a page, the printing pro¬
gram will go to the next page and start
the procedure at the top of that page.
This option is implemented by execution
of the procedure proccheck.

The final options-oriented choice in
the main menu list is "W," used to
specify th^ date field for printouts. In
the best of all possible worlds this would
not be needed at all, since the operating
system's data routines would be access¬
ed to get the current system date. But at
this writing I have not figured out how to
do that with UCSD Pascal, so I put in an
explicit date definition routine and date
field. The routine get_the—date is
used to define this field and is found on
page 5 of listing 1.

The remaining choices of the main
menu are executable actions. The most
often used such action is the first
choice, "P," which invokes the pro¬
cedure called any—file-print. This
routine performs printing with a stan¬
dard header that includes the file name,
copyright specification, date field, run¬
ning page count, and the current page
header. This is the original print routine
which has been running essentially un¬
changed for about six months at this
writing.

In operation the any_file_print
routine (as well as the two letter printing
routines) treats the first line read from
the file as a beginning page header
string. This string is. for example, the
comments string printed above the dash¬
ed line on every page of listing 1. After
the initial header definition which is a
default action of the program, explicit
new header strings can be set up during
the printing operation by a two line se¬
quence within the file: the first line con-

164

LetterTST.TEXT (c) 1979 <« your name »> July 20 1979 Page 1
Letter Test Text...

Second Line of Salutation
Third Line of Salutation
* dimmy end of salutation line
Dear Recipient a

This is a letter vhich signifies absolutely nothing
to you, but tells us vhether the letter writing routines wrk.
It starts out with a first page, then followirq the end of
the first page, skips to the next page...

We are about to skip to the next page using the special
code of "#" in the second colunn of the input text...

«< your name here »>
«< your street here »>
<« your town here >»

<« your state, zip here >»

July 20 1979

TO:
Letter Test Text...
Second Line of Salutation
Third Line of Salutation

Dear Recipient

This is a letter v^hich signifies absolutely nothing
to you, but tells us v^hether the letter writing routines work.
It starts out with a first page, then following the end of
the first page, skips to the next page...

We are about to skip to the next page using the special
code of in the second colunn of the input text...

Figure 2: When printing a letter form of a
file, the first few fines are assumed to con¬
tain the address of the correspondent Here

are three pages taken from listings of a
dummy fetter fife made by the compiled
form of the program shown in fisting h
At (a) we see a printout of the first few
lines of the file made with the ”P” format;
fine 1 of the file becomes the heading line,
and the rest is an image of the lines of the
file, in particular showing the line with a
single character in column 1 which
terminates the correspondent address if it is
less than 5 lines long.
At (b) we see the same fife, but this time
printed in the persona! fetter format, show¬
ing how the personally oriented strings of a
return address are included, as well as ap¬
propriate spacings down the listing.

And finally, at (c) we see a continuation
page in the fetter format, where an abbre¬
viated header format is used rather than the
first page form. The first line of the corres¬

pondent address appears in the header of
each continuation page, as well as a page
number.

<« your name >» to Letter Test Text... July 20 1979 Page 2

There now, if all worked properly, we are now on the
econd page of the letter, illustrating the form used for headings

on successive pages...
c

s all we have to test...

Yours truly,

Somdoody. •,

165

Typing routine...
<return> = print the current line input
<back space> = delete one character
<ctrl> "I" “ skip to new page
<ctrl> "J" = delete line
<ctrl> "G” - confirm line buffer
<esc> to leave typewriter

This is a test of the typewriter...
This is a test of the typewriter...

tains the arbitrarily chosen character
in the second character position of

the line; the second line contains the
new value of the header string to be
used on all subsequent headings. The
reason for checking the second column
is to allow the first column to be used
for the opening comment brace of a
Pascal comment, so that the first line of
the new heading sequence will be
in a Pascal program.

A similar technique of embedding
command codes in the text is used to
force page headings for reasons related
to the logic of the text other than filling
up a page or beginning a new procedure.
This explicit page eject feature is ac¬
cessed by embedding a character in
column 2 of a line. Again, in a Pascal
program, a single line with acts as
a comment and does not affect the
compilation of a program.

Both the heading redefinition and the
page eject codes also work when using
either the personal letter or business let¬
ter printing routines. These routines are
invoked by the "i." and "3” command
choices of the main menu, respectively.
In each case, similar actions and formats
are used. The example provided in figure
2b shows the letter form,at applied to a
test file.

In preparing a letter, we assume that
the file begins with up to 5 lines of
correspondent address. If less than 5
lines are used, the last line of the
address is followed by a line containing
an asterisk (*) character in its first
character position. In figure 2a, we see a
printout of the first page of the letter
test file, interpreted with the "P" option,
so that the asterisk which terminates a 3
line correspondent address can be seen.

In printing a letter file, this assumed
correspondent address is used in the
heading for the first page, following the
printing of the word ''To/'. Also, on the
first page, a formally centered version of
the appropriate return address will be
printed. Again, in the example of figure
2b, as printed by the compiled form of

Figure 3: The "T" option of the main
menu invokes this typing routine. The
display is shown as copied to the printer
using a feature of my computer system
called "print screen." The menu of possi¬
ble options is refreshed whenever a car¬
riage return causes a line to be printed on
the printer.

listing 1, generic strings identify where a
reader might substitute personal infor¬
mation in using this program. On second
and succeeding pages of a letter (see
figure 2c), an abbreviated page break is
used rather than a repetition of the com¬
plete return address.

All the printing procedures, including
any—file— print, personal— letter, and
busi —letter are found on page 16 of
listing 1. When you look there, you will
find that they reference a procedure
called fileprint, which begins on page 9
of listing 1 and ends on page 15. The dif¬
ferences in printing the various ways are
largely those of handling the different
forms of page headers, so a common
procedure with a choice of header prin¬
ting options is employed. The procedure
headerprint (pages 10 to 13 of listing 1)
within the procedure fileprint contains
three detail header printing routines for
the various kinds of files.

Much of the styling and detail of a let¬
ter can be changed at will by readers
who implement a version of this pro¬
gram. These are my own personal
choices of how to format distinctive let¬
ters of one or more pages, and may not
be aesthetically pleasing to others.
Knowing the number of choices avail¬
able and the ease of making changes
with a UCSD Pascal system^s editor, I
fully expect many users of this program
to make such changes.

As an afterthought, I put in the final
two executable choices of this program.
The "T" option is used to invoke a
typewriter simulation procedure, typing,
as found on pages 17 to 19 of listing 1-

This routine displays a menu list of
special characters on the main terminal
screen, and accepts characters from the
screen one by one until a carriage return

is received which causes the line to be
printed. Figure 3 shows the typing rnenu
as printed from the display, along with a

sample line.
The "R"' choice is used when

paring personal correspondence in oro
to place my home address on ®

envelope. When using blank envelopes,
this is done by removing the paper from
the printer and putting in envelopes one
at a time. For monthly bills where a pre¬
addressed envelope comes from the
source of the bill, I simply put each indi¬
vidual envelope in the printer as 1 write
the checks, leaving the paper in and not
bothering with attempting to make the

«< your name here »>
«< your street here »>
«< your toMi here »>

«< your state, zip here »>

Figure 4: A sample of the
simple printout of return
address invoked by the

option of the main
menu.

return address fit the spaces usually pro¬
vided.!

Table 7; A list of all procedures found in listing 1. This listing can be
used as an index when studying the program for possible modifications.
It was prepared by hand from listing 1.

Procedure
Listing
Page Refers to

setdiablospacing 2
diablo 3
inttos 4
printin 4
center_the_string 5
get—the_ date 5
getcopyspec 5
flx_copyright_tag 6
set—up—printer 6
open_file_now 6
really_initialize 7
my_ address—lines 9
file print 9

grab—address—lines 9
initialize 10

headerprint 10
normal-header 10

header—personal —letter 11

header—business—letter 12

headerprint [BEGIN...END] 13

checkprocedure 14
pagecheck 14
pagebumper 14

fileprint [BEGIN...END] 15

namefile 15
personal—letter 16
bus!-letter 16
any—file—print 16
console—input 16
typing 17

promptings 17
typing [BEGIN...END] 17

pagenumber 19
procheck 19
print—return—address 19

setup—envelope 19
Print-return-address [BEGIN...END] 19
print—menu 20
print [BEGIN...END] 20

setdiablospacing

printin

setdiablospacing

open—file-now, fix—copyright-tag,
set—up—printer, grab—address—lines,

setdiablospacing, printin, Inttos
setdialospacing, printin,
my—address — print, center—the—string,

inttos
setdiablospacing, printin,

center—the—string
normal—headr, header—personal—letter,

header—business—letter
printin
checkprocedure, headerprint
pagecheck, printin, pagebumper
initialize, pagebumper, pagecheck,

printin

fileprint
fileprint
fileprint

set—up—printer, promtpings, con,
console—input, printin,

setup—envelope, my—address—print

really—initialize, print—menu, diablo,
getcopyspec, any—file—print,
procheck, namefile, personal-letter,
busi—letter, typing, pagenumber,
print—return — address, get—the—date

167

Listing 1: The PRINT program. This is a complete Pascal program listing
for the print program. It was printed by a compiled version customized
for the author's personal use. The text printed here is a generic form in
which strings like "< < < your name >>>" have been used to in¬
dicate places where the program should be changed for the reader's per¬
sonal use. Note the header information which is repeated at he beginn¬
ing of each page of listing.

PRINT.'IBJCr (c) 1979 Carl T Helmers, Jr. July 22 1 979 Page 1
{7/19/79: UCSD Pascal oriented print utility progran)

(*$R+*)
PROGRAM print ;

{ PERSONAL PRINT UTILITY

{
{
{
{
{
{

{
{

author: Carl T. Helraers, Jr.
Editorial Director
BYTE Publications Inc.

version: July 19 1979
systems asssunption: UCSD Pascal Version 1.5

running on Northwest Microcomputer Systons
model 85/P with Diablo HYTYPE II printer

)
}
I
}
}
}
}
)
)
)
)
}

{ vyhat follow are GLOBAL declarations applicable to the whole program }
[In this program, as a general rule most linkages between procedures for }
{ data have been done using these global variables, ignoring the use of }
{ formal parameters at (perhaps) some risk in understanding on the part of}
{ the reader... ^

TYPE
strir^_of_128 = STRING [128];

VAR
copyright : (my_ovin,businesz,none);

cstring : string_of_128;
file_heading,s,hyphens : string_of_128;
textfile ; FILE OF CHAR;
p6tring,astring,firstllne,filename ; string_of_128;
string_nothing : STRING[ij;
apege : INTEGER;
hori z ,verti ,c5 ,c8 ; INTEGER;
pagecouit,records ; INTEGER;
line_oount,llnes_per_page ; INTEGER;
alldone : BOOLEAN;

which_print_headirq : {miscellaneous,a_personal_letter,a_business_letter);
first~heading_prlnted : BOOLEAN;
todays_date : STRING[32];

correspondent_address : ARRAY[0..41 OF string_of_128;

we prlnt_a program : BOOLEAN;
c_we_prTnt : STRING [3];
criterion : INTEX3ER;

arravchar: PACKED ARRAY[0..1] OP CHAR;
anychar : CHWl;

PRINT.TCOT (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 2
(7/19/79: UCSD Pascal oriented print utility program)

PROCEJXJRE setdiablospacing(VAR horizontal,vertical ; integer);
{ 'Wiis is a very machine dependent interface program which sets up the

spacing constants for the Diablo Hytype-ii recelve-only printer attached
throi^h a parallel port of the Northwest Microcomputer ^sterns 85/P
ccmputer upon which this program was d^/eloped. It assimes that the
address locations decimal 63520 and 63519 contain the spacing constants
for horizontal and vertical motion of the print carriage respectively.

COJST
vertaddress = 3519;
horizaddress = 3520;
bias»30000;

TYPE
ptr = '‘CHAR;
menaccess « (pointer,nunber);
msnory = {variant record used to suppress type checking of addresses}

RECORD
CASE m^maccess OF

pointer : (apointer : ptr);
nunber : (anunber : INIEGER)

EM);
VAR

i : INTEGER;
anybyte ; memory;

BEGIN

{first set up an address as a number)
anybyte.anunber := vertaddress+(2*bias);
{then use the pointer variant of that nunber to change the byte}
anybyte.apointer"' := chr(vertical);

{first set up an address as a nunber }
anybyte.anunber := horizaddresst(2*bias);
{then use the pointer variant of that nunber to change the byte}
anybyte.apointer"' := chr(horizontal);

E>1D {setdiablospacing};

169

PRINT.TEXT (c) 1979 Carl T HelruGrs, Jr. July 22 1979
{7/19/79: UCSD Pascal oriented print utility program)

Page 3

PROCEDURE diablo; ^ i
{ 'mis is a less machine dependent procedure which *‘llovs one to set

four different variants on the spacing of the printed outputs. All the
combinations of single or double vertical spacing» 10 or 12 pitch
horizontal spacirg are provided. ''Normal'' is single space, 12 pitch
printing, which is used with a 10 pitch Daisy v*ieel as, for exanple, in

this listing...

If another printer is used, the semantics of the menu provided in the
WRITE statements below wuld have to be rewritten.

}
VAR

character : CHAR;
BEGIN (setting up mickey-mouse }

PAGE (OUTPUT) ;
WRITELN ('Diablo HVTYPE-II Setup Fbr 85/P 6 UCSD Pascal);
WRITELN(' *);
WRITELN ('pick one of the following options...');
WRITELN(' S —> normal text');
WRITELNC D —> double space');
WRITEIN(' X —> typewriter text');
WRITEtui' Y —> typewriter double space text');
WRITELNC ');

WRITELNC?');
READ(KEYBQARD,character);
WRITELN (character);

{default diablo spacing is single)
horiz:=5;
verti
pstring 'normal text*;
lin€s_per_page := 58;

CASE character OF
'D','d' :

BEGIN
verti:=16;
pstring 'double spaced normal text';
lines_per_page := 28

END;
'X','x' :

BEGIN
horiz:-6;
verti :=€;
pstring := 'typewriter text';
lines_per_page 58

END;
'Y','y' :

BEGIN
horiz:=6;
verti:=16;
pstring := 'double spaced typewriter text';
lines_per_page := 28

END
END {CASE};

setdiablospacing (horiz,verti);
criterion :* (3 * lines_per_page) DIV 4

PRINT.TEXT (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 4
{7/19/79: UCSD Pascal oriented print utility program}

EIND {diablo};

PROCEDURE inttOS(VAR i : INTEGER);

{convert an integer into a string value in global "s" for use by "println"}
{this procedure may not be absolutely necessary, but was incorporated at)
(an early stage in the author's understanding of Pascal as a language.)
VAR

frap : STRING[1];
txt : string_of_128;
j : INTEGER;

BEGIN
j := i;
frap := • '?
txt :*
REPEAT

frap[l] := CHR(CRD{'O') + (j MOD 10));
txt := CCWCAT(frap,txt) ;
j := j DIV 10

UNTIL j = 0;
s := C(»ICAT(s,txt);

END {inttos};

PROCEDURE println {s—>diablo};

{ This procedure is required to allow simultaneous operation of the main
console device for interactive messages of the progran, and the printer
device (UCSD Pascal Unit 6) , The actual output of this program from some
file goes to Unit 6, buffered by the global string variable "s".

The operation of this procedure is functionally identical to the built in
intrinsic "WRITELN" of the UCSD Pascal implementation.

VAR
i : INTEGER?
chp : PACKED ARRAY[0..127) OF CHAR;

BEGIN

FOR i := 1 TO I£NGTH(s) DO chp[i-l] ;= s[i];
UNITWRnE(6,chp,LENGTH(s) ,,1);
chp[0] :=CHR(13)?
UNITWRITE(6,chp[0] ,1,,1)

END {println }?

PRINT.TEXT (c) 1979 Carl T Helmets, Jr. July 22 1 979 Page 5
{7/19/79: UCSD Pascal oriented print utility program}

PROCEDURE centec_the_strirq;
{ This procedure simply centers the standard global output string "s"

in an 80 character wide field...
}
VAR

i ; INTEGER?
BEGIN

IF LENGTH(s) > 79 THEN s := 'Strir^ Conversion Error'?
FCR i := 1 TO (80 - LENGTH(s)) DIV 2 DO s := CCWCATC ' ,s)

EIND?

PROCEDURE get_the_date?
{ This procedure is used to input the current date for printing with

the file being transferred...

}
BEX3IN

PAGE (OUTPUT) ?
WRITELN ('Enter today*'s date or <return> for null date')?
READIN(astring);
IP LENGTH(astring)<32 THEN tQdays_date := astring

END {get__the_date};

PROCEDURE getcopyspec (determine copyright message};
{ This procedure is used to modify the default copyright specif ication,

vhich may be "<« your name >»", "«< ysur company name »>" or a null
specification. Users should modify the two built in strings of this
listing to reflect their own name and business affiliations.

}

BEGIN
PAGE (OUTPUT);
WRITEIN(*Enter copyright choice: B or N (<ret> for personal}')?
READ (KEYBQARD,anychar) ?
copyright ;= my_ovn?
IF ((anychar='B’) OR (anychar='b')) THEN copyright := businesz?
IF ((anychar='N*) OR (anychar='n')) THEN copyright := none;
CASE a>pyright OF

my_own : cstring := '«< your name >»'?
businesz ; cstring := '«< ysur conpany nane »>';
none : cstring := '*

END {CASE};

WRITEI>J(")
END;

PRINT.TEXT (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 6
{7/19/79: UCSD Pascal oriented print utility progran}

PRCX!EDURE fix_copyright tag;
{ This procedure defTnes the string named "file_heading” v^ich is used

for display purposes and reflects the current contents of the
copyright option chosen...

}
BEGIN

file^heading := CCNCAT(filename,' ');
IF NCTr(copyright=none) THEN

file^heading := CCNCAT(file_heading,'(c) 1979 ')
ELSE

file_heading := CCNCAT(file_heading,' ');
IF copyright=my_own IHEN

file^heading :^CNCAT(file_heading ,'«< your name »>')
ELSE

IF copyright=businesz TOEN
f ile_head i ng: ^CONCAT (f i 1 e_head ing,

'<« your business name >>>');
file_headirg := CONCAT(file_heading,* *)

END {fix_copyright_tag);

PROCEDURE set_uf^printer;
{ Ask for and receive an acknowledgment of paper position prior to

the start of a printing operation.

BEGIN
{clear the print buffers}
S ;=
println;
println;
println;

{normal interactive query]
WRITELN {'Reset printer to bottcm of page then *,

'type any character');
READ (KEYBOARD, anycha r)

END {set_up_printer};

PROCEDURE open_f ile_now;
{ This procedure is used to open the text file v^tiich is to be printed

by the program. The compiler control toggles "(*$1-*)'* and "(*$!+*)"
are used to suppress automatic error checking during the RESET operation
so that if an error occurs the program can recover gracefully...

VAR
errornimber : INTEGER;

BEGIN
records ;= 0;
firstline :*
{-begin UNPROTECTED CODE-)

(*$I-*)
RESET(textfile,filename);
errornimber ;= lORESULT;

(*$!+*)
{-RESIDE PROTECTED CODE-)
IF errornimber = 0 THEN {file was fomd in good order }

BEGIN
REArLN(textfile,firstline);

PRINT.TEXr (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 7
{7/19/79: UCSD Pascal oriented print utility progran}

UKITREAD(1{“},arraychar[01r1f#1)
END

BI£E {file was non-existent or invalid in seme vey }
BEGIN , .

WRITELN (* File ,filenane,'" invalid: restat=',erromutiber:3);
WRITEUJ(*Press <sp> to continue*)?
READ (KEYBOARD,anychar)

END

END {open_file_now);

PROCEDURE really initialize; , .
{ As suggested by its name this is the procedure which really initializes

the whole program's operation. It is performed once following the start
of execution, as opposed to other initialization procedures for specific
routines within the progran which may be executed more than once...

}
VhR

I : INTEGER;
BEXIIN

filenane := 'SYSTEM.WRK.TEXT*;
cstrii^ := *«< your nane »>';
copyright :» my_own;
todays_date :» *?’;
string_nothing :* * *;

we print a program :« TRUE;
c_we prTnt := 'YES*;

alldone := FALSE;

{printer managanent constants are set up to defaults)
c5 ;* 5;
c8 8;
line_coLnt ;= 99;
lines_per_page :* 58;
criterion :* 44;
horiz := 5;
verti := 8;
5etdiablospacing(horiz,verti);
pstrlng := ‘normal text';
pagecount := 0;

records :* 0;
astrir^
firstline
hyphens := ";
FOR i :* 1 TO 90 DO hyphens := CONCAT(hyphens,*-')

END {really_initlalize};

PRINT.TCXT (c) 1979 Carl T Helmers, Jr. July 22 1979
{7/19/79: UCSD Pascal oriented print utility program}

PROCEDURE my_address_print;
{ This procedure used by header routines of fileprint, return

printer...
}

BEGIN
s '«< your name here >»';
cente r_the_s t r i ng;
println; {1}
s := *<« your street here »>';
center_the_string;
println; (2)
s :* *«< your town here »>';
cente r_the_s t r i ng;
println; (3)
s := '«< your state, zip here »>';
center_the_string;
println; {4}
s :=
println {5}

END {my_address_print};

Page 8

address

PRINT.TEXT (c) 1979 Carl T Helmers, Jr. July 22 1979
{7/19/79: UCSD Pascal oriented print utility program}

Page 9

PROCEDURE fileprint?

{ This is the master file printing routine, used for "miscellaneous"
files, as well as personal letters and business letters... The global
set variable "which print_heading" controls one of three possible
headir^s will be printed on each page. The global BOOLEAN variable
"we print a prog ran" controls whether or not the last fourth of a page
being printed will have a test for the beginning of a new PROCEtXiRE
used to autcmatically generate a skip to the next p^e.

}

PROCEDURE grab_address_llnes;
{ When printing either a personal or a company letter, the wrking

assimption made is that the text file with the letter begins with
up to five lines of address information. This set of lines is read
at the beginnirg of a letter printirg operation, with the occurrence
of an asterisk ("*") in the first position of a line acting as a
prsnature termination of the address read operation. The first line
of the address information will be repeated in any continuation pages
of a letter printout.

}
VAR

done : BOOLEAN; ^
i : INTEGER;

{read up to five lines of correspondent address from b^inning
of file. Terminate address scan with a character in a line.}
BEGIN {grab__address_lines}

IP {
(which_print_headlng = a_personal_letter)

OR
(which_print_heading = a_business_letter)

)

THQI
BEGIN

correspondent_address[01 := firstline;
FCR i := 1 TO 4 DO correspondent_address[i] **;
done FALSE;
i :« 1;
REPEAT '

BEGIN
READLN(textfile,astring);
astring := CCNCAT(astring,' ') {guard against nulls};
IF ((i<«41 AND (astring[1] O **')) THQJ

correspondent_address[i] := astring
ELSE

done := TRUE;
i i + 1

END
UNTIL done

END;
END {grab_address__lines};

PRINT.TEXT (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 10
{7/19/79: UCSD Pascal oriented print utility program}

PROCEDURE initialize (for "fileprint”};
{ This is the procedure v*hich sets up initial conditions when a

file is to be printed...

BEGIN
open_file now;
f ix_co py rTg ht_tag;
set_up_printer;
g rab_address_l ines;
first_heading := TRUE;
line_coiJ\t := 99

QJD {initialize for "fileprint"};

PROCEDURE headerprint;
{ This is the procedure which prints a header which breaks up the

text into multiple pages... It is invoked whenever necessary, and
checks the type of printing operation as determined by the global
variable "which print_heading",,. All the headers are printed with
a "nonnal" spacTr^ option for the printer.

PROCEDURE normal_header;
{ This is the header used for most printir^ operations, including

the printing of program files... The printout of this program
was made using this kind of header...

VAR
i : INTEGER;

BEGIN
setdiablospacing(horiz,c8);
s := ’
IF ((pagecouit > 0) AND (line_count<>100)) THEN

FOR i := 1 TO 2 DO println {s—>diablo};
pagecouit := pagecount +1;
IF verti = 16 THEN println {s—>diablo};
println {s—>diablo};
s CCNCAT(file_heading,todays_date,' Page
inttos(pagecount);
println {s-->diablo};
s := firstline;
println (s—>diablo};
s := hyphens;
println {s—>diablo};
s := *•;
println (s—>diablo};
setdiablospacing(horiz,verti);
line_count := 0

END {normal^header};

PRINT.TEXT (c) 1979 Carl T Helmers, Jr, July 22 1979
{7/19/79: UCSD Pascal oriented print utility program}

Page 11

PROCEDURE header persohal_letter?
{ This is the header routine used for personal letters, where on the

first time throigh, a full return address, date and correspondent
address are provided. On second and succeeding headings, only an
abbreviated header is used containing the first line of the corre¬

spondent address, date and page nunber...

}

VAR
i ; INTEGER;

BEX3IN {header_personal_letter}
setdiablospacing(horiz,c0);

s := ' ' ?
IF ((pagecount > 0) AND (line_count<>100)) THEN

FOR i := 1 TO 2 DO println {s—>diablo};

pagecount := pagecount +1;
IFverti = 16 THEN println {s—>diablo};

println {s—>diablo};
IF first_headirg THEN

BEGIN ^ ^. ,
{space down an amount equal to the continuation heading }

S :=

println;
println;
println;
println; ’■
setd i ablospacing (hori z ,vert i]

{line count is}

my address print;
s := todays date;
center_the_string;

{1-5}

println; {61

s :=
println; (7}

println; {8}

println;
s := 'Tb:';

{9}

println;
FOR i := 0 TO 4 DO

BEGIN

{10}

s := correspondent address[i];

println

EJND;

{11-15}

s := " ;
println; {16}

println; {17}

println; {18}
_>

line_count := 18 {lines printed so far)

END ~
ELSE

BEGIN , , ,
s :=C0NCAT('«< your name >>> to ' ,correspondent_address[0J,

todays_date,' Page ');
inttos{pagecount);
println (s—>diablo};
s := " ;
println {s—>diablo};
s := hyphens;
println (s—>diablo};

PRINT.lEXT (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 12
{7/19/79: UCSD Pascal oriented print utility program}

println (s—>diablo};
setdiablospacing(horiz ,verti);
line__coint := 0

END;
f irst^heading ;= FALSE

END {header_personal_letter};

PROCEDURE header_business_letter;
{ This is the header routine used for business letters, where on the

first time throigh, a full return address, date and correspondent
address are prosrided. cn second and succeeding headings, only an
abbreviated header is used containing the first line of the corre¬
spondent address, date arvd page nunber...

)
VAR

i : INTEGER;
BEGIN {header_business_letter}

setdiablospacing(horiz,c8);
S := ";

IF ((pagecount > 0) AND (line_count<>100)) THEN
FOR i :* 1 TO 2 DO println {s—>diablo};

pagecouit := pagecouit +1;
IF verti = 16 TOEN println {s—>diablo};
println (s—>diablo};
IF first_heading THEN

BEGIN
{space down an anount equal to the continuation heading }
S := ";
println;
println;
println;
println;
setdiablospacing(horiz,verti);
{begin the first time heading]
s := '«< your business name >>>';
center_the string; {line count
println; {1}
s := '«< your business address >>>';
center the string;
println; {2}
s := '<« your business tovff^, state, zip)
center the string;
println; {3}
s •
println; {4}
s := '<« your name »>' #

center^the string;
println; {5}
s := •«< your title »> 1 ^

9

center the string;
println;
s := '' •

{6}

println; {7}
s := todays_date;
center the string;
println;
s := ' ' *

(8}

println; (9)

13 PRINT.1E)CP (c) 1979 Carl T Helmers, Jr. July 22 1979
{7/19/79: UCSD Pascal oriented print utility progran)

page

(10)
{ID

{12}

println?
println;

s := *To:';
println;
FOR i ;« 0 TO 4 DO

BEGIN
s ;= correspondent__address[il;

println (13-17)

END;
s
println; [I'D
println;

println; , i
line count := 20 (lines printed so far)

END “
ELSE

C0NCAT('«< V^ur nane »> to ' ,correspondent_address[01 ,

' ' ,todays_date,' Page *);
inttos(pagecount);
[nrintln (s—>diablo);

s
println (s—>diablo};

s := hyphens;
println (s—>diablo};

s
println (s—>diablo);
setdiablospacing(horiz,verti);

line_coiJit ;= 0

END;
first_heading := FALSE

END (header_business_letter);

BEGIN (headerprint);
IF vhich print^heading * mi^ellaneous

THEN nonnal_header

EISE
IF which printjieading = a__personal__letter

THDJ Keader_personal_lettec

ELSE
header business__letter

END (headerprint);

180

PRINT.Itjcr (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 14
{7/19/79: UCSD Pascal oriented print utility program}

PROCEDURE checkprocedure;
{ This procedure is used to determine whether the current input line

contains the keyword "PROCEDURE" in order to perform a rudimentary
type of "prettyprinting"; a new procedure will not begin in the
listing of a "normal" file if it starts more than "criterion"
dovffi the sheet of paper,

}

BEGIN
IF POS (’PROCEDURE' ,astring) > 0 THEN

BEGIN
s :=
REPEAT

BEGIN
println;
line coint := line count + 1

END ~ ”

UNTIL line_count > lines_per_page
END

END {checkprocedure};

PROCEDURE pagecheck {for "fileprint"};

{ This is the procedure used before every normal "println" call during
the main portion of a file printing operation, in order to test
viiether a skip to the next page is reauired. It invokes the
"checkprocedure" routine if the Pascal PROGRAM printing option is
turned on.

}
VAR i : INTEGER;
BEGIN

line_^coLnt := line_comt + 1;
IF

we_print_a_prog ram
AND

(line_coLrit > criterion)
THEN checkprocedure;
IF line_comt > lines_per_page TOEN headerprint

END {pagecheck for "fileprint"};

PROCEDURE pagebunper {for "fileprint"};
{ This procedure implanents a rudimentary form of word processing:

if a "miscellaneous" file format is used, then the standard heading
field "firstline" can be redefined by an input record with the key
character "$" in colunn 2. (This allows it to be wrapped in comments
braces in a Pascal progran.) Ebr all formats, if the key character

is found in column 2 of a line, the printing will skip to the
next page and start a new heading_

NOTE THIS PROCEDURE USES RECURSION!!!!
}
VAR

i : INTEGER;
BEGIN

IF LENGTH(astring)<2 THEN astring := CCNCAT(astring,' ');
IF astring[2] = '#’ THEN

BEGIN
s

WHILE line count > 0 DO

PRINT.TEXT (C) 1979 Carl T Helmers, jr. July 22 1979 Page 15

{7/19/79: UCSD Pascal oriented print utility program} _

BEGIN
pagecheck;
println {s—>diablo}

END;
READLNttextfile^astring);

pagebunper {RECURSIVE CALL}

END;
IF astring[2} = '$* THEN

BEGIN
READlN(textfile,firstline) ;

READLN(textfile,astring);
pagebimper {RECURSIVE CALL}

END
END {pagebunper for "fileprint"};

BE5GIN {the ''fileprint'' PROCEDURE at last}

initialize;
WHILE NOT EOF(textfile) DO

BEGIN
READLN (textfile,astring);
records := records + 1;
pagebunper;
pagecheck; ^
s := astring;
println (s—>diablo}

END;
s
line coLTit ;= line count - 5 {adjustment to make it come out even};

REPEAT ”
BEX3IN

println;
line^coLnt := line^coint + 1

END
UNTIL line_count > lines_per_page;

CLOSE(textfile,LOCK)

END {fileprint};

PROCEDURE nanefile; . , ^
{ This procedure sets the file name to be printed. It is always asstmed

that a ".TCX'T' extension will be used...

}
BEGIN

PAGE (OUTPUT);
WRITEIN('Ehter a new file name to be printed');

READLN (filename);
filename := CONCAT(Eilename/.TEXT’)

END {namefile};

PRINT,TEXT (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 16
{7/19/79: UCSD Pascal oriented print utility program}

PRXEDURE personal letter;
BEGIN

which_print_heading := a_personal_letter;
fileprint

END {personal__letter} ;

PRXEDURE busi_letter;
BEGIN

which_print_heading := a_business_letter;
fileprint

END {busi__letter};

PRXEEURE any_file_print;
BEGIN

v^ich_print_heading := miscellaneous;
fileprint

END;

PRXEDURE consol e_input;
{ Ttiis procedure is used to read a single keystroke fromt the console

keyboard unit, it is required because the UCSD Pascal READ(KEYBOARD,
anychar) intrinsic purges all the normal ASCII control characters...

}
VAR

inch : PACKED ARRAY(0.,0] OF CHAR;
BEGIN

UNITREAD(2,inch[0],1,,1)?
WHILE UNITBUSY(2) DO;
anychar := inch[0]

END {console^input);

PRINT.TEXT (c) 1979 Carl T Helmers, Jr. July 22 1979
{7/19/79: UCSD Pascal oriented print utility program}

page 17

PROCEDURE typing; ^ ^ ^ ^ ^
{ This is a self contained procedure to make the terminal keyboard behave

as a "manory" typewriter. The contents of the input buffer are printed
upon receipt of a '•<RETURN>" code or upon exceeding an input length of
96 characters. The display is used to show the possible special
function keys as well as the current input line contents...

}

VAR
ichar ; INTEGER;
itemp : INTEGER;
line increment ; INTEGER;

PROCEDURE promptings;
BEGIN {promptings};

PAGE(OirrPUT);
WRITEIW('Typing routine.
WRITELNC
WRITE INC
WRITELN {'
WRITEUP (’
WRITELN ('
WRITEUJC
WRITELNC ');
WRITEIN (hyphens);

WRITELNC)

<return> = print the current line input’);
<back space> = delete one character');
<ctrl> "I" = skip to new page');
<ctrl> "J" = delete line');
<ctrl> "G" = confirm line buffer');

<esc> to leave typewriter');

BE3GIN
set_up_printer;

PAGE [OUTPiTT) ;
line_count := 0;
IF verti = 16 THEN

line__incranent := 2

ELSE
line_increnent := 1;

anychar
s :=
promptings;
UNITCLEAR(2) ;
WHILE anychar <> CHR(27) DO

BEGIN {other than escape <ESC>)

consol e_input;

WRITE(anychar) ;
ichar := ORD(any:har);
IF ichar >= ORDC ') THEN

BEGIN {normal ASCII)
string_nothing[l} := anychar;
s ;= c'^AT(s,string_nothing);
IF LENGTO(s) >= 96 THEN ichar := 0 {signal end of line}

END {normal ASCII};
IF ichar < CRD(' ') THEN

CASE ichar OF

PRINT.TCJCr (c) 1979 Carl T Helmers, Jr. July 22 1979 Page 18
{7/19/79: UCSD Pascal oriented print utility program}

0 : {line overflow}
BEGIN

line comt := line_coirt + line_incretnent;
IF lTne_count > 66 THEN linejcount := 1;
println;
string_nothlng[l] anychar;
s :» string_nothlng

END;

10 : {line delete}
BEGIN

s := " ;
WRITE[W('«< line deleted »>')

EN);

7 : (bell)
BEGIN '

WRITEIN (' *) r
WRITEUl (s)

END;

8 : {back space)
BEGIN

IP LENGTO(s) > 1 THEN
BEGIN

itenp := LENGra(s) - 1;
s := COPir(s,l,itemp)

DJD
ELSE

S !* "
END;

9 : {forms feed}
BEGIN

line coint := line_coint + line_increment;
IF lTne_count > 66 THEN linejcount ;» 1;
println;
s :=
promptings;
WHILE line_count < 66 DO

BEGIN
line_count := line_count + linGjincrement;
println

END

END;

13 : {print the line}
BEGIN

line_comt := line comt + 1;
IF verti > 8 THEN Tlne_count := linejcount + 1;
IF line_a)mt > 66 THEN linOjComt := 1;
println;
s
prcmptings

END

END {CASE}

END {other than escape <ESC>}

PRINT.•rejn* (c) 1979 Carl T Helmers, Jr. July 22 1979
(7/19/79: UCSD Pascal oriented print utility progran}

page

PAGE (OirTEVT)
END (typing);

PROCEDURE pageniinber;
BEGIN

PAGE (OUTPUT);
WRITEIN(*Eiiter starting p^e nunber fron the following list*);
WRITEENC <CR> ”> default start from 1');
WRITEINC "1" —> entry of a new starting value*),-
WRITE1N (* <ESC> —> continue fcon ' ,pagecoLrt:4);
console_lnput;
WRITEIN (anychar) ;
IP CRD(anychar) * 13 TOEN

pagecount 0 {default to 1}
ELSE

BEX3IN
IF anychar = '!’ THQi

BEGIN
WRITEIN (") ;
WRITEIN(' Enter new page nunber:');
READIN (pagecount) ;
pagecomt pagecomt - 1

END
END

END {pagenunber};

PROCEDURE proccheck;
BEGIN

we_print a program :* NOT we_print_a_prograin;
IF we_prTnt_a__progran TOEN

c_v)e_print :* 'YES'
ELSE

c_WB_prlnt :* *N0'
END;

PROCEDURE print_return_address;
(procedure to print return addresses on letter size envelopes}

VAR
done : BOOLEAN;

PROCEDURE setup_envelope;
BEGIN (seti^ envelope};

WRITEIN{'place envelope In printer, then press any character*)
READ (KEYBOARD, anychar) ;

END {setup_envelope};

BEGIN {print_return__address}
done := FALSE;
REPEAT

setup envelope;
ray_adHress_pr I nt;
WRITEIN ('More? <esc> to quit’);
READ(KEYBQARD,anychar) ;
IF CRDCanychar) = 27 THEN done:=TRUE

UNTIL done

reiNT.TCXr (c) 1979 Carl T Helmers, Jr* July 20 1979 page 20
{7/19/79; UCSD Pascal oriented print utility progran}

El© {prlnt_return_address};
PROCEDURE print_menu;

I This is the main function menu for the print utility program

BEGIN
PAGE (OUTiUT) ;
WRITElN('Carl"s Printing Progran.,, 7A8/79*);
WRITEtU (* *) f
WRITEEN (' •) ?
WRlTBLN('Pick an option fron the following list...');
WRITEINC);

D —> printer spacing » ',pstrli^);
—> set starting page number = ' ,pagecount:4);
N —> file name * ',filename) ;
C —> copyright * * ,cstrlng);
Q —> toggle PROCEDURE search option * ' ,c_we_prlnt) j
W “> date * ',todays date);

WRITELNC
WRITEIHC
WRITELNC
WRITEIHC
WRITELNC
WRITEINC
WRITELNC');
WRITELNC
WRITELNC
WRITELNC
WRITELNC
WRITEIN ('
WRITELNC);
WRiTELNCiype <esc> to leave the program')

END {print menu};

P —> print routine');
L —> print as personal letter');
B print as business letter');
T —> enter typewriter routine');
R —> prepare return addresses on envelopes');

BEGIN {print program main PROCEDURE)
really_inltialize;
WHILE alldone <> IRUE DO

BEGIN
print menu;
READ^EYBOARDranychar);
IP anychar <> CHR(27) TOEN

CASE anychar OP
'D'f'd' :diablo;
'C'CC :getcopy5pec;
'P'r'p* :any_file print;
*Q',' q' tproccheclc;
'N'r'n* :nanieflle;

;personal_letter;
'B*,*b' ;busi_letter;
'T','t' ityplng;
'R'f'r' iprlnt return__address;
'W/w* ;get_^e_date;
'#'C3' epagenunber

END {CASE}
ELSE

alldone := TRUE
ElOD

END.
(*$Df*)
(*$L+*)

An Automatic Metric

Conversion Program

David A Mundie

Calculators and personal computers
have already liberated us from trig¬
onometric and logarithmic tables. It is
time they do the same with respect to
metric conversion tables. I recently

wrote the SUPERMETRIC program
shown in listing 1 for just that purpose.
(Listing 2 shows a sample run of the pro¬
gram.)

Although my design goals seemed
quite modest and straightforward,
achieving them turned out to require an
astonishing amount of number crunch¬

ing and devious programming, as the
length of the listing testifies. My first re¬
quirement was that the program distin¬
guish rigorously between customary

units, primary metric units, and secon¬
dary metric units. By ''primary" metric
units I mean the System International
(SI) base units such as metre, kilogram,
kelvin, and so on, as well as the derived
units such as watt, newton, m/s, pascal,

and volt. By "secondary" metric units I
mean units like °C and km/h which are
accepted but not part of SI, along with
the formulas for derived units with
special names, eg, kg m/s as the for¬
mulas for the newton.

This design goal was met by storing
the various units and their conversion
factors in a table whose structure may
most conveniently be understood by
^^amining the "data statements" which
generate it in the subroutine INITIAL-

th entry in the table contains
^ '■ee items: two units and a conversion
^ctor The units on the right are all

t units. In the top part of the
^ me (above MAXCUST) the left-hand

Sect *^ustomary, while in the bottom
they are secondary metric units.

The program automatically converts
customary and secondary units to pri¬
mary units. Primary units may be con¬
verted to customary by using the "C"

command, while the "S" command con¬
verts them to secondary units. As it
stands now, the program will only con¬
vert a given primary unit to the first cus¬
tomary unit it finds in the table. How¬

ever, it would be a simple matter to add
a new command that would allow the
user to specify the target unit, "gallon"

instead of "fl. ounce," for example. The
table is quite easily expanded through
the use of additional "data statements."

A second design goal was to have the
program automatically add prefixes to
metric units as needed, and to adjust in¬
puts with prefixes that are too large or
too small. For example, I wanted 5700 kj
to be converted automatically to 5.7 MJ.
To this end, the subroutine DEPREFIX re¬
moves prefixes from the units input by
the user, so that the data is stored intern¬
ally in unprefixed primary units. The
subroutine PREFIX then prints the cor¬
rectly prefixed measurement. The pre¬

fixes themselves are contained in the
strings NORMP and SPECP. NORMP
contains the normal set of prefixes, each
1000 times larger than the next, as
shown in table 1, whereas SPECP stores
the special set of prefixes used for
volurhes and areas, as shown in table 2.
Thus 15000 m is converted to 15 km,
whereas 15000 m^ is converted to 1.5

hm^
A third design goal was to have the

program deal with the problem of preci¬
sion in a reasonable manner. Nothing is
more absurd than to convert 3 square

yards to 2.5083821 m^, although anti-

189

Power Prefix Abbreviation

10’« exa E

10’“ peta P

10’2 tera T

10® giga G

10* mega M

10=^ kilo k

10‘=» milli m
10'* micro (J-

10’® nano n

10"’® pico P
10'16 femto f

10'’® atto a

Table V. Prefixes used by SUPERMETRtC
for measurerDents other than volumes
and areas.

Power Prefix Abbreviation

10^ kilo k
10* hecto h
10’ deka da
10"’ deci d
10‘* cent! c
10'® milli m

Table 2: Prefixes used by SUPERMETRIC
for volumes and areas.

Correct SUPERMETRIC
SI Form Approximation

h
da

o
etc. fl

u
D
* (multiplication)
$ (degree)
m2
@ (ohm)

Table 3: Differences between SUPER-
METRIC and correct System Inter¬
national [SI] symbols.

metric journalists often feign to believe
this is correct practice. My approach
was to have the program give a con¬
verted measurement whose implied
error is between 10% and 100% that of
the input. This insures that the con¬
verted measurement will be at least as
precise as the input, but never more
than one significant digit more precise.
To achieve this goal, the subroutine
VALUE reads the measurement which
the user enters and calculates the num¬

ber of significant digits it contains (P).
This number is then used to control the
number of significant digits in the out¬
put. For example, the program auto¬
matically converts 3 square yards (im¬
plied error ± 0.5 square yard or ± 0.42
m^) to 2.5 m^ (implied error ± 0.05 m^).
As a convenience to the user, the pro¬
gram will accept numbers with a trailing

decimal point and treat all the digits to
the left of the decimal point as signifi¬
cant. Thus, although "1000"' is treated as
having one significant digit, ''1000.'' is

treated as having four.
My final design goal was to adhere as

closely as possible to standard SI nota¬
tion within the bounds of the ASCII char¬

acter set. The points where this goal was
not met are shown in table 3. I regret all
of these, but had no choice except in the
case of the "da" prefix. Since the other
deviations were unavoidable, the extra
coding needed to handle a 2-character

prefix did not seem worthwhile.*

The author wishes to thank Joe Ber¬
man and Steve Wei Ions, of the Uni¬
versity of Virginia's Microprocessor
Laboratory, for their assistance in the
preparation of the listings for this arti¬
cle. The listings were done on equip¬
ment purchased under NASA contract
ifNASI-14662.

190

Listing 1: The automatic metric conversion program written in UCSD Pascal.

PROGRAM s upe rme t cic s;
(*5S+*)
CONST

normp='afpnum kMGTPE'; {normal prefixes}
specp='mcd Dhk’; {special prefixes for areas and volumes}
maxentcies = 100;

TYPE
entry = RECORD

left, right: STRING;
factor: REAL;

END;
index = 0..maxentries;

VAR
table
curtop
current
maxcust
top
leftside
finished
oldm,oldf
1 ine
Q

m

P

:array[index] of entry;
rindex; {current top of table}
;index; (points to current entry}
:index; {top of customary section
:index; {permanent top of table]
:BOOLEAN;
: BOOLEAN;
:REAL ?
:STRING;
:STRING;
:REAL;
:INTEGER;

(one line of user input}
{the unit}
(the measurement}
(the precision}

of table}

^********** rnathematical utilities *****************************}

FUNCTION floor(r:REAL): INTEGER;
BEGIN floor : = trunc (r-ord((r<0) and (rOtrunc { r))))
END;

FUNCTION nl(r;REAL):REAL; (Avoids bug in In function]
BEGIN IP r<l THEN nl:=-ln(r) ELSE nl;=ln(r}
END;

FUNCTION power(i,j:INTEGER):REAL;
BEGIN power:=exp(nl(i)*j)
END;

FUNCTION log(r:REAL):REAL;
BEGIN log:=nl(abs{r))/nl(10)
END;

FUNCTION lop(r:REAL; p:INTEGER):REAL;
{ Reduce a real to p significant digits }
VAR f:REAL;
BEGIN f:=power(10,floor(log(r))-p+l);

IF r/f<maxint THEN lop:=f*round(r/f) ELSE lop:=r
END;

FUNCTION norni(r:REAL) :REAL;
BEGIN norm:=r/power(10,floor(log(r)))
END;

I********** Convert a string to a real number **********}

FUNCTION value(VAR stSTRIMG; VAR p:INTEGER):REAL;
CONST

limit=1.67772E6; { (2**23)/5) }
z =48; { ord(0) }

VAR
a,y :REAL;
e,i,j,p2 ;INTEGER;
neg,negexp,gtl:BOOLEAN;
digits :SET OF CHAR;

BEGIN
i:=l;p:=0;p2:=0; gtl:=false; digits:=['0'..'9'];
s:“concat(s,'%’); {safety character]
a:=0; e:=0; neg:=s[i] = '- '; WHILE s(i] = ' ' DO i:=i+l;
IF (s[ij='+')oc neg THEN i;=i+l;
WHILE s[i] in digits DO

BEGIN
IF S[i]='0' THEN p2:=p2+l
ELSE BEGIN p:=p+p2+l; p2:=0; gtl:=true END;
IF a<limit THEN a:=10*a+ord(s[i])-z ELSE e;=e+l; i:=i+l

END;
IF s[i] = ' . ' THEN

BEGIN p:=p+p2; i:=i+l;
IF not(s[i] in digits) THEN

BEGIN insert(’0s, i) ; i:=i+l
END

END;
p2:=0;

191

V7HILE s[i] = '0' DO
BEGIN p2:=p2+l; IF a<liniit THEN

BEGIN a:=10*a+ord(s[i])-z? e:=e-l

END; i:=i+l
END;

IF gtl THEN p:=p+p2;
WHILE sli] in digits DO

BEGIN p:=p+l;
IF a<liinit THEN
BEGIN a;=10*a+ord(s[il)-z; e:=e-l

END; i:=i+l
END;

IF s[i] in ['e','E'] THEN
BEGIN i: = i+l; j:=£5; negexp: = (s [i] ='-') ?

IF(s[il='+') or negexp THEN i:=i+l;
WHILE s[i] in digits DO

BEGIN IF j<limit THEN j;=10*j+ord(s[i])-z; i:=i+l

END;
IP negexp THEN e:=e-j ELSE e:=e+j

END;
y;=a; IF neg THEN y:=-yj
IF e<0 THEN value;=y/power(10,-e)
ELSE IF eOG THEN value: =y*power (10 , e)

ELSE value:=y;
WHILt; s[i] = ' ' DO i:=i+l; s r =copy (s, i, length(s)-i) ;

END; {value}

{********** Write a real in appropriate format and return a blank **}

FUNCTION fCr:REAL): CHAR;
CONST

width = 22;
VAR

intpart,decimals,floating:INTEGER;

BEGIN
intpart:=floot(log(r));
decimals:=p-intpart“l;
r:=lop(r,p);
IF r>100O0 or r<0.0001 THEN {floating point]

write(r:width)
ELSE

IF decimals<=0 THEN {integer}
write(round(t): width)

ELSE {fixed point}
wt ite(r:width;decimals);

f:*' '
END;

{*★******** Special handling for temperatures ****************}

PROCEDURE temperature(VAR m:REAL; b:BOOLEAN; fact:INTEGER);

VAR
d:INTEGER;

BEGIN
d:=p-floor(log(m))-1;
m:=ra+fact*273.15+fact*186.52*ord(b);

p:=d+floor(log(m))+1
END;

{********** Find u in the table of units **********************}

FUNCTION inlistrBOOLEAN;
VAR t:STRING;

FUNCTION inatch(SJ string) :BOOLEAN;
BEGIN match:=(u=s)or(t=s)
END;

BEGIN
leftside:=true; current:=1;
t:=u; IF length(t)>l THEN delete(t,1,1);
WHILE (not(match(table[current] .left))) and(current<=curtop) DO

current:=current+l;
IF current<=curtop THEN

iniist:=true
ELSE

BEGIN cur rent:=curtop; leftside:=false;
WHILE (not(iTiatch(table[current} .right))) and (current>0) DO

current:=current-l;
iniist:=current>0

END;
END;

{********** Add correct metric prefix ***********************}

PROCEDURE prefix(m: REAL; utSTRIKG);

PROCEDURE pref(p:STRING; fac,term:INTEGER);

VAR

192

i,range: INTEGER;
BEGIN

range:“floor{log(m)/fac);'
IF abs(range)>term THEN

range:=tecm*(l“2*ord(range<-term));
m; =iii/power (10 , fac*range) ;
IF range<>0 THEN

BEGIN
p:=copy(p,range+term+1,1) ;
u:=concat(p,u);
writeln(f(m),u)

END
END;

BEGIN {prefix}
IF pos('2',u) =2 THEN pref(specp,2,3)
ELSE IF pos('3',u)=2 THEN pref(specp,3,3)
ELSE pref(normp/3r6)

END;

[********** Convert to priiriary units **********************}

PROCEDURE primary;
VAH

oldp:INTEGER;
BEGIN

VJITH table [current] DO
BEGIN

IF u='inpg' THEM m:=l/r.i;
IF length(u)=2 THEN

IF(u[l]='$')and(u[2] in ['F','C']) THEN
temperature (ni,u [2] = 'F ’ ,1) ;

oldm:®m;
oldf:=factor;
oldp:=p;
p:=p+ord(norm(rn) *norni(factor) >=1D);
u:-right;
m:=m*factor;
writeln(f(m),u) ;
profixCm^u);
p:=oldp;
leftside:=falcc

END;
END;

{********** Check metric prefix and adjust if necessary ***********}

PROCEDURE notraalize(VAR m:REAL; VAR u:STRING);
VAR

s:STRING;

PROCEDURE depref(ptSTRING; fac,term:INTEGER);
VAR

range^k :INTEGER;
needspref:BOOLEAN;

BEGIN
needspref:=floor(log(m)/fac)<>0;

IF pos(s,u)=2 THEN
BEGIN

range:=term+l;
FOR k:=l TO length(p) DO

IF u[l]=p[k] THEN
range:=k-term-l;

IF range+term+l in [1..term*2+l] THEN
BEGIN

m:=m*power(10,fac*range);

delete(u,l,l};
writeln(f(m),u)

END
ELSE

writeln('illegal prefix ignored')
END;

IF needspref
THEN

prefix(m,u)
END;

BEGIN {normalize}
IF leftside THEN

s:=table[current].left
ELSE s:*table[currentj.right;
IF pos('2',s)-2 THEN

depref(specp,2,3)
ELSE

IF pos('3',s)=2 THEN
depref(specp,3,3)

ELSE depref(norrap,3,6)
END;

{********** Convert to customary or secondary units ***********}

193

PROCEDURE custandsec{in:REAL) ;
VAR

oldp:INTEGER;
BEGIN

WITH table[current] DO
BEGIN
oldp:=p;
p:=p+ord(norm(olclin) *norm(oldf/factor) >=10) ;
m; =ru/f actor;
IF (u='m3/ni') and {current<=iiiaxcust) THEN m:=l/in;
IF u=’K' THEN temperature (ni, left [2] ='F ' ,-1} ;
writeln(f(m),left);
IF current>maxcust THEN prefix(iTi,left) ;
p;=oldp

END
END;

(********** Set up the table ********************************

PROCEDURE initialize;
PROCEDURE data(l,r:STRIKG; f:REAL);
BEGIN

curtop;=curtop+l;
WITH tablelcurtop] DO

BEGIN
left:=l;
r i g h t: = r;
factor:=f;

END;
END;

BEGIN {initialize}
curtop:=0;
data(•$?’ , 'K' ,5.5556E-1} ; data('mpg ' , 'mS/in' ,2.352E-6) ;
data(’horsepower','W,7.355E2);
data{ ' inch of mercury' ^'Pa',3.37685E3);
data('mph’,’m/s',4.4704E-1); data('yard','m',9.144E-1);
data(•yard2','m2',8.361274E-1);
data('acre','m2',4047); data('barrel',’m3',0.159);
data('kCal \ ’ J' ,4.1868E3) ; datc;('DTU' , ' J’ ,10 55) ;
data('Curie','Bq',3.7E10);
maxcust:=curtop;
data('L','m3',1.0E-3); data('N/m2','Pa',1);
data ('L/lOOkm ' , 'rii3/m', 1.0E-8) ; data ('m/h' , ’ m/s ' ,2.777E-4) ;
data('kW-h','J',3.6E6);
data('$C','K',1);
data('N*m','J',1);
top:=curtop

END;

{********** Main subprograms ********************************

PROCEDURE commands;
VAR

i:INTEGER;
BEGIN

CASE linelU OF
' f : finished:=true;
's': IF inlist and (current>maxcust) and not(leftside) THEN

custandsec(m) ;
'c': BEGIN

curtop: =r.iaxcust;
IF inlist THEN

custandsec (ni) ;
curtop:=top

END;
FOR i:=l TO curtop DO

WITH table[i] DO
writeln(left,' ' ,right,’ ' ,factor)

END;
writeln

END;

PROCEDURE process;
BEGIN

m:=value(line,p); u;=line; oldf:=l;
IF not iniist THEN

writeln('unit not available’)
ELSE

BEGIN
IF (current>maxcust) or (not leftside) THEN

norraalize (m, u) ;
IF leftside THEN

primary
END;

writeln
END;

BEGIN {supermetrics}
finished:=false;

194

initialize;
writeln('SUPERMETRIC CONVERSION PROGRAM');
writeln;
REPEAT

write('Measure and unit >>');
readln(line) ;
IF linell] in ['0 9]

THEN
process

ELSE
commands

UNTIL finished
END.

Listing 2: A sample run of the program
shown in listing 1.

Measure and unit>>57B0 kj
5.70000E6 J

5.7 MJ

Measure and unit>>secondary
5.70000E6 N*m

5.7 HN*m

Measure and unit>>15000 m
15 km

Measure and unit>>secondary
3.00000E5 N*iii

300 kN*m

Measure and unit>>55 mph
24.6 m/s

Measure and unit>>secondary
8.90000E4 m/h

89 km/h

Measure and unit>>15000 ri:i2
1.5 hm2

Measure and unit>>customary
3.71 acre

Measure

Measure

and unit>>3 yard2
2.5 m2

and unit>>3.0000 yard2
2.50838 m2

Measure and unit>>5 barrel
0.8 m3
600 dm3

Measure and unit>>secondary
800 L

Measure and unit>>38 mpg
6.20000E-8 m3/m

62 mm3/m

Measure and unit>>secondary
6.2 L/100 km

Measure and unit>>50 horsepower
3.70000E3 W

37 kW

Measure and unit>>300 BTU
3.00000E5 J

300 kJ

Measure and

Measure and

unit>>37 kw-h
1.33000E6 J

133 MJ

unit>>1200 kCal
5.00000E6 J

5.0 MJ

Measure and unlt>>29.5 inch of mercury
9.96000E4 Pa

99.6 kPa

Measure and

Measure and

Measure and

Measure and

Measure and

Measure and

unit>>secondary
9.96000E4 M/in2

99.6 kN/m2

unit>>68 $F
293.2 K

unit>>secondary
20.0 $C

unit>>12 $C
285 K

unit>>customary
54 $P

unit>>0.005 Curie
1.85000E8 Bq

185 MBq

Measure and unit>>finished

195

A Computer-Assisted

Dieting Program

David A Mundie

Each spring as I set out to lose my

winter fat, I reach for the program
shown in listing 1 to decide on a sensible
combination of diet and exercise. (A
sample run of this program is shown in

listing 2.] The program estimates how
long a given weight loss will take, based
on the person's activity level and food
energy intake. Knowing that the unplea¬

sant process will not last forever is a

great encouragement.
The program is based on an article by

Vincent Antonetti in the American Jour¬
nal of Clinical Nutrition. In this article,
Antonetti shows that the time to go from
an original weight Wo to a final weight

Wf is given by

= 7

W,
w.

dW

(1 -a)l-(K«W + K,W")

where 7 is the energy value of one unit
of weight gained or lost, a is the specific
dynamic action of food, I is the daily
food energy intake, n is a constant for
estimating the surface area of the body,
^nd Ka and Kb are activity and basal
Coefficients for the given person,
expressed in terms of energy per unit
'weight per day. This formula is easily
solved using the numerical technique
known as Simpson's rule.

It is ironic that Antonetti, writing in
^^3, felt his formula itself was virtually

^s^less, since people did not have com¬
puters in their homes to perform the

computations. Nothing

re I ^ eloquently of how fast the
Volution in personal computers has

^^'^en place.

To avoid the use of a computer, An¬
tonetti published a massive collection
of tables giving selected values of the

above formula for various combinations

Listing 1: The computer-assisted dieting program written in UCSD Pascal.

PROGRAM diet;
CONST

gainma=32G00;
P=10;
alpna=0.1?
n=0.425;
male® 1;

VAR
theta,
wo,
wf,
intake,
kb,
ka,
b,
height,
age: REAL;
sex: INTEGER;
answer:STRING;

{ 1 kg of body weight = 32000 kj }
{ number of iterations }
{ specific dynamic action of food }
{ constant for estimating surface area of body }

{ days for given weight change }
{ original v;eight }
(final weight }
{ food intake, kj/d }
I basal coefficient, kj/(kg*d) }
{ activity coefficient, kj/(kg*d))
(basal metabolic cate, kj/(m2*h))
{ in metres }

FUNCTION find{s:STRING):REAL;
VAR r:REAL;
BEGIN

write(s,'>>'); readln(r); find:*r
END;

FUNCTION sum:REAL;
VAR

S:REAL;
j:INTEGER;

FUNCTION f(j:INTEGER):REAL;

FUNCTION w(j:INTEGER):REAL;
BEGIN

w:=wo-(j/p)*(wo-wf)
END;

BEGIN {f}
f:=!/((1-alpha)‘intake-(ka*w(j)+kb*exp(n*ln(w(j)))))

END;

BEGIN {sura}
s:=f(0)+f(p);
FOR j:=l TO p-1 DO

IF odd(j)
THEN

s:=s+4*f{j)
ELSE

s:=s+2*f(j);
sum:=s

END;

197

Listing 1, continued:

DEGIM {diet}
writeln;
writeln{ *v/elcorie to the dietl');
age:=find{'Age');
sex:=round(find{'Sex (Male®!) '));
height:=find('Height in metres');
IF sex=male

THEN
b:=173.8-0.5195*age

ELSE
b:=156.36-0.3636*u9e;

kb;=4.a*b*extj(0.725*ln(height)) ;
REPEAT

writeln;
writelnl'Sample Activity Coefficients:’);
writeln('Sedentary 34, light 40, moderate 53, vigorous 74, severe 113');
writeln;
Ka;=find('Activity coefficient');
wo;“find('Initial weight, kg');
wf:=find('Final weight, kg');
intake:“find('Daily food intake, kj'};
theta: = (gamma*(wf-wo)/(3 *p))*sura;
writeln;
writeln('Time for this weight change is round(theta),' days.');
write('Another?');
readln(answer)

UNTIL not(answer[11 in ['y','Y'])

Listing 2: A sample run of the program shown in listing 1.

Welcone to the diet!
Age>>32
Sex (r'.alc=l) >>1
Height in rnetres>>1.75

Sample Activity Coefficients:
Sedentary 34, light 40, n'oderate 53, vigorous 74, severe 113

Activity coefficient>>74
initial v/eight, kg>>77
Final weight, kg>>7D
Daily food intake, kJ>>50DO

I’inie for this weight change is 26 days.
AnotherPy

of the variables, but my program gives
much more accurate answers than any
table can. I have converted all
measurements to System International

[SI) metric units. In particular, food
energy is not expressed in kilocalories,
but in joules, the only unit of energy in
SI. For purposes of conversion and com¬
parison, one '"nutritionar calorie (ie
1000 calories) equals about 4.186 kilo¬

joules.
Using the program is quite straightfor¬

ward, except that the user is required to
enter his activity coefficient. This may
be estimated from the figures in table 1.
The effect of additional exercise may be
taken into account using any of the
many available tables which give the
food energy equivalents for given exer¬

cises. For example, if I weigh 60 kg and
do 240 kj (57 kilocalories) of running per

day, I will raise my activity coefficient

by 4.B

The author wishes to thank Steve
Weflons and Joe Berman of the
University of Virginia's
Microprocessor Laboratory for their
help in making the listings of this pro¬
gram, which were done on equipment
purchased under NASA contract
nNAS1-14d62,

REFERENCES
1. Antonetti, Vincent, "The Equations Govern¬

ing Weight Change in Human Beings," The
American Journal of Clinical Nutrition, Volume
26, Number 1, January, 1973.

Sample Activity Coefficients:
Sedentary 34, light 40, moderate 53, vigorous 74, severe 113 2. Antonetti, Vincent, The Computer Diet, Hew

York, Evans & Company, 1973.

Activity coefficient>>53
Initial weight, kg>>77
Final weight, kg>>70
Daily food intake, kJ>>50DD

Time for this weight change is 35 days.
AnotherPn

Activity Coefficient
Description kJ/(kg*d)

inactive: very little standing or walking. 34

Seated most of day: four hours of standing and walking. 40

Stands as often as is seated. 53

Standing and walking most of the day. 74

Very hard physical work. 1 13

Table 1. Typical values of the Physical Activity Coefficient

198

Appendices

Appendix A:

Pascal Run Time Routines (in 8080
Assembly Language) and P-Code to
8080 Assembly Language Translator
(in North Star BASIC)

r

Listing 1: Pascal Run Time Routines (in 8080
Assembly Language)

The run time routines perform the mathematical operations needed by the translated code.
They are a collection of subroutines written in assembly language that can be called by a pro¬
gram to perfrom various arithmetic and logical operations. The operations implemented
include: a stack, 16 bit addition and subtraction, multiplication and division. The relational
operations test for: less than, less than or equal, greater than, greater than or equal conditions,
A 16 bit shift routine is also included. The input and output routines are also defined.

ADD16 ;1C02 BASE 1A15 BB 1DF2 BSl 1A16 CAL :1AAE
CALI : 1AA3 GALA lADE D2 1C8F D3 1C96 D4 :1CA5
D4A :1CAA DIV16 1C77 DM1 1C68 DVCK 1C5C EPl :1A55
EPIA :1A56 EP2 1A7D EP3 1AB3 LQII 1D07 EQUAL :1CD5
ERl :1B54 ER2 1B3D EXIT 2028 FALSE 1D02 gf;tc :1AE2
GETN ;1B1b HEX IDCD HX IDDA IHX 1DA6 INHEX :1D9E
INP :2010 INT 1A27 L9 IDEI LESS ICFO LIT :1A20
LOD :1A52 LODI 1A49 LODA lACB LODX 1A5F LODXl :1A60
LP :1C31 LZ 1B06 MERl 1E5D MER2 1B6B MUL8 :1C2F
NE :1D12 NEGB IBEO NEGH 1BD3 NUM IBIE OUTP ;200D
OVFL :1BEA POO 1BA6 POl 1C23 P02 ICOF P03 :1C15
P04 :1C3C P05 1C51 P06 ICBE P07 1CC7 P08 :1CD3
P09 :1CE9 PIO 1D16 Pll ICED P12 IDID P13 ;1D24
P14 :1D2A P15 1D35 P16 1D4 0 P17 1D49 P18 :1D5A
P19 :1D72 P20 1D7C P21 1D86 PNT 1BF5 POP riBBC
POPl :1BCG PRINT 1BF3 PUSH 1BC6 SIGN 1B78 SKIP :1C37
SLl :1D52 SMI 1A38 SM2 1A3E SRI 1D64 STK2 :1DF4
etkov :1A2E STO 1A7A STOl 1A71 STOA 1AD6 STOX !lA86
STOXl :1A87 SU2 1C03 SUBl IBFF EUB16 1C18 SYSO :1AE9
SYGl :1AP2 SYS2 1AF9 sys3 3B79 sys4 1D91 SYS5 ilDC4
SYS 8 !lDE7 TRUE 1CE6 WR 1B9C Y2 lAFA y2R :1B4 3
Y3 :1B8C Y4 1D92 Y4E 1DB9 YB 1DE8 YEl :1B57

Iaoq
Uoi

}A05

1A07

; PASCAL RUN-TIME ROUTINES
? HY. 1 1/30/78 PY 11, YUEN
; VERSION 2.0 2/28/78
; VERSION 2.1 4/7/78
INP EQU #2010
OUTP EQU #2000
EXIT EQU #2028

CRAR INPUT ROUTINE IN DOS
CHAR OUTPUT ROUTINE IN DOS
RETURN TO DOS

ON ENTRY: HL - STACK START ADDR
DE - COMP. OF END ADDR

00

ORG #iAno
INX H
SUED BB
DCX H
OCX H
XCIIG
SHLD STK2
LXI H,#0005

INITIALIZATION
BASE

OF USED AS STACK PTR.

203

lAOD 19
lAOE 01 28 20
lAll 70
1A12 23
1A13 71
1A14 C9

D
B,EXIT
M,B
H
M^C

; (T+3)
; EXIT ADDR

1A15 D5 BASE PUSH D
1A16 5E BSl MOV ErM

1A17 2B DCX H

1A18 56 MOV D,M

1A19 EB XCHG

lAlA 3D DCR A

lAlB C2 16 lA JN2 BSl

lAlE Dl POP D
lAlF C9 RET
1A20 EB LIT XCHG
1A21 23 INX H

1A22 70 MOV M,B

1A23 23 INX H
1A24 71 MOV M,C
1A25 EB XCHG

1A26 C9 RET

1A27 19 INT DAD D

1A28 EB XCHG

1A29 2A F4 ID LHLD STK2

1A2C 19 DAD D
1A2D DO RNC
1A2E 21 38 lA STKOV LXI H,SM1

1A31 CD F3 IB CALL PRINT

1A34 El POP H
1A35 C3 28 20 JMP EXIT

1A38 20 SMI DB ' STA(

1A3E 20 SM2 DB ’ OVE]

1A49 2A F2 ID LODI LHLD BB

1A4C CD 15 lA CALL BASE

1A4F C3 55 lA JMP EPl
1A52 2A F2 ID LOD LHLD BB
1A55 13 EPl INX D

1A56 09 EPIA DAD B

1A57 2B DCX H
1A58 7E MOV A,M
1A59 12 STAX D
1A5A 23 INX H
1A5B 7E MOV A,M
1A5C 13 INX D
1A5D 12 STAX D
1A5E C9 RET
1A5F AF LODX XRA A
1A60 2A F2 ID LODXl . LHLD BB
1A63 B7 ORA A
1A64 C4 15 lA CNZ BASE
1A67 09 DAD B
1A6 8 EB XCHG
1A69 4E MOV C,M
1A6A 2B DCX H

1A6B 46 MOV B,M

1A6C EB XCHG

1A6D 09 DAD B
1A6E C3 56 lA JMP EPIA

1A71 2A F2 ID
; • • •
STOl LHLD BB

1A74 CD 15 lA CALL BASE
1A77 C3 7D lA JMP EP2
1A7A 2A F2 ID STO LHLD BB
1A7D 09 EP2 DAD B
1A7E lA LDAX D
1A7F 77 MOV M,A
1A80 2B DCX H
1A81 IB DCX D
1A82 lA LDAX D

LOAD LITERAL CONSTANT

; INCREMENT STACK PTR

; POP RETURN ADDR

; LOAD VARIABLE

; LOAD VAR INDEXED

; ADD INDEX

STORE VARIABLE

1A83
1A84
1A85
1A86
1A87
i;'C8
17G9
lAP-A
1A8B
1A8C
1A8D
1A8E
1A8F
1A90
1A91
1A92
1A93
1A94
1A95
1A96
1A99
1A9A
1A9D
1A9E
1A9F
lAAO
lAAl
1AA2

lflA3
1AA6
1AA7
1AA8
lAAB
lAAE
lABl
1AB2
1AB3
1AB4
1AB5
1AB6
1AB7
1AE8
1AB9
lABC
lABD
lABE
lABF
UCO
lACl
1AC2
1AC3
lAC4
lAC5
lAC6
1AC7
lAC8
lAC9
Iaca

IACB
lAcc
^ACD
Jace
Ucp

UD2
Ud3
XAD4
^AD5

^D6

77 MOV M,A
IB DCX D
C9 RET
AF STOX XRA A
FB STOXl XCHG
5r vov F,r
2E PCX r
56 MOV D,M
2B DCX H
D5 PUSH D
5E MOV E,M
2B DCX H
56 MOV D,M
2B DCX H
EB XCHG
29 DAD H
09 DAD B
44 MOV B,H
4D MOV C,L
2A P2 Id LHLD BB
B7 ORA A
C4 15 lA CNZ BASE
09 DAD B
Cl POP B
71 MOV M,C
2B DCX H
70 MOV M,B
C9 RET

2A F2 ID
; • • •
CALI LHLD BB

44 MOV B,H
4D MOV C,L
CD 15 lA CALL BASE
C3 B3 lA JMP EP3
2A F2 ID CAL LHLD BB
44 MOV B,H
4D MOV C,L
D5 FP3 PUSH D
EB XCHG
23 I NX H
72 MOV M,D
23 INX n
73 MOV M,E
22 F2 ID SHLD BB
D1 POP D
23 INX H
70 MOV M,B
23 INX H
71 MOV M,C
Cl POP B
C5 PUSH B
03 INX B
03 INX B
03 INX B
23 INX H
70 MOV M,B
23 INX H
71 MOV M,C
C9 RET

7 • • •
EB LODA XCHG
5p MOV E,M
2B DCX H
56 MOV D,M
36 00
1 K MVI M,00
•LA LDAX D
^ 3
In INX H
• 1

MOV MrA

C9 XCHG
RET

lA 7 • • •
STOA UDAX D

? STORE VAR IMDrxrr

; SAVE VALUE TO BE STORED

; INDEX IS NOW IN HL

; RETRIEVE VALUE

; SAVE BB IN B,C

; PROr OR FUNC CALL

r DASE(L) IN D,E

; BB=T+1
; RESTORE T

; S(T+2)=BB
f GET RETURN ADDR

; RET ADDR +3

; LOAD VAR WITH ABS ADDR

I STORE VAR WITH ABS ADDR

r

1AD7 IB DCX D
1AD8 IB DCX D
1AD9 CD CC IB CALL POPl
lADC 77 MOV M,A
lADD C9 RET

lADE CD CC IB
f • • •
GALA CALL POPl •

i CALL ABS ADDR SUBROUTINE
lAEl E9 PCHL

1AE2 CD 10 20
« • • •
GETC CALL INP 7 GET A CHAR

1AE5 47 MOV B,A
1AE6 C3 OD 20 JMP OUTP •

$ ECHO THE CHAR

1AE9 13
7 • » «
SYSO INX D 7 [INCUR]

IAEA AF XRA A
lAEB 12 STAX D
lAEC 13 INX D
lAED CD E2 lA CALL GETC
lAFO 12 STAX D
lAFl C9 RET

1AF2 lA
7 • • •
SYSl LDAX D •

t [OUTCITE]
1AF3 IB DCX D
1AF4 IB DCX D
1AF5 47 MOV E,A
1AF6 C3 OD 20 JMP OUTP

1AF9 D5
7 • « ■

SYS2 PUSH D 7 [INNUM 1
lAFA 06 3F y2 MVI B, •?*
lAFC CD OD 20 CALL OUTP
lAFF 50 MOV D,B « SET INIT FLAG
IBOO AF XRA A
iBOl 32 78 IB STA SIGN
1B04 €7 MOV H,A
1B05 6F MOV L,A
1B06 CD E2 lA LZ CALL GETC
1B09 FE 20 CPI 20
IBOB CA 06 IB JZ LZ •

t SKIP LEADING BLANKS
IBOE FE 2B CPI • + '
IBIO CA IB IB JZ GETN
1B13 FE 2D CPI
1B15 C2 lE IB JNZ NUM
1B18 32 78 IB STA SIGN
IBIB CD E2 lA GETN CALL GETC
IBIE D6 30 NUM SUI 30
1B20 FA 43 IB JM Y2R
1B23 FE OA CPI OA
1B25 F2 43 IB JP Y2R
1B28 5F MOV E,A
1B29 AF XRA A
1B2A 57 MOV D,A •

9 RESET FLAG
lB26 29 DAD H 7 2*HL
1B2C 44 MOV
1B2D 4D MOV C,L
1B2E 29 DAD H
1B2F 8F ADC A
1B30 29 DAD II
1B31 8F ADC A
1&32 09 DAD B •

9 2*HL+8*HL
1B33 8F ADC A
1B34 19 DAD D
1B35 8F ADC A
1B36 C2 3D IB JNZ ER2
1B39 B4 ORA H
1B3A P2 IB IB JP GETN
1B3D 21 6B IB ER2 LXI H,MER2
1B40 C3 57 IB JMP YEl
1B43 AF Y2R XRA A
1B44 82 ADD D 9 CHECK FLAG
1B45 C2 54 IB JNZ ERl
1B48 3A 78 IB LDA SIGN
1B4B B7 ORA A

206

1B4C
^ 1

C4 D3 IB CNZ NEGIT } NEGATE THF NUM IF SIGN IS '

1B4F D1 POP D
1B50 13 INX D
1B51 C3 C6 IB JMP PUSH
1B54 21 5D IB ERl LXI H,MER1
1B57 CD F3 IB YEl CALL PRINT
1B5A C3 FA lA JMP Y2
1B5D 20 MERl DE ' INPUT ERROR',0D,0A
1B6B 20 MEP2 DB ' SIZE : ERROR* OD.OA
1B78 00 SIGN DB 00

1B79 CD CC IB
? • • •
SYS3 CALL POPl i [OUTNUM]

1B7C D5 PUSH D S SAVE NEW STK PTR
1B7D AF XRA A
1B7E 3D DCR A
1B7F F5 PUSH SW •

9 PUT -1 & FLAG
1B80 A4 ANA IT 9 TEST SIGH
1B81 F2 8C IB JP Y3
1B84 06 2D MVI
1B86 CD OD 20 CALL OUTP
1B89 CD D3 IB CALL NEGH 9 NEGATE THE NUMBER
1B8C 01 OA 00 Y3 LXI B,#OOOA
1B8F CD 77 1C CALL DIV16 •

9 DIVIDE BY 10
1B92 3E 30 MVI A, 30
1B94 83 ADD E 9 CONVERT TO ASCII
1B95 F5 PUSH SW •

9 SAVF ON STACK (REVERSE ORDER)
1B96 1C MOV A,H
1B97 B5 ORA L
1B98 C2 8C IB JNZ Y3
1B9B Fl POP SW
1B9C 47 WR MOV B,A
1B9D CD OD 20 CALL OUTP •

9 OUTPUT EACH DIGIT
IBAO Fl POP SW
IBAI F2 9C IB JP WR
1BA4 D1 POP D
1BA5 C9 RET

1BA6
1BA9
IBAA
IBAB
IBAC
IBAD
IBAE
IBBI
IBB 2
1BB3
lBB4
1BB5
1BB6
1BB9
IBba
iBBB

IBBC
IBBD
ibbe
iBBp
iBCO
XBci
■XBC2
1BC3
1BC4
XBC5

2A F2 ID POO LHLD BB
23 INX H
56 MOV D,M
23 INX IT
5E MOV E,M
EB XCHG
22 F2 ID SHLD BB
EB XCHG
23 INX H
56 MOV ' D,M
23 INX H
5E MOV F,M
01 FA FF LXI B,#FFFA
09 DAD B
EB XCHG
E9 PCHL

EB
; • • •
POP XCHG

4F MOV C,M
2B DCX IT
46 MOV D,M
2B DCX H
5F MOV E,M
2B DCX H
56 MOV D,M
EB XCHG
C9 RET

eb
75

r • • *
PUSH XCHG

* £
23 MOV M,D

73 INX H

Eb MOV M,E
XCHG

[PROC RETURN]

BB=S(T+2)

P*=S(T+3) IN DE
2'S COMP OF -6
T=BB-1

; S(T) -> B,C

; S(T-l) -> H,L

? H,L -> S(T)

207

IBCB C9 RET

I • * •
IBCC EB POPl XCHG

IBCD 5E MOV E,M

IBCE 2B DCX H

IBCF 56 MOV D,M ; S(T) -> H,L

IBDO 2B DCX H

IBDI EB XCHG

1BD2 C9 RFT

1BD3 AF

; • • •
NEGH XRA A ; NEGATE HL

1BD4 95 SUB L

1BD5 6F MOV L,A

1BD6 9C SBB H

1BD7 95 SUB L

1BD8 67 MOV H,A

1BD9 D6 80 SUI 80

IBDB B5 ORA L

IBDC CO RNZ

IBDD C3 EA IB JMP OVFL

IBEO AF
t * • •
NEGB XRA A ; NEGATE B,C

IBEl 91 SUB C

1BE2 4F MOV C,A

1BE3 98 SBB B

1BE4 91 SUB C

1BE5 47 MOV E,A

1BE6 D6 80 SUI 80

1BE8 Bl ORA C

1BE9 CO RNZ

IBEA 21 3E lA OVFL LXI H,SM2

IBED CD F3 IB CALL PRINT

IBFO G3 CC IB JMP PUSH

1BF3 OE OA PRINT KVI C,0A ; PRINT MESSAGE

1BF5 46 PNT MOV B,M

1BF6 23 INX H

1BF7 CD OD 20 CALL OUTP

IBFA B9 CMP C

IBFB C2 F5 IB JNZ PNT

IBFE C9 RET

IBFF CD EO IP
J • • •
SUBl CALL NEGB

1C02 78 ADD16 MOV A,B ; [16 BIT SIGNED ADD]

1C03 AC SV2 XRA H

1C04 09 DAD E

1C05 4F MOV C,A

1C06 IF RAR

1C07 A9 XRA C ; XOR SIGN OF CARRY

1C08 AC XRA TI ; SIGN OF RESULT

1C09 F2 C6 IB JP PUSH

ICOC C3 EA IB JMP OVFL

ICOF CD BC IB
7 • • •

P02 CALL POP ; [ADD]

1C12 C3 02 1C JMP ADD16

1C15 CD BC IB
7 • • •
P03 CALL , POP

1C18 78 SUB16 ; MOV A,B ; [16 BIT SIGNED SUBTRACT 1

1C19 D6 80 SUI 80

ICIB Bl ORA C

ICIC C2 FF IB JNZ SUBl

ICIF 79 MOV A,C

1C20 C3 03 1C JMP SU2

1C23 EB
7 • * •

POl XCHG ; [NEGATE]

1C24 AF XRA A

1C25 96 SUB M

1C26 77 MOV M,A

1C27 4F MOV C,A

1C28 2B DCX K

1C29 9E SBB M

1C2A 91 SUB C

208

1C2B 77 MOV H,A
1C2C 23 INX H
1C2D EB XCHG
1C2E C9

;•••
RET

1C2F 16 08 MUL8 MVI D,08
1C31 29 LP DAD H
1C32 07 RLC
1C33 D2 37 1C JNC SKIP
1C36 09 DAD B
1C37 15 SKIP DCR D
1C38 C2 31 1C JNZ LP
1C3B C9 RET

8-BIT MULTIPLY

1C3C CD BC IB
1C3F D5
1C40 7C
1C41 5D
1C42 21 00 00
1C45 B7
1C46 C4 2F 1C
1C49 7B
1C4A CD 2F 1C
1C4D D1
1C4E C3 C6 IB

P04 CALL POP ; [MULTIPLY]
PUSH D
MOV A,H ; HIGH BYTE
MOV E,L

LXI H,»0000
ORA A
CNZ MUL8
MOV A,E j LOW BYTE
CALL MUL8
POP D

JMP PUSH
/ • • •

1C51 CD BC IB P05 CALL POP
1C54 D5 PUSH D
1C55 CD 77 1C CALL DIV16
1C58 Dl POP D
1C59 C3 C6 IB JMP PUSH

[DIVIDE]

1C5C
1C5F
1C62
1C65
1C66
1C67
1C68
1C77
1C78
1C79
1C7C
1C7D
1C7E
1C7F
1C82
1C83
1C84
1C85
1C88
1C89
1C8C
1C8E
leap
lC90
1C91
lC92
lC95
lC96
leg 7
1C98
1C9b
lC9c
1C9d
1C9e
lC9p

Si
is;

21 68 1C
CD F3 IB
21 00 00
54
5D
C9
20
78
B1
CA 5C 1C
AF
80
F5
F4 EO IB
AF
84
P5
FC D3 IB
EB
21 00 00
3E 10
29

• •«

DVCK LXI H^DMl
CALL PRINT
LXI H,#0000
MOV D,n
MOV E,L
RET

DM1 DB ' DIVIDE CHECK',0D,0A
DIV16 MOV A^B

ORA C
JZ DVCK
XRA A
ADD B
PUSH sw SAVE SIGN OF DIVISOR
CP NEGB
XRA A
ADD H
PUSH SW • $ SAVE SIGN OF DIVIDEND
CM NEGH
XCHG ; DIVIDEND IN DE
LXI H,#0000
MVI A,10

D2 DAD H •
9 SHIFT HL

XCHG
DAD H ; SHIFT DE
XCHG
JNC D3
INX H ; ADD CARRY FROM DE

D3 PUSH H •
9 SAVE HL

DAD B
JNC D4
INR E ; PUT 1 IN LOW ORDER Bin
INX SP ; THROW AWAY OLD HL
INX SP
DCR A
JNZ D2
JMP D4A

D4 POP H ; GET OLD HL
DCR A
JNZ D2

209

ICAA EB D4A XCHG

ICAB Cl POP B

ICAC FI POP SW • #

ICAD A8 XRA B

ICAE FC D3 IB CM NEGH

ICBl 7A MOV A,D

1CB2 B3 ORA E •
9

1CB3 C8 RZ

1CB4 AT XRA A

1CB5 80 ADD B ;

1CB6 FO RP

1CB7 AF XRA A

1CB8 93 SUB E }

1CB9 5F MOV E,A

ICBA 9A SBB D

ICBB 93 SUB E

ICBC 57 MOV D,A

ICBD C9 RET

ICBE lA
• • •
P06 LDAX D ■

r

ICBF E6 01 AN I 01

ICCl 12
1CC2 AF
1CC3 IB
1CC4 12
1CC5 13
1CC6 C9

1CC7 CD BC IB
ICCA D5
ICCB CD 77 1C
ICCE EB
ICCF D1
ICDO C3 C6 IB

STAX D
XRA A
DCX D
STAX D
INX D
RFT

? • •

P07 CALL POP
PUSH D
CALL DIV16
XCHG
POP D
JMP PUSH

DIVISOR

; remaindered ?

; DIVIDEND + 7

; NEGATE THE REMiAINDER

; TEST FOR ODD

; SET HI BYTE TO 0

; C MOD]

; PUT REMAINDER IN HL

? ♦ • •
1CD3 3E 01 P08 MVI -

7 • • •
1CD5 F5 EQUAL PUSH

1CD6 CD BC IB CALL

1CD9 AF XRA

ICDA 12 STAX

ICDB 13 INX

ICDC 7D MOV

ICDD B9 CMP

ICDE C2 02 ID JNZ

ICEI 7C MOV

1CE2 B8 CMP

1CE3 C2 02 ID JNZ

1CE6 Fl TRUE POP

1CE7 12 STAX

ICE 8 C9 RET

1CE9 AF
; • • •
P09 XRA

ICEA C3 D5 1C JMP

ICED 06 00
7 • ♦ •
Pll MVI

ICEF 48 MOV

ICFO C5 LESS PUSH

ICPl CD BC IB CALL

1CP4 AF XRA

1CP5 12 STAX

1CP6 13 INX

1CF7 7C MOV

1CF8 B8 CMP

1CF9 CA 07 ID JZ

ICFC IF RAR

ICFD AC XRA

ICFE A8 XRA

ICFF FA E6 1C JM

1D02 Fl FALSE POP

1D03 EE 01 XRI

1D05 12 STA>

A,01 • test FOR *

SW ; SAVE FLAG

POP
A
D ; PUT 0 IN HI BYTE

D
A,L
C
FALSE
A,H
B
FALSE
SW
D

A ; TEST FOR <>

EQUAL

B,00 ; TEST FOR > =

C,B ; (OPPOSITE OF PlO)

6 ; SAVE FLAG

POP
A
D ; PUT 0 IN HI BYTE

D
A,H
B
EQH

; GET CARRY IN MSB

H
B
TRUE
sv
01 ; COMFLEMEITT FLAG

D

210

1D06
1D07

1D08
1D09
IDOC
IDOD

IDOE
IDll
1D12

1D14

1D15

1D16
1D18
IDIA

IDID

IDlF
1D21

1D24

1D26
1D27

1D2A

1D2D
1D2E

1D2F
1D30

1D31
1D32
1D33
1D34

1D35
1D38
1D39
1D3A
1D3B
1D3C
1D3D
1D3E
1D3F

1D40
1D41
1D42
1D43
1D44
1D4 5
1D46
1D4 7
1D4 8

ID49

lD4C
1D4D

1D4E
lD4p

1D52
1D53
lt)54
1D57

r ^^60
I f

C9 RET
7D EQH I40V A,L
B9 CMP C
DA E6 1C JC TRUE
Cl POP B
78 MOV A,B
C2 12 ID JNZ NE
A9 XRA C
EE 01 NE XRI 01
12 STAX D
C9 RET

06 01
• • • •
PlO MVI B,01

OE 00 MVI C,00
C3 FO 1C

; • • •

JMP LESS

06 00 P12 MVI B,00
OE 01 MVI C,01
C3 FO 1C

; • • •

JMP LESS

06 01 P13 MVI B,01
48 MOV C,B
C3 FO 1C JMP LESS

CD BC IB
f • • »
P14 CALL POP

7C MOV A,H
BO ORA B
12 STAX D
7D MOV A,L
Bl ORA C
13 INX D
12 STAX D
C9 RET

CD BC IB
f • • •
P15 CALL POP

7C MOV A,n
AO ANA n
12 STAX D
70 MOV A,L
Al ANA C
13 INX D
12 STAX D
C9 RET

lA P16 LDAX D
2F CMA
12 STAX D
IB DCX D
lA LDAX D
2F CMA
12 STAX D
13 INX D
C9

7 • • •
RET

CD BC IB P17 CALL POP
AF XRA A
81 ADD C
C8 RZ
FA 64 ID JM SRI
29 SLl DAD H
3D DCR A
C2 52 ID JNZ SLl
C3 C6 IB JMP PUSH

CD BC IB
7 *

P18 CALL POP
AP

91
C8
F2
4P
Ap

B4

XRA A

52 Id

SUB
RZ

JP

C

SLl
MOV C,A

SRI XRA A

ORA H

? RETRIEVE FLAG

; LOG
; nL=BC

; TEST FOR <

; TEST FOR >

; (OPPOSITE OF P13)

; TEST FOR <=

; [OR]

; [AND]

; [COMPLEMENT]

; [SHL]

; SHIFT LEFT

; [SHR]

; CLEAR CARRY

211

1D66 IF RAR

1D67 67 MOV H,A

1D68 7D MOV A,L

1D69 IF RAR

1D6A 6F MOV L,A

1D6B OC INR C

1D6C C2 64 ID JNZ FRl

1D6F C3 C6 ID JMP PUSH

1D72 lA

? • • •
P19 LDAX D

1D73 C6 01 ADI 01

1D75 12 STAX D

1D76 DO RNC

1D77 62 MOV H,D

1D78 6B MOV L,F

1D79 2B DCX H

1D7A 34 INR M

1D7B C9
? • • •

RET

1D7C lA P20 LDAX D

1D7D D6 01 SUI 01

1D7F 12 STAX D

1D80 DO RNC

1D81 62 MOV n,D

1D82 6B MOV L,E

1D83 2B DCX H

1D84 35 DCR M

1D85 C9 RET

1D86 62

f • ♦ •
P21 MOV H,D

1D87 6B MOV L,F

1D88 13 INX D

1D89 2B PCX H

1D8A 7F. MOV A,M

1D8B 12 STAX D

1D8C 13 INX D

1D8D 23 INX H

1D8E 7F MOV A,M

1D8F 12 STAX D

1D90 C9 RET
f • • •

1D91 13 SYS 4 INX D

1D92 CD 9r ID Y4 CALL INHE

1D95 81 ADD C

1D96 12 STAX D

1D97 CD 9E ID CALL INHEX

1D9A 81 ADD C

1D9B 13 INX D

1D9C 12 STAX D

1D9D C9 RET

1D9E CD A6 ID INHEX CALL IHX

IDAI 07 RLC

1DA2 07 PvLC

1DA3 07 RLC

1DA4 07 RLC

1DA5 4F MOV C,A

1DA6 CD E2 lA IHX CALL GETC

1DA9 D6 30 SUI 30

IDAB FA B9 ID JM Y4F

IDAE FE OA CPI OA

IDBO F8 RM

IDDI D6 07 SUI 07

1DB3 FA B9 ID JM Y4E

1DB6 FF 10 CPI 10

1DB8 F8 RM

1DB9 21 5D IB Y4E LXI H,MER1

IDBC CD F3 IB CALL PRINT

IDBF El POP H

IDCO El POP H

IDCI C3 92 ID JMP Y4

; flHIFT RIGHT

; [INC]

; INCREMENT HI BYTE BY 1

; C DEC]

; DECREMENT HI BYTE BY 1

; [COPY]

[INDEX]

; INPUT 2 HEX DIGITS

f SAVE HI ORDER HEX DIGIT (SHIFTED)

I
I

1

212

1DC4 lA SYS 5 LDAX D
1DC5 6F MOV L,A
1DC6 IB DCX D
1DC7 lA LDAX D
1DC8 IB DCX D
1DC9 CD CD ID CALL HEX
IDCC 7D MOV A,L
IDCD 4F HEX MOV C,A
IDCE E6 FO ANI FO
XDDO OF RRC
IDDl OF RRC
1DD2 OF RRC
1DD3 OF RRC
1DD4 CD DA ID CALL HX
1DD7 79 MOV A,C
1DD8 E6 OF ANI OF
IDDA FE OA HX CPI OA
IDDC FA El ID JM L9
IDDF C6 07 ADI 07
IDEI C6 30 L9 ADI 30
1DE3 47 MOV D,A
1DE4 C3 OD 20 JMP OUTP

1DE7 El
f •
SYS8 POP !I

1DE8 46 Y8 MOV B,M
1DE9 CD OD 20 CALL OUTP
IDEC 23 INX H
IDED OD DCR C
IDEE C2 E8 ID JNZ Y8
IDFl E9 PCHL

1DF2 00 00
/ ♦ • ♦
BB DW

1DF4 00 00 STK2 DW

[OUTHEX D

SAVE LOW ORDER BYTE

HI ORDER HEX DIGIT

LO ORDER HEX DIGIT

CONVERT TO ASCII

[odtstr]

CHAR COUNT

JUMP TO LOC FOLLOWING STRING

BASE ADDR

COMPLEMENT OF STACK END ADDR

Listing 2: P-Code to 8080 Assembly Language

Translator

The p-code to 8080 translator is written in North Star BASIC. The p<odes are usually
translated into subroutine calls to the appropriate run time routine. In this way, a pseudo¬
macroassembler is used. The translator also performs a crude form of 8080 code optimization
which is discussed in table 4 of part 3.

LIST

5REM..LAST MOD 5/21/78
lORLM. .P-CODE TO 8080 TRATTSIJ^TOR

20REr! KY.l 2/5/7 8 BY B. YUEN

25RrM HY.2 3/23/78
3C DIM A$ (4) ,B$(4),K0$(18),B0$(4)

40 S1=500:S2=400
50 DIM T$(El):REM,.TABLE OF RFFBEFNCES
60 DIM D$ (S2) :RIM..8080 ADDR OF P-CODE LAPELS

65 DIM E (S2) :REM.-TABLE OF FORWARD REF
68 DIM W$(36),?:$(88):02=21
70 DIM Yl(15) ,Y2 (15),Y$(60)

75 DIM Zl(30),Z2(30)
78 K0$="0123456789ABCDEF"
SOREM.. LIT LOD LDl LDX LXl LDA STO STl
82 Y$(1,32)="1A201A521A491A5F1A601ACB1A7A1A71"

84REM.. STX SXl STA CAL CLl CLA TNT
86Y$ (33,60) ="lA86lAR71AD6lAArlAA31ADEl7'27"

90RF.M. .P00,P01, . .P21
94 Z$(l,32)= "lBA61C23lCnFlCl5lC3ClC5llCEElCC7"
96 Z$(33,64)="1CD31CE91D161CED1D1D1D241D2A1D35"

9 8 Z$ (65,88)="1D401P4 91D5A1D7 21D7C1D86"

99REM..SYSO,.-SYG8
100 W$ (1,24)="1AE91AF21AF91D791D911DC4"

102 W$(33,36)="1DE7"

10 3PJrM==========*== ^ ^
105REM SETUP ADDR OF ENTRY PT IN RUN-TIME ROUTINE

106 REM============
110 M=0:FOR K=1 TO 60 STEP 4
112 M=M+1:Y2(M)=FND(Y$(K,K+1),2)+X
113 Y1(M)=FND(Y$(K+2,K+3),2)+X:NEXT

114 M=0:FOR K=1 TO 88 STEP 4
115 Z2(r:)=FND(Z$(K,K+l),2)+X

116 Zl(M)=FND(Z?(K+2,K+3),2)+X

117 M=jV+] ;NEXT
118 M=02+]rFOR K=1 TO 36 STEP ^
119 Z2(M)=FND(W$(K,K+1),2)+X

120 Zl(M)=FND(W$(K+2,K+3),2)+X

122 M=M+1:NEXT;GOTO 300

12 3REM=====”=====
125REM..CONVERT HEX TO DECIMAL

130 DEF FND(H1$,L)
135 N=0:FOR 1=1 TO L
140 J=ASC(H1$(I,I))-48

145 IF J>9 THEN J=J-7
150 N=N*16+J:NEXT:RETURN N

160 FNEND
165REM..CONVERT INTEGER TO HEX

214

170 DBF FNH$(L)

175 R=INT(L/16)+l!S=L-R*16+17
180 RETURN H0$(R,R)+H0$(S,S)
185 FNEND
190REy.-CODE GENERATOR

200 DEF FNG(0,M,N)
210 FILL P,0:FILL P+1,M

220 FILL P+2,N;RETURN P+3
230 FNEND

240REM..CODE GENEPJ^TOR 2
250 DEF FN0(O,M)
260 FILL P,0;FILL P+1,Y1(M)

270 FILL P+2,Y2(M)iRFTURN P+3
280 FNEND
2 8 5REM============

29OREM

300 PRINT"*** P-CODE TO 8080 TRANSLATION ***"
302 INPUT"ADDR (HEX) OF PAS . LIE ; " , F.0$
304 IF B0$="" THEN E0$="1A00"

306 X=FND(Bn$,4)-FND{"lA00",4)
310 INPUT"ADDR (HEX) OF P-CODE:",A$
315 IF A$="" THEN A$="9800"
320 X=FND(A$,4):X0=X

330 INPUT"ADDR (HEX) OF OUTPUT R080 PGM:",B$

335 IF B$*"" THEN B$="9000";P0=FND(B$,4)
340 INPUT"STACK START ADDR (HEX):",B$
345 IF THEN 360

350 PRINT"DEFAULT STACK ADDRESSES USED"
355 A$*"9FFF":GOTO 365
360 INPUT"STACK END ADDR (IIEX)!",A$
365 K=65536-FND(A$,4)

370 J=INT(K/256):I=K“J*256
375 P=P0+3:P=FNG(17,I,J)

380 P=FNG(205,FND(B0$(3,4),2),FND(B0$(1,2),2))
385 B0$=B$
388REM=*=s=====a

390REM..1ST PASS..PICK UP LABELS
400 W=l:REM..TABLE PTR
420 J=EXAM(X);IF J=255 THEN 470
430 X=X+4;IF J<4 THEN 420
435 IF J=5 OR J>7 THEN 420

3 ENTRIES, DELETE IF

440 T$ (W,W+1)*CHR$ (EXAM (X-1))+CIIR$ (EXAM(X-2))
450 W*W+2;GOTO 420

470 PRINT(W-l)/2," REFERENCES":W=W-2
472REM===

475REM,.PRE-COMPRESS TABLE
477REM COMPARE ITEM WITH LAST
480 IF W<160 THEN 500

482 J=5:FOR 1=7 TO W STEP 2
484 FOR K=J-4 TO J STEP 2

486 IF T$(I,I+1)=T$(K,K+1) THEN EXIT 490

488 NEXT:J=J+2:T$(J,J+1)=T$ (1,1+1)
490 NEXT:W=J
492rem===

.BUBBLE SORT
500 FOR 1^1 TO W-2 STEP 2:A$="0"
510 FOR J=w-2 TO I STEP -2

S^n IZ T$(J,j+l)<=T$(J+2,J+3) THEN 550
540 r J+I) : T$ (J, J+1) =T$ (J+2, J+3)

550 ^!^‘^''2,J+3)=b$:AS="1-
56q A$i="0" THEN EXIT 600

table
6lo IP 1=3 TO W STEP 2

(J,J+1) THEN 630

POR'^t^;'^+3)=CHR$ (255)+CHR$ (255)

^0 DSfT ^ STEP 2
"iNEXT

t(j+i)/2^. actual LARELS"

6 8 5 REM===—=====
69OREM..2ND PASS..TRANSLATE

700 X=X0-4:K=-1;G=0

702 K1=0:L1=0
705 U=ASC(T$ (2,2)) :V7=1:M=15

710 X=X+4:K=K+1:R0=0
711 J=INT(P/256):I=P-J*256

712 M=M+l!lF M<=14 THEN 715
714 PRINT:PRINT%4I,K," ",FNH$(J),:M=0

715 PRINTFN1I$ (I) ",
716 F=EXAM(X)
720 Cl=rXAM(X+2):C2=EXAM(X+3)

725 IF K<U THEN 765
740 D$(W,W+1)=CHR$(I)+CnR$(J)

750 W=W+2:R0=1:REM R0=1 MEANS INSTR. REFERENCED
760 U=ASC (T$ (V7,W)) *256+ASC (T$ (W+1,W+1))

765 V=0:IF F<=8 THEN 780
770 V=1:F=F-16:REM..INDEX ADDR

775 IF F>8 THEN 1700
778REM.LIT.OPR.LOD.STO. .CAL. .INT. .JMP, ,JPC. .CSP.
780 ON F+1 GOTO 800,850,900,1100,1200,1500,1250,1550,1600

790REM===
800 IF Cl+C2=0 THEN 830:REM..LIT

810 P=FNG(1,C1,C2)
820 P=FNQ(205,1):GOTO 710

830 P=FNG(175,19,18)
840 P=FNG(l9,18,0)-lsGOTO 710

845REM===
S50 J=205:IF Cl>3 THEN 890:REM..OPR

855 IF Cl=0 THEN 885
860 IF EXAM(X-4)<>0 THEN 890;REM LAST INSTR, =LIT ?
862 IF C1>1 THEN 870:I^M LAST CODE = NEGATE ?

864 J=P-5:FILL J,256-EXAM(J)
866 FILL J+1,255-EXAM(J+1):GOTO 710

870 IF EXAM(X-1)>0 THEN 890
872 L=EXAM(X-2):IF L>3 THEN 890
874 P=P-6:N=17+C1:REM CONVERT ADD TO INC, SUB TO DEC

876 FOR 1=1 TO L
878 P=FNG(J,Z1(N),Z2{N))

880 NEXT:GOTO 710
885 J=195:REM JMP
890 P=FNG(J,Z1(C1),Z2{C1)):GOTO 710

895REM===
900 F=2:REM..LOD
902 IF RO OR V THEN 925
904 IF K>K1+1 OR LOLl THEN 925
906 IF Cl<>EXAM(X-2) OR C2<>EXAM(X-1) THEN 925
910 K1=K;IF EXAM(X-4)=2 THEN 920;REM LAST CODE = LOD ?

915 P=FNG(19,19,0)-1:GOTO 710
920 P=FNG(205,Z1(21),Z2(21}):GOTO 710
925 J=4!L=EXAM(X+1):IF L=255 THEN 1040
930 GOSUB 1450:REM..GET 2A

940 P=FNG(1,C1,C2)
950 J=2:IF V THEN 960
955 J=0:K1=K:L1=L:REM..NON-INDEXED LOD OR STO

960 IF L=0 then 1040

1030 J=J+1:P=FNG(62,L,0)-1
1040 P=FHQC205,F+J):GOTO 710
1090RFM===
1100 F=7:GOTO 925:RrM..STO
1190PEM===
1200 L=EXAM(X+1) :IF L>0 THEN 1225 : Ri f'..CAL
1230 P=FNO(2C5,]2)

1220 GOTO 1260
1225 IF L<255 THEN 1230
1227 P=FNQ(205,]4):GOTO 710

1230 P=FNG(62,L,0)-1
1240 P=FNQC205,13):GOTn 1260
1245REM===
1250 IF C1+C2*256=K+1 THEN 730:REM..JMP

1260 GOSUB 1300
1270 P=FNG(195,I,J):GOTO 710

216

1280REM«===

1290REM...TABLE LOOKUP, RETURNS ADDR IN I,J
1300 A$=CHR$ (C2)+CIIR$ (Cl)

1310 1=1:J=W0:REN..BINARY SEARCH
1320 N=INT((I+J)/4)*2+l
1330 IF A$=T$(N,N+1) THEN 1360

1340 IF A$>T$(N,N+1) THEN I=N+2 ELSE J=N-2
1350 IF I<=J THEN 1320

1360 IF D$(N,N+1)<>" " THEN 1400

1370 G=G+1:E(G)=P+1:REM..FORWARD REF
1390 J=INT{N/256):I=N-J*256:RETURN

1400 I=ASC(D$(W,N)):J=ASC(D$(N+1,N+1)):RFTURN
1440REM=====

1450 Cl=Cl+Cl:C2=C2+C2:REM..2A
1460 IF Cl<256 THEN 1480

1470 C1=C1-256!C2=C2+1

1480 IF C2>256 THEN C2=C2-256:RETURN
1490REM===

1500 IF Cl+C2=0 THEN 710;REM..INT

1505 GOSUB 1450sN=Cl+C2*256
1510 IF N>4 AND N<65530 THEN 1530

1515 J=19:IF N<=4. THEN 1520:N=65536-N:J=27
1520 FOR 1=1 TO N/2;P=FNG(J,J,0)-1
1525 NEXT:GOTO 710

1530 P=FNG(33,C1,C2)

1535 P=FNQ(205,15):GOTO 710
1540REM===

1550 IF C1+C2*256=K+1 THEN 710!REM..JPC
1555 P=FNG(26,27,27)

1560 FILL P,31;P=P+1:REM..RAR
1570 GOSUB 1300;N=210

1575 IF EXAM(X+1)>0 THEN N=218
1580 P=FNG(N,I,J):GOTO 710
1590REM===

1600 I=Cl+02+l!REM..CSP
1605 IF C1=B THEN 1620

1610 P=FNG(205,Z1(I),Z2(I))rGOTO 710

1620 J=EXAM(X-2):RFM GET LENGTH OF STRING
1625 P=P-J*6-6;X1=X-J*4-2:REM BACK UP
1630 P=FNG(14,J,0)-1

1632 P=FNG(205,Z1(I),Z2(I))
1635 FOR 1=1 TO J
1640 FILL P,EXAM(X1)
1645 P=P+l:Xl=Xl+4
1650 NEXT:GOTO 710

1700 PRINTiPRINT" ",G," FORWARD REFERENCES"
1710 P1=P
17 7 0 REM===;=========

1775REM.,3RD PASS..FIXUP FOR. REF.
1780 FOR N=1 TO G
1790 P-E{N)

1800 J=EXAM(P)+EXAM(P+1)*256

loiS P,ASC(D${J,J))
|820 fill P+1,ASC(D$(J+1,J+1))
1830 NEXT

};®^0REM..SETUP STACK ADDR
B50 IF B0$="« then P=P1 ELSE P=PND(B0$,4)

in,? J*1NT(P/256):I=P-J*256

igin ^^^0!P=FNG(33,I,J)
iQ^n ^*^^NT"P-C0DE..",K," INSTRUCTIONS"
I96n ^^^NT"8080..",P1-PO,- BYTES"

l97n ^^^^"P-CODEiSOeO =", (P1-P0)/(K*4)

l98n end TRANSLATION *"
20on (129) !REM..TURNOFF PRIOTER

ready

I
I

_ — II. .

lU0m~ *- j

* y.* I "i
• T*;^ , »

i . yv^ n Vi.^ *
-r- -* 1 t-m » *f« * r *4 'fl rf^ 'l |

c - T -t •! !•* • I
• • *.fi« 11 <1 * i

^ 9 W • ,»»!••• 1^ I-- • * '
^ ’■•Itio «.in—nn. . J

• Mt#*# • > ^ Vll ,«'

• •* • 1
a*i -I •

'Z»1 o •- r 1
j .•jw

" • V

-=:• •» . tfv- »♦! • <

< -ic- «•!? 11 ir •
». I ’ ■« •%•

I ^•LM * * 1^ t • 1^ if I •

* I M,« *1 I •'»

•iP" ftr#«rp-4 *
If ’ j>.f '*

•It • 1^ t O*’

* i #• J • SL
I •. Vi * ^

^ ^ , * «l

• * • iit • #
. ^ r^ - • 4- I* • I » <•

^ * fc^i •»1• I
« _ ^ f

- .• 41 .

• 1^/
i * -* •

• 1*^ -• •

♦ f r

• .< • ^

• • r *-

I

Appendix B:

"Tiny" Pascal 8080 Assembly Language

I

i

I' y^drrj .i. *8CK) le:3-'6'‘! "fnil

,t

Listing 1: A Sample Compilation in "Tiny"
Pascal
0010 JPROGRrtM riFCODE:>
0020 CONST STOP=-ZFFf
0030 VOR STABR, INOXf NUMl INTEGER?
0040 PROC CRLF?
0050 BEGIN WRITE <13) ENIi?
0060 PROC FMT (VAL» LEN)?
0070 VAR If Jt INTEGER?
0080 BEGIN 3FMT}
0090 J VAl.?
0100 FOR I := 2 + (JF^O) TO LEN DO
0110 IF JrO THEN WRITE <32) ELSE J 1- J DIV 10?
0120 IF J>9 THEN WRITE ('&')?
0130 WRITE (VAL»)
0140 END 3FMT>?
0150 BEGIN JMAINJ
0160 WRITE (12f 'START DECODING AT ')? READ (STADRX)? CRLF?
0170 CRLF? INDX 1= Or
0180 WHILE (STADR < Z6900) AND (MEHCSTADRI <> STOP) DO
0190 BEGIN FMT (INDXi 10)? WRITE (' ')? INDX 1= INDX + 1?
0200 NUM := MEMCSTADRD?
0210 CASE NUM OF
0220 0 X WRITE ('LIT')
0230 1 : WRITE <'OPR')
0240 2fX12X WRITE ('LOri')
0250 3r%13: WRITE <'STO')
0260 4 : WRITE <'CAL')
0270 5 • WRITE < 'INT')
0280 6 : WRITE <'JMP')
0290 7 : WRITE < 'JPC')
0300 8 WRITE <'CSP')
0310 ELSE BEGIN WRITE <'ILL')? MEMCSTADRD ?= STOP END
0320 END? 3CASE3
0330 IF (NUM=X12) OR (NUM=X13) THEN WRITE <'X')
0340 ELSE WRITE (32)? WRITE (32)?
0350 WRITE (MEMCSTADR+13*r'r')?
0360 NUM t= MEMCSTADR+3D SHL 8 + MEMCSTADR+2D?
0370 WRITE (NUM*)? CRLF?
0380 IF INDX MOD 15 = 0 THEN BEGIN
0390 READ (NUM)? IF NUM=Z18 THEN CALL(EXIT) END?
0400 IF MEMCSTADR3 <> STOP THEN STADR i= STADR + 4?
0410 END? JUHILEJ
0420 END. 3MAIN3

>

f-CODE STARTS AT 2C00H
WONT CODE PRINTED? Y

0 tDCODO

0 3PROGRAM DECODES
0 CONST STOP--XFF? EXIT--=Z6946?

0 .IMP 0 0
J VAR STADRr INDXr NUM! INTEGER?
^ F'ROC CRLF?
^ begin write (13) END?

F'Bdr 1 JMP 0 0
CHANGED TO 2

2 INT 0 0
3 LIT 0 13

L
221

6 If Jt INTEGERS
6 JMP 0 0

7 BEGIN 3FMT)
7 J VALf

ADDR AT 6 CHANGED TO 7
7 INT 0 2
8 LOD 0 -5
9 STO 0 1

10 FOR I : 2 + <0 =0) TO LEN DO
10 LIT 0 2
11 LOD 0 1
12 LIT 0 0
13 OPR 0 8
14 OPR 0 2
15 STO 0 0
16 LOD 0 -4
17 OPR 0 21
18 LOD 0 0
19 OPR 0 11
20 JPC 0 0

21 IF J=0 THEN WRITE (32 > ELSE
21 LOD 0 1
22 LIT 0 0
23 OPR 0 8
24 JPC 0 0
25 LIT 0 32
26 CSP 0 1
27 JMP 0 0

ADDR AT 24 CHANGED TO 28
28 LOD 0 1
29 LIT 0 10
30 OPR 0 5
31 STO 0 1

ADDR AT 27 CHANGED TO 32
32 LOD 0 0
33 OPR 0 19
34 STO 0 0
35 JMP 0 17

ADDR AT 20 CHANGED TO 36
36 INT 0 -1

37 IF J>9 THEN WRITE
37 LOD 0 1
38 LIT 0 9
39 OPR 0 12
40 JPC 0 0
41 LIT 0 38
42 CSP 0 1

ADDR AT 40 CHANGED TO 43
43 WRITE (OAL*)

43 LOD 0 -5
44 CSP 0 3

45 END }FMT5f
45 OPR 0 0

46 BEGIN INAINI
46 WRITE C12 f 'START DECODING A

ADDR AT 0 CHANGED TO 46
46 INT 0 3
47 LIT 0 12
48 CSP 0 1
49 LIT 0 83
50 LIT 0 84
51 LIT 0 65
52 LIT 0 82
53 LIT 0 84
54 LIT 0 32
55 LIT 0 68
56 LIT 0 69
57 LIT 0 67

;= j Div lOf

)J READ <STADR%)» CRLF

222

75

84

97

100

101

ADDr
Ul

58 LIT 0 79
59 LIT 0 68
60 LIT 0 73
61 LIT 0 78
62 LIT 0 71
63 LIT 0 32
64 LIT 0 65
65 LIT 0 84
66 LIT 0 32
67 LIT 0 18
68 CSP 0 8
69 CSP 0 4
70 STO 0 0
71 CAL 0 2

CRLFf INDX := 0 4 f
72 CAL 0 2
73 LIT 0 0
74 STO 0 1

WHILE ; <STADR < X6900) 1
75 LOD 0 0
76 LIT 0 2681
77 OPR 0 10
78 LOD 0 0
79 LOD 255 0
80 LIT 0 255
81 OPR 0 9
82 OPR 0 15
83 JPC 0 0

BEGIN FhT (INDXf 10)f
84 LOD 0 1
85 LIT 0 10
86 CAL 0 7
87 INT 0 -2
88 LIT 0 32
89 LIT 0 32
90 LIT 0 32
91 LIT 0 3
92 CSP 0 8
93 LOD 0 1
94 LIT 0 1
95 OPR 0 2
96 STO 0 1

NUM := MEMCSTADR3 r
97 LOD 0 0
98 LOD 255 0
99 STO 0 2

CASE NUM OF
100 LOD 0 2

0 » WRITE ('LIT")
101 OPR 0 21
102 LIT 0 0
103 OPR 0 8
104 JPC 0 0
105 LIT 0 76
106 LIT 0 73
107 LIT 0 84
108 LIT 0 3
109 CSP 0 8
110 JMP 0 0

AT 104 CHANGED TO 111
1 » » WRITE ('OPR')i

111 OPR 0 21
112 LIT 0 1
113 OPR 0 8
114 JPC 0 0
115 LIT 0 79
116 LIT 0 80
117 LIT 0 82

')9 INDX I- INDX + i;

223

118 LIT 0 3
119 CSP 0 8
120 JMP 0 0

ADIiR AT 114 CHANGED TO 121
121 2f%i2: WRITE ('LOD'

121 OPR 0 21
122 LIT 0 2
123 OPR 0 8
124 JPC 1 0
125 OPR 0 21
126 LIT 0 18
127 OPR 0 8
128 JPC 0 0

ADDR AT 124 CHANGED TO 129
129 LIT 0 76
130 LIT 0 79
131 LIT 0 68
132 LIT 0 3
133 CSP 0 8
134 JMP 0 0

All DR AT 128 CHANGED TO 135
135 V 3r%13; WRITE ('STO'

135 OPR 0 21
136 LIT 0 3
137 OPR 0 8
138 JPC 1 0
139 OPR 0 21
140 LIT 0 19
141 OPR 0 8
142 JPC 0 0

AIHiR AT 138 CHANGED TO 143
143 LIT 0 83
144 LIT 0 84
145 LIT 0 79
146 LIT 0 3
147 CSP 0 8
148 JMP 0 0

ADDR AT 142 CHANGED TO 149
149 4 : WRITE ("CAL'

149 OPR 0 21
150 LIT 0 4
151 OPR 0 8
152 JPC 0 0
153 LIT 0 67
154 LIT 0 65
155 LIT 0 76
156 LIT 0 3
157 CSP 0 8
158 JMP 0 0

ADIiR AT 152 CHANGED TO 159
159 5 1 WRITE < ' INT'

159 OPR 0 21
160 LIT 0 5
161 OPR 0 8
162 JPC 0 0
163 LIT 0 73
164 LIT 0 78
165 LIT 0 84
166 LIT 0 3
167 CSP 0 8
168 JMP 0 0

AUDR AT 162 CHANGED TO 169
169 6 : WRITE 1 : 'JMP'

169 OPR 0 21
170 LIT 0 6
171 OPR 0 8
172 JPC 0 0
173 LIT 0 74

224

r

ADDR AT
179

172
7

addr at
189

174 LIT 0 77
175 LIT 0 80
176 LIT 0 3
177 CSP 0 8
178 JMP 0 0
CHANGED TO 179

*
• WRITE < /

1 JPC' >$
179 OPR 0 21
180 LIT 0 7
181 OPR 0 8
182 JPG 0 0
183 LIT 0 74
184 LIT 0 80
185 LIT 0 67
186 LIT 0 3
187 CSP 0 8
188 JMP 0 0
CHANGED TO 189

»
» WRITE ('CSP")

189 OPR 0 21
190 LIT 0 8
191 OPR 0 8
192 JPC 0 0
193 LIT 0 67
194 LIT 0 83
195 LIT 0 80
196 LIT 0 3
197 CSP 0 8

198

ADIiR AT

ELSE BEGIN WRITE <"ILL")f hEMCSTADRJ 1= STOP END
198 JMP 0 0

192 CHANGED TO 199

207
ADIiR AT
ADIIR AT
addr at

adur at
addr at
addr at

addr at
addr at
addr at

208

199 LIT 0 73
200 LIT 0 76
201 LIT 0 76
202 LIT 0 3
203 CSP 0 8
204 LOD 0 0
205 LIT 0 255
206 STO 255 0

207
207
"»07

ENDf TCASET
198 CHANGED TO 207
188 CHANGED TO
178 CHANGED TO
168 CHANGED TO
158 CHANGED TO 207
148 CHANGED TO 207
134 CHANGED TO 207
120 CHANGED TO 207
110 CHANGED TO 207

218

ftfUR at

ADdr
AT :>

207 INT 0 “1
NUM= %12) OR (NUM=3:i3) THEN
208 LOD 0 2
509 LIT 0 18
210 OPR 0 8
211 LOD 0 2
212 LIT 0 19
213 OPR 0 8
214 OPR 0 14
215 JPC 0 0
216 LIT 0 88
217 CSP 0 1

JE WRITE (3: 2 WRITE (32)?
218 JMP 0 0
CHANGED TO 219
219 LIT 0 32
220 CSP 0 1
CHANGED TO 221
221 LIT 0 32

225

223
222 CSP 0 1

WRITE <HEHC:STAPR+134f ^)i
223 LOD 0 0
224 LIT 0 1
225 OPR 0 2
226 LOD 255
227 CSP 0 3
228 LIT 0 44
229 CSP 0 1

230 NUh X- HEMCSTAPR-1‘33 SHL 8 + HENCSTADR+23S
230 LOD 0 0
231 LIT 0 3
232 OPR 0 2
233 LOD 255 '
234 LIT 0 8
235 OPR 0 17
236 LOD 0 0
237 LIT 0 2
238 OPR 0 2
239 LOD 255
240 OPR 0 2
241 STO 0 2

242 WRITE CNUM*)t CRLFr
242 LOD 0 2
243 CSP 0 3
244 CAL 0 2

245 IF INDX MOD 15 = 0 THEN BEGIN
245 LOD 0 1
246 LIT 0 15
247 OPR 0 7
248 LIT 0 0
249 OPR 0 8
250 JPC 0 0

251 READ <NUM)f IF NUM=Z18 THEN CALL(EXIT) END!
251 CSP 0 0
252 STO 0 2
253 LOD 0 2
254 LIT 0 24
255 OPR 0 8
256 JPC 0 0
257 LIT 0 26950
258 CAL 21 55 0

ADDR AT 256 CHANGED TO 259
ADDR AT 250 CHANGED TO 259

259 IF MEMCSTADR3 <> STOP THEN STADR := STADR + 4
259 LOD 0 0
260 LOD 255 0
261 LIT 0 255
262 OPR 0 9
263 JPC 0 0
264 LOD 0 0
265 LIT 0 4
266 OPR 0 2
267 STO 0 0

ADDR AT 263 CHANGED TO 268
268 ENDf IWHILEI

268 JMP 0 75
ADDR AT 83 CHANGED TO 269

269 END* IMAINI
269 OPR 0 0

FILE ENDS AT 3039
INTERPREK I OR TRANSLATE(T)? T
G

P-CODE TO 8080 TRANSLATION
ADDRESS OF RUNTIME MODULE? ;:A900
P-CODE START ADDRESS? X2C00
OBJECT-CODE START ADDRESS? XIOOO
STACK START ADDRESS? XOOOO

40 REFERENCES
27 DIFFERENT LABELS

0 lOOF 12 12 12 18 IB IE IE 22 28 2E 34 3A 3F 42 45 4B 51 54 5A
20 105D 64 6A 6F 72 79 7F 82 85 8B 91 94 9A AO A3 A9 AC AE B4 BA
40 lOBD C4 CA CD D3 D6 D9 DF E5 E8 EE F4 FA 00 06 OC 12 18 IE 24
60 112A 30 36 3C 42 48 4E 54 5A FF 02 08 OE 14 19 IF 25 2B 2E 34
80 1137 3D 40 43 4A 50 56 5C 60 66 6C 72 78 68 6E 74 71 77 7D 80

100 1186 88 8B 90 93 9A AO A6 AC B2 A2 A5 A8 AE B1 B8 BE C4 CA DO
120 IICO C3 C6 CC CF D6 D9 DF E2 E9 EF F5 FB 01 FI F4 F7 FD 00 07
140 120A 10 13 lA 20 26 2C 32 22 25 28 2E 31 38 3E 44 4A 50 40 43
160 1246 4C 4F 56 5C 62 68 6E 5E 61 64 6A 6D 74 7A 80 86 8C 7C 7F
180 1282 88 8B 92 98 9E A4 AA 9A 9n AO A6 A9 BO B6 BC C2 C8 B8 BB
200 12C1 C7 CD D3 C3 C9 CF D2 D4 DA EO E3 E9 EF F2 F5 FC 02 05 08
220 130E 11 17 lA 20 26 23 26 29 2F 32 38 3E 41 44 4A 4D 53 59 59
240 135C 5F 65 67 6A 70 76 7C 7F 84 87 8E 91 97 99 9F A2 A9 AF B2
260 13B8 6B Cl C4 CB D1 D7 DA EO E3 E6

31 FORWARD REFERENCES

270 P-CODES TRANSLATED (TOTAL 0438H BYTES)
03E6H BYTES OF OBJECT CODE PRODUCED - CODE ENDS AT 13E6

1000 AF D3 04 31 00 10 21 E6 13 11 01 97 CD 00 69 C3
lOlO D9 10 01 OD 00 CD 6C 6B CD 00 6B C3 25 6C 13 13
1020 13 13 01 F6 FF CD 8D 6B 01 02 00 CD B5 6E 01 02
1030 00 CD 6C 6B 01 02 00 CD 8D 6B AF 13 12 13 12 CD
1040 BO 6C CD 4E 6C 01 00 00 CD B5 6B 01 F8 FF CD 8D
1050 6B CD 60 6D 01 00 00 CD 8D 6B CD CA 6C lA IB IB
1060 IF D2 AC 10 01 02 00 CD 8D 6B AF 13 12 13 12 CD
1070 BO 6C lA IB IB IF D2 85 10 01 20 00 CD 6C 6B CD
1080 00 6B C3 9A 10 01 02 00 CD 8D 6B 01 OA 00 CD 6C
1090 6B CD 90 6C 01 02 00 CD B5 6E 01 00 00 CD 8D 6E
lOAO CD 4C 6D 01 00 00 CD B5 6B C3 51 10 IB IB 01 02
lOBO 00 CD 8D 6B 01 09 00 CD 6C 6B CD F9 6C lA IB IB
loco IF D2 CD 10 01 26 00 CD 6C 6B CD 00 6B 01 F6 FF
lODO CD 8D 6B CD 10 6B C3 25 6C 21 06 00 CD 73 6B 01
lOEO OC 00 CD 6C 6B CD 00 6B OE 12 CD 52 6B 53 54 41
lOFO 52 54 20 44 45 43 4F 44 49 4E 47 20 41 54 20 CD
jlOO 3C 6B 01 00 00 CD B5 6B CD E9 6B C3 12 10 CD E9
JllO 6B C3 12 10 AF 13 12 13 12 01 02 00 CD B5 6B 01
lUO 00 00 CD 8D 6E 01 00 69 CD 6C 6B CD F3 6C 01 00

ii?A CD 6C 6B CD C6 6C
11^^ CD OF 6D lA IB IB IF D2 E3 13 01 02 00 CD 8D 6B
llAA CD 6C 6B CD E9 6B C3 IE 10 IB IB IB IB

J60 OE 03 CD 52 6B 20 20 20 01 02 00 CD 8D 6E CD 4C
llflft CD B5 6E 01 00 00 CD 8D 6B CD OE 6C
119A n CD B5 6B 13 13 CD 60 6D AF 13 12 13 12
llAft / CD 52 6B 4C
llBft In C3 D2 12 CD 60 6D 01 01 00 CD 6C 6B CD BO
llCO PT C3 11 OE 03 CD 52 6B 4F 50 52
llOO Ir^ 12 CD 60 6D 01 02 00 CD 6C 6B CD BO 6C lA
llEO Rft E9 11 CD 60 6D 01 12 00 CD 6C 6B CD
UFO Ta 1® 1® 1*^ 11 03 CD 52 6B 4C 4F
1200 lA 12 CD 60 6D 01 03 00 CD 6C 6B CD BO 6C
1210 cn 1® 1*" DA lA 12 CD 60 6D 01 13 00 CD 6C 6B
1220 54 ^C lA IB IB IF D2 25 12 OE 03 CD 52 6B 53
1230 aI C3 D2 12 CD 60 6D 01 04 00 CD 6C 6B CD BO
1240 C3 ro 12 03 CD 52 6B 43 41 4C

12 CD 60 6D 01 05 00 CD 6C 6B CD BO 6C lA

1250 IB IB IF D2 61 12 OE 03 CD 52 6B 49 4E 54 C3 D2

1260 12 CD 60 6D 01 06 00 CD 6C 6B CD BO 6C lA IB IB

1270 IF D2 7F 12 OE 03 CD 52 6B 4A 4Ei 50 C3 D2 12 CD

1280 60 6D 01 07 00 CD 6C 6B CD BO 6C lA IB IB IF D2

1290 9n 12 OE 03 CD 52 6B 4A 50 43 C3 D2 12 CD 60 6D

12A0 01 08 00 CD 6C 6B CD BO 6C lA IB IB IF D2 BB 12

12B0 OE 03 CD 52 6B 43 53 50 C3 D2 12 OE 03 CD 52 6B

12C0 49 4C 4C 01 00 00 CD 8D 6B 01 FF 00 CD 6C 6B CD

12D0 19 6C IB IB 01 04 00 CD 8Ei 6B 01 12 00 CD 6C 6B

12E0 CD BO 6C 01 04 00 CD 8D 6B 01 13 00 CD 6C 6B CD

12F0 BO 6C CD 04 6D lA IB IB IF D2 08 13 01 58 00 CD
1300 6C 6B CD 00 6B C3 11 13 01 20 00 CD 6C 6B CD 00

1310 6B 01 20 00 CD 6C 6B CD 00 6B 01 00 00 CD 8D 6B

1320 CD 4C 6D CD OE 6C CD 10 6B 01 2C 00 CD 6C 6B CD

1330 00 6B 01 00 00 CD 8D 6B CD 4C 6D CD 4C 6D CD 4C

1340 6D CD OE 6C 01 08 00 CD 6C 6B CD 23 6D 01 00 00

1350 CD 8D 6B CD 4C 6D CD 4C 6D CD OE 6C CD 4E 6C 01

1360 04 00 CD B5 6B 13 13 CD 10 6B CD E9 6B C3 12 10

1370 01 02 00 CD 8D 6B 01 OF 00 CD 6C 6B CD A4 6C AF

1380 13 12 13 12 CD BO 6C lA IB IB IF D2 B2 13 CD F7
1390 6A 01 04 00 CD B5 6B 13 13 01 18 00 CD 6C 6B CD

13A0 BO 6C lA IB IB IF D2 B2 13 01 46 69 CD 6C 6B CD

13B0 21 6C 01 00 00 CD 8D 6B CD OE 6C 01 FF 00 CD 6C

13C0 6B CD C6 6C lA IB IB IF EI2 EO 13 01 00 00 CD dD

13EI0 6B 01 04 00 CD 6C 6B CD 4E 6C 01 00 00 CD B5 6B
13E0
y

C3 IF 11 C3 25 6C 20

1000 AF 0010 ZIOOOH XRA A
1001 D3 04 0020 OUT 004H

1003 31 00 10 0030 LXI PfOlOOOH
1006 21 E6 13 0040 LXI Hf013E6H
1009 11 01 97 0050 LXI Df09701H
lOOC CD 00 69 0060 CALL 06900H

lOOF C3 D9 10 0070 JhP 010n9H
1012 01 OD 00 0080 ZlOl 2H LXI BfOOOODH

1015 CD 6C 6B 0090 CALL 06B6CH
1018 CD 00 6B 0100 CALL 06B00H
lOlB C3 25 6C 0110 JMP 06C25H
lOlE 13 0120 ZIOIEH INX El
lOlF 13 0130 INX D
1020 13 0140 INX D
1021 13 0150 INX D
1022 01 F6 FF 0160 LXI BfOFFF6H
1025 CD 8D 6B 0170 CALL 0668DH
1028 01 02 00 0180 LXI Bf00002H
102B CD B5 6B 0190 CALL 06BB5H
102E 01 02 00 0200 LXI Bf00002H
1031 CD 6C 6B 0210 CALL 06B6CH
1034 01 02 00 0220 LXI Bf00002H
1037 CD 8Ei 6B 0230 CALL 06B8DH
103A AF 0240 XRA A
103B 13 0250 INX D
103C 12 0260 STAX D
103II 13 0270 INX D
103E 12 0280 STAX D
103F CD BO 6C 0290 CALL 06CB0H
1042 CD 4E 6C 0300 CALL 06C4EH
1045 01 00 00 0310 LXI BfOOOOOH
1048 CD B5 6B 0320 CALL 06BB5H
104B 01 F8 FF 0330 LXI BrOFFFSH
104E CD 8D 6B 0340 CALL 06B8EIH
1051 CD 60 6D 0350 Z105 ilH CALL 06D60H
1054 01 00 00 0360 LXI BfOOOOOH
1057 CD 8D 6B 0370 CALL 06B8DH
105A CD CA 6C 0380 CALL 06CCAH
105II lA 0390 LDAX D
105E IB 0400 DCX D

Ei 105F
1060
1061
1064
1067
106A
l06Et
106C
106D
106E
106F
1072
1073
1074
1075
1076
1079
107C
107F
1082
1085
1088
108B
108E
1091
1094
1097
109A
109D
iOAO
10A3
10A6
10A9
lOAC
lOAD
lOAE
lOBl
10B4
10B7
lOBA
lOBD
lOBE
lOBF
loco
lOCl
10C4
10C7
lOCA
lOCD
lODO
10B3
10D6
10D9
lOBc
lODF
10E2
10E5
10E8
lOEA
lOED
lOEE
lOEF
lOFo
lOFl
10P2

10F3
IOF4

IOF5

IB 0410 DCX
IF 0420 RAR
D2 AC 10 0430 JNC
01 02 00 0440 LXl
CD 8D 6B 0450 CALL
AF 0460 XRA
13 0470 INX
12 0480 STAX
13 0490 INX
12 0500 STAX
CD BO 6C 0510 CALL
lA 0520 LDAX
IB 0530 DCX
IB 0540 DCX
IF 0550 RAR
Ei2 85 10 0560 JNC
01 20 00 0570 LXI
CD 6C 6B 0580 CALL
CD 00 6B 0590 CALL
C3 9A 10 0600 JMP
01 02 00 0610 Z1085H LXI
CD 8D 6B 0620 CALL
01 OA 00 0630 LXI
CD 6C 6B 0640 CALL
CD 90 6C 0650 CALL
01 02 00 0660 LXI
CD B5 6B 0670 CALL
01 00 00 0680 Z109AH LXI
CD 8Ii 6B 0690 CALL
CD 4C 6D 0700 CALL
01 00 00 0710 LXI
CD BS 6B 0720 CALL
C3 51 10 0730 JMP
IB 0740 ZIOACH DCX
IB 0750 DCX
01 02 00 0760 LXI
CD 8D 6B 0770 CALL
01 09 00 0780 LXI
CD 6C 6B 0790 CALL
CD F9 6C 0800 CALL
lA 0810 LDAX
IB 0820 DCX
IB 0830 DCX
IF 0840 RAR
D2 CD 10 0850 JNC
01 26 00 0860 LXI
CD 6C 6B 0870 CALL
CD 00 6B 0880 CALL
01 F6 FF 0890 ZIOCDH LXI
CD 8Ii 6B 0900 CALL
CD 10 6B 0910 CALL
C3 25 6C 0920 JMP
21 06 00 0930 Z10D9H LXI
CD 73 6B 0940 CALL
01 OC 00 0950 LXI
CD 6C 6B 0960 CALL
CD 00 6B 0970 CALL
OE 12 0980 HMl
CD 52 6B 0990 CALL
S3 1000 MOV
S4
A 1 1010 HOU

1020 MOV
1030 MOU w4

20 1040 MOV * V
Aa 1050 DB

45 1060 MOV

43 1070 MOV
1080 MOV

OlOACH
Bf00002H
O6B8I1H
A
D
D
D
D
06CB0H
D
B
D

01085H
Br00020H
06B6CH
06B00H
0109AH
Bf00002H
06&8DH
EfOOOOAH
06B6CH
06C90H
B»00002H
06BB5H
BfOOOOOH
O6B8I1H
06D4CH
BrOOOOOH
06BB5H
01051H
II
El
Bf00002H
O6B8E1H
Bf00009H
06B6CH
06CF9H
El
D
D

OlOCDH
Br00026H
06B6CH
06B00H
BpOFFF6H
O6B8E1H
06B10H
06C2SH
Hf00006H
06B73H
BrOOOOCH
06B6CH
06B00H
Cf012H
06B52H
OfE S
DfH T
BrC A
OfB R
DfH T
020H
BfH D
BfL E
BfE C

10F6 4F 1090 HOM CfA C
10F7 44 1100 HOV BfH I
10F8 49 1110 HOV CfC 1
10F9 4E 1120 HOV CrH f
lOFA 47 1130 HOV BrA C
lOFB 20 1140 DB 020H
lOFC 41 1150 HOV BfC ^
lOFIi 54 1160 MOV DfH 1
lOFE 20 1170 DB 020H
lOFF CD 3C 6B 1180 CALL 06B3CH
1102 01 00 00 1190 LXI BfOOOOOH
1105 CD B5 6B 1200 CALL 06BB5H

1108 CD E9 6B 1210 CALL 06EE9H
IlOB C3 12 10 1220 JMP 01012H
IlOE CD E9 6B 1230 CALL 06BE9H
1111 C3 12 10 1240 JMP 01012H
1114 AF 1250 XRA A
1115 13 1260 INX D
1116 12 1270 STAX n
1117 13 1280 INX D
1118 12 1290 STAX D
1119 01 02 00 1300 LXI Bf00002H
me CD B5 6B 1310 CALL 06BB5H
lllF 01 00 00 1320 ZlllFH LXI BfOOOOOH
1122 CD 8D 6B 1330 CALL 06B8DH
1125 01 00 69 1340 LXI Bf06900H
1128 CD 6C 6B 1350 CALL 06B6CH
1128 CD F3 6C 1360 CALL 06CF3H
112E 01 00 00 1370 LXI BfOOOOOH
1131 CD 8D 6B 1380 CALL 06B8ItH
1134 CD OE 6C 1390 CALL. 06C0EH
1137 01 FF 00 1400 LXI BfOOOFFH
113A CD 6C 6B 1410 CALL 06B6CH
113EI CD C6 6C 1420 CALL 06CC6H
1140 CD OF 6D 1430 CALL 06D0FH
1143 lA 1440 LDAX n
1144 IB 1450 DCX D
1145 IB 1460 DCX D
1146 IF 1470 RAR
1147 D2 E3 13 1480 JNC 013E3H
114A 01 02 00 1490 LXI Bf00002H
114D CD 8D 6B 1500 CALL 06B8DH
1150 01 OA 00 1510 LXI BfOOOOAH
1153 CD 6C 6B 1520 CALL 06B6CH
1156 CD E9 6B 1530 CALL 06BE9H
1159 C3 IE 10 1540 JMP OIOIEH
115C IB 1550 DCX D
115D IB 1560 DCX D
115E IB 1570 DCX D
115F IB 1580 DCX D
1160 OE 03 1590 HVI Cr003H
1162 CD 52 6B 1600 CALL 06B52H
1165 20 1610 DB 020H
1166 20 1620 DB 020H
1167 20 1630 DB 020H
1168 01 02 00 1640 LXI Bf00002H
116B CD 8D 6B 1650 CALL 06B8DH
116E CD 4C 6D 1660 CALL 06D4CH
1171 01 02 00 1670 LXI Br00002H
1174 CD B5 6B 1680 CALL 06BB5H
1177 01 00 00 1690 LXI BfOOOOOH
117A CD 8D 6B 1700 CALL 06B8DH
117D CD OE 6C 1710 CALL 06C0EH
1180 01 04 00 1720 LXI Bf00004H
1183 CD B5 6B 1730 CALL 06BB5H
1186 13 1740 INX D
1187 13 1750 INX D
1188 CD 60 6D 1760 CALL 06D60H

230

49
54
C3

lA
IB

118B AF
118C 13
J18D 12
J18E 13
118F 12
1190 CD
1193 lA
1194 IE
1195 IB
1196 IF
1197 D2
119A OE
119C CD
119F 4C
llAO
llAl
11A2
11A5 CD
11A8 01
llAB CD
llAE CD
llBl
11B2
11B3 IB
11B4 IF
11B5 D2
11E8 OE
IIBA CD
llBIi 4F
IIBE 50
IIBF 52
IICO C3
11C3 CD
11C6 01
11C9 CD
IICC CD
IICF lA
IIDO IB
llDl IB
1102 IF
11D3 DA
11D6 CD
11D9 01
line CD
llDF CD
11E2 lA
HE3 IB
11E4 IB
11E5 IF
UE6 D2
liE? OE
llEB CD
IJEE 4C
UEF 4F

IFO 44
^^^1 C3

AS
03
52

03

03

11F4
UF7
iifa
Hfb
1200
1201
1202
1203
1204
1207
120a
l20ti

CD
01
CD
cn
lA
IB
IB
IF
DA
CD
01
CD

lA

1770 XRA A
1730 INX D
1790 STAX D
1800 INX D
1810 STAX D

6C 1820 CALL 06CB0H
1830 LDAX D
1840 DCX D
1850 DCX D
1860 RAR

11 1870 JNC 011A5H
1880 MV I Cp003H

6B 1890 CALL 06B52H
1900 MOV CpH
1910 MOV CfC
1920 MOV DfH

12 1930 JMP 012D2H
6D 1940 Z11A5H CALL 06D60H
00 1950 LXI BpOOOOIH
6B 1960 CALL 06B6CH
6C 1970 CALL 06CB0H

1980 LDAX D
1990 DCX D
2000 DCX D
2010 RAR

11 2020 JNC 011C3H
2030 MVl Cf003H

6B 2040 CALL 06B52H
2050 MOV CfA
2060 MOV DfB
2070 MOV DpD

12 2080 JMP 012D2H
6D 2090 Z11C3H CALL 06D60H
00 2100 LXI Bf00002H
6B 2110 CALL 06B6CH
6C 2120 CALL 06C&0H

2130 LDAX D
2140 DCX D
2150 DCX D
2160 RAR

11 2170 JC 011E9H
6D 2180 CALL 06D60H
00 2190 LXI Bf00012H
6B 2200 CALL 06B6CH
6C 2210 CALL 06CB0H

2220 LDAX D
2230 DCX D
2240 DCX D
2250 RAR

11 2260 JNC 011F4H
2270 211E9H MVI C»003H

6B 2280 CALL 06B52H
2290 MOV CpH I
2300 MOV CpA I

2310 NOV BfH]
12 2320 JMP 012D2H
6D 2330 Z11F4H CALL 06D60H
00 2340 LXI Bf00003H
6B 2350 CALL 06B6CH
6C 2360 CALL 06CBOH

2370 LDAX D
2380 DCX D
2390 DCX D
2400 RAR

12 2410 JC 0121AH
6D 2420 CALL 06D60H
00 2430 LXI Bf00013H
6B 2440 CALL 06B6CH

1210 CD BO 6C 2450 CALL 06CB0H

1213 lA 2460 L6AX D

1214 IB 2470 6CX D
1215 IB 2480 DCX D

1216 IF 2490 RAR

1217 62 25 12 2500 JNC 01225H

121A OE 03 2510 Z121AH MVI Cf003H

121C CD 52 6B 2520 CALL 06B52H

121F 53 2530 HOV DfE S
1220 54 2540 MOV DrH T

1221 4F 2550 MOV CfA 0

1222 C3 62 12 2560 JMP 012D2H
1225 CD 60 66 2570 Z1225H CALL 06D60H

1228 01 04 00 2580 LXI Bf00004H

122B CD 6C 6B 2590 CALL 06B6CH

122E CD BO 6C 2600 CALL 06CB0H

1231 lA 2610 LDAX D
1232 IB 2620 6CX D
1233 IB 2630 6CX D
1234 IF 2640 RAR
1235 D2 43 12 2650 JNC 01243H
1238 OE 03 2660 MVI Cf003H
123A CD 52 6B 2670 CALL 06B52H
123D 43 2680 MOV BfE C
123E 41 2690 MOV BfC A
123F 4C 2700 MOV CrH L

1240 C3 62 12 2710 JMP 012D2H
1243 CD 60 6D 2720 Z1243H CALL 06D60H
1246 01 05 00 2730 LXI BfOOOOSH

1249 CD 6C 6B 2740 CALL 06B6CH
124C CD BO 6C 2750 CALL 06CB0H
124F lA 2760 LBAX D
1250 IB 2770 DCX D
1251 IB 2780 DCX D
1252 IF 2790 RAR
1253 62 61 12 2800 JNC 01261H
1256 OE 03 2810 MVI Cf003H
1258 CD 52 6B 2820 CALL 06BS2H
1256 49 2830 MOV CfC I
125C 4E 2840 MOV CrH N
1256 54 2850 MOV DfH T

125E C3 62 12 2860 JMP 012D2H
1261 CD 60 66 2870 Z1261H CALL 06D60H
1264 01 06 00 2880 LXI Br00006H
1267 CD 6C 6B 2890 CALL 06B6CH
126A CD BO 6C 2900 CALL 06CB0H
1266 lA 2910 LDAX D
126E IB 2920 DCX D
126F IB 2930 DCX D
1270 IF 2940 RAR
1271 D2 7F 12 2950 JNC 0127FH
1274 OE 03 2960 MVI Cf003H
1276 CD 52 6B 2970 CALL 06B52H
1279 4A 2980 MOV CrD J
127A 4D 2990 MOV CfL M
127B 50 3000 MOV 6rB P
127C C3 62 12 3010 JMP 012D2H
127F CD 60 6D 3020 Z127FH CALL 06D60H
1282 01 07 00 3030 LXI Br00007H
1285 CD 6C 6B 3040 CALL 06B6CH
1288 CD BO 6C 3050 CALL 06CB0H
128B lA 3060 LDAX 6
128C IB 3070 ncx 6
128D IB 3080 DCX 6
128E IF 3090 RAR
128F 62 9D 12 3100 JNC 01296H
1292 OE 03 3110 MVI Cf003H
1294 CD 52 6B 3120 CALL 06B52H
1297 4A 3130 MOV CfD J

232

1298 50
1299 43
129A C3
I29ri CD
12A0 01
12A3 CD
12A6 CD
12A9 lA
12AA IB
12AB IB
12AC IF
12AD D2
12B0 OE
12B2 CD
12B5 43

53
12B7 50
12B8 C3
12BB OE
12BD CD
12C0 49
12C1 4C
12C2 4C
12C3 01
12CA CD
12C9 01
12CC CD
12CF CD
12D2 IB
12D3 IB
12D4 01
12D7 CD
12DA 01
12DD CD
12E0 CD
12E3 01
12E6 CD
12E9 01
12EC CD
12EF CD
12F2 CD
12F5 lA
12F4 IB
12F7 IB
12F6 IF
12F9 D2
12FC 01
12FF CD
1302 CD
1305 C3
1308 01
130B CD
130E CD
I3ll 01
^314 CD
^317 CD
|31A 01
J3id cn
1320 CD
1^23 CD

CD
01

SS “

112 12
60 4D
08 00
^C 6B
BO 6C

BB 12
03
52 4B

D2 12
03
52 6B

00 00
8D 6h
FF 00
6C 6B
19 6C

04 00
8D 6B
12 00
6C 6B
BO 6C
04 00
8D 6B
13 00
6C 6B
BO 6C
04 6D

08 13
58 00
6C 6B
00 6B
11 13
20 00
6C 6B
00 6B
20 00
6C 6B
00 6B
00 00
BD 6B
4C 6H
OE 6C
10 6B
2C 00
6C 6B
00 6B
00 00
8n 6B
4C 611

6D
6D

3140 MOV
3150 MOV
3160 JMP
3170 Z129DH CALL
3180 LXI
3190 CALL
3200 CALL
3210 LDAX
3220 DCX
3230 DCX
3240 RAR
3250 JNC
3260 MVI
3270 CALL
3280 MOV
3290 MOV
3300 MOV
3310 JMP
3320 Z12BBH MVI
3330 CALL
3340 MOV
3350 MOV
3360 MOV
3370 LXI
3380 CALL
3390 LXI
3400 CALL
3410 CALL
3420 Z12B2H DCX
3430 DCX
3440 LXI
3450 CALL
3460 LXI
3470 CALL
3480 CALL
3490 LXI
3500 CALL
3510 LXI
3520 CALL
3530 CALL
3540 CALL
3550 LDAX
3560 DCX
3570 DCX
3580 RAR
3590 JNC
3600 LXI
3610 CALL
3620 CALL
3630 JMP
3640 Z1308H LXI
3650 CALL
3660 CALL
3670 Z1311H LXI
3680 CALL
3690 CALL
3700 LXI
3710 CALL
3720 CALL
3730 CALL
3740 CALL
3750 LXI
3760 CALL
3770 CALL
3780 LXI
3790 CALL
3800 CALL
3810 CALL
3820 CALL

DfB
BfE
012D2H
06D60H
Bf00008H
06B6CH
06CB0H
D
D
D

012BBH
Cr003H
06B52H
BfE I

DfE
DfB I
012D2H
CrOOSH
06B52H
CfC
CfH I
CfH I
BfOOOOOH
06B8DH
BfOOOFFH
06B6CH
06C19H
D
D
Bf00004H
06B8DH
Bf00012H
06B6CH
06CB0H
Bf00004H
06B8DH
Br00013H
06B6CH
06CB0H
06D04H
D
D
D

01308H
Br00058H
06B6CH
06B00H
01311H
Bf00020H
06&6CH
06600H
Bf00020H
06B6CH
06B00H
BfOOOOOH
06B8DH
06D4CH
06C0EH
06B10H
Bf00b2CH
06B6CH
06B00H
BfOOOOOH
06B8DH
06D4CH
0604CH
06D4CH

233

1341 CD OE 6C 3830 CALL 06C0EH

1344 01 08 00 3840 LXI Bf 00008H

1347 CD 6C 6B 3850 CALL 06B6CH

134A CD 23 6D 3860 CALL 06D23H

134D 01 00 00 3870 LXI BrOOOOOH

1350 CD 8D 6B 3880 CALL 06B8DH

1353 CD 4C 6D 3890 CALL 06D4CH

1356 CD 4C 6D 3900 CALL 06D4CH

1359 CD OE 6C 3910 CALL 06C0EH

135C CD 4E 6C 3920 CALL 06C4EH

135F 01 04 00 3930 LXI Br00004H

1362 CD B5 6D 3940 CALL 06BB5H

1365 13 3950 INX D

1366 13 3960 INX D

1367 CD 10 6B 3970 CALL 06B10H

136A CD E9 6B 3980 CALL 06BE9H

136D C3 12 10 3990 JMP 01012H

1370 01 02 00 4000 LXI Bf00002H

1373 CD 8D 6B 4010 CALL 06B8DH

1376 01 OF 00 4020 LXI BfOOOOFH

1379 CD 6C 6B 4030 CALL 06B6CH

137C CD M 6C 4040 CALL 06CA4H

137F AF 4050 XRA A

1380 13 4060 INX D

1381 12 4070 STAX D

1382 13 4080 INX D

1383 12 4090 STAX D

1384 CD BO 6C 4100 CALL 06CB0H

1387 lA 4110 LDAX D

1388.IB 4120 DCX D

1389 IB 4130 DCX D

138A IF 4140 RAR

138B D2 B2 13 4150 JNC 013B2H
138E CD F7 6A 4160 CALL 06AF7H

1391 01 04 00 4170 LXI Bf00004H

1394 CD B5 6B 4180 CALL 06BB5H

1397 13 4190 INX D

1398 13 4200 INX D

1399 01 18 00 4210 LXI Bp00018H

139C CD 6C 6B 4220 CALL 06B6CH

139F CD BO 6C 4230 CALL 06CB0H

13A2 lA 4240 LDAX D
13A3 IB 4250 DCX D

13A4 IB 4260 DCX D

13A5 IF 4270 RAR
13A6 D2 B2 13 4280 JNC 013B2H

13A9 01 46 69 4290 LXI Bf06946H

13AC CD 6C 6B 4300 CALL 06B6CH
13AF CD 21 6C 4310 CALL 06C21H

13D2 01 00 00 4320 Z13B2H LXI BrOOOOOH

13B5 CD 8D 6B 4330 CALL 06B8DH
13B8 CD OE 6C 4340 CALL 06C0EH

13BB 01 FF 00 4350 LXI BfOOOFFH

13BE CD 6C 6B 4360 CALL 06B6CH

13C1 CD C6 6C 4370 CALL 06CC6H

13C4 lA 4380 LDAX D

13C5 IB 4390 DCX D

13C6 IB 4400 DCX D

13C7 IF 4410 RAR
13CB D2 EO 13 4420 JNC 013E0H

13CB 01 00 00 4430 LXI BfOOOOOH

13CE CD 8D 6B 4440 CALL 06B8DH

13D1 01 04 00 4450 LXI Bf00004H

13D4 CD 6C 6B 4460 CALL 06B6CH

1307 CD 4E 6C 4470 CALL 06C4EH

13DA 01 00 00 4480 LXI BvOOOOOH

13DD CD B5 6B 4490 CALL 06BB5H

13E0 C3 IF 11 4500 Zi3E0H JMP OlllFH

13E3 C3 25 6C 4510 Z13E3H JHP 06C25H

Listing 2: 8080 Run Time Routines for Pascal
Object Code

0000
oooo
0000
^900 C3
6W3
6903
6903
6903
6903
6903
6903
6903
6903
6903
6903
6903
6903
6903
6903
690A
690B
690B
690D
690F 20
6915 20
691E OD
691F 20
692B OB
69^ 20
6937 on
6938 20
6945 OD
6946 CD
^949 2A
^94C 22
694F C3
6952 CD
A955 C3
^958 EB
6959 4E
^95A 2B

46
2B

^95D SE
<^95E 2B
695F 56

eb
C9
EB

<^963 72
^^^4 23

EB
^^67 ro

a

‘^1 ®2 2

6F 6D

53 54 41
4F 56 45

49 4E 50

53 49 5A

44 49 56

Fa 09
OE OC
7F 72
90 73
AB 05
F8 09

0010 « RUN-TIJ«: R0UTIf«S FOR PASCAL OBJECT mi>F
0020 ORGA EQU 6900H
0030 ORG GRGA
0040 RUN JMP ORGAf46FH
0050 UJHO EQU 0C20H
0060 lbr>' EQU IdHO
0070 UHl EQU 0C24fl
0080 OUTP EQU UHl
0090 CRLF EQU 9F8H
0100 CRCMJT EQU CRLF
0110 OSEQ EQU SACH
0120 BYTEl EQU OAllH
0130 ICOUTl EQU OAOCH
0140 BLKl EQU 0A02H
0150 CLEAR EQU 9FDH
0160 POS EQU OCOEH
0170 POSl EQU 727FH
0180 MENTR EQU 7390H
0190 A6LJF ns 7
0200 SFLG ns 1
0210 SIGN EQU SFLG
0220 STK2 ns 2
0230 BB DS 2
0240 SMI BB ' STACK'
0250 SM2 DB ' O^i^RFLOW'
0260 DB 13
0270 MERl DB ' INPUT ERROR'
0280 DB 13
0290 MER2 DB ' SIZE ERROR'
0300 DB 13
0310 DM1 DB ' DIVIDE CHECK'
0320 DB 13
0330 EXIT C^L CRLF
0340 LHLD POS
0350 SHLD POSl
0360 JMP MENTR
0370 PRINT CALL OSEQ
0380 JMP CRLF
0390 POP XCHG
0400 MOV C»M
0410 ncx H
0420 MOV BfM
0430 rex H
0440 MOV E»M
0450 DCX H
0460 MOV DfM
0470 XCHG
0480 RET
0490 PUSH XCHG
0500 MOV MvD
0510 INX H
0520 MOV M»E
0530 XCHG
0540 RET
0550 POPl XCHG
0560 MOV EfM
0570 DCX H
0580 MOV DfM
0590 DCX H
0600 XCHG
0610 RET
0620 NEGH XRA A

235

6970 95 0630 SUB L 69F5 FE OA 1380 CPI OAH

^971 6F 0640 MOM LpA 69F7 3F 1390 CMC

6972 9C 0650 SB8 H 69Fa C9 1400 RET

6973 95 0660 SUB L. 69F9 E5 1410 DECIN PUSH H

6974 67 0670 MOM HfA 69FA C5 1420 PUSH B

6975 50 0680 SUl 80 69FB AF 1430 XRA A

6977 B5 0690 ORA L 69FC 32 OA 69 1440 STA SFUG

6978 CO 0700 RNZ 69FF 3E 23 1450 MMI Aw'*'

6979 21 15 69 0710 LXl H»SM2 6A01 CD 24 OC 1460 CALL UHl

697C CD 52 69 0720 CALL PR1^^’ 6A04 CD 9e 69 1470 CALL READ

697F C3 62 69 0730 PUSH 6A07 21 00 00 1480 LXI HwO

6982 0740 NEGB XRA A .6A0A 01 03 69 1490 LXI BrABUF

6983 91 0750 SUB C 6A0D OA 1500 LDAX B

6984 4F 0760 MOM CvA 6A0E 03 1510 TNX B

6985 98 0770 SBB B 6A0F FE 2D 1520 CPI

6986 91 0780 SUB C 6A11 C2 19 6A 1530 JNZ DeCIL+2

6987 47 0790 MOM BfA 6A14 32 OA 69 1540 STA SFUG

6988 D6 50 0800 SUI 80 6A17 OA 1550 DECIL LDAX B

698A B1 0810 ORA C 6A18 03 1560 INX B

698B CO 0820 RNZ 6A19 CD F2 69 1570 CALL DIGIT

698C C3 79 69 0830 JMP O^^ 6A1C DA 31 6A 1580 JC DECID

698F 7A 0840 CKD MOM ArD 6A1F 5D 1590 MOM EfL

6990 2F 0850 CMA 6A20 54 1600 MOM DfH

6991 57 0860 MOM DfA 6A21 29 1610 DAD H

6992 7B 0870 MOM AvE 6A22 29 1620 DAD H

6993 2F 0880 CMA 6A23 19 1630 DAD D

6994 5F 0890 MOM E*A 6A24 29 1640 DAD H

6995 13 0900 INX D 6A25 85 1650 ADD L

6996 C9 0910 RET 6A26 6F 1660 MOM LpA

6997 CD 20 OC 0920 GETC CALL WHO 6A27 D2 17 6A 1670 JNC DECIL

699A 47 0930 MOM BrA 6A2A 24 1680 INR H

699B C3 24 OC 0940 JMP UIHl 6A2B FA 47 6A 1690 JM ER2

699E 21 03 69 0950 READ LXI H^ABUF 6A2E C3 17 6A 1700 JMP DECIL

69A1 OE 00 0960 CrO 6A31 FE DD 1710 DECID CPI 13-48

69A3 CD 20 OC 0970 RLP CALL WHO 6A33 C2 41 6A 1720 JNZ ERl

69A6 FE 7F 0980 CPI 7FH 6A36 EB 1730 XCHG

69A8 CA D4 69 0990 JZ RUB 6A37 Cl 1740 POP B

69AB FE 18 1000 CPI 18H 6A38 El 1750 POP H

69AD CA E3 69 1010 JZ CAN 6A39 3A OA 69 1760 LDA SFLG

69B0 FE OD 1020 CPI OCH 6A3C B7 1770 ORA A

69B2 CA B8 69 1030 JZ S+3 6A3D C8 1780 RZ

69B5 CD 24 OC 1040 CALL UHl 6A3E C3 8F 69 1790 JMP CMD

69B8 77 1050 MOM M^A 6A41 21 IF 69 1800 ERl LXI H»^ER1

69B9 23 1060 INX H 6A44 C3 4A 6A 1810 *+3

69BA OC 1070 INR C 6A47 21 2C 69 1820 ER2 LXI HfHER2

69BB FE OD 1080 CPI ODH 6A4A CD 52 69 1830 CALL PRINT

69BD C8 1090 RZ 6A4D C3 FB 69 1840 DECINI-2

69BE 79 1100 MOM AfC 6A50 E5 1850 HEXIN PUSH H

69BF FE 06 1110 CPI 6 6A51 C5 1860 PUSH B
69C1 C2 A3 69 1120 JNZ RLP 6A52 AF 1870 XRA A

69C4 CD 20 OC 1130 CALL UHO 6A53 32 OA 69 1880 STA SFUG

69C7 FE 7F 1140 CPI 7FH 6A56 3E 25 1890 MMI Af'X'

69C9 CA D4 69 1150 JZ RUB 6A58 CD 24 OC 1900 CAUU UHl

69CC FE 18 1160 CPI 18H 6A5B CD 9E 69 1910 CALU READ

69c:e: CA E3 69 1170 JZ CAN 6A5E 21 00 00 1920 UXI HwO

69D1 36 OD 1180 M»ODH 6A61 01 03 69 1930 UXI BwABUF

69D3 C9 1190 RET 6A64 OA 1940 UDAX B

69B4 79 1200 RUB MOM Ai»C 6A65 03 1950 INX B

69D5 B7 1210 ORA A 6A66 FE 2D 1960 CPI

69D6 CA A3 69 1220 JZ RLP 6A68 C2 70 6A 1970 JNZ HEXIU+2

69D9 3E 7F 1230 AvTFH 6A6B 32 OA 69 1980 STA SFUG

69DB CD 24 OC 1240 CALL UHl 6A6E OA 1990 HEXIU UDAX B

69riC OD 1250 DCR C 6A6F 03 2000 INX B

69JDF 2B 1260 DCX H 6A70 CD F2 69 2010 DIGIT *
69E0 C3 A3 69 1270 Jt^ RLP 6A73 D2 82 6A 2020 JNC HEX16 .

69E3 79 1280 CAN MOM A»C 6A76 D6 07 2030 SUI 7 J
69E4 B7 1290 ORA A 6A78 FE OA 2040 CPI OAH J
69E5 CA A3 69 1300 JZ RLP 6A7A DA 8F 6A 2050 JC HEXID 3
69E;8 3E 7F 1310 MMI AvTFH 6A7D FE 10 2060 CPI lOH 1

69EA CD 24 OC 1320 CALL UHl 6A7F D2 8F 6A 2070 JNC HEXID J

69En 2B 1330 DCX H 6A82 29 2080 HEX16 DAD M M
69EE OD 1340 DCR C 6A33 29 2090 DAD H M
69EF C3 E3 69 1350 JMP CM 6A34 29 2100 DAD H M
69F2 D6 30 1360 DIGIT SUl 30H 6A85 29 2110 DAD H M
69F4 D8 1370 RC 6A86 85 2120 ADD U ■

236

AA87
6A88
6A8B
6AdC
^ASF
6A91
6A9»4.
6A95
AA96
6A^r
6A9A
6A9B
6A9C
6A9F
6AA2
^AA5
6AA8
6AAB
6AAE:
6AB1
6AB2

6AB3
6AB4
6AB5
6AB6
6AB9
6ABA
6ABB
MBC
6ABF
6AC0

6AC2
6AC5
6AC6
^9
6ACB
6ACC
6ACD
6ACE
6ACF
6Ai:i2
6Ari3
6AD4
6Ari5
4AII8
6AB9
6AIIA
^DB
4Anc
6ADr
AAE2
aae:3
6ae:4

6AE8
^Ae9

^AEb

^A8F
6AFo
6APi
6AP2

^4
^AF7

^9

4ftpt

^BOi

6F
D2 ^
24
C3 AE
FE 06
C2 9F
EB
Cl
El
3A OA
B7
C8
C3 8F
21 IF

54
5D

C9
78
B1
CA A8
AF
80
F5
F4 82
AF
84
F5
FC 6F
EB
21 00
3E 10
29
EB
29
EB
D2 D3
23
E5
09
D2 E2
1C
33
33
3D
C2 CB
C3 E7
El
3n
C2 CB
EB
Cl
FI
A8
FC 6F
7A
B3
C8

80
FO
C3 of
13
AF
12
13

12
C9
lA
IB

2130 MOV LfA ^B02 IB
: 6A 2140 ^J^IC HEXIL 6B03 C3 24 OC

2150 INR H 6B06 D5
6A 2160 JMP HEXIL 6B07 CD F9 69

2170 HEXID CPI 13-37H 6B0A EB
6A 2180 JNZ HERl 6B0B D1

2190 XCHG 6B0C 13
2200 POP B 6B0D C3 62 69
2210 POP H 6B10 CD 68 69

69 2220 LDA SFLG 6B13 D5
2230 ORA A 6B14 AF
2240 RZ 6B15 3n

69 2250 JW- CMD 6B16 F5
69 2260 HERl LXI HvMERl 6B17 A4
69 2270 CALL PRIWr 6B18 F2 23 6B
6A 2280 JMP l-EXim'2 6B1B 3E 2D
69 2290 DVCK LXI HvDMl 6B1D CD 24 OC
69 2300 CALL PRIWr 6B20 CD 6F 69
OO 2310 LXI H»0 6B23 01 OA 00

2320 MOV DfH 6B26 CD B4 6A
2330 MOM EfL 6B29 3E 30
2340 RET 6B2B 83
2350 DIM16 MOM AfB 6B2C F5
2360 ORA C 6B2n 7C

6A 2370 JZ DMCK 6B2E B5
2380 XRA A 6B2F C2 23 6B
2390 ADD B 6B32 FI
2400 PUSH P 6B33 CD 24 OC

69 2410 CP hCGB 6B36 FI
2420 XRA A 6E37 F2 33 6B
2430 ADD H 6B3A D1
2440 PUSH P 6B3E C9

69 2450 CM NEGH 6E3C ns
2460 XCHG 6B3D CD 50 6A

00 2470 LXI H»0 6B40 EB
2480 MMI AvlOH 6B41 D1
2490 D2 DAD H 6B42 13
2500 XCHG 6B43 C3 62 69
2510 DAD H 6B46 lA
2520 XCHG 6B47 6F

6A 2530 JNC D3 6B4a IB
2540 INX H 6B49 lA
2550 D3 PUSH H 6B4A IB
2560 WD B 6B4B CD 11 OA

6A 2570 JNC D4 6B4E 7D
2580 IlNff^ E 6B4F C3 11 OA
2590 INX P 6B52 El
2600 INX P 6B53 7E
2610 DCR A 6B54 CD 24 OC

6A 2620 sFNZ D2 6B57 23
6A 2630 JMP D4A 6B5S OD

2640 D4 POP H 6B59 C2 53 6B
2650 DCR A 6B5C E9

6A 2660 JNZ 02 6B5D D5
2670 D4A XCHG 6B5E 11 FA FF
2680 POP B 6B61 19
2690 POP P 6B62 5E
2700 XRA B 6B63 2B

69 2710 CM NEGH 6B64 56
2720 MOM A^D 6B65 EB
2730 ORA E 6B66 3D
2740 RZ 6B67 C2 5E 6B
2750 XRA A 6B6A D1
2760 ADD B 6B6B C9
2770 RP 6B6C EB

69 2780 JMP CMD 666D 23
2790 SYSO INX D 6B6E 70
2800 XRA A 6B6F 23
2810 STAX D 6B70 71
2820 INX D 6B71 EB

oc 2830 CALL IMP 6B72 C9
2840 STAX D 6B73 19
2850 RET 6B74 EB
2360 ! SYSl LOAX D 6B75 2A OB 69
2870 DCX D 6B7S 19

2880 DCX D
2890 Jl^ OUTP
2900 SYS2 PUSH D
2910 CALL DECIN
2920 XCHG
2930 POP D
2940 INX D
2950 Jl^ PUSH
2960 SYS3 C^^L PO
2970 PUSH D
2980 XRA A
2990 DCR A
3000 PUSH P
3010 ANA H
3020 JP Y3
3030 MMI fikw'-'
3040 CALL CXJTP
3050 CALL NEGH
3060 Y3 LXI B»10
3070 CALL DIM16
3080 MMI Af30H
3090 ADD E
3100 PUSH P
3110 MOM A»H
3120 ORA L
3130 JNZ Y3
3140 POP p
3150 WR CALL OUTP
3160 POP P
3170 JP WR
3180 POP D
3190 RET
3200 SYS4 PUSH n
3210 CALL KEXIN
3220 XCHG
3230 POP D
3240 INX D
3250 JMP PUSH
3260 SYS5 LDAX n
3270 MOM L^A
3280 ncx D
3290 LDAX D
3300 DCX D
3310 CALL BYTEl
3320 MOM A»L
3330 JMP BYTEl
3340 SYS3 POP H
3350 MOM AtM
3360 CALL OUTP
3370 INX H
3380 DCR C
3390 JNZ SYS8+1
3400 F-CHL
OOlO BASE PUSH D
0020 BSl LXI Dy-6
0030 DAD D
0040 MOV E»M
0050 DCX H
0060 MOM D»M
0070 XCHG
0030 DCR A
0090 JNZ BSl
0100 POT- D
0110 RET
0120 LIT XCHG
0130 INX H
0140 MOM M»B
0150 INX H
0160 MOM MfC
0170 XCHG
0180 RET
0190 INT DAD D
0200 XCHG
0210 LHLD STK2
0220 DAD D

237

6B79 DO 0230 RNC

6B7A 21 OF 69 0240 STKOV LXI H»SM1

6BrD CD 52 69 0250 CALL PRINT

6B80 El 0260 POP H

6BS1 C3 46 69 0270 EXIT

6B84 2A OD 69 0280 LODI LHLD BB

6B87 CD 5D 6B 0290 CALL BASE

6BBA C3 90 6B 0300 ^+3

6B3D 2A on 69 0310 LOD LHLD BB

6B90 13 0320 INX D

6E91 09 0330 DAD B

6B92 2B 0340 DCX H

6B93 7E 0350 MOV AfM

6B94 12 0360 STAX D

6B95 23 0370 INX H

6B96 7E 0380 MOV AfM

6B97 13 0390 INX D

6B98 12 0400 STAX D

6B99 C9 0410 RET

6B9A AF 0420 LODX XRA A

6B9B 2A OD 69 0430 LODXl LHLD BB

6B9E B7 0440 ORA A

6B9F C4 5D 6B 0450 CNZ BASE

6BA2 09 0460 DAD B

6BA3 EB 0470 XCHG

6BA4 4E 0480 MOV CfM

6BA5 2B 0490 DCX H

6BA6 46 0500 MOV BfM

6BA7 EB 0510 XCHG

6BAS 09 0520 DAD B

6BA9 C3 91 6B 0530 JMP UOD+4

6BAC 2A OD 69 0540 STOl LJ€.D BB

6EAF CD 5D 6B 0550 CALL BASE

6BB2 C3 B8 6B 0560 JMP S+3

6BB5 2A OD i 69 0570 STO LI-l-D BB

6BBS 09 0580 DAD B

6BB9 lA 0590 LDAX D

6BEA 77 0600 MOV MfA

6BBB 2B 0610 DCX H

6BBC IB 0620 DCX D

6BBn lA 0630 LDAX D

6BBE 77 0640 MOV M»A

6BBF IB 0650 DCX D

6BC0 C9 0660 RET

6EC1 AF 0670 STOX XRA A

6BC2 EB 0690 STOXl XCHG

6BC3 5E 0690 MOV EfM

6BC4 2B 0700 DCX H

6BC5 56 0710 MOV DfM

6BC6 2B 0720 DCX H

6BC7 ns 0730 PUSH D

6BC3 5E 0740 MOV EfM

6BC9 2B 0750 ncx H

6BCA 56 0760 MOV n»M

6BCB 2B 0770 DCX H

6k:c EB 0780 XCHG

6BCD 29 0790 DAD H

6BCE 09 0800 B

6BCF 44 0810 MOV BfH

6BD0 4D 0820 MOV CfL

6BD1 2A OD 69 0830 LHLD BB

6BD4 B7 0840 ORA A

6BD5 C4 5D 6B osa) CNZ BASE

6BD8 09 0860 DAD B

6BD9 Cl 0870 POP B

6BDA 71 0880 MOV MfC

6BDB 2B 0890 DCX H
6BnC 70 0900 MOV MfB

6BDD C9 0910 RET

6BDE 2A OD 69 0920 CALI LHLD BB

6BE1 44 0930 MOV BfH

6BE2 4D 0940 MOV CfL

6BE3 CD 5D 6B 0950 CfiiJL BASE

6BE6 C3 EE 6B 0960 JMP ^+5

6BE9 2A OD 69 0970 C^ LHLD BB

^BEC 44
ABED 4D
&BEE 05
ABEF EB
6BF0 23
ABFl 72
ABF2 23
6BF3 73
6BF4 D1
6BF5 13
6BF6 13
ABF7 13
ABF8 13
6BF9 13
ABFA 13
ABFB 23
ABFC 70
6BFB 23
ABFE 71
ABFF Cl
ACOO C5
6C01 03
6C02 03
6C03 03
6C04 23
AC05 70
AC06 23
AC07 71
AC03 23
AC09 23
AGOA 22 OD 69
6C0D C9
6C0E EB
6C0F 5E
6C10 2B
6Cil 56
6C12 36 OO
6C14 lA
6C15 23
6C16 77
6C17 EB
6C18 C9
6C19 lA
6C1A IB
6C1B IB
6C1C CD 68 69
6C1F 77
6C20 C9
6C21 CD 68 69
6C24 E9
6C25 2A OD 69
6C28 11 FB FF
6C2B 19
6C2C 56
6C2D 23
6C2E 5E
6C2F EB
6C30 22 OD 69
6C33 EB
6C34 23
6C35 56
6C36 23
6C37 5E
6C38 01 FA FF
6C3B 09
6C3C EB
6C3ri E9
6C3E CD 82 69
6C41 7S
6C42 AC
6C43 09
AC44. 4F

6C45 IF
6C46 A9
6C47 AC

0980 MOV BfH
0990 MOV CfL
1000 PUSH D
1010 XCHG
1020 INX H
1030 MOV M»D

1040 INX H
1050 MOV MfE
1060 POP D
1070 INX D
1080 INX D
1090 INX D
1100 INX D
1110 INX D
1120 INX D
1130 INX H
1140 MOV MfB
1150 INX H

1160 MOV MfC
1170 POP B
1180 PUSH B
1190 INX B
1200 INX B
1210 INX B
1220 INX H
1230 MOV MfB
1240 INX H

1250 MOV M»C
1260 INX H
1270 INX H
1280 SHLD BB
1290 RET
1300 LODA XCHG
1310 MOV E»M
1320 DCX H
1330 MOV DfM
1340 H.O
1350 LDAX D
1360 INX H
1370 MOV M»A
1380 XCHG
1390 RET
1400 STC3A LDAX D
1410 DCX D
1420 DCX D
1430 CA^L POPl
1440 MOV MfA
1450 RET
1460 CAUA CALL POPl
1470 PCHL
1480 POO LHLD I
1490 LXI Df-5
1500 DAD D

1510 MOV DfM
1520 INX H
1530 MOV EfM
1540 XCHG
1550 SHLD BB
1560 XCHG
1570 INX H
1580 MOV DfM
1590 INX H
1600 MOV E»M

1610 LXI Bf-^
1620 DAD B
1630 XCHG

1640 PCHL
1650 SUBl CALL

1660 ADD16 MOV

1670 SU2 XRA H

1680 DAD B
1690 MOV CfA

1700 RAR
1710 XRA C

1720 XRA H

238

SCAB

6C4B
6C4E
6C51
6C54
6C57
6C5S
6C5A
6C5B
6C5E
6C5F
ACA2
6CA3
6C64
<SC65
6C6A
ACA7
AC68
^69
6C6A
6C6B
6C6C
6C6D
6C6E
6C70
6C71

6C7^

6C7^
6C76

6C77

6C7A
6C7B
6C7E
6C7F
6CQ0
6C31
ACS4
6C85
6C88
6C39
6C3C
6C8D
4C90
6C93
6C94
6C97
6C93
<y:9B
6C9C
6C9E
AC9F
^AO
6CA1
ACA2
6CA3
■&CA4
6CA7
ACA8
6CAEt
^AC
^Ati
^BO
6CB2
^B3

^B7
^B8
^B9
^Ba

sn
^Bf

F2 A2 69 1730 JP PUSH 6CC5 C9 2480 RET
C3 79 69 1740 OVFL 6CC6 AF 2490 P09 XRA A
CD 58 69 1750 P02 CAUL POP 6CC7 C3 B2 6C 2500 JMP EQUAL
C3 41 6C 1760 JMP ADD16 6CCA 06 00 2510 Pll MVI B,0
CD 58 69 1770 P03 CALL POP 6CCC 48 2520 , MOU CfB
78 1780 SUB16 AvB 6CCD C5 2530 LESS PUSH B
DA 50 1790 SUI 80 6CCE CD 58 69 2540 CALL POP
B1 1800 ORA C 6CD1 AF 2550 XRA A
C2 3E 6C 1810 JNZ SUBl 6CD2 12 2560 STAX D
79 1820 MOV A»C 6CD3 13 2570 INX D
C3 42 6C 1830 JMP SU2 6CD4 7C 2580 MOV A^H
EB 1840 POl XCHG 6CD5 B8 2590 CMP B
AF IffiO XRA A 6Cn6 CA E4 6C 2600 J2 EQH
9A 1860 SUB M 6CD9 IF 2610 RAR
77 1870 MOV M»A 6CriA AC 2620 XRA H
4F 1880 m^J C»A 6CDB AS 2630 XRA B
2B 1890 ncx H 6cnc FA C3 6C 2640 JM TRUE
9E 1900 SBB M 6CDF FI 2650 FALSE PCW=* P
91 1910 SUB C 6CE0 EE 01 2660 XRI 1
77 1920 MOV M»A 6CE2 12 2670 STAX D
23 1930 ZNX H 6CE3 C9 2680 RET
EB 1940 XCHG 6CE4 7D 2690 EQH MOV A^L
C9 1950 RET 6CE5 B9 2700 Of^ C
1A 08 1960 MUU8 MVI D»S 6CE6 DA C3 6C 2710 JC TRUE
29 1970 DAD H 6CE9 Cl 2720 POP B
07 1980 RLC 6CEA 78 2730 MOV A»B
02 76 6C 1990 JNC *+l 6CEB C2 EF 6C 2740 JNZ *+l
09 2000 DAD B 6CEE A9 2750 XRA C
15 2010 DCR D 6CEF EE 01 2760 XRI 1
C2 70 6C 2020 JNZ MULS42 6CF1 12 2770 STAX D
C9 2030 RET 6CF2 C9 2730 RET
CD 58 69 2040 P04 CALL POP 6CF3 01 oo 01 2790 PIO LXI B»10'
D5 2050 PUSH D 6CF6 C3 CD 6C 2800 JMP LESS
7C 2060 MOV AtH 6CF9 01 01 00 2810 P12 LXI Bwl
5D 2070 MOV EfL 6CFC C3 cn 6C 2820 JMP LESS
21 00 00 2080 LXI H»0 6CFF 06 01 2830 P13 MVI BtI
B7 2090 ORA A 6D01 C3 cc 6C 2840 JMP LESS-1
C4 AE 6C 2100 CNZ MUL8 6D04 CD 58 69 2850 P14 CALL POP
7B 2110 MOV A,E 6D07 7C 2860 MOV AvH
CD AE 6C 2120 CALL MUL8 6D03 BO 2870 ORA B
D1 2130 POP D 6D09 12 2880 STAX D
C3 62 69 2140 JMP PUSH 6D0A 7D 2890 MOV ArL
CD 53 69 2150 P05 CALL POP 6110 B B1 2900 ORA C
D5 2160 PUSH D 6D0C 13 2910 INX D
CD B4 6A 2170 CALL DIV16 6D0D 12 2920 STAX D
D1 2180 POP D 6D0E C9 2930 RET
C3 62 69 2190 JMP PUSH 6D0F CD 58 69 2940 P15 CALL POP
lA 2200 P06 LDAX D 6D12 7C 2950 MOV A»H
EA 01 2210 ANI 1 6D13 AO 2960 ANA B
12 2220 STAX D 6D14 12 2970 STAX D
AF 2230 XRA A 6D15 7D 2980 MOV AtL
IB 2240 DCX D 6D16 A1 2990 ANA C
12 2250 STAX D 6D17 13 3000 INX D
13 2260 INX D 6D13 12 3010 STAX D
C9 2270 RET 6D19 C9 3020 RET CD
TYc-

58 69 2280 P07 CALL POP 6D1A lA 3030 P16 LDAX D
2290 PUSH D 6D1B 2F 3040 CMA CD B4 6A 2300 CALL DIV16 6nic 12 3050 STAX D

to

Dl
2310 XCHG 6D1D IB 3060 DCX n

i-'X

Or?
2320 POP n 6D1E lA 3070 LDAX D

Tfir
62 69 2330 JMP PUSH 6D1F 2F 3080 CMA

ot 01 2340 P08 MVI A»1 6D20 12 3090 STAX D

Pn 58
23^ EQUAL PUSH P 6D21 13 3100 INX D

AF
69 2360 CALL POP 6D22 C9 3110 RET

12
2370 XRA A 6D23 CD 58 69 3120 P17 CALL POP

13
2380 STAX D 6D26 AF 3130 XRA A

7D
2390 INX D 6D27 81 3140 ADD C

B9 2400 MOV A»L 6D28 CA 62 69 3150 JZ PUSH

C2 ntr
2410 Cf^ c 6D2B FA 42 6D 3160 JM SRI

7C
Xlp 6C 2420 JNZ FALSE 6D2E 29 3170 SLl DAD H

Bg 2430 MOV AvH 6D2F 3D 3180 DCR A
C2 df

2440 cr«> B 6030 C2 2E 6D 3190 JNZ SLl
Fi 6C 2450 JNZ FALSE 6D33 C3 62 69 3200 JMP PUSH
12 2460 TRUE POP P 6D36 CD 58 69 3210 PIS CALL POP

2470 STAX D 6D39 AF 3220 XRA A

239

6D3A 91 3230 SUB C

^D36 CA 62 69 3240 JZ PUSH

<^D3E F2 2E 6D 3250 JP SLl

AD41 4F 3260 CfA

6D42 AF 3270 SRI XRA A

AD43 B4 3280 ORA H

^D44 IF 3290
6045 67 3300 tHOSJ HvA

6046 70 3310 hO^ AwL.

6047 IF 3320

6048 6F 3330 MOV LfA

6D49» OC 3340 INR C

604A C2 42 60 3350 JNZ SRI

6040 C3 62 69 3360 JMP POSH

6050 lA 3370 P19 LDAX]

6D51 C6 01 3380 ADI 1

6053 12 3390 STAX D

6054 DO 3400 RNC

6055 62 3410 MOV H»D

6056 6B 3420 MOV LfE

6057 2B 3430 DCX H

6058 34 3440 INR M
6059 C9 3450 RET

605A lA 3460 P20 LDAX

6D5B 06 01 3470 SUI 1

6D5D 12 3480 STAX D

605E DO 3490 RNC

6D5F 62 3500 MOV H»D

6060 6B 3510 MOV L»E

6061 2B 3520 DCX H

6062 35 3530 DCR M

6063 C9 3540 RET

6D64 62 3550 P21 MOV H»D

6D65 6B 3560 MOV L»E

6066 13 3570 INX D

6067 2B 3580 DCX H

6068 7E 3590 MOV AfM

6069 12 3600 STAX D

6D6A 13 3610 INX D

6D6B 23 3620 INX H

606C 7E 3630 MOV AfM

6060 12 3640 STAX D

606E C9 3650 RET

6D6F AF 3660 INIT XRA A

6070 03 04 3670 OUT 4

6072 E5 3680 PUSH H

6073 2A 7F 72 3690 LHLD POSl

6076 22 OE OC 3700 SHLD POS

6079 El 3710 POP H
6D7A 01 07 00 3720 LXI Bf7

6D7D 09 3730 DAD B

6D7E 22 OD 69 3740 SHLD BB

6081 2B 3750 DCX H

6082 2B 3760 DCX H

6D83 EB 3770 XCHG

6084 OB 69 3780 SHLD STK2

6087 6B 3790 MOV L»E

6088 62 3800 MOV HfD

6089 01 46 69 3810 LXI BfEXIT

6D8C 71 3820 MOV MfC

6D8D 2B 3830 DCX H

6D8E 70 3840 MOV MfB

6D8F C9 3850 RET
6090 3860 RLtvIEND EQU

240

Listing 3: P-Code to 8080 Translator Routines

6V90
6090
6090
5A00
5A03
5A03
5A03
5A03
S^03
5A03
5A03
5A03
5BF8
5039
5F1B
5F39
5F73
5F75
5F77
5F79
5F7B
a^TIi
5F7F
5F81
3^83
5F84
5F85
5F86
5F87
5F88
5F89
5F8B
5F8D
5F8F
5F91
5F93
5F95
5F97
5F99
5F9B
5F9D
5F9F
SFAl
SFA3
^A5
^A7
5FA9
sfab
^AD
sfaf

^3

^C7

^C9

C3 F7 64

6C
sn
84
9A
9B
OE
B5
AC
Cl
C2
19
E9
DG
21
73
25
62
4E
54
7B
90
9B

02
02
02
02
02
03
02
02
02
02
03
02
02
03
02
03
03
03
03
03
03
03

0010 * P-COEE TO 8080 TRANSLATOR
0020 ORGA2 EQU 5AOOH
0030 ORG CN^A2
0040 TRANS JMP ORGA2+OAF7H
0050 02 EQU 21
0060 SI EQU 500
0070 S2 EQU 400
0080 PCDEF EQU 2C00H
0090 OBDEF EQU lOOOH
0100 STKl EQU 0
0110 STAK2 EQU RUN-1
0120 TST DS Sl+1
0130 DST DS S2+1
0140 EA DS S2+2
0150 Y12 DS 30
0160 Z12 DS 58
0170 AST DS 2
0130 BOST DS 2
0190 X DS 2
0200 XO DS 2
0210 XI ns 2
0220 PT DS 2
0230 po ns 2
0240 PI DS 2
0250 Cl DS 1
0260 C2 ns 1
0270 F DS 1
0280 Ro ns 1
0290 V DS 1
0300 ML DS 1
0310 G DS 2
0320 I DS 2
0330 J DS 2
0340 K DS 2
0350 K1 ns 2
0360 LO DS 2
0370 LI DS 2
0380 N DS 2
0390 U DS 2
0400 U DS 2
0410 WO DS 2
0420 YST DU LIT-RLW
0430 DU LQD-RUN
0440 DU LOni-RUN
0450 DU LQDX-RUN
0460 EU LODXl-RUN
0470 DU LODA-RUN
0480 DU STO-RUN
0490 ru STOIHRUN
0500 EU STOX-RUN
0510 DU STOXl-RUN
0520 DU STOA-RUN
0530 DU CAL-RUN
0540 DU CALI-RUN
0550 DU CALA-RUN
0560 DU INT-RUN
0570 ZST DU POO-RUN
0580 DU PO 1-RUN
0590 DU P02-RUN
0600 DU P03-RUN
0610 nU P04-RUN
0620 DU P05-RUN
0630 DU P06-RUN

241

5FCB
5FCD
5FCF
5FD1
5FD3
SFIiS
5FD7
5FD9
5FDB
5FDD
5Ftr
5fe:i
5FE3
sres
5FE7
5FE9
5FEB
5FEII
SFEF
5FF1
5FF3
5FF5
5FF7
5FF8
^lE
601F
6020
603B
603C
603E
603F
6055
6056
6053
6059
6074
6075
6077
6078
6080
608E
6090
6092
6093
60 A6
60 A7
60A9
60 B4
60B5
60C6
60C7
60 DA
60 DB
60F6
60 F7
60FF
6100

A4 03
BO 03
C6 03
F3 03
CA 03
F9 03
FF 03
04 04
OF 04
lA 04
23 04
36 04
50 04
5A 04
64 04
F7 01
00 02
06 02
10 02
3C 02
46 02
52 02
OC
2A 2A
OD
09
41 44
OD
00 69
09
50 2D
OD
00 2C
09
4F 42
OD

2A 2A

44 52

43 4F

4A 45

10

54 41 43

41 43

00
09
53
OD
00 00
FF 68
09
53 54
OD
FF 63
20 52
on
20 44
OD
20 46
OD
20 50
OD
48 20
OD
48 20

45 46

49 46

4F 52

2D 43

42 59

42 59

0640
0650
0660
0670
0680
0690
0700
0710
0720
0730
0740
0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
0890
0900
0910
0920
0930
0940
0950
0960
0970
0980
0990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

DW P07-RUN
DU P08-RUN
DU P09-RUN
DU PlO-RtW
DU Pll-RUN
DU P12-RLW
DU Pl3-Rt^
DU P14-RLW
tru P15-RUN
DU P16-RUN
EOJ P17-RLW
DU P18-RUN
DU P19-RUW
DU P20-RUN
DU P21-RUN
DU SYSO-RUN
DU SYSl-RUN
IM SYS2-RUN
DU SYS3-RUN
DU SYS4-RUN
DU SYS5-RUN
EiU SYS8-RUN

DB 12
DB P—code to 8080 TRANSLATION

DB 13
DB 9
DB 'ADDRESS OF RUNTIME MODULE? '

DB 13
DU RUN

PCMSG DB 9
DB 'P-CODE START ADDRESS? '

DB 13
DW PCDEF

DSTMSG DB 9
DB 'OBJECT-CODE START ADDRESS? '

DB 13
DW OBDEF

STKMSl DB 9
DB 'STACK START ADDRESS? '

DB 13
DW STKl
DW STAK2

STKMS2 DB 9
DB 'STACK END ADDRESS? '

DB 13
DW STAK2

REFMSG DB
DB 13

LABMSG DB
DB 13

FWDMSG DB
DB 13

FI^tf1SG DB
DB 13
DB 'H BYTHSr

DB 'H BYTES OF OBJECT CODE PRODUCED — CODE

REFERENCES'

different LABELS'

FORWARD REFERENCES'

P-CODES TRANSLATED <. TOTAL

NDS AT '
612F OD
6130 7C
6131 BA
6132 CO
6133 7D
6134 93
6135 C8
6136 IF
6137 B7
6138 17
6139 FS
613A AF
613B 3C
613C C9
613D CD AD 05
6140 E5
6141 CD 50 6A

1210 DB 13
1220 HDCMP MOV A»H
1230 CMP D
1240 RNZ
1250 MOU A»L
1260 SUB E
1270 RZ
1280 RAR
1290 ORA A
1300 RAL
1310 RM
1320 XRA A
1330 INR A
1340 RET
1350 AIiDRIN CALL OSEQ
1360 PUSH H
1370 CALL HEXIN

E

242

6144
6145
6146
6147
6148
614B
614C
614D
614E
614F
6152
6155
6156
6157
6158
615B
615C
61511
615E
615F
6160
6161
6164
6165
6168
6169
616A
616B
616C
616F
6170
6171
6172
6173
6176
6176
6179
617A
617B
617C
617F
6180
6131
6132
6134
6187
6139
613B
618E
6191
6193
6196
6199
619B
619E
619F
61A2
61A3
<&1A3
^1A6
^lA9
^lAC
^lAE
MBi
^1B2
^IBS
^iBa
^1B9
^IBa

6ibc
^iBti
61B£

^ICi
6lC4

61

El
7B
B2
F5
C2
23
5E
23
56
CD OC OA
CD F3 09
FI
EB
C9
2A 7D 5F
70
23
71
23
72
23
22 7D 5F
C9
21 IE 5F
3D
57
85
6F
D2 70 61
24
4E
23
56
C3 58 61

21 83 5F
7E
23
B6
CA 8E 61
56
2B
4E
06 01
CD 58 61
3E 01
06 CD
C3 65 61
01 13 AF
16 12
CD 58 61
01 12
16 00
CD 58 61
2B

22 7D 5F
C9

21 CD 00
22 8D 5F
3A 83 5F
f^E 04
F2 of 62
B7

09 62

2B
2B
2B
te:
B7

S -^^2
22 Q3 5F

13

Ft

1380 POP H
1390 Moy AtE
1400 ORA D
1410 PUSH P
1420 JN2 ^+7
1430 INX H
1440 MOy E,M
1450 INX H
1460 MOV DtM
1470 CALL reouTi
1400 CALL CRLF
1490 POP P
1500 XCHG
1510 RET
1520 FNG LHLD PT
1530 MOy MfB
1540 INX H
1550 Moy ri»c
1560 INX H
1570 MOV MtD
1580 INX H
1590 SHLD PT
1600 RET
1610 FNQ LXI HfY12
1620 DCR A
1630 ADD A
1640 ADD L
1650 MOV L»A
1660 JNC $+1
1670 INR H
1680 MOV CfM
1690 INX H
1700 MOV DfM
1710 JMP FNG
1720 * LIT
1730 LSOO LXI HfCI
1740 MOV AfM
1750 INX H
1760 ORA M
1770 J2 La30
1780 MOV D»M
1790 DCX H
1800 MOV C»M
1810 BfI
1820 CALL FNG
1830 MVI AfI
1840 MVI Bf205
1850 JMP FNQ
1860 L830 LXI BfOAF13H
1870 MVI Df18
1880 CALL FNG
1890 LXI Bf1312H
1900 MVI DfO
1910 CALL FNG
1920 DCX H
1930 SHLD PT
1940 RET
1950 3»c OPR
1960 La50 LXI Hf205
1970 SHLD J
1980 LDA Cl
1990 CPI 4
2000 JP La90
2010 ORA A
2020 JZ L8S5
2030 LHLD X
2040 DCX H
2050 DCX H
2060 DCX H
2070 DCX H
2080 MOV AfM
2090 ORA A
2100 JNZ LS90
2110 LDA Cl
2120 CPI 2

61C6 F2 DD 61
61C9 2A 7D 5F
61CC 2B
61CD 2B
61CE 2B
61CF 2B
61D0 2B
61D1 7E
61D2 2F
61D3 C6 01
61D5 77
61D6 23
61D7 7E
61DS 2F
6in9 CE 00
61DB 77
61DC C9
61DD 2A 77 5P
61EO 2B
61E1 7E
61E2 3D
61E3 F2 OF 62
61E6 2B
61E7 7E
61E3 FE 04
61EA F2 OF 62
61En 5F
61EE 2A 7D 5F
61F1 01 FA FF
61F4 09
61F5 22 7D 5F
61F8 2A 8D 5F
61FB 45
61FC 3A 83 5F
61FF C6 21
6201 CD 65 61
6204 in
6205 C2 FC 61
6203 C9
6209 21 C3 00
620C C3 12 62
620F 2A an 5F
6212 45
6213 3A S3 5F
6216 C6 10
6213 C3 65 61
621B
621B 3E 02
621D 32 85 5F
6220 21 04 00
6223 22 8D 5F
6226 2A 77 5F
6229 23
622A 6E
622B 26 00
622D 22 93 5F
6230 7D
6231 3C
6232 CA DF 62
6235 3A 85 5F
6238 FE 02
623A C2 9D 62
623D 3A 86 5F
6240 47
6241 3A 87 5F
6244 BO
6245 C2 9D 62
6248 2A 91 5F
624B 23
624C EE
6240 2A SF 5F
6250 CD 30 61
6253 CA 59 62
6256 F2 9D 62
6259 2A 95 5F

2130 JP La70
2140 LHLD PT
2150 DCX H
2160 rex H
2170 rex h
2180 DCX H
2190 DCX H
2200 MOV AfM
2210 CMA
2220 ADI 1
2230 MOV MfA
2240 INX H
2250 MOV AfM
2260 CMA
2270 ACI 0
2280 MOV MfA
2290 RET
2300 L870 LHLD >
2310 DCX H
2320 MOV AfM
2330 DCR A
2340 JP LS90
2350 DCX H
2360 MOV AfM
2370 CPI 4
2380 JP L890
2390 MOV EfA
2400 LHLD PT
2410 LXI Bf-6
2420 DAD B
2430 SHLD PT
2440 LHLD J
2450 MOV BfL
2460 LDA Cl
2470 ADI 33
2480 CALL FNQ
2490 leR E
2500 JNZ «-12
2510 RET
2520 LS85 LXI Hf
2530 JMP ^+3
2540 La90 LHLD J
2550 MOV BfL
2560 LDA Cl
2570 ADI 16
2580 JMP FNQ
2590 # LOD
2600 L900 MVI Af
2610 STA F
2620 L925 LXI Hf
2630 SHLD J
2640 LHLD X
2650 INX H
2660 MOV LfM
2670 MVI HfO
2680 SHLD LO
2690 MOV AfL
2700 INR A
2710 JZ L1040
2720 LDA F
2730 CPI 2
2740 JNZ L930
2750 LDA RO
2760 MOV BfA
2770 LDA V
2780 ORA B
2790 JNZ L930
2800 LHLD K1
2810 INX H
2820 XCHG
2830 LHLD K
2840 CALL HDCMP
2850 JZ *+3
2860 JP L930
2870 LHLD LI

243

625C EB 2880 XCHG

625D 2A 93 5F 2890 LHLD LO

6260 CD 30 61 2900 CALL HDCMP

6263 C2 9D 62 2910 JNZ L930

6266 2A 77 5F 2920 LH_D X

6269 2B 2930 DCX H

626A 3A 84 5F 2940 LDA C2

626D BE 2950 ChP M

626E C2 9D 62 2960 JNZ L930

6271 2B 2970 DCX H

6272 3A 83 5F 2980 Cl

6275 BE 2990 CMP M

6276 C2 9D 62 3000 sINZ L930

6279 E5 3010 PUSH H

627A 2A 8F 5F 3020 L>*-D K

627D 91 5F 3030 SHLD K1

6280 El 3040 POP H

6281 2B 3050 DCX H

6282 2B 3060 DCX H

6283 7E 3070 MOV A»M

6284 FE 02 3080 CPI 2

6286 CA 96 62 3090 JZ L920

6289 01 13 13 3100 LXI Bf1313H

628C 16 00 3110 MVI D»0

628E CD 58 61 3120 CALL FNG

6291 2B 3130 DCX H

6292 22 7D 5F 3140 SHLD PT

6295 C9 3150 RET
6296 06 CD 3160 L920 MVI B»205

6298 3E 25 3170 MVI A»37

629A C3 65 61 3180 JMP FNQ

629D 2A 83 5F 3190 L930 LHLD Cl

62A0 29 3200 DAD H

62A1 06 01 3210 MVI BtI

62A3 4D 3220 MOV C»L

62A4 54 3230 MOV DfH

62A5 CD 58 61 3240 CALL FNG

62AS 21 02 00 3250 LXI H»2

62AB 22 8D 5F 3260 SI-t_D J

62AE 3A 37 5F 3270 LDA V

62B1 B7 3280 ORA A

62B2 2A 93 5F 3290 LHLD LO

62B5 7D 3300 MOV AfL

6206 C2 ca 62 3310 JNZ L960

62B9 22 95 5F 3320 SHLD LI

62BC 21 00 00 33r30 LXI HfO

62BF 22 8D 5F 3340 SHLD J

62C2 2A 8F 5F 3350 LHLD K

62C5 22 91 5F 3360 SHLD K1

62C8 B7 3370 L960 ORA A

62C9 CA DF 62 3380 JZ L1040

62CC 2A 8D 5F 3390 LHLD J

62CF 23 3400 INX H

62D0 SD 5F 3410 SHLD J

62D3 06 3E 3420 MVI Bf62

62D5 4F 3430 MOV CvA

62D6 16 00 3440 MVI D»0

62D8 CD 58 61 3450 CALL FNG

62DB 2B 3460 DCX H

62DC ■70 7D 5F 3470 SH-D PT

62DF 3A 85 5F 3480 L1040 LDA F

62E2 2A 8D 5F 3490 LHLD J

62E5 85 3500 ADD L

62E6 06 CD 3510 MVI B»205

62E8 C3 65 61 3520 JMP FNQ

62EB
62EB 3E 07
62En 32 S5 5F
62F0 C3 20 62
62F3
62F3 2A TT' 5F
62F6 23
62F7 7E
62F8 32 93 5F
62FB B7

OOlO * STO
0020 LllOO HVI A»7
0030 STA F
0040 JMP L925
0050 ♦ CAL
0060 L1200 LHLD X
0070 INX H
0080 MOV ArM
0090 STA LO
0100 ORA A

62FC C2 09 63
62FF 06 CD
6301 3E OC
6303 CD 65 61
6306 C3 39 63
6309 3C
630A C2 14 63
630D 06 CD
630F 3E OE
6311 C3 65 61
6314 06 3E
6316 3A 93 5F
6319 4F
631A 16 00
631C CD 58 61
631F 2B
6320 22 7D 5F
6323 06 CD
6325 3E OD
6327 CD 65 61
632A C3 39 63
632D
632D 2A 8F 5F
6330 23
6331 EB
6332 2A 83 5F
6335 CD 30 61
6338 C8
6339 CD 49 63
633C 06 C3
633E 3A BB 5F
6341 4F
6342 3A 8D 5F
6345 57
6346 C3 58 61
6349 2A S3 5F
634C 22 73 5F
634F 21 01 00
6352 22 SB 5F
6355 2A 9D 5F
6353 22 SD 5F
635B 2A SB 5F
635E EB
635F 2A SD 5F
6362 19
6363 AF
6364 B4
6365 IF
6366 67
6367 7D
6368 IF
6369 F6 01
636B 6F
636C 22 97 5F
636F 11 03 5A
6372 19
6373 5E
6374 23
6375 56
6376 2A 73 5F
6379 CD 30 61
637C CA A2 63
637F F2 SD 63
6382 2A 97 5F
6385 2B
6336 2B
6387 22 SD 5F
638A C3 95 63
638D 2A 97 5F
6390 23
6391 23
6392 22 SB 5F
6395 2A 8B
6398 EB
6399 2A SD 5F

0110 JNZ L1225
0120 MVI B»205
0130 MVI A»12
0140 CALL FNQ
0150 JMP L1260
0160 L1225 INR A
0170 JNZ L1230
0180 MVI B»205
0190 MVI Afl4
0200 JMP FNQ
0210 L1230 MVI B»62
0220 LDA LO
0230 MOV CtA
0240 MVI DfO
0250 CALL FNG
0260 DCX H
0270 SHLD PT
0280 MVI By205
0290 MVI A»13
0300 CALL FNQ
0310 JMP L1260
0320 * JMP
0330 L1250 LHLD K
0340 INX H
0350 XCHG
0360 LHLD Cl
0370 Cfi±±. HDCr«^
0380 RZ
0390 L1260 CALL S1300
0400 MVI Brl95
0410 LDA I
0420 MOV CfA
0430 LDA J
0440 MOV DfA
0450 JMP FNG
0460 S1300 LHLD Cl
0470 SHLD AST
0480 LXI H»1
0490 SHLD 1
0500 LHLD UK)
0510 SHLD J
0520 L1320 LHLD I
0530 XCHG
0540 LHLD J
0550 DAD D
0560 XRA A
0570 ORA H
0580 RAR
0590 MOV HfA
0600 MOV AfL

0610 RAR
0620 ORI 1
0630 MOV LfA
0640 SHLD N
0650 LXI DfTST

0660 DAD D
0670 MOV EfM
0680 INX H
0690 MOV DfM
0700 LHLD AST
0710 CALL HDCMP

0720 JZ L1360

0730 JP «+ll
0740 LHLD N
0750 DCX H

0760 DCX H
0770 SHLD J
0780 JHP

0790 LHLD N
0800 INX H
0810 INX H
0820 SHLD I ^ r
0830 L1350 lHLD I

0840 XCHG

0850 LHLD J

244

639C CD 30 61
639F F2 5B 63
63A2 2A 97 5F
63A5 11 F8 5B
63Aa 19
63A9 5E
63AA 23
63AB 56
63AC 21 20 20
63AF CD 30 61
63B2 C2 EO 63
63B5 2A 89 5F
63Ba 23
63B9 22 89 5F
63BC 29
63BD 11 39 SB
63C0 19
63C1 EB
63C2 2A 7D 5F
63C5 23
63C6 EE
63C7 73
63C8 23
63C9 72
63CA 2A 97 5F
63CD 6C
63CE 26 00
63D0 22 SD 5F
63D3 65

63E4
63D7
63D8
63DB
63DC
63DF

63E0
63E3

0860 CALL HDCMP
0870 JP L1320
0880 LI360 LHLD N
0890 LXr D»DST
0900 DAD D
0910 MOV EfM
0920 INX H
0930 MOV DfM
0940 LXI H»2020H
0950 CALL HDCMP
0960 JNZ L1400
0970 LHLD G
0980 INX H
0990 SHLD G
1000 DAD H
1010 LXI n,EA
1020 DAD D
1030 XCHG
1040 LHLD PT
1050 INX H
1060 XCHG
1070 MOV MwE
1080 INX H
1090 MOV MfD
1100 LHLD N
1110 MOV LfH
1120 MVI H»0
1130 SHLD J
1140 MOV H»L

1150 CALL ^EGH
1160 XCHG
1170 LHLD N
1130 DAD D
1190 SI-LD I
1200 RET
1210 L1400 LHLD N
1220 LXI DfDST
1230 DAD D
1240 MOV E^M
1250 INX H
1260 MOV L»M
1270 MVI H»0
1280 SHLD J
1290 MOV L»E
1300 SHLD I
1310 RET
1320 * INT
1330 L1500 LHLD Cl
1340 MOV AfL
1350 ORA H
1360 RZ
1370 DAD H
1380 LXI Df4
1390 CALL HDCMP
1400 JZ L1515
1410 JM L1515
1420 LXI Df-A
1430 CALL HDCMP
1440 JC L1530
1450 L1515 XCHG
1460 LXI Hfl9
1470 SHLD J
1480 XCHG
1490 MOV AfH
1500 ORA A
1510 JP L1520
1520 CALL NEGH
1530 XC3G
1540 LXI Hf27
1550 SHLD J
1560 XCHG
1570 L1520 MOV A»L
1580 ANI OFEH
1590 MOV LfA
1600 L1521 MOV AfL

642D B4
642E C8
642F E5
6430 2A 80 5F
6433 45
6434 4D
6435 16 00
6437 CD 58 61
643A 2B
643B 22 70 5F
643E El
643F 2B
6440 2B
6441 C3 2C 64
6444 40
6445 54
6446 06 21
6448 CD 58 61
644B 06 CD
6440 3E OF
644F C3 65 61
6452
6452 2A BF 5F
6455 23
6456 EB
6457 2A 83 5F
645A CD 30 61
645D Ca
645E 06 lA
6460 OE IB
6462 51
6463 CD 58 61
6466 36 IF
6468 23
6469 22 7D 5F
646C CD 49 63
646F 06 D2
6471 2A 77 5F
6474 23
6475 7E
6476 3D
6477 FA 7C 64
647A 06 DA
647C 3A 8B 5F
647r 4F
6480 3A 3D 5F
6483 57
6484 C3 58 61
6487
6487 3A S3 5F
643A C6 15
648C 3C
64811 F5
648E 3A 83 5F
6491 FE 08
6493 CA 9E 64
6496 FI
6497 C6 10
6499 06 CD
649B C3 65 61
649E 2A 77 5F
64A1 2B
64A2 2B
64A3 6E
64A4 26 00
64A6 22 an 5F
64A9 CD 6F 69
64AC 29
64AD 5D
64AE 54
64AF 29
64B0 E5
64B1 19
64B2 11 FA FF
64B5 19

1610 ORA H
1620 RZ
1630 PUSH H
1640 LHLD J
1650 MOV BfL
1660 MOV CfL
1670 MVI DfO
1680 CALL FNG
1690 DCX H
1700 SHLD PT
1710 POP H
1720 DCX H
1730 ICX H
1740 JMP L1521
1750 L1530 MOV Cfl
1760 MOV DfH
1770 MVI Bf33
1780 CALL FNG
1790 MVI Bf205
1800 MVI AflS
1810 JMP FNQ
1820 * JPC
1830 L1550 LHLD K
1840 INX H
1850 XCHG
1860 LHLD Cl
1870 CALL HDCf^
1880 RZ
1890 MVI Bf26
1900 MVI Cf27
1910 MOV DfC
1920 CALL FNG
1930 MVI Mf31
1940 INX H
1950 SHLD PT
1960 CALL S1300
1970 MVI Bf210
1980 LHLD X
1990 INX H
2000 MOV A»M
2010 VCR A
2020 JM *+2
2030 MVI B»218
2040 LDA I
2050 MOV C,A
2060 LDA J
2070 MOV DfA
2080 JMP FNG
2090 * CSP
2100 L1600 LDA Cl
2110 ADI 02
2120 IhR A
2130 PUSH P
2140 LDA Cl
2150 CPI 8
2160 JZ L1620
2170 POP P
2180 ADI 16
2190 MVI B,205
2200 JMP FNQ
2210 L1620 LHLD X
2220 DCX H
2230 DCX H
2240 MOV LfM
2250 MVI H»0
2260 SHLD J
2270 CALL NEGH
2230 DAD H
2290 MOV E»L
2300 MOV DfH
2310 DAD H
2320 PUSH H
2330 DAD D
2340 LXI Df-6
2350 DAD D

245

64B6 EB 2360 XCHG 6535 El 3110 POP H

64EZ 2A 70 5F 2370 LHLD PT 6536 21 3E 60 3120 LXI HtPCMSG

64BA 19 2380 DAD D 6539 CD 3D 61 3130 CALL ADDRIN

AABB 22 ZD 5F 2390 SHLD PT 653C 77 5F 3140 SHLD X

64BE D1 2400 POP D 653F 22 79 5F 3150 SHLD XO

64BF 2A 77 5F 2410 LHl_D X 6542 21 58 60 3160 LXI H»DSTMSG

64C2 19 2420 DAD D 6545 CD 3D 61 3170 CALL ADDRIN

64C3 2B 2430 OCX H 6548 7F 5F 3180 SHLD PO

64C4 2B 2440 OCX H 654B ■- 7D 5F 3190 SHLD PT

64C5 22 7B 5F 2450 SHLD XI 654E 01 ri3 AF 3200 LXI Br0AFD3H

64CS 06 OE 2460 MVI Bfl4 6551 16 04 3210 MUI Df4

64CA 3A SD 5F 2470 LDA J 6553 CD 61 3220 CALL FNG

64Cri 4F 2480 MOO CfA 6556 01 00 31 3230 LXI B^SIOOH

64CE 16 00 2490 MOI DtO 6559 16 10 3240 MUI DtIOH

64D0 CD 58 61 2500 CALL FNG 655B CD 58 61 3250 CALL FNG

6403 2B 2510 DCX H 655E 21 77 60 3260 LXI H^STKMSl

64D4 22 ZD 5F 2520 SHLD PT 6561 CD 3D 61 3270 CALL ADDRIN

6407 FI 2530 POP P 6564 E5 32B0 PUSH H

6408 C6 OE 2540 ADI 14 6565 C2 71 65 3290 JNZ ^+9

640A 06 CD 2550 MUI B»205 6568 EB 3300 XCHG

64DC CD 65 61 2560 CALL FNQ 6569 23 3310 INX H

64DF EB 2570 XCHG 656A 5E 3320 MOV E»M

64E0 3A BD 5F 2580 LDA J 656B 23 3330 INX H

64E3 4F 2590 MOO C»A 656C 56 3340 MOV D^M

64E4 2A ZB 5F 2600 LHLD XI 656D EB 3350 XCHG

64E7 ZE 2610 L1640 MOO A»M 656E C3 77 65 3360 .JMP *+6

64E3 12 2620 STAX D 6571 21 92 60 3370 LXI H»STKMS2

64E9 13 2630 INX D 6574 CD 3D 61 3380 CALL ADDRIN

64EA 23 2640 INX H 6577 CD FS 09 3390 CALL CRLF

64EB 23 2650 INX H 657A CD 6F 69 3400 CALL NEGH

64EC 23 2660 INX H 657D 06 11 3410 Mvr B^IZ

64EO 23 2670 INX H 657F 4D 3420 MOV C»L

64EE OD 2680 OCR C 6580 54 3430 MOV DfH

64EF C2 E7 64 2690 JNZ L1640 6581 2A 7D 5F 3440 LHLD PT

64F2 EB 2700 XCHG 6584 23 3450 INX H

64F3 22 ZD 5F 2710 SHLO PT 6585 23 3460 INX H

64F6 C9 2720 RET 6586 23 3470 INX H

64FZ 2730 * MAIN PROGRAM 6587 •sn -* 7D 5F 3480 SHLD PT

64FZ AF 2740 BEGIN XRA A 65SA CD 58 61 3490 CALL FNG

64F8 03 04 2750 OUT 4 658D 2A 75 5F 3500 LHLD BOST

64FA 21 03 5A 2760 LXI HyTST 6590 06 CD 3510 MVI Bt205

64FD 11 9C 05 2770 LXI D^YST-TST 6592 4D 3520 MOV CtL

6500 36 00 2780 ZERO MOI MfO 6593 54 3530 MOV D»H

6502 23 2790 INX H 6594 CD 58 61 3540 CALL FNG

6503 IB 2800 DCX D 6597 El POP H

6504 ZB 2810 MOO A»E 6598 22 75 5F 3560 SHLD BOST

650 5 E2 2820 ORA D 659E 0010 * FIRST PASS

6506 C2 00 65 2830 ■JNZ ZERO 659B 21 01 00 0020 L400 LXI H»1

6509 21 F7 5F 2840 LXI H»GOMSG 659E 9B 5F 0030 SHLD Ul

650C CD AD 05 2850 CALL OSEQ 65A1 2A 77 5F 0040 LHLD X

650 F CD FS 09 2860 CALL CRLF 65A4 7E 0050 L420 MOV AtM

6512 23 2870 INX H 65A5 3C 0060 INR A

6513 CD 3D 61 2880 CALL ADDRIN 65A6 CA D6 65 0070 JZ L470

6516 22 /’5 5F 2890 SHLD BOST 65A9 23 0080 INX H

6519 E5 2900 PUSH H 65AA 23 0090 INX H

651A 11 IB 5F 2910 LXI DtY12 65AB 23 0100 INX H

6510 21 9F 5F 2920 LXI H»YST 65AC 23 0110 INX H

6520 3E 2C 2930 MOI A*44 65AD 3D 0120 DCR A

6522 4E 2940 SETL MQO C»M 65AE FE 04 0130 CPI 4

6523 23 2950 INX H 65B0 DA A4 65 0140 JC L420

6524 46 2960 MOO BfM 65B3 FE 05 0150 CPI 5

6525 23 2970 INX H 65B5 CA A4 65 0160 JZ L420

6526 E3 2980 XTHL 65Ba FE 08 0170 CPI 8

6527 E5 2990 PUSH H 65BA D2 A4 65 0180 JNC L420

6523 09 3000 DAD B 65BD E5 0190 PUSH H

6529 EB 3010 XCHG 65BE 2B 0200 DCX H

652A 73 3020 MOO MfE 65BF 46 0210 MOV BfM

652B 23 3030 INX H 65C0 2B 0220 DCX H
MOV CfM

652C 72 3040 MOO MfD 65C1 4E 0230

6520 23 3050 INX H 65C2 2A 9B : 5F 0240 LHLD U

652E EE 3060 XCHG 65C5 23 0250 INX H

652F El 3070 POP H 65C6 23 0260 INX H
SHLD W
LXI D»TST 6530 E3 3080 XTTL 65C7 oo -<• 9B : 5F 0270

6531 30 3090 DCR A 65CA 11 03 ; 5A 0280

6532 C2 22 ' 65 3100 JNZ SETE 65CD 19 0290 DAD D

246

65CE 2B
65CF 70
65D0 2B
65D1 71
65D2 El
6503 C3 A4 65
6506 22 77 5F
6509 2A 9B 5F
650C 2B
6500 AF
65DE B4
65DF IF
65E0 54
65E1 70
65E2 IF
65E3 5F
65E4 EB
65E5 CD 13 6B
65ES EB
65E9 2B
65EA 22 9B 5F
65ED EB
65EE 21 A9 60
65F1 CD AD 05
65F4 CD FS 09
65F7 EB
65F8 11 AO 00
65FB CD 30 61
65FE DA 5B 66
6601
6601 44
6602 4D
6603 21 05 00
6606 22 SO 5F
6609 23
660A 23
660B 22 8B 5F
660E C5
660F OE 03
6611 2A 8D 5F
6614 2B
6615 2B
6616 2B
6617 2B
6618
6619
661C
661F
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
662a
662B
662C
66211
6630

■ 6634

I *637
m. ^3a

II

2A £
11 0
19
7E
23
66
6F
E3
EB
19
TE
23
66
6F
EB
E3
CD 3
CA 4
EB
El

0300 DCX H
0310 MOV HwB
0320 DCX H
0330 MOV M.C
0340 POP H
0350 JMP L420
0360 L470 SI-LD X
0370 LHLD Ul
0380 DCX H
0390 XRA A
0400 ORA H
0410 RAR
0420 MOV DrH
0430 MOV A^L
0440 RAR
0450 MOV E»A
0460 XCHG
0470 CALL SYS3+3
0480 XCHG
0490 DCX H
0500 SHLD U
0510 XCHG
0520 LXI H^REFMSG
0530 CALL OSEQ
0540 CALL CRLF
0550 XCHG
0560 LXI Dr 160
0570 CALL HDCMP
0580 JC L500
0590 * PRE-COWIRESSION
0600 MOV BrH
0610 MOV CfL
0620 LXI H»5
0630 SHLD J
0640 L4S3 INX H
0650 IHX H
0660 SHLD I
0670 PUSH B
0680 Cr3
0690 LHLD J
0700 DCX H
0710 DCX H
0720 DCX H
0730 DCX H
0740 L4a6 PUSH H
0750 LHLD I
0760 LXI DrTST
0770 DAD D
0780 MOV A»M
0790 INX H
0800 MOV H»M
oaio MOV LrA
0820 XTHL
0830 XCHG
0840 DAD D
0850 MOV AfM
0860 INX H
0870 MOV HrM
0880 MOV LrA
0890 XCHG
0900 XTHL
0910 CALL HDCMP
0920 J2 L489
0930 XCHG
0940 POP H
0950 INX H
0960 INX H
0970 DCR C
0980 JNZ L4S6
0990 SHLD J
1000 LXI BrTST
1010 DAD B
1020 MOV MrE
1030 INX H
1040 MOV MrD

6645 C3 49 66
6648 El
6649 Cl
664A 59
664B 50
664C 2A SB 5F
664F CD 30 61
6652 C2 09 66
6655 2A SD 5F
6658 22 9B 5F
665B 2B
665C 2B
665D 4D
665E 44

665F 21 01 00
6662 22 SB 5F
6665 59
6666 50
6667 CD 30 61
666A CA 70 66
666D F2 Cl 66
6670 AF
6671 32 73 5F
6674 EB
6675 22 SD 5F
6678 EB
6679 2A SB 5F
667C CD 30 61
667F CA 85 66
6682 F2 B2 66
6685 21 03 5A
6688 19
6689 5E
663A 23
668B 56
66ac 23
6680 7E
66SE 23
66SF E5
6690 66
6691 6F
6692 EB
6693 CD 30 61
6696 DA A9 66
6699 EB
669A E3
669E 72
669C 2B
6690 73
669E D1
669F 2B
66A0 72
66A1 2B
66A2 73
66A3 3E FF
66A5 32 73 5F
66AS E5
66A9 El
66AA 2A SD 5F
66AD 2B
66AE 2B
66AF C3 75 66
66B2 3A 73 5F
66B5 B7
66B6 CA Cl 66
66B9 2A SB 5F
66BC 23
66BD 23
66EE C3 62 66
66C1 21 01 00
66C4 22 SD 5F
66C7 21 03 00
66CA 22 SB 5F
66CD EB
66CE 2A 9B 5F

1050 JMP L490
1060 L4B9 POP H
1070 L490 POP B
1080 MOV E»C
1090 MOV DrB
1100 LHLD I
1110 CALL HDCMP
1120 JNZ L483
1130 LHLD J
1140 SHLD U
1150 L500 DCX H
1160 DCX H
1170 MOV CrL
1180 MOV BrH
1190 LXI Hrl
1200 L505 SHLD I
1210 MOV ErC
1220 MOV DrB
1230 CALL HDCMP
1240 JZ *+3
1250 JP L600
1260 XRA A
1270 STA AST
1:^0 XCHG
1290 L515 SHLD J
1300 XCHG
1310 LHLD I
1320 CALL HDCMP
1330 JZ *+3
1340 •JP L555
1350 LXI H»TST
1360 DAD D
1370 MOV EtM
1380 INX H
1390 MOV DrM
1400 INX H
1410 MOV ArM
1420 INX H
1430 PUSH H
1440 MOV HrM
1450 MOV L»A
1460 XCHG
1470 Cm_ HDCMP
1480 JC L550
1490 XCHG
1500 XTHL
1510 MOV M*D
1520 DCX H
1530 MOV M»E
1540 POP D
1550 DCX H
1560 MOV MrD
1570 DCX H
1580 MOV MrE
1590 MVI Ar-l
1600 STA AST
1610 PUSH H
1620 L550 POP H
1630 LHLD J
1640 DCX H
1650 DCX H
1660 JMP L515
1670 L555 LDA AST
1680 ORA A
1690 JZ L600
1700 LHLD I
1710 INX H
1720 INX H
1730 sJMP L505
1740 1 L600 LXI H»1
1750 SHLD J
1760 LXI Hr3
1770 L605 ShLD I
1780 XCHG
1790 LHLD U

247

66111
66D4
66D7
66DA
66EIB
66DC
66DD
66EIE
66DF
66e:o
66E:3
66E6
66E7
66E8
66E9
66EA
66EB
66EE
66F1

CD 30 61
FA OA 67
21 03 5A
19
5E
23
56
23
D5
2A SD 5F
11 03 5A
19
5E
23
56
El
CD 30 61
CA 02 67

1800
1810
1820
1830
1340
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980

CALL HDCMP
JM L635
LXI H»TST
DAD D
MOV EfM
INX H
MOV DrM
INX H
PUSH D
LHLD J
LXI D»TST
DAD D
MOV E»M
INX H
MOV D»M
POP H
CALL HDCMP
JZ L630
PUSH H

66F2 2A SD 5F 1990 LHLD J

66F5 23 2000 INX H

66F6 23 2010 INX H

66F7 22 BD 5F 2020 SHLD J

66FA 11 03 5A 2030 LXI DrTST

66Fn 19 2040 DAD D

66FE D1 2050 POP D

66FF 7^3 2060 MOV MfE

6700 23 2070 INX H

6701 72 2080 MOV M»D

6702 2A SB 5F 2090 L630 LHLD I

6705 23 2100 INX H

6706 23 2110 INX H

6707 C3 CA 66 2120 JMP L605

670A 2A 8D 5F 2130 1 L635 LHLD J

670D 22 9D 5F 2140 SHLD WO

6710 23 2150 INX H

6711 23 2160 INX H

6712 36 FF 2170 MVI M»-l

6714 23 2180 INX H

6715 36 FF 2190 MVI Mf-1

6717 2A 8D 5F 2200 LHLD J

671A 29 2210 DAD H

671B EB 2220 XCHG

671C 21 F9 5B 2230 LXI H»DST+1

67 IF 36 20 2240 L670 MVI Mt'

6721 23 2250 INX H

6722 IB 2260 DCX D

6723 7B 2270 MOV AfE

6724 B2 2280 ORA D

6725 C2 IF 67 2290 .JNZ L670

6728 2A SD 5F 2300 LHLD J

672B 23 2310 INX H

672C AF 2320 XRA A

672D B4 2330 ORA H

672E IF 2340 RAR

672F 67 2350 MOV HyA

6730 7D 2360 MOV ArL

6731 IF 2370 RAR

6732 6F 2380 MOV LfA

6733 CD 13 6E 2390 CALL SYS3+3

6736 21 B5 60 2400 LXI H^LABMSG

6739 CD AD 05 2410 CALL OSEQ

673C CD F8 09 2420 CALL GROUT

673F 2430 * PASS 1 ENDS

673F 2A 79 5F 2440 LHLD XO

6742 2B 2450 DCX H

6743 2B 2460 DCX H

6744 2B 2470 DCX H

6745 2B 2480 DCX H

6746 22 77 5F 2490 SHLD X

6749 21 FF FF 2500 LXI

674C 22 3F 5F 2510 SHLD K

674F 23 2520 INX H

6750 22 39 5F 2530 SHLD G

6753 22 91 5F 2540 SHLD K1

6756
6759
675A
675D
6760
6761
6762
6764
6767
6769
676C
676F
6770
6773
6774
6775
6776
6777
677A
677D
677E
6731
6732
6785
6738
673B
678C
678E
6791
6794
6795
6798
6799
679A
679D
67 AO
67Aj>
67 A6
67A9
67AC
67 AF
67B2
67B5
67BS
67BB
67BE
67BF
67C0
67C3
67C4
67C7
67CA
67CB
67CE
67CF
67D2
67D3
67D6
67D9
67DC
67DD
67E0
67E1
67E2
67E3
67E6
67E7
67Ea
67EB
67EE
67EF
67F2
67F5
67FS
67FB

22 95 5F

CD
21

22 9B 5F
21 03 5A
23
6E
26 00
22 99 5F
3E 14
32 33 5F
21 6C 67
E5
2A 77 5F
23
23
23
23
22 77 5F
2A 8F 5F
23
22 8F 5F
AF
32 36 5F
2A TD 5F
3A 38 5F
3C
FE 14
DA CF 67
CD F8 09
EE
2A 8F 5F
EB
E5
21 E7 03
CD 30 61
D^i BE 67

02 OA
63 00

CD 30 61
DA BE 67
CD 02 OA
21 09 00
CD 30 61
DA BE 67
CD 02 OA
El
EB
CD 13 6B
EB
CD 02 OA
CD 02 OA
7C
CD 11 OA
AF
32 88 5F
7D
CD 11 OA
CD 02 OA
2A 77 5F
7E
32 85 5F
23
23
7E
32 83 5F
23
7E
32 84 5F
2A 99 5F
EB
2A SF 5F
CD 30 61
C2 20 68
2A 9B 5F
23

2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2730
2790
2800
2810
2820
2330
2B40
2350
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290

SHLD LI
INX H
SHLD U
LXI H^TST
INX H
MOV LfM
MVI H^O
SHLD U
MVI Af20
STA ML

L710 LXI HtL710
PUSH H
LHLD X
INX H
INX H
INX H
INX H
SHLD X
LHLD K
INX H
SHLD K
XRA A
STA RO
LHLD PT
LDA ML
INR A
CPI 20
JC L715
CALL CRLF
XCHG
LHLD K
XCHG
PUSH H
LXI H»999
CALL HDCMP
JC CSYS
CALL BLKl
LXI H»99
CALL HDCMP
JC CSYS
CALL BLKl
LXI Hw9
CALL HDCMP
JC CSYS
CALL BLKl

CSYS POP H
XCHG
CALL SYS3+3
XCHG
CALL BLKl
CALL BLKl
MOV ArH
CALL BYTEl
XRA A

L715 STA
MOV A»L
CALL BYTEl
CALL BLKl
LHLD X
MOV A»M
STA F
INX H
INX H
MOV A^M
STA Cl
INX H
MOV AfM
STA C2
LHLJi U
XCHG
LHLD
CALL HDCM
.JNZ L76j
LHLD W
INX H

248

23
'yry 9B
li
19
BB
2A
EB
2B
72
2B
73
3E

11
19
5E
23
56
EB

AF

01

99

87

67FC
67FD
6800
6803
6804
6805
6800
6809
680A
680B
6S0C
6808
6S0F 32 86
6812 2A 9B
6815
6818
6819
681A
681B
681C
681D
6820
6821 32 87
6824 3A 85
6827 FE 09
6829 DA 35
682C D6 10
6a2E 32 85
6831 21
6834 34
6835 B7
6836 CA
6839
683A
683D
683E
6841
6842
6845

’6846
6849
684A
6840
684E
6851
6852
6855
6856
6859
6859
685A
685D
6860
6861
6862
6865
6868
6868
686E
6871
6874
6877
6878
6879
6S7A

*87ti

687e
687f
6^

^3

3D
CA
3D
CA
3D
CA
3D
CA
3D
CA
3D
CA
3D
CA
3D

El

2A 89
5D
54

22 SI
21 e9
E5
19
19
23
23
EB
El
23
23

^7

m A1
ES
DS
Se:

3300 INX H
5F 3310 SHLD U
5B 3320 LXI D^DST

3330 DAD D
3340 XCHG

5F 3350 LHUD PT
3360 XCHG
3370 ncx H
3380 MOV M»D
3390 DCX H
3400 MOV MrE
3410 MVI Afl

5F 3420 STA RO
5F 3430 U-ILB U
5A 3440 Lxr DyTST

3450 DAD D
3460 MOV E»M
3470 INX H
3480 MOV DrM
3490 XCHG

5F 3500 SHLD U
3510 L765 XRA A

5F 3520 STA V
5F 3530 LDA F

3540 CPI 9
68 3550 JC L7S0

3560 SUI 16
5F 3570 STA F
5F 3580 LXI H»V

3590 INR M
3600 L7B0 ORA A

61 3610 J2 L800
3620 DCR A

61 3630 JZ L850
3640 OCR A

62 3650 JZ L900
3660 DCR A

62 3670 •JZ LllOO
3680 DCR A

62 3690 JZ L1200
3700 DCR A

63 3710 JZ L1500
3720 DCR A

63 3730 JZ L1250
3740 DCR A

64 3750 JZ L1550
3760 DCR A

64 3770 JZ L1600
0010 « FORUARD REFI
0020 L1700 POP H

09 0030 CALL CRLF
5F 0040 LHLD G

0050 MOV E»L
0060 MOV BwH

6B 0070 CALL SYS3+3
60 0080 LXI HvFUDMSG
05 0090 CALL OSEQ
09 0100 CALL CRLF
5F 0110 LHLD PT
5F 0120 SHLD PI
5D 0130 LXI HrEA

0140 PUSH H
0150 DAD D
0160 DAD D
0170 INX H
0180 INX H
0190 XCHG
0200 POP H
0210 1 L17S0 INX H
0220 INX H

61 0230 CALL HDCi^
68 0240 JNC L1850

0250 PUSH H
0260 PUSH D
0270 MOV EfM

63Q9 23 0280 INX H

63SA 56 0290 MOV DrM

63SB EB 0300 XCHG

6S8C E5 0310 PUSH H

688D 5E 0320 MOV EfM

6aSE 23 0330 INX H

6aSF 56 0340 MOV DfM

6890 EB 0350 XCHG

6891 11 F8 5B 0360 LXI DfDST

689^- 19 0370 DAD D

6895 5E 0380 MOV EfM

6896 23 0390 INX H

6897 56 0400 MOV DfM

6898 El 0410 POP H

6899 73 0420 MOV MfE

6S9A 23 0430 INX H

689B 72 0440 MOV M»D

639C ni 0450 POP D

6890 El 0460 POP H
689E C3 7E 68 0470 JMP L1780

68A1 2A 75 5F 0480 1 L18S0 LHLD DOST

68A4 7C 0490 MOV AfH

6aA5 B5 0500 ORA L
68A6 C2 AC 68 0510 JNZ *+3

6aA9 2A 81 5F 0520 LHLD PI

6aAC 4D 0530 MOV CfL

6SAII 54 0540 MOV DfH
68AE 06 21 0550 MVI Bf33

6SBO 2A 7F 5F 0560 LI-B_D PO

68B3 23 0570 INX H
6aB4 23 0580 INX H

68B5 23 0590 INX H

6866 23 0600 INX H

68B7 23 0610 INX H

68E8 23 0620 INX H

68B9 22 7D 5F 0630 SHLD PT

6aBC CD 58 61 0640 CALL FNG

6SBF CD F8 09 0650 CALL CRLF

68C2 2A SF 5F 0660 LHLD K

6aC5 5D 0670 MOV EfL

6SC6 54 0680 MOV DfH

6807 CD 13 6B 0690 CALL SYS3+3

68CA 21 DB 60 0700 LXI HfFI?«1SG

68CD CD AD 05 0710 ClUJ- OBEQ

6800 23 0720 INX H
68D1 EB 0730 XCHG

68D2 29 0740 DAD H

68D3 29 0750 DAD H

68D4 EB 0760 XCHG

6SD5 CD OC OA 0770 CALL DEOUTl

68D8 CD AD 05 0780 CALL OSEQ

68DB CD FS 09 0790 CALL CRLF

68DE 23 0800 INX H

68DF E5 0810 PUSH H
6aE0 2A 7F 5F 0820 LHLD
6aE3 CD 6F 69 0830 CALL hEGH

6aE6 EB 0840 XCHG
6aE7 2A 81 0850 LHLD PI

68EA EB 0860 XCHG

68EB 19 0870 DAD D

68EC EB 0880 XCHG

68ED CD OC OA 0890 C<UJ_ DGOUTl

68F0 E3 0900 XTHL

68F1 CD AD 05 0910 CALL OSEQ

68F4 D1 0920 POP D

68F5 CD OC OA 0930 CAUL DEOUTl

68Fa CD F8 09 0940 CALL CRLF

68FB C3 46 69 0950 JMP EXIT

68FE 0960 LSTBYT EQU

250

Symbol Table for listing 3,

ORGA
UIHl
OSEQ
CLEAR
ABUF

BB
MER2
POP
OVFU
READ
DIGIT
ERl
HEX16
DI^16
D4A
SYS3
SYS5
LIT
LOD
STO
CAL
POO
P02
hUL8
P07
P09
EQH
P14
SLl
P20
0RGA2
S2
STAK2
Y12
X
PO
F
G
Kl
U
ZST

STKhSl

Png
L850
L900
L960
L1225
S1300
*-l400
1-1521
^20
sea.
^483
^00
^555

L7le^

“-i^ao

6900
OC24
05AD
09FD
6903

690D
692C
6958
6979
699E
69F2
6A41
6A82
6AB4
6AE7
6B10
6B46
6B6C
6B8D
6BB5
6BE9
6C25
6C4E
6C6E
6CA4
6CC6
6CE4
6D04
6D2E
6n5A
5A00
0190
63FF
5F1B
5F77
5F7F
5F85
5F89
5F91
5F99
5FBD
6077
60 C7
6158
61A3
621B
62Ca
6309
6349
63E0
642c
649E
6522
6609
665b
66B2
670a
67CF
687^

F^N 6900
OUTP 0C24
BYTEl OAll
POS OCOE
SFLG 690A
SHI 690F
DM1 6938
PUSH 6962
NEGB 6982
RLP 69A3
DECIN 69F9
ER2 6A47
HEXID 6A8F
D2 6ACB
SYSO 6AF7
Y3 6B23
SYS8 6BS2
INT 6B73
LQDX 6B9A
STOX 6BC1
LODA 6C0E
SUBl 6C:3E
P03 6C54
P04 6C7B
POS 6CB0
Pll 6CCA
PIO 6CF3
P15 6D0F
P18 6D36
P21 6D64
TRANS 5AOO
PCDEF 2C00
TST 5A03
Z12 5F39
XO 5F79
PI 5F81
RO 5F86
I 5FSB
LO 5F93
U 5F9B
GOMSG 5FF7
STKMS2 6092
FINMSG 60 DB
FNQ 6165
L370 61DD
L925 6220
L1040 62riF
L1230 6314
L1320 635B
L1500 63F4
L1530 6444
L1640 64E7
L400 659B
L486 6618
L505 6662
L600 66C1
L670 671F
L765 6820
L1850 68A1

WHO 0C20
CRLF 09F8
DCOUTl OAOC
POSl 727F
SIGN 690A
SM2 6915
EXIT 6946
POPl 696S
CHD 69SF
RUB 69D4
DECIL 6A17
HEXIN 6A50
hERl 6A9F
D3 6AD3
SYSl 6B00
UR 6B33
BASE 6B5D
STKOU 6B7A
LODXl 6B9B
STOXl 6BC2
STOA 6C19
ADD16 6C41
SUB16 6C57
POS 6C90
EQUAL 6CB2
LESS 6CCD
P12 6CF9
P16 6D1A
SRI 6D42
INIT 6D6F
02 0015
OBDEF 1000
DST 5BF8
AST 5F73
XI 5F7B
Cl 5F83
V 5F87
J 5FBD
LI 5F95
UO 5F9D
PCMSG 603E
REFMSG 60 A9
HDCMP 6130
L800 6176
L885 6209
L920 6296
LI 100 62EB
L1250 632D
L1350 6395
L1515 6410
L1550 6452
BEGIN 64F7
L420 65A4
L489 6648
L515 6675
L605 66CA
L710 676C
L7ao 6835
LSTBYT 68FD

INP 0C20
CROUT 09F8
BLKl 0A02
MENTR 7390
STK2 690B

MERl 691F
PRINT 6952
NEGH 696F
GETC 6997
CAN 69E3
DECID 6A31
HEXIL 6A6E
DUCK 6AA8
D4 6AE2
SYS2 6B06
SYS4 6B3C
BSl 6B5E
LODI 6B84
STOl 6BAC
CALI 6BDE
C^V_A 6C21
SU2 6C42
POl 6C62
P06 6C9B
TRUE 6CC3
FALSE 6CDF
P13 6CFF
P17 6D23
P19 6D50
RUNEND 6n8F
SI 01F4
STKl 0000
EA 5D89
HOST 5F75
PT 5F7D
C2 5F84
ML 5F88
K 5F8F
N 5F97
YST 5F9F
DSTMSG 6058
LABMSG 60 B5
ADDRIN 613D
L830 618E
L890 620F
L930 629D
L1200 62F3
L1260 6339
L1360 63A2
L1520 6428
L1600 6487
ZERO 6500
L470 65D6
L490 6649
L550 66A9
L630 6702
CSYS 67BE
L1700 6859

251

Listing 4: P-Code Interpreter

5000
5000
5000
5000
5000
5003
5006
5006
5006
5006
5006
5006
5006
5006

5006
5006
5008
500A
500C
500E
5010
5012
5014
5016
5018
501A
501C
501E
5020
540A
5426
545C
5468
546A
546C
546E
5470
5472
5474
5476
5477
547E
548C

549C
547It
54AB
rAAC
54B7
54 Ba
54BF
54C0
54CF
54D0
54D5
54116
54DA
54BB
54DF
54E0
54E7
54E8
54F1

C3 D1 5C
C3 62 5E

0010 JiF-CODE INTERF'RETER
0020 ^ 1979-1-23
0030 ORCA EQU 5000H
0040 ORG ORGA
0050 CQLDST JMF* ORGAFOCDIH
0060 UARHST JMF' ORGA+OE62H
0070 U EQU 13
0030 WHO EQU 0C20H
0090 UHl EQU 0C24H
0100 ELKl EQU 0A02H
0110 DEOUTl EQU OAOCH
0120 OSEQ EQU 05ADH
0130 BPEIM EQU 5
0140 SIZE EQU 500
0150 SI2E1 EQU 430
0160 Z DS 2
0170 IP US 2
0180 EASEB US 2
0190 T DS 2
0200 BP DS 2
0210 PO DS 2
0220 TP ns 2
0230 CMND DS 2
0240 I ns 2
0250 J DS 2
0260 K DS 2
0270 STOP DS 2
0280 N DS 2
0290 S DS SIZE+3I2E+2
0300 TRACE DS U+U+2
0310 MN ns 54
0320 BREAK DS EF•LIM+E^PLI^a+2
0330 El DS 2
0340 X DS 2
0350 EA DS 2
0360 EL ns 2
0370 F DS 2
0380 IDX DS 2
0390 RES DS 2
0400 SFLG DS 1
0410 ABUF DS 7

49 4C 4C 45 0420 ILLOPC DB 'ILLEGAL OPCODE'
OD 0430 DB ODH
49 4C 4C 45 044 C ILLOPR DB 'ILLEGl^^ OPER^^M^
OD 0450 DB ODH
1* •A 41 43 0460 SlUVFL DE^ 'STACK OUERFl.CHJ'
OD 0470 DB ODH
49 4C 4C 45 0480 ILLCSP DB 'ILLEGAL CSP'
OD 0490 DB ODH
20 42 52 45 0500 BREAKH DB ' BREAK:'
OD 0510 DB ODH
53 54 41 52 0520 ADDRM DB 'ST#«T ADDRESST '
OD 0530 DB ODH
20 20 50 20 0540 XMSG DB ' P ='
OD 0550 DB ODH
20 42 20 3D 0560 DB ' B ='
OD 0570 DB ODH
20 54 20 3D 0580 DB ' T ='
OD 0590 DB ODH
20 53 5B 54 0600 DB ' SCTl ='
OD 0610 DB ODH
20 53 5B 54 0620 DB ' SCT-13
OD 0630 DB ODH

252

54F2 20 2A 20 54 0640 TRCMSG DB ^ # TRACE
54FC OD 0650 DB ODH
54FD 45 4E 44 20 0660 FINMSG DB ^END OF EXECUTION'
550D OD 0670 DB ODH
550E 4C 49 54 4F 0680 DB ^LITOPRLODSTOCALINTJMPJPCCSP'
5529 2A OC 50 0690 TMl LHLD T
552C 2B 0700 DCX H
552D OC 50 0710 SHLD T
5530 C9 0720 RET
5531 2A OC 50 0730 STGET LHLD T
5534 EB 0740 XCHG
5535 21 20 50 0750 LXI H*S
5538 E5 0760 ARRAY PUSH H
5539 6B 0770 MOV L^E
553A 62 0780 MOV H»D
553B 19 0790 DAD D
553C EB oaoo XCHG
553D El 0810 POP H
553E 19 0820 DAD II
553F 5E 0830 MOV EfM
5540 23 0840 INX H
5541 56 0850 MOV ri»M
5542 2B 0860 DCX H
5543 C9 0870 RET
5544 7B 0880 CMD MOV ArE
5545 2F 0890 CMA
5546 C6 01 0900 ADI 1
5548 5F 0910 MOV E»A
5549 7A 0920 MOV AyD
554A 2F 0930 CMA
554B CE 00 0940 ACI 0
554D 57 0950 MOV DtA
554E C9 0960 RET
554F C5 0970 SHL PUSH B
5550 4F 0980 MOV C»A
5551 29 0990 SHI DAD H
5552 OD 1000 DCR C
5553 C2 51 55 1010 JNZ SHI
5556 Cl 1020 POP B
5557 C9
5558 78
5559 BC
55SA CO
555B 79
555C 95
555D C8
555E IF
555F B7
5560 17
^61 F8
5562
5563 3C
^64 C9
^65 CD
5568 42
5569 4B

CD
^D CD
g70 EB
g7l CD

EE

^8 C9
21

5^ oe
CD

in ^
CA |55|

31

29 55
31 55

58 55

00 00

77 54
00

20 OC
7F

^ 55
18
BE 55
OD

93 55
24 OC

1030
1040
1050
1060
1070
1080
1090
1100
1110
1120

1130
1140
1150
1160
1170
1180
1190
1200
1210

1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1300

RET
BHCMF' MOV AfB

CMP
RNZ

H

MOV ArC
SUB
RZ
RAR

L

ORA
RAL
RM

A

XRA A
INR
RET

A

COMF' CALL
MOV BrD
MOV CfE
CALL TMl
CALL STGET
XCHG
CALL EHCMP
XCHG
LXI DfO
RET

READ LXI HtABUF
MVI Cj-O

RLP CALL WHO
CPI 7FH
J2 RUB
CPI ISH
J2 CAN
CPI ODH
J2 $+3
CALL WHl
MOV M»A
INX H

5595 OC 1390 INR C 561C CD 24 OC 2140 CALL WHl

FE OD 1400 CPI ODH 561F CD 79 55 2150 CALL READ

55 9Q ca 1410 RZ 5622 21 00 00 2160 LXI HtO

5599 79 1420 AtC 5625 01 77 54 2170 LXI BtABUF

559A FE 06 1430 CPI 6 5628 OA 2180 LDAX B

559C C2 7E 55 1440 JNZ RLP 5629 03 2190 INX B

559F CD 20 OC 1450 CALL WHO 562A FE 2D 2200 CPI

55 A2 FE 7F 1460 CPI 7FH 562C C2 34 56 2210 JNZ HEXIL+2

55A4 CA AF 55 1470 JZ RUB 562F 32 76 54 2220 STA SFLG

55A7 FE 18 1480 CPI 18H 5632 OA 2230 HEXIL LDAX B

55A9 CA BE 55 1490 JZ CAN 5633 03 2240 INX B

55 AC 36 OD 1500 MUr MrODH 5634 CD CD 55 2250 CALL DIGIT

55AE C9 1510 RET 5637 Ei2 46 56 2260 JNC HEX16

55AF 79 1520 RUB HOU AtC 563A ri6 07 2270 SUI 7

55&0 B7 1530 ORA A 563C FE OA 2280 CPI OAH

55B1 CA 7E 55 1540 JZ RLP 563E DA 53 56 2290 JC HEXID

55B4 3E 7F 1550 MVI Ar/FH 5641 FE 10 2300 CPI lOH

55B<S CD 24 OC 1560 CALL WHl 5643 D2 53 56 2310 JNC HEXID

55E9 CD 1570 DCR C 5646 29 2320 HEX16 DAD H

55BA 2E 1580 DCX H 5647 29 2330 DAD H

55BB C3 7E 55 1590 JMP RLP 5648 29 2340 DAD H

55BE 79 1600 CAN MOV AjC 5649 29 2350 DAD H
55BF B7 1610 ORA A 564A 85 2360 ADD L

55C0 CA 7E 55 1620 JZ RLP 564B 6F 2370 MOV LtA

55C3 3E 7F 1630 MVI A»7FH 564C IG 32 56 2380 JNC HEXIL

55C5 CD 24 OC 1640 CALL WHl 564F 24 2390 INR H

55CQ 2B 1650 DCX H 5650 C3 32 56 2400 JMP HEXIL

55C9 OD 1660 DCR C 5653 EB 2410 HEXID XCHG
j^jCA C3 55 1670 JMP CAN 5654 Cl 2420 POP B
55CEI EI6 250 1680 DIGIT SUI 30H 5655 El 2430 POP H

55CF D8 1690 RC 5656 3A 76 54 2440 LDA SFLG
55B0 FE OA 1700 CPI OAH 5659 B7 2450 □RA A

55D2 3F 1710 CMC 565A C8 2460 RZ

55D3 C9 1720 RET 565B C3 44 55 2470 JMP CMD
55E14 AF 1730 DECIN XRA A 565E 06 00 2480 DCALC MVI B»0

55E>5 32 76 54 1740 STA SFLG 5660 19 2490 DAD D

55 DS E5 1750 PUSH H 5661 04 2500 INR B

55£l9 C5 1760 PUSH B 5662 7C 2510 MOV AtH

55DA 3E 23 1770 MVI At'*' 5663 B7 2520 ORA A

55IX: CD 24 OC 1780 CALL WHl 5664 F2 60 56 2530 JP ^-7
55DF CD 79 55 1790 CALL READ 5667 CD 44 55 2540 CALL CMD

55E2 21 00 00 1800 LXI HtO 566A 19 2550 DAD D
55E5 01 77 54 1810 LXI BtABUF 566B 05 2560 DCR B
55E8 OA 1820 LDAX B 566C 78 2570 MOV AtB

55E9 03 1830 INX E 566D B9 2580 CMP C

55EA FE 2D 1840 CPI 566E C8 2590 RZ
55EC C2 F4 55 1850 JNZ DECIL+2 566F OD 2600 DCR C

55EF 32 76 54 1860 STA SFLG 5670 C6 30 2610 ADI 30H

55F2 OA 1870 DECIL LDAX B 5672 C9 2620 RET
55F3 03 1880 INX B 5673 7A 2630 DECOUT MOV Ar

55F4 CD CD 55 1890 CALL DIGIT 5674 E7 2640 ORA A

55F7 DA 09 56 1900 JC DECID 5675 F2 80 56 2650 JP CDEC
55FA 5D 1910 MOV EtL 5678 3E 2D 2660 MVI At'-'

55FB 54 1920 MOV DrH 567A CD 24 OC 2670 CALL WHl
55FC 29 1930 DAD H 567D CD 44 55 2680 CALL CMD
55FD 29 1940 DAD H 5680 E5 2690 CDEC PUSH H

55FE 19 1950 DAD D 5681 21 77 54 2700 LXI HfABUF

55FF 29 1960 DAD H 5684 E5 2710 PUSH H
5600 85 1970 ADD L 5685 EB 2720 XCHG

5601 6F 1980 MOV LtA 5686 11 FO DS 2730 LXI Dt-IOOOO

5602 D2 F2 55 1990 JNC DECIL 5689 OE 00 2740 MVI CrO
5605 24 2000 INR H 568B CD 5E 56 2750 CALL DCALC

5606 C3 F2 55 2010 JMP DECIL 56SE CA 95 56 2760 JZ ^+4

5609 EB 2020 DECID XCHG 5691 E3 2770 XTHL
560A Cl 2030 POP B 5692 77 2730 MOV MrA

560B El 2040 POP H 5693 23 2790 INX H

560C 3A 76 54 2050 LDA SFLG 5694 E3 2800 XTHL
LXI Dt-1000
CALL ICAUC

560F B7 2060 ORA A 5695 11 18 FC 2810
5610 ca 2070 RZ 5698 CD 5E 56 2820
5611 C3 44 55 2030 JMP CMD 569B CA A2 56 2830 JZ $+4
5614 2090 HEXIN XRA A 569E E3 2840 XTHL

5615 32 76 54 2100 STA SFLG 569F 77 2850 MOV
5618 E5 2110 PUSH H 56A0 23 2860 INX H
5619 C5 2120 PUSH B 56A1 E3 2870
561A 3E 25 2130 MVi At':s:' 56A2 11 9C FF 2880

El

254

56A5
56A8
56AB
56AC
56AD
56AE:

5;6B2

56B5
56B8
56B9
56BA
56BB
56BC
56BD
56EE
56C0
56C1
56C2
56C4

56C7
56CA
56CB
56CC

56CF

56DF

56EA

56F3
56F6
56F9

5702
5705

5716
5719
57ic 29

21
g2l 36

23

2b
B2

5727 po

|g§
^2B

S3 is

CD 5E 56 2890 CALL DCALC
CA AF 56 2900 JZ ^+4
E3 2910 XTHL
77 2920 MOV MrA
23 2930 INX H
E3 2940 XTHL
11 F6 FF 2950 LXI D,-10
CD 5E 56 2960 CALL ECALC
CA BC 56 2970 JZ 4iT4
E3 2980 XTHL
77 2990 MOV MtA
23 3000 INX H
E3 3010 XTHL
7D 3020 MOV fkrL
El 3030 POP H
C6 30 3040 ADI 30H
77 3050 MOV M»A
23 3060 INX H
36 OD 3070 MVI MyODH
21 77 54 3080 LXI HyABUF
CD AG 05 3090 CALL QSEO
El 3100 POP H
C9 3110 RET

3120 HEXQUT EQU D

2A OA 50 0010 BASE LHLD BA
oo 63 54 0020 SHLEi B1
7E 0030 BAl MOV ArE
B2 0040 □RA D
CA EE 56 0050 JZ BA2
1*5 0060 PUSH D
2A 63 54 0070 LHLD B1
2B 0080 DCX H
2B 0090 DCX H
2B 0100 DCX H
EB 0110 XCHG
21 20 50 0120 LXI HfS
CD 38 55 0130 CALL ARRAY
EB 0140 XCHG
oo 68 54 0150 SHLD B1
D1 0160 POP D
IB 0170 DCX D
C3 D2 56 0180 JMP BAl
2A 68 54 0190 BA2 LHLD B1
EB 0200 XCHG
C9 0210 RET
21 00 00 0220 INIT LXI HfO

08 50 0230 SHLD IP
1C 50 0240 SHLD STOP

22 10 50 0250 SHLD PO
22 lA 50 0260 SHLD K
22 22 50 0270 SHLD S+2
22 24 50 0280 SHLD S+4
2B 0290 DCX H
•yry 26 50 0300 SHLD S+6
21 03 00 0310 LXI H»3
22 OC 50 0320 SHLD T

0330 INR L
22 OA 50 0340 SHLD BASED

!1 57

OA 50

0350 LXI HrU
0360 SHLD TP
0370 DAD H
0380 XCHG
0390 LXI Hr TRACE
0400 INIl MUI M»-l
0410 INX H
0420 DCX D
0430 MOV AyE
0440 ORA D
0450 JNZ INIl
0460 RET
0470 CRLF EQU 09F8H
0480 3ICCODE FOR CASES OF EA IN CASFl
0490 EAICO LHLD BASED
0500 DCX H

572F 2B 0510 tCX H 57B6 EB 1260 XCHG
5730 2B 0520 DCX H 57B7 29 1270 DAD H
5731 2B 0530 DCX H 5768 EB 1280 XCHG
5732 OC 50 0540 SHLD T 57B9 OD 1290 DCR C
5735 23 0550 INX H 57BA C2 B1 57 1300 JN2 X8BL
5736 23 0560 INX H 57Bn C9 1310 RET
5737 EB 0570 XCHG 57BE CD 31 55 1320 EA1C5 CALL STGET
5738 21 20 50 0580 LXI HrS 57C1 7B 1330 MOV AyE
573B CD 38 55 0590 CALL ARRAY 57C2 B2 1340 ORA D
573E EB 0600 XCHG 57C3 C2 CC 57 1350 JNZ NOTO
573F OA 50 0610 SHLD BASLE 57C6 21 SB 54 1360 LXI HylLLOPR
5742 13 0620 INX D 57C9 C3 13 59 1370 JMP ERR
5743 13 0630 INX D 57CC 1380 NOTO XRA A
5744 lA 0640 LDAX D 57CD 32 76 54 1390 STA SFLG
5745 32 08 50 0650 STA IF 57D0 CD 73 57 1400 CALL SIGND
5748 13 0660 INX D 5703 D5 1410 PUSH D
5749 lA 0670 LDAX D 57D4 CD 29 55 1420 CALL TNI
574A 32 09 50 0680 STA IP+1 57D7 CD 31 55 1430 CALL STGET
574D C9 0690 RET 57DA CD 73 57 1440 CALL SIGND
574E CD 31 55 0700 EAICI CALL STGET 57DD 42 1450 MOy ByD
5751 CD 44 55 0710 CALL CMD 57IIE 4B 1460 my CtE
5754 73 0720 MOy NtE 57DF D1 1470 POP D

23 0730 INX H 57E0 E5 1480 PUSH H
5756 72 0740 MOy MrD 57E1 21 00 00 1490 LXI HyO
5757 C9 0750 REl 57E4 22 74 54 1500 SHLD RES
5758 CD 31 55 0760 EA1C2 CALL STGET 57E7 EB 1510 EA1C5L XCHG
575E 42 0770 MOy BtD 57E8 CD 58 55 1520 CALL BHCNP
575C 4B 0780 my CtE 57EB FA 28 58 1530 JN EA1C5D
575D CD 29 55 0790 CALL TNI 57EE 5D 1540 MOy EyL
5760 CD 31 1Z~I-

oo 0800 CALL STGET 57EF 54 1550 MOy DyH
5763 EB 0810 XCHG 57F0 E5 1560 PUSH H
5764 09 0820 DAD B 57F1 21 01 00 1570 LXI Hyl
5765 EB 0830 XCHG 57F4 E3 1580 XTHL
5766 73 0840 Moy MtE 57F5 CD 58 55 1590 C5I CALL BHCNP
5767 23 0850 INX H 57F8 FA 02 58 1600 JM C5ID
5768 72 0860 Moy MtD 57FB 29 1610 DAD H
5769 C9 0870 RET 57FC E3 1620 XTHL
576A CD 31 55 0380 EA1C3 CALL STGET 57FD 29 1630 DAD H
576D CD 44 55 0890 CALL CND 57F^ E3 1640 XTHL
5770 C3 5B 57 0900 JTMP LA1C2+3 57FF C3 F5 57 1650 JMP C5I
5773 7A 0910 SIGND NOy AfD 5802 37 1660 C5ID STC
5774 E6 SO 0920 ANI 80H 5803 3F 1670 CMC
5776 C8 0930 RZ 5804 7C 1680 MOy AyH
5777 3A 76 54 0940 LDA SFLG 5805 IF 1690 RAR
577A 2F 0950 CNA 5806 67 1700 MOy HyA
577B 32 76 54 0960 STA SFLG 5807 7D 1710 MOy AfL
577E C3 44 55 0970 JNF- CND 5808 IF 1720 RAR
5781 CD 31 55 0980 EA1C4 CALL STGET 5809 6F 1730 MOy LyA
5784 AF 0990 XRA A 580A EB 1740 XCHG
5785 32 76 54 1000 STA SFLG 580B CD 44 55 1750 CALL CMD
57^ CD 73 57 1010 CALL SIGND 5S0E EB 1760 XCHG
578B 42 1020 NOy B^D 580F 09 1770 DAD B
578C 4B 1030 MOy CrE 5810 44 1780 MOy ByH
578D CD 29 55 1040 CALL TMl 5811 4D 1790 MOy CyL I
5790 CD 31 55 1050 CALL STGET 5812 El 1800 POP H J
5793 CD 73 57 1060 CALL SIGND 5813 EB 1810 XCHG i
5796 E5 1070 PUSH H 5814 E5 1820 PUSH H 3
5797 21 00 00 1080 LXI H^O 5815 2A 74 54 1830 LHLD RES 4
579A 79 1090 NQy AtC 5818 37 1840 STC 8
579B CD AF 57 1100 CALL XSBIT 5819 3F 1850 CMC 1
579E 78 1110 NOy A^B 581A 7A 1860 MOy AyO ■
579F CD AF 57 1120 CALL XSBIT saiB IF 1870 RAR ■
57 A2 EB 1130 EA1C4D XCHG 581C 57 1880 MOy DyA M
57A3 3A 76 54 1140 LDA SFLG 581D 7B 1890 MOy AyE ■
57 A6 B7 1150 ORA A 581E IF 1900 RAR m
57 A7 C4 44 55 1160 CNZ CND 5S1F 5F 1910 MOy EyA V
57AA El 1170 POP H 5820 19 1920 DAD D
57 AB 73 1180 Moy MjE 5821 22 74 54 1930 SHLD RES V
57AC 23 1190 INX H 5824 D1 1940 POP D ■
57 All 72 1200 Moy NjIi 5825 C3 E7 57 1950 .jNp EAigL m
57<=£: C9 1210 RET 5328 El 1960 EA1C5D POP ^
57AF OE oa 1220 XBBIT Nyi Cy8 5829 E5 1970 PUSH H
57B1 IF 1230 X8BL RAR 582A 23 1980 INX H
57B2 ri2 B6 57 1240 JNC ^T1 582B 7E 1990 NOy AyH
57B5 19 1250 DAD D 582C B7 2000 ORA A

256

582D 2A 74 54
5830 F2 A2 57
5833 59
^34- 50
5835 CD 44 55
5838 42
5839 4B
5S3A C3 A2 57
583D CD 31 55
5840 3E 01
5842 A3
5843 77
5844 23
5845 36 00
5847 C9
5848 CD BE 57
584B 70
5d4C 2B
584D 71
5B4E C9
584F CD 65 55
5852 C2 56 58
5855 1C
5856 73
5857 23
5858 72
5859 C9
585A CD 65 55
585D CA 56 58
5860 C3 55 58
5863 CD 65 55
5866 CA 56 58
5869 FA 56 58
586C C3 55 58
586F CD 65 55

C3
CD

5872 CA
5875 FA
5878 C3
587B CD
587E FA
5881

5834
5887 FA
588A C3
588D CD
5890 42
5891 4B
5892
5895 CD
5898 79
5899 B3
589A 77
589b 23
589C 78
589D B2
S89E 77
589F C9
S8A0
S8A3 42

^A4 4B

^ CD
CD

58ab 79
^ A3

ill
77
23

A2
77
C9

55 58
55 58
56 58
65 55
55 58
56 58
65 55
56 58
i-f5 58
31 55

29 55
31 55

CD 31

29 55
31 55

31 55

2010 LHLD RES
2020 Jp EA1C4D
2030 MOV ErC
2040 MOV D^B
2050 CALL CMD
2060 MOV B^D
2070 MOV CrE
2080 JMP EA1C4D
2090 EA1C6 CALL STGET
2100 MVI Ayl
2110 ANA E
2120 MOV M^A
2130 INX H
2140 MVI MtO
2150 RET
2160 EA1C7 CALL EA1C5
2170 MOV M^B
2180 DCX H
2190 MOV M»C
2200 RET
2210 EA1C8 CALL COMP
2220 JNZ NO
2230 YES INR E
2240 NO MOV M^E
2250 INX H
2260 MOV M»D
2270 RET

2280 EA1C9 CALL COMP
2290 JZ NO

2300 JMP YES
2310 EAICIO CALL COMP
2320 JZ NO
2330 JM NO
2340 JMP YES
2350 EAlCll CALL COMP
2360 JZ YES
2370 JM YES
2380 JMP NO
2390 EA1C12 CALL COMF*
2400 JM YES
2410 JMP NO

2420 EA1C13 CALL COMP
2430 JM NO
2440 JMP YES

2450 EA1C14 CALL STGET
2460 MOV BrD
2470 MOV CfE
2480 CALL TMl
2490 CALL STGET
2500 MOV ArC
2510 ORA E
2520 MOV MrA
2530 INX H
2540 MOV AfB
2550 ORA D
2560 MOV NwA
2570 RET
2580 EA1C15 CALL
2590 MOV BrD
2600 MOV CrE
2610 CALL TMl
2620 CALL STGET
2630 MOV AtC
2640 ANA E
2650 MOV M»A
2660 INX H
2670 MOV ArB
2680 ANA D
2690 MOV MfA
2700 RET
2710 EA1C16 CALL STGET
2720 MOV ArE
2730 CMA
2740 MOV MrA
2750 INX H

58BA 7A 2760 MOV AtD
58BB 2F 2770 CMA
58K: 77 2780 MOV M»A
S8BD C9 2790 RET
58BE CD 31 55 2800 EA1C17 CAUL STGET
58C1 7B 2810 MOV A»E
58C2 E6 OF 2820 ANI OFH
5SC4 4F 2830 MOV CfA
58C5 CD 29 55 2840 CALL TMl
58C8 CD 31 55 2850 CALL STGE7
58CB EB 2860 XCHG
58CC 79 2870 MOV A»C
58CD CD 4F 55 2880 CALL SHL
58II0 EB 2890 XCHG
5SD1 73 2900 MOV MrE
58D2 23 2910 INX H
5803 72 2920 MOV MfD
58D4 C9 2930 RET
58D5 CD 31 55 2940 EA1C18 CALL STGET
58D8 7B 2950 MOV A»E
58D9 E6 OF 2960 ANI OFH
58DB 4F 2970 MOV CtA
58DC CD 29 55 2980 CALL TMl
58DF CD 31 55 2990 CALL STGET
58E2 79 3000 SHR MOV A,C
58E3 B7 3010 ORA A
58E4 CA F7 58 3020 J2 EA1C19+4
58E7 7A 3030 MOV AyD
58Ea 37 3040 STC
58E9 3F 3050 CMC
58EA IF 3060 RAR
58EE 57 3070 MOV Ii,A
58EC 7B 3080 MOV A»E
58EXi IF 3090 RAR
58EE 5F 3100 MOV E»A
58EF OD 3110 DCR C
58F0 C3 E2 58 3120 JMP SHR
58F3 CD 31 55 3130 EA1C19 CALL STGET
58FA 13 3140 INX D
58F7 73 3150 MOV MfE
58F8 23 3160 INX H
5SF9 72 3170 MOV M^D
58FA C9 3180 RET
58FB CD 31 55 3190 EA1C20 CALL STGET
58FE IB 3200 DCX D
58FF 73 3210 MOV M»E
5900 23 3220 INX H
5901 72 3230 MOV M»D
5902 C9 3240 RET
5903 CD 31 55 3250 EA1C21 CALL STGET
5906 23 3260 INX H
5907 23 3270 INX H
5908 73 3280 MOV M^E
5909 23 3290 INX H
590A 72 3300 MOV M»D
590B 2A OC 50 3310 LHLD T
590E 23 3320 INX H
590F oo OC 50 3330 SHLD T
5912 C9 3340 RET
5913 CD AD 05 3350 ERR CALL OSEG
5916 CD F8 09 3360 CALL CRLF
5919 21 01 00 3370 LXI HtI
591C 1C 50 3380 SHUZi STOP
59ir C9 3390 RET
5920 3400 3«cCODE FOR CASES OF EA IN CASF8
5920 2A OC 50 3410 EA2C0 LHLD T
5923 23 3420 INX H
5924 'P'y OC 50 3430 SHLD T
5927 CD 31 55 3440 CALL STGET
592A CD 20 OC 3450 CALL WHO
592D 77 3460 MOV MtA
592E 23 3470 INX H
592F 36 00 3480 MVI M^O
5931 C9 3490 RET
5932 CD 31 55 3500 EA2C1 CALL STGET

258

5935
5936
5939
593C
593F
S9-+0
5943
5946
5949
S94A
594B
594C
594D
5950
5953
5956
5959
595A
595D
5960
5963
5964
5965
5966
5967
596A
596D
5970
5973
5976
5979
597A
597D
5980
5981
5984
5985
5986
5987
5988
598B
598C
598D
598E
5991

5994
5994
5997
5998
599B
599C
599F
59A2
59A3
59A6
59 A7
59Aa
59A9
59^
59ab
59^

59af
59Bo
59B3

^B4
^B7
S9Ba

59bc

&
59C7

7B
CD 24
C3 29
2A OC
23
22 OC
CD 31
CD D4
73
23
72
C9
CD 31
CD 73
C3 29
2A OC
23

73
23
72
C9

C3 29
CD 31

19
22 OC
CD 44
D5
CD 31
D1
7E
23
23
CD 24
IB
7B
B2
C2 85
C3 29

23

EB
21
CD

2A
EB
73
23
72

C9
2A
7D
B7
CA
3D

CA
3ti
CA
30
CA
3ti
CA
30
CA
30

OC
3510 MOV ArE 59CS CA 3D 58
3520 CALL. WHl 59CE 3D

‘ 55 3530 •JMP TMl 59CC CA 4S 58
: 50 3540 EA2C2 LHLD T 59CF 3D

3550 INX H 59D0 CA 4F 58
50 3560 SHLD T 59D3 3D
55 3570 CALL STGET 59D4 CA 5A 58
55 3580 CALL DECIM 59D7 3D

3590 MOV M»E 59148 CA 63 58
3600 INX H 59DB 3D
3610 MOV MtD 59DC CA 6F 58
3620 RET 59DF 3D

55 3630 EA2C3 CALL STGET 59E0 CA 7E 58
56 3640 CALL DECOUT 59E3 3D
55 3650 JMP TMl 59E4 CA 84 58
50 3660 EA2C4 LHLD T 59E7 3D

3670 INX H 59E8 CA 8D 58
50 3680 SHLD T 59EB 3D
55 3690 CALL STGET 59EC CA AO 58
56 3700 CALL HEXIN 59EF 3D

3710 MOV MtE 59F0 CA B3 58
3720 INX H 59F3 3D
3730 MOV M»D 59F4 CA EE 58
3740 RET 59F7 3D

55 3750 EA2C5 CALL STGET 59F8 CA D5 58
OA 3760 CALL HEXQUT 59FB 3D
55 3770 JMP TMl 59FC CA F3 53
55 3780 EA2CS CALL STGET 59FF 3D
50 3790 LHLD T 5A00 CA FB 58
55 3800 CALL CMD 5A03 3D

3810 DAD D 5A04 CA 03 59
50 3820 SHLD T 5A07 21 8D 54
55 3830 CALL CMD 5A0A C3 13 59

3840 PUSH D 5A0D 2A 6A 54
55 3850 CALL STGET 5A10 23

3860 POP D 5A11 6E
3870 EA2CSL MOV A»M 5A12 26 00
3880 INX H 5A14 'P'P 6E 54
3890 INX H 5A17 7D

OC 3900 CALL WHl 5A18 3C
3910 DCX D 5A19 CA 53 5A
3920 MOV AtE 5A1C 2A 72 54
3930 ORA D 5A1F 7D

59 3940 JNZ EA2CSL 5A20 B7
55 3950 JMP TMl 5A21 CA 31 5A

OOlO
5A24 CD 31 55

JtcCASES OF F IN EXEC 5A27 2A 6C 54
50 0020 CASFO LHLD T 5A2A 19

0030 INX H 5A2B 22 6C 54
50 0040 SHLD T 5A2E C3 38 5A

0050 XCHG 5A31 2A OC 50
50 0060 LXI HtS 5A34 23
55 0070 CALL ARRAY 5A35 OC 50

0080 XCHG 5A3a 2A 6E 54
54 0090 LHLD EA 5A3B EB

0100 XCHG 5A3C CD CC 56
Olio MOV MtE 5A3F 2A 6C 54
0120 INX H 5A42 19
0130 MOV M»D 5A43 EB

54
0140 RET 5A44 21 20 50
0150 CASFl LHLD EA 5A47 CD 38 55
0160 MOV ArL 5A4A D5

57
0170 ORA A 5A4B CD 31 55
0180 JZ EAICO 5A4E D1

57
0190 DCR A 5A4F 73
0200 JZ EAlCi 5A50 23

57
0210 DCR A 5A51 72
0220 JZ EA1C2 5A52 C9

57
0230 DCR A 5A53 CD 31 55
0240 JZ EA1C3 5A56 lA

57
0250 DCR A 5A57 77
0260 JZ EA1C4 5A58 23

57
0270 DCR A 5A59 36 00
0280 JZ &^1C5 SA5B C9
0290 DCR A 5A5C 2A 6A 54

0300 JZ EA1C6
0310 DCR A
0320 JZ EA1C7
0330 DCR A
0340 JZ EA1C8
0350 DCR A
0360 JZ EA1C9
0370 DCR A
0380 JZ EAICIO
0390 DCR A
0400 JZ EAlCll
0410 DCR A
0420 JZ EA1C12
0430 DCR A
0440 JZ EA1C13
0450 DCR A
0460 JZ EA1C14
0470 DCR A
0480 JZ EA1C15
0490 DCR A
0500 JZ EA1C16
0510 DCR A
0520 JZ EA1C17
0530 DCR A
0540 JZ EAICIO
0550 DCR A
0560 JZ EA1C19
0570 DCR A
0580 JZ EA1C20
0590 DCR A
0600 JZ EA1C21
0610 LXI HfILLOPR
0620 JMP ERR
0630 CASF2 LHLD X
0640 INX H
0650 MOV L^M
0660 MVI HrO
0670 SHLD EL
0680 MOV ArL
0690 INR A
0700 JZ F2FF
0710 LHLD IDX
0720 MOV ArL
0730 ORA A
0740 JZ F20
0750 CALL STGET
0760 LHLD EA
0770 DAD D
0780 SHLD EA
0790 JMP F21
0800 F20 LHLD T
0810 INX H
0820 SHLD T
0830 F21 LHLD EL
0840 XCHG
0850 CALL BASE
0860 LHLD EA
0870 DAD II
0880 XCHG
0890 LXI H^S
0900 CALL ARRAY
0910 PUSH D
0920 CALL STGET
0930 POP D
0940 MOV MfE
0950 INX H
0960 MOV M^D
0970 RET
0980 F2FF CALL STGET
0990 LDAX D
1000 MOV M»A
1010 INX H
1020 MVI M»0
1030 RET
1040 CASF3 LHLD X

259

5A5F 23 1050 INX H 5AE8 73 1800 MOV M^E
5A60 6E 1060 MOV L,M 5AE9 23 1810 INX H
5A61 2^ 00 1070 MVI HwO 5AEA 72 1820 MOV M^D
5A63 22 6E 54 1080 SHLD EL 5AEB 2A OC 50 1830 LHLD T
5A66 7D 1090 MOV AfL 5AEE 23 1840 INX H

5A67 3C 1100 INR A 5AEF 23 1850 INX H
5A68 CA A7 5A 1110 J2 F3FF 5M0 23 1860 INX H
SMB 2A 72 54 1120 LHLD IDX SMI 22 OC so 1870 SHLD T
5A6E 7D 1130 MOV AtL 5AF4 23 1880 INX H
5A6F B7 1140 ORA A 5AF5 22 OA 50 1890 SHLD BASEB
5A70 F5 1150 PUSH P SMS 2A 6C 54 1900 LHLD EA
5A71 CA 86 5A 1160 JZ F30 5AFB 22 08 50 1910 SHLD IP
5A74 2A OC 50 1170 LHLD T SAFE C9 1920 RET
5A77 2B 1180 DCX H 5AFF CD 31 55 1930 F4FF CALL STGET
5A78 EB 1190 XCHG SB02 21 29 55 1940 LXI HrTMl
5A79 21 20 50 1200 LXI HvS 5B05 E5 1950 PUSH H
5A7C CD 38 55 1210 CALL MRAY 5B06 EB 1960 XCHG
5A7F 2A 6C 54 1220 LHLD EA 5B07 E9 1970 PCI-tt-
5A82 19 1230 DAD D 5B08 2A 6C 54 1980 CASF5 LHLD EA
SA83 22 6C 54 1240 SHLD EA 5B0B EB 1990 XCHG

CD 31 55 1250 F30 CALL STGET 5B0C CD 44 55 2000 CALL CMD
5A89 D6 1260 PUSH D 5B0F 2A EO 01 2010 LHLD SI2E1
5A8A 2A 6E 54 1270 LHLD EL 5B12 19 2020 DAD D
SA8D EB 1280 XCHG 5B13 4D 2030 MOV Cr\-
5AK CD CC 56 1290 CALL BASE 5B14 44 2040 MOV B^H
5A91 2A 6C 54 1300 LHLD EA 5B15 2A OC 50 2050 LHLD T
5A94 19 1310 DAD D 5BL8 CD 58 55 2060 CALL EHCHP
5A95 EB 1320 XCHG 5B1B FA 27 5B 2070 JM OVER
SA96 21 20 50 1330 LXI HwS 5B1E EB 2080 XCHG
5A99 CD 38 55 1340 CALL ARRAY 5B1F 2A 6C 54 2090 LHLD EA
5A9C D1 1350 POP D 5B22 19 2100 DAD D
5A9D 73 1360 MOV M»E 5B23 OC 50 2110 SHLD T
5A9E 23 1370 INX H 5B26 C9 2120 RET
5A9F 72 1380 MOV M»D 5B27 21 9D 54 2130 OVER LXI HfSTOVF
5AA0 FI 1390 POP P 5B2A C3 13 59 2140 JMP ERR

SAAl C4 29 55 1400 CNZ TMl 5B2D 2A 6C 54 2150 CASF6 LHLD EA
5AA4 C3 29 55 1410 JMF' TMl 5B30 22 08 50 2160 SHLD IP
5M7 CD 31 55 1420 F3FF CALL STGET 5B33 C9 2170 RET

4B 1430 MOV C»E 5B34 2A 6A 54 2180 CASF7 LHLEi X
SAAB CD 29 55 1440 CALL TMl 5B37 23 2190 INX H
SMC CD 31 55 1450 CALL STGET 5638 4E 2200 MOV C^M
SABI EB 1460 XCHG 5B39 CD 31 55 2210 CALL STGET
5AB2 71 1470 MOV M»C 5B3C 7B 2220 MOV A^E
5AB3 C3 29 55 1480 JMP TMl SB3D E6 01 2230 ANI 1
5AB6 2A 6A 54 1490 CASF4 LHLD X 5B3F B9 2240 CMP C
5AB9 23 1500 INX H 5B40 C2 29 55 2250 JNZ TMl
SABA 6E 1510 MOV LrM 5B43 2A 6C 54 2260 LHLD EA
5ABB 26 00 1520 MVI HfO 5B46 22 08 50 2270 SHLD IP
5ABD 6E 54 1530 SHLD EL 5B49 C3 29 55 2280 JMP TMl
SACO 7D 1540 MOV AvL 5B4C 2A 6C 54 2290 CASFB LHLD EA
SACl 3C 1550 INR A 5B4F 7D 2300 MOV ArL
SAC2 CA FF 5A 1560 JZ F4FF 5BS0 B7 2310 ORA A
SACS EB 1570 XCHG 5BS1 CA 20 59 2320 JZ EA2C0
5AC6 CD CC 56 1530 CALL BASE 5BS4 3D 2330 DCR A
5AC9 DG 1590 PUSH D 5B55 CA 32 59 2340 JZ EA2C1
SACA 2A OC 50 1600 LHLD T 5BS8 3D 2350 DCR A
5ACD 23 1610 INX H 5B59 CA 3C 59 2360 JZ EA2C2
5ACE EB 1620 XCHG 5B5C 3D 2370 DCR A
5ACF 21 20 50 1630 LXI HfS 5B5D CA 4D 59 2380 JZ EA2C3

5AD2 CD 38 55 1640 CALL ARRAY 5B60 3D 2390 DCR A
SABS D1 1650 POP D 5B61 CA 56 59 2400 JZ EA2C4
SAD6 73 1660 MOV MfE 5B64 3D 2410 DCR A
SAD7 23 1670 INX H 5B65 CA 67 59 2420 JZ EA2C5

5AD8 72 1680 MOV MvD 5B68 D6 03 2430 sur 3
SAD9 23 1690 INX H 5B6A CA 70 59 2440 JZ EA2C8

LXI H»ILLCSF 5ADA EB 1700 XCHG 5B6D 21 AC 54 2450
5ADB 2A OA 5C 1710 LHLD BASEB 5B70 C3 13 59 2460 JMP ERR

EXEC LHLD 5ACC EB 1720 XCHG 5B73 2A 08 50 2470
5ADF 73 1730 MOV MrE 5B76 3E 02 2480 MVI Af2

5AE0 23 1740 INX H 5B78 CD 4F 55 2490 CALL SHL 1

SMI 72 1750 MOV MfD 5B7B EB 2500 XCHG 1

5AE2 23 1760 INX H 5B7C 2A 06 50 2510 LHLD Z ^

SAE3 EB 1770 XCHG 5B7F 19 2520 DAD D j
SAE4 2A 08 50 1780 LHLD IP 5B80 22 6A 54 2530 SHLD Vs i
SAE7 EB 1790 XCHG 5Ba3 23 2540 INX H J

260

5B84 23 2550 INX H
5B85 7E 2560 MOV AyM
SB86 23 2570 INX H
5B87 66 2580 MOV HwH
5B88 6F 2590 MOV L^A
5B89 6C 54 2600 SHLD EA
5B8C 2A 12 50 2610 LHLD TP
5B8F 23 2620 INX H
5B90 3E OD 2630 MVI ArU
5B92 BD 2640 CMP L
5B93 D2 99 5B 2650 JNC *+3
5B96 21 OO 00 2660 LXI H»0
5B99 «7>o 12 50 2670 SHLD TP
5B9C EB 2680 XCHG
5B9D 21 OA 54 2690 LXI HtTRACE
5BA0 CD 38 55 2700 CALL ARRAY
5BA3 EB 2710 XCHG
5BA4 2A 08 50 2720 LHLD IP
5BA7 EB 2730 XCHG
5BAS 73 2740 MOV M^E
5BA9 23 2750 INX H
5EW¥» 72 2760 MOV M,D
5BAB EB 2770 XCHG
5BAC 23 2780 INX H
SBAD 08 50 2790 SHLD IP
5BB0 'P'y 10 50 2800 SHLD PO
5BB3 2A lA 50 2810 LHLD K
5BB6 23 2820 INX H
5BB7 lA 50 2830 SHLD K
5BBA 2A 6A 54 2840 LHLD X
5BBD 6E 2850 MOV LyM
5BBE 26 00 2860 MVI HrO
5BC0 22 70 54 2870 SHLD F
5BC3 3E 08 2880 MVI Ay8
5BC5 BD 2890 CMP L
5BC6 DA D1 5B 2900 JC FBIGR8
5BC9 2E 00 2910 MVI LfO
5BCB 72 54 2920 SHLD IDX
5BCE C3 EO 5B 2930 JMP CASF
5BD1 2E 01 2940 FBIGR8 MVI Lyl
SBD3 22 72 54 2950 SHLD IDX
5BD6 2A ZO 54
5BD9 11 FO FF
5BDC 19
5BDD 22 ZO 54
5BE0 2A ZO 54
5BE3 ZD
5BE4 B7
5^ CA 94 59
SBES 3D

CA AB 59
5BEC 3D

5^ CA OD 5A
SBFO 3D

CA 5C 5A
2^ 3D

S «=«
pS g =- =B

SCoa 5®

^ ?

5Cip ? ^2

SCiv ^ 50

2960 UHLD F
2970 LXr Dt-16
2980 DAD D
2990 SHLD F
3000 CASF LHLD F
3010 MOV A»L
3020 ORA A
3030 JZ CASFO
3040 OCR A
3050 JZ CASFl
3060 DCR A
3070 JZ CASF2
3030 DCR A
3090 JZ CASF3
3100 DCR A
3110 JZ CASF4
3120 DCR A
3130 JZ CASF5
3140 DCR A
3150 JZ CASF6
3160 DCR A
3170 JZ CASFZ
3180 DCR A
3190 JZ CASFQ
3200 LXI HtILLOPC
3210 JMP ERR

0010 CODE PUSH D
0020 XCHG
0030 MVI Af2

0040 CALL SHL
0050 XCHG
0060 LHLXJ Z
0070 DAD D

5C1A ^^7 6A 54 0030 SHLD X
5C1D 7E 0090 MOV AyM
5C1E 6F 0100 MOV LrA
5C1F 26 00 0110 MVI HyO
5C21 29 0120 DAD H
5C22 85 0130 ADD L
5C23 6F 0140 MOV LyA
5C24 D2 28 5C 0150 JNC ^+1
5C27 24 0160 INR H
5C28 22 IE 50 0170 SHLD N
5C2B 01 18 00 0180 LXI Ey24
5C2E CD 58 55 0190 CALL BHCMP
5C31 3E 20 0200 MVI Ay' '
5C33 F2 42 5C 0210 JP URTCD
5C36 2A IE 50 0220 LHLD N
5C39 01 DO FF 0230 LXI By-48
5C3C 09 0240 DAD B
5C3D 'P'y IE 50 0250 SHLD N
5C40 3E 58 0260 MVI Ay'X'
5C42 F5 0270 WRTCD PUSH P
5C43 CD 02 OA 0280 CALL BLKl
5C46 CD 02 OA 0290 CALL BLKl
5C49 FI 0300 POP* P
5C4A D1 0310 POP D
5C46 F5 0320 PUSH P
5C4C CD 73 56 0330 CALL DECOUT
5C4F CD 02 OA 0340 CALL BLKl
5C52 CD 02 OA 0350 CALL BLKl
5C55 2A IE 50 0360 LHLD N
5058 EB 0370 XCHG
5C59 21 OE 55 0380 LXI HtMNEM
5C5C 19 0390 DAD D
5C5D 7E 0400 MOV AyM
5C5E 23 0410 INX H
5C5F CD 24 OC 0420 CALL WHl
5C62 7E 0430 MOV AyM
5C63 23 0440 INX H
SC64 CD 24 OC 0450 CALL WHl
5C67 7E 0460 MOV AyM
5C68 CD 24 OC 0470 CALL WHl
5C6B FI 0480 POP P
5C6C CD 24 OC 0490 CALL WHl
5C6F CD 02 OA 0500 CALL BLKl
5C72 2A 6A 54 0510 LHLD X
5C75 23 0520 INX H
5C76 5E 0530 MOV EyM
5C77 16 00 0540 MVI DyO
5C79 CD 73 56 0550 CALL DECOUT
5C7C 3E 2C 0560 MVI Ay' y'
5C7E CD 24 OC 0570 CALL WHl
5C81 23 0580 INX H
5C82 5E 0590 MOV EyM
5C83 23 0600 INX H
5CS4 56 0610 MOV DyM
seas CD 73 56 0620 CALL DECOUT
5C88 C3 F8 09 0630 JMP CRLF
SCSB 2A 08 50 0640 CKBP LHLD IP
5C8E 7C 0650 MOV AyH
5C8F B7 0660 ORA A
5C90 FA CA 5C 0670 JM PLTO
5C93 EB 0680 XCHG
5C94 2A OE 50 0690 LHLD BP
5C97 7C 0700 MOV AyH
5C98 B5 0710 ORA L
5C99 C8 0720 RZ
5C9A D5 0730 PUSH D
5C9B 01 01 00 0740 LXI Bfl
5C9E 59 0750 CKBPL MOV EyC
5C9F 50 0760 MOV DyB
SCAO 21 5C 54 0770 LXI HyBREAK
5CA3 CD 33 55 0780 CALL ARRAY
5CA6 El 0790 POP H
5CA7 E5 0800 PUSH H
5CA8 CD 44 55 0810 CALL CMD
SCAB 19 0820 DAD II

I

5CAC 7C 0830 HOV A»H 5050 CD 73 56 1580 CALL DECOUT
SCAD BS 0840 ORA L 5053 CD AD 05 1590 CALL OSEQ
SCAE CA CO 5C 0850 JZ EFND 5056 23 1600 INX H
5CB1 03 0860 INX B 5057 E5 1610 PUSH H
5CB2 2A OE 50 0870 LHUD BF- 5058 CD 31 55 1620 CALL STGET
5CBS CD 58 55 0880 CALL BHCMP 505B CD 73 56 1630 CALL DECOUT
SCBa FA 9E 5C 0890 JM CKBPL 5DSE El 1640 POP H
5CBB CA 9E 5C 0900 JZ CKBPL 5D5F CD AO 05 1650 CALL OSEQ
SCBE El 0910 POP H 5062 2A OC 50 1660 LHLD T
5CBF C9 0920 RET 5065 2B 1670 DCX H
5CC0 21 B8 54 0930 BFND LXI HfBREAKM 5066 EB 1680 XCHG
5CC3 CD AD 05 0940 CALL OSEQ 5067 21 20 50 1690 LXI HrS
5CC6 D1 0950 POP D 5D6A CD 38 55 1700 CALL ARFtAY
5CC7 CD OE 5C 0960 CALL CODE 5D6D CD 73 56 1710 CALL DECOUT
5CCA 21 01 00 0970 PLTO LXI H»1 5070 C3 F8 09 1720 JMP CRLF
5CCD 22 1C 50 0980 SHLD STOP 5073 CD F3 56 1730 CMG CALL INIT
5CD0 C9 0990 RET 5076 C3 13 5D 1740 JMP CMRL
5CD1 31 00 10 1000 MAIN LXI PflOOOH 5079 21 F2 54 1750 CMT LXI H^TRCMSG

1 5CD4 1010 XRA A 5D7C CD AD 05 1760 CALL OSEQ
5CD5 03 04 1020 OUT 4 5D7F CD F8 09 1770 CALL CRLF
5CD7 21 26 54 1030 LXI H»MN 5082 OE OE 1780 MVI CtU+1
5CDA 11 OE 55 1040 LXI DjMNEM 5084 2A 12 50 1790 CMTL LHLD TP
5CDD OE IB 1050 MUI Cy27 5087 23 1800 INX H
5CDF lA 1060 MNLP LDAX D 5088 3E OD 1810 MUI ArU

1 5CE0 13 1070 INX D 5D8A BO 1820 CMP L
! 5CE1 77 1080 MOV M»A 5D8B 02 91 5D 1830 JNC ife+3

5CE2 23 1090 INX H 5D8E 21 00 00 1840 LXI HyO
5CE3 36 00 1100 MUI M»0 5091 pp 12 50 1850 SHLD TP
5CE5 23 1110 INX H 5094 EB 1860 XCHG

5CE<^ OD 1120 OCR C 5095 21 OA 54 1870 LXI HfTRACE
5CE7 C2 DF 5C 1130 JNZ MNLP 5098 CD 38 55 1880 CALL ARRAY
5CEA 21 CO 54 1140 LXI HfADDRM 5D9B 7A 1890 MOU AfO
5CED CD AD 05 1150 CALL OSEQ 5D9C B7 1900 ORA A
5CF0 CD 14 56 1160 CALL HEXIN 5D9D FA A5 50 1910 JM «+5
5CF3 EB 1170 XCHC 5DA0 C5 1920 PUSH B
5CF4 06 50 1180 SHLD Z 50A1 CO OE 5C 1930 CALL CODE
5CF7 CD F8 09 1190 CALL CRLF 5DA4 Cl 1940 POP B
5CFA CD F3 56 1200 CALL INIT 5DA5 00 1950 OCR C
5CFD 2A 08 50 1210 LHLD IP 50A6 C2 84 5D 1960 JNZ CMTL
SDOO EB 1220 XCHC 50A9 C9 1970 RET
5D01 CD OE 5C 1230 CALL CODE 5DAA CD D4 55 1980 CMK CALL DECIN
5D04 21 00 00 1240 LXI H^O 5DAD OE 07 1990 MUI Ct7
5D07 22 OE 50 1250 SHLD BF* 50^ C5 2000 CMKL PUSH B
5DOA C3 62 5E 1260 JMP BEGIN 5DB0 05 2010 PUSH 0
SDOD 21 00 00 1270 CMR LXI HtO 5DB1 21 20 50 2020 LXI HrS
5D10 1C 50 1280 SHLD STOP 5DB4 CD 38 55 2030 CALL ARRAY
5D13 CD 73 5B 1290 CMRL CALL EXEC 5DB7 CD 02 OA 2040 CALL BLKl
5D16 CD SB 5C 1300 CALL CKEP 50BA CD 02 OA 2050 CALL BLKl
5D19 3A 1C 50 1310 LDA STOP 50BD CD 73 56 2060 CALL DECOUT
5D1C B7 1320 QRA A 5DC0 CD F8 09 2070 CALL CRLF
sniD CA 13 50 1330 JZ CMRL 5DC3 D1 2080 POP D
5D20 C9 1340 RET 5DC4 Cl 2090 POP B
5D21 CD 73 SB 1350 CMS CALL EXEC 5DC5 13 2100 INX D
5D24 2A 08 50 1360 LHLD IP 5DC6 OD 2110 OCR C
5D27 EB 1370 XCHG 5DC7 C2 AF 50 2120 JNZ CMKL
5D28 CD OE 5C 1380 CALL CODE 5DCA C9 2130 RET
SD2B C9 1390 FtET SDCB 01 05 00 2140 CMB LXI B*BPUln

5D2C 21 DO 54 1400 CMX LXI H»XMSG 50CE 2A OE 50 2150 LHLX* BP
5D2F CD AD 05 1410 CALL OSEQ 5001 CD 58 55 2160 CALL BHCMP

5D32 23 1420 INX H 5004 C8 2170 RZ
5D33 EB 1430 XCHG 5005 F8 2180 RM
5D34 2A 08 50 1440 LHLD IP 5006 23 2190 INX H
5D37 EB 1450 XCHG 5007 pp OE 50 2200 SHLD BP
5038 CD 73 56 1460 CALL DECQUT 5DDA EB 2210 XCHG
5D3B CD AD 05 1470 CALL OSEQ 5DOB 05 2220 PUSH D

CALL recouT 5D3E 23 1480 INX H 5DDC CD 73 56 2230
5D3F EB 1490 XCHG 5DDF 3E 3A 2240 MVI Af'*'
5040 2A OA 50 1500 LHLD BASED 5IIE1 CD 24 OC 2250 CALL WHl

5043 EB 1510 XCHG 5IIE:4 CD 02 OA 2260 CALL BLKl

5044 CD 73 56 1520 CALL DECOUT 5DE7 D1 2270 POP B __
LXI
CALL
CALL DECIN

MOV

5047
504A

CD
23

AD 05 1530
1540

CALL OSEQ
INX H

5DE8
5DEB

21
CD

5C
38

54
55

2280
2290

5D4B EB 1550 XCHG 5IICE CD 04 55 2300
504C 2A OC 50 1560 LHLD T SDTl 73 2310
504F EB 1570 XCHG 5DF2 23 2320 INX H

262

5DF3 72
5DF4 C3 F8 09
5IJF7 21 00 00
5DFA 22 OE SO
5DFV C9
5DFE 2A OE 50
5E01 7D
5E02 B4
5E03 C8
5E04 4D
5E05 21 5E 54
5E08 C5
SE09 5E
5E0A 23
5E0B 56
5E0C 23
SEOD CD 02 OA
5E10 CD 02 OA
5E13 CD 73 56
5E16 CD F3 09
5E19 Cl
5C1A OD
5E1B C2 08 5E
5E1E C9
5E1F CD D4 55
5E22 CD OE 5C
5E25 C9

5E26 2A 10 50
5E29 2B

5E2A 7C
SE2B BS
5E2C ca
3E2D F8
5E2E 22 10 50
5E31 EB
5E32
5E35
SE36
5E39
5E3A
5E3D
5E3E
5E41
SE42
5E45
5E48
5E49
5E4C
5E4F
5E52
5E55
SE56
5E59
SE5C
SESF
5E62
5E65
5E66
St68
SE6B

^6D
5E70

^4

^7c

^83

^89
^8C

CD OE 5C
C9
2A 10 5C
23
22 10 5C
EB

CD OE 5C
C9
21 FF FF
22 08 SO
C9
CD F8 09
21 FD 54
CD AD 05
2A lA 50
EB

CD 73 56
CD F3 09
CD 20 OC

C3 90 73
31 00 10

D3 04

2A 08 50
7C
B7

49

^ 62 5E
E5
3E 3E

S ^ OC
^ 20 OC
^ 24 OC

^ Fa 09

2330 MOV M^D
2340 JMP CRLF
2350 CMC LXI H,0
2360 SHLD BP
2370 RET
2380 CMY LHLD BP
2390 MOV AfL
2400 ORA H
2410 RZ
2420 MOV CtL
2430 LXI HtBREAK+2
2440 CMYL PUSH B
2450 MOV ErM
2460 INX H
2470 MOV BwH
2480 INX H
2490 CALL BLKl
2500 CALL BLKl
2510 CALL DECOUT
2520 CALL CRLF
2530 POP B
2540 DCR C
2550 JNZ CMYL
2560 RET
2570 CME CALL DECIN
2580 CALL CODE
2590 RET
2600 CMU LHLD PO
2610 DCX H
2620 MOV AtH
2630 ORA L
2640 RZ
2650 RM
2660 SHLD PO
2670 XCHG
2680 CALL CODE
2690 RET
2700 CMN LHLD PO
2710 INX H
2720 SHLD PO
2730 XCHG
2740 CALL CODE
2750 RET
2760 CMQ LXI Hr-1
2770 SHU) IP
2780 RET
2790 FINISH CALL CRLF
2800 LXI H»FINMBG
2810 CALL OSEQ
2820 LHLD K
2830 XCHG
2840 CALL DECOUT
2850 CALL CRLF
2860 CALL WHO
2870 JMP 7390H
2880 BEGIN LXI P^IOOOH
2890 XRA A
2900 OUT 4
2910 LHLD IP
2920 MOV AvH
2930 ORA A
2940 JM FINISH
2950 LXI HfBECIN
2960 PUSH H
2970 PROMPT MVI A»'>'
2980 CALL UIHl
2990 CALL WHO
3000 CALL WHl
3010 PUSH P
3020 CALL CRLF
3030 POP p

3040 STA CMND
3050 SUI 'B'
3060 JZ CMB
3070 DCR A

SE8D CA F7 5D
5E90 D6 02
5E92 CA IF 5E
5E95 D6 02
5E97 CA 73 5D
5E9A D6 04
5E9C CA AA 5D
5E9F D6 03
5EA1 CA 36 5E
SEA4 D6 03
5EA6 CA 42 5E
5EA9 3D

SEAA CA OD 5D
5EAD 3D
5EAE CA 21 5D
5EB1 3D
5EB2 CA 79 5D
5EB5 3D

5EB6 CA 26 5E
5EE9 D6 03
5EBB CA 2C 5D
SEBE 3D
5EBF CA FE 5D
5EC:2 3E 3F
5EC4 CD 24 OC
5EC7 CD 24 OC
5ECA CD F8 09
5ECD C3 74 5E
5ED0

3080 JZ CMC
3090 SUI 2
3100 JZ CME
3110 SUI 2
3120 JZ CMG
3130 SUI 4
3140 JZ CMK
3150 SUI 3
3160 JZ CMN
3170 SUI 3
3180 JZ CMQ
3190 DCR A
3200 JZ CMR
3210 DCR A
3220 J2 CMS
3230 DCR A
3240 JZ CMT
3250 DCR A
3260 JZ CMU
3270 SUI 3
3280 JZ CMX
3290 DCR A
3300 JZ CMY
3310 MVI fiw'T'
3320 CALL WHl
3330 CALL WHl
3340 CALL CRLF
3350 JMP PROMF'T
3360 LB EQU ^-1

263

Symbol Table for fisting 4,

ORGA 5000

COLDST 5000
WARMST 5003

U OOOD
UHO 0C20
UHl 0C24
BLKl 0A02

dequti OAOC
OSEQ 05AII

BPLIM 0005
SIZE 01F4
SIZEl OlEO
Z 5006
IP 5008
BASEB 500A
T 500C

BP 500E
PO 5010

TP 5012
CMND 5014
X 5016

J 5018
K 501A
STOP 501C
N 501E
S 5020
TRACE 540A
MN 5426
BRE^ 545C
B1 5468

X 546A
EA 546C
EL 546E

F 5470
IDX 5472
RES 5474
SFLG 5476

ABUF 5477
ILLOPC 547E
ILLOPR 5480
STOUFL 549D
ILLCSP 54AC
BREAKM 54B8
ADIiRM 54C0
XMSQ 54D0
TRCMSG 54F2
FINMSG 54Fri

550E
TMl 5529
STGET 5531
^RAY 5538
CMti 5544
SHL 554F
SHI 5551
BHCMP 5558
COMP 5565

READ 5579
RLP 557E
RUB 55AF
CAN 5SBE
DIGIT 55CD
DECIN 55D4
CECIL 55F2
DECID 5609
texiN 5614
KEXIL 5632
HEX16 5646
HEXID 5653
DC#^C 565E
DECOUT 5673
CDEC 5680

HexouT OAOC
BASE 56CC
BAl 56D2
BA2 56EE
INIT 56F3
INIl 5721
CRLF 09F8
EAICO 572B
EAICI 574E
EA1C2 5758

EA1C3 576A
SIGND 5773
EA1C4 5781
E:A1C4D 57A2
X8BIT 57AF
X8BL 57B1
EA1C5 57BE
NOTO 57CC
EA1C5L 57E7
C5I 57F5
C5ID 5802
EA1C5D 5823

EA1C6 583D
EA1C7 5843
EA1C8 584F
YES 5855
NO 5856
EA1C9 5e5A
EAICIO 5863
EAlCll 5S6F
EA1C12 587B
EA1C13 5884
EAIC14 588D
EA1C15 58A0
EA1C16 5BB3
EA1C17 58BE
EAICIS 58D5

SHR 58E2
EA1C19 58F3
EA1C20 SSFB
EA1C21 5903
ERR 5913

EA2C0 5920
EA2C1 5932
EA2C2 593C
EA2C3 59411
EA2C4 5956
EA2C5 5967
EA2C8 5970
EA2C8U 5985
CASFO 5994
CASFl 59AB
CASF2 5AOD
F20 5A31
F21 5A38
F2FF 5A53
CASF3 5A5C
F30 5Aa6
F3FF 5AA7
CASF4 5AB6
F4FF 5AFF
casts 5E03
OVER 5B27
CASF6 5E2ri
CASF7 5B34
CASF8 5B4C
EXEC 5B73
FBIGR8 SBDl
CASF 5BE0
core 5C0E
WRTCri 5C42
CKBF' 5C8B
CKBPL 5C9E
bfnd 5Cx:o
PLTO 5CCA
MAIN 5CD1

MNU=‘
CMR
CMRL
CHS
CMX
CMC
CMT
CMTL
CMK
CMKL
CMB
CMC
CMY
CMYU
CME
CMU

CMN
CMQ
finish
begin
PflOMFt^

LB

264

Listing 5: Pascal to P-Code Interpreter

4F00
4F00
4F00
4F00
4FOO C3 EO 6C
4F03 C3 68 AV
4F06 C3 ES 64
4F0y C3 48 6B
4F0C
4F0C
4F0C
4F0C
4F0C
4F0C
4F0C
4F0C
509C
50CE
510E
511A
5122
51EA
524E
529E

* pascal-to-p-coee compiler <from BASIC)
0020 * iy7B-XII-18
0030 ORGA EQU 4P00H
0040 ORG ORGA
0050 START JW ORGA41DEOH < RUN >
0060 F3490 ORGA-I-1A68H (S3490)
0070 F4290 JMP 0RGA415E5H C L42y0 >
0080 R5340 JMP 0RGA41C48H < S5340 >
0090 PCODES EQU 2C00H
0100 MEMLIM EQU ORGA-1
0110 SRCFIL EQU lOOOH
0120 NO EQU 32
0130 TO EQU 50
0140 N1 EQU 32767
0150 N2 EQU 8
0160 TST DS 400
0170 TOST ns TO
0180 LST DS 64
0190 AST DS N2-K4
0200 BST DS N2
0210 S DS 200
0220 ssT ns lOO
0230 CST DS 80
0240 OST ns 8

52A6
530C

0250 T1 ns TO+TO+2
0260 T2 DS TO+TO+2
0270 T3 DS TO+TO+2
0280 XST DS 1
0290 F+EIST DS 5
0300 YST DS 5
0310 SOST DS 5
0320 KST DS 5
0330 ZST DS 5
0340 FPTR DS
0350 BOFP ns
0360 EOFP DS
0370 P7 ns 2
0380 PS ns 2
0390 P9 DS 2
0400 Q9 DS 2
0410 S9 DS 2
0420 F5 DS 2
0430 Y9 DS 2
0440 Z DS 2
0450 CO ns 2

0460 E9 DS 2
0470 LO DS 2
0480 Cl ns 2
0490 K DS 2
0500 T ns 2
0510 I DS 2
0520 J DS 2
0530 N3 DS 2
0540 X DS 2
0550 II DS 2
0560 12 DS 2
0570 LI D6 2
0580 F9 ns 2
0590 LOO DS 2
0600 Ki ns 2
0610 K2 DS 2
0620 K3 DS 2
0630 DO DS 2

265

S42E 0640 N DS 2
5430 0650 NCHR DS 1

5431 0660 ADDS DS 2

5433 41 4E 44 20 0670 HOST DB ARRAYBEGINCALL CASE CONSTDIV D

O "
545B 44 4F 57 4E 0680 DB "DOWi^TELSE END FOR FUNC IF INTEGMEM

54S3 4D 4F 44 20 0690 DB 'MOD NOT OF OR PROC READ REPEASHL

54AB 53 48 52 20 0700 DB 'ShR THEN TO TYPE UNTILVAR WHILEWRITE

54D3 49 44 45 4E 0710 IDENT DB ' IDENT'

54D8 4E 55 4D 20 0720 NUM DB 'NUM '
54DD 53 54 52 20 0730 STR DB 'STR '

54E2 4C 49 54 4F 0740 MST DB 'LITOPRLOnSTOCAUXNTJMPJPCCSP'

54FD 50 2D 43 4F 0750 L250 DB 'P-CODE STARTS AT 2COOH'

5513 OD 0760 DB ODH

5514 57 41 4E 54 0770 L280 DB 'WANT CODE PRINTED? '

5527 OD 0780 DB ODH
5528 46 49 4C 45 0790 L339 DB 'FILE ENDS AT '

5535 OD 0800 DB ODH

5536 49 4E 54 45 0810 L340 DB 'INTERPRET<I). OR TRANSLATE(T)? '

5555 OD 0820 DB ODH /

5556 4C 44 47 4F 0830 L360 DB 'LDGQ INTRP XO'
5563 4C 44 47 4F 0840 L370 DB 'LDGQ TRANS XO'
5570 4D 45 4D 20 0850 L710 DB 'MEM FULL'

5578 OD 0860 DB ODH

5579 43 4F 4E 53 0870 L720 DB 'CONST EXPECTED'
5587 OD 0880 DB ODH
5538 22 3D 22 20 0890 L730 DB EXPECTED'
5594 OD 0900 DB ODH
5595 49 44 45 4E 0910 L740 DB 'IDENTIFIER EXPECTED'

55A8 OD 0920 DB ODH

55A9 22 3B 20 0930 L750 DB '"5" OR "t" MISSING'
^5&B OD 0940 DB ODH

55BC ';yp 2E 22 20 0950 L760 DB EXPECTED'
55ca OD 0960 DB OIH
55C9 3B •yy 20 0970 L770 DB '"f” MISSING'

55D4 OD 0980 DB ODH
55D5 55 4E 44 45 0990 L780 DB 'UNDECLARED IDENT'
55E5 OD 1000 DB ODH
55E6 49 4C 4C 45 1010 L790 DB ' ILLEGAL IDENT'
55F3 OD 1020 DB ODH
55F4 3A 3D 22 1030 L800 DB '»*-» EXPECTED'

5601 OD 1040 DB ODH

5602 22 54 48 45 1050 L810 DB '"THEN” EXPECTED'
5611 OD 1060 DB ODH

5612 3B 22 20 1070 LS20 DB OR "END" EXPECTED'

5627 OD 1080 DB ODH
5628 22 44 4F 22 1090 L830 DB '"DO" EXPECTED'
5635 OD 1100 DB ODH

5636 49 4E 43 4F 1110 L840 DB 'INCORRECT SYMBOL'
5646 OD 1120 DB ODH
5647 52 45 4C 41 1130 L850 DB 'RELATIONAL OPERATOR EXPECTED'

5663 OD 1140 DB ODH
5664 55 53 45 20 1150 L860 DB 'USE OF PROC IDENT IN EXPR'
567D OD 1160 DB ODH
567E 22 29 •yy 20 1170 L870 DB '”>" EXPECTED'
568A OD 1180 DB ODH
568B 49 4C AC 45 1190 L880 DB ' ILLEGAL FACTOR'

5699 OD 1200 DB ODH
569A 22 42 45 47 1210 L890 DB '"BEGIN” EXPECTED'

56AA OD 1220 DB ODH
56 AB 22 4F 46 22 1230 L900 DB '"OF” EXPECTED'
56Ba OD 1240 DB ODH

56B9 49 4C 4C 45 1250 L910 DB 'ILLEGAL HEX CONST'
56CA OD 1260 DB ODH
56CB 22 54 4F 22 1270 L920 DB '"TO" OR "DOWNTO" EXPECTED'

56E4 OD 1280 DB ODH
56E5 4E:: 55 4D 42 1290 L930 DB 'NUMBER OUT OF RANGE'
56Fa OD 1300 DB ODH
56F9 28 yy 20 1310 L940 DB '"C” EXPECTED'
5705 OD 1320 DB ODH
5706 22 5E 22 20 1330 L950 DB '"C” EXPECTED'

5712 OD 1340 DB ODH

266

5713 22 5D 22 20
571F OD
5720 50 4^1 52 41
5735 on
5736 44 41 54 41
574E on
574F 42 55 47
5752 OD
5753 41 44 44 52
575A OD
575B 43 48 41 4E:
5765 OD
5766 70 55
5768 79 55
576A S8 55
576C 95 55
576E A9 55
5770 4F 57
5772 4F 57
5774 4F 57
5776 BC 55
5778 C9 55
577A D5 55
577C E6 55
577E F4 55
5780 4F 57
5782 4F 57
5784 02 56
5786 12 56
5788 28 56
578A 36 56
578C 47 56
578E 64 56
5790 7E 56
5792 SB 56
5794 4F 57
5796 9A 56
5798 AB 56
579A B9 56
579C
579E
57A0
57A2
57A4

57A6
S7A8
57^^
57AC
57#^
57BA
57BA
57BA
57BA
57BA
57BA
STBA
stba
stba
STBa
STBa
57Ba
57BB
STBc
STbd
STb^
57Bp
^Co
57ci

^C3
^C4

^C7

CB 56
4F 57
E5 56
F9 56
4F 57

06 57
13 57
20 57
36 57

20 20 20

E5
6B
62
19
EB
El
19
SE
23
56
2b
C9
7b
2F
C6 01

20

1350 L960 DB ""3” EXPECTED"
1360 DB ODH

1370 L970 DB "PARAMETERS MISMATChED'
1380 DB ODH
1390 L9S0 DB "DATA TYPE NOT RECOGNIZED
1400 DB ODH
1410 L990 DB "EUG"
1420 DB ODH
1430 L6570 DB "ADDR AT"
1440 DB ODH
1450 DB "CHANGED TO'
1460 DB ODH
1470 ETAB DUi L710
1480 DU L720
1490 DU L730
1500 DU L740
1510 DU L750
1520 DU L990
1530 DU L990
1540 DU L990
1550 DU L760
1560 DW L770
1570 DW L780
1580 DW L790
1590 DU L800
1600 DU L990
1610 DW L990
1620 DU L810
1630 DU L820
1640 DU L830
1650 DU L840
1660 DU L850
1670 DU L860
1680 DU L870
1690 DU L880
1700 DW L990
1710 DU L890
1720 DU L900
1730 DU L910
1740 DU L920
1750 DW L990
1760 DW L930
1770 DU L940
1780 DU L990
1790 DW L950
1800 DU L960
1810 DU L970
1820 DU L980
1830 L1300 DB
1840 UHO EQU OC20H
1850 WHl EQU 0C24H
1860 MOVE EQU lOOH
1870 OSEQ EQU SADH
1880 CROUT EQU 09FaH
1890 CRLF EQU CRCMJT
1900 CLEAR EQU 09FDH
1910 KBUF EQU OCOCH
1920 FLAG EQU 0
1930 BLKl EQU 0A02H
1940 DEOUT EQU OAOCH
1950 ARRAY PUSH H
1960 MOV L»E
1970 MOV HwB
1980 DAD D
1990 XCHG
2000 POP H
2010 DAD D
2020 MOV E»M
2030 INX H
2040 MOV DrM
2050 DCX H
2060 RET
2070 CMD MOV A»E
2080 CMA
2090 ADI 1

267

57CA 5F 2100 MOV E«A
57CB 7A 2110 MOV A»D

57CC 2F 2120 CIM

57CD CE 00 2130 ACI 0
57CF 57 2140 MOV D»A

57D0 C9 2150 RET
57D1 78 2140 BHC>P MOV AfB

57D2 EC 2170 CMP H

57D3 CO 2180 RNZ

57D4 79 2190 MOV AyC
57D5 95 2200 SUB L

57D6 Ca 2210 RZ

57D7 IF 2220
5708 B7 2230 ORA A

57D9 17 2240 RAL

S7DA F8 2250 RM
57DB 2240 XRA A

57PC 3C 2270 IMR A

5/DD C9 2280 RET
57De 21 3F 00 2290 READ LXl Hf43

57E1 11 CE 50 2300 LXI DfLST

57E4 01 00 00 2310 LXI BwO
57E7 CD 20 OC 2320 RELP CALL UNO

57EA FE 18 2330 CPI ISH

57EC CA IF 58 2340 OZ CAN

STEF FE 7F 2350 CPI 7FH
57F1 CA OF 58 2340 JZ RUB
57F4 CD 24 OC 2370 CALL UHl
57F7 FE OD 2380 CPI ODH

57F9 CA 05 58 2390 JZ CRF

57FC 12 2400 STAX D
57FD 13 2410 INX D

57FE 03 2420 INX B

57FF 2B 2430 DCX H
5800 7C 2440 MOV AfH

5801 B5 2450 ORA L
5802 C2 E7 57 2440 JNZ RELP
5805 3E 20 2470 CRF MVl A»20H

5807 12 2480 STAX D
5808 03 2490 INX B
5809 49 2500 MOV L»C

580A 40 2510 MOV H»B
S80B 22 24 54 2520 SI4J3 LOO
580E C9 2530 RET

580F 78 2540 RUB MOV A»B

5810 B1 2550 ORA C
5811 CA E7 57 2540 JZ RELP

5814 IB 2570 DCX D
5815 OB 2580 DCX B
5814 23 2590 INX H

5817 3E 7F 2400 WI A»7FH

5819 CD 24 OC 2410 CALL UJHl
581C C3 E7 57 2420 JW RELP

saiF 78 2430 CAN MOV ArB
5820 B1 2440 ORA C
5821 CA E7 57 2450 JZ RELP
5824 3E 7F 2440 MVI ArTFH

5824 CD 24 OC 2470 CALL UHl
5829 IB 2480 DCX D

582A 06 2490 DCX B

582B 23 2700 INX H
582C C3 IF 58 2710 JMP CfiH

582F 04 00 2720 DCALC i^I BtO

5831 19 2730 mo D
5832 04 2740 INR B

5833 7C 2750 MOV A«H
5834 B7 2740 ORA A
5835 F2 31 58 2770 JP *-7

5833 CD C4 57 2780 CALL CMD
583B 19 2790 DAD D
583C 05 2800 DCR B
583D 78 2810 MOV ArB
583E B9 2820 CMP C
583F C8 2830 RZ

5840 OD 2840 DCR C

5841 C4 30 2850 ADI 30H

5843 C9 2840 RET

5844 D5 2870 DECPR PUSH D

5845 E5 2880 PUSH H

5844 21 9E 52 2890 LXI H^OST

5849 7A 2900 MOV A»D

584A B7 2910 ORA A

584B F5 2920 PUSH P

584C F2 55 58 2930 JP CDEC

584F 34 2D 2940 MVI M»'-'

5851 23 2950 INX H

5852 CD C4 57 2940 CALL CMD

5855 E5 2970 CDEC PUSH H

5856 OE 00 2980 MVI CpO

5858 EB 2990 XCHG

5859 11 FO D8 3000 LXI Df-lOOOO
sesc CD 2F 58 3010 CMJ- DC^C

585F CA 44 58 3020 JZ *+4

5842 E3 3030 XTH-.
5843 77 3040 MOV M»A

5844 23 3050 INX H

5845 E3 3040 XTTL

5844 11 XQ FC 3070 LXI D»-1000

5849 CD 2F 58 3080 CALL DCf^C

S84C CA 73 58 3090 JZ *+4

5a4F E3 3100 XTrt-

5870 77 3110 MOV MrA
5871 23 3120 INX H

5872 E3 3130 XTHL

5873 11 9C FF 3140 LXI D^-lOO

5874 CD 2F 58 3150 CALL DC^C
5879 CA SO 3140 JZ *+4

587C E3 3170 XTHL

587D 77 3180 MOV MrA
587E 23 3190 INX H

587F E3 3200 XTHL

5880 11 F4 FF 3210 LXI D»-10

5883 CD 2F 58 3220 DCALC

5884 CA 8D 58 3230 JZ *+4

5889 E3 3240 XTH-
588A 77 3250 MOV MrA

5S8B 23 3240 INX H

5880 E3 3270 XTHL
538D 7D 3280 MOV AvL

588E El 3290 PtDP H

588F C4 30 3300 ADI 30H
5891 77 3310 MOV MvA

5892 23 3320 INX H

5893 OD 3330 DCR C
5894 34 OD 3340 MVI M»ODH

5894 FI 3350 POP P

5897 F2 9B 58 3340 JP «+l
589A OD 3370 DCR C

589B El 3380 POP H

589C D1 3390 POP D
589D C9 3400 RET

589E
58A1
58A4
58A7
58A8
58AB
58AC
58AD
53AE
58B1
53B4
58B5
5eB6
58B8
58BB
SSBC
58BF
58C0

CD 44 58
CD 02 OA
C3 C8 53

F5
CD 44 58

FI
OD
81
CA C8 58
F2 CO 58
91
4F
3E 2A
CD 24 OC

OC
C2 B8 58
C9
2F

0010
0020
0030
0040
0050
0040
0070
0080
0090
0100
0110

0120
0130
0140
0150
0140
0170
0180

EGCOUT CfiU- DCCPfl
CALL BLKl
JMP OPUT

decfmt posh P
CAU- CCCPR
POP P
DCR C
add C
JZ OPUT
JF FILL
SUB C
MOV C»A
MVI A' * Mi

FT«_P CALL

FiS CMA

58C1 3C 0190 IM^ A
58C2 4F 0200 MOV C^A
58C3 3E 20 0210 WI Aw' '
58C5 CD B8 58 0220 CALL FMLP
58CS E5 0230 OPUT PUSH H
58C9 21 9E 52 0240 LXI H9OST
58CC CD AD 05 0250 CALL OSEQ
58CF El 0260 POP H
58D0 C3 02 OA 0270 JMP BLKl
58D3 2A 08 54 0280 S1030 LHLD CO
58D6 4D 0290 MOV C»L
58D7 44 0300 MOV BfH
58D8 2A 24 54 0310 U-LD LOO
58DB CD D1 57 0320 CALL BHCMP
SSDE DA E7 58 0330 JC S+6
58E1 CD F7 58 0340 CALL S1090
58E4 C3 D3 58 0350 JMP S1030
58E7 69 0360 MOV L»C
58E8 60 0370 MOV H^B
58E9 23 0330 INX H
SSEA ■TrQ 08 54 0390 SHLD CO
58ED 2B 0400 DCX H
5SEE 11 CE 50 0410 LXI D»LST
53F1 19 0420 DAD D
53F2 7E 0430 MOV AfM
58F3 32 D8 53 0440 STA XST
58F6 C9 04^ RET
53F7 2A OE 54 0460 S1090 LHLD Cl
53FA EB 0470 XCHG
5QFB 3E 05 0480 MVI Af5
58FD CD A7 58 0490 CALL DECFMT
5900 3A 03 54 0^0 LDA F5+1
5903
5904
5907
590A
590D
590E
5911
5914
5916
5919
591C
591F
5920
5923
5924
5926
5929
592C
592F
5952
5934
5935
5937
593a
593D
595E:
5941
5944

5946
5949

594B
^4C

5951

2?55

5^

B7
FA 20 59
CD Ce 57
3A 24 54
3D
CA F7 58
3A CE 50
FE 24
CA 60 59
21 00 00
22 08 54
C9

2A F2 53
7E
FE 01

C2 3A 59
21 00
22 02
21 OD OC
36 24
2B

36 00
C3 07 59

0!

00
54

00 11
19

CE 50
01 00
7E
12
CD
23
13
03
PE OD

00

24 OC

44 59 C2
ID
3E 20
12

60

^ 24 54
^ OA 59

0510 ORA A
0520 JM LI160
0530 LlllO CALL READ
0540 LDA LOO
0550 DCR A
0560 J2 S1090
0570 LDA LST
0580 CPI 'S'
0590 JZ L1210 .
0600 LXI HrO
0610 SHLD CO
0620 RET
0630 L1160 LHLD FPTR
0640 AfM
0650 CPI 1
0660 JNZ L1190
0670 LXI HrO
0680 SlUk F5

0690 LXI HrKBUF+l
0700 MMI fiw'S'
0710 DCX H

0720 MVI MfFLAG
0730 Jf1f> LlllO
0740 L1190 LXI D»5
0750 DAD D
0760 LXI D»LST
0770 LXI BwC
0780 IFLP MOV AfM
0790 STAX D
0800 CALL UHl
0810 IMX H
0820 INX D
0830 INX B
0840 CPI OEH
0850 JNZ IFLP
0860 DCX D
0870 hWI A^20H
0880 STAX D
0890 SHLD FPTR
0900 MOV L^C
0910 MOV HrB
0920 SHLD LOO
0930 JMP LI11043

5^60 21 FF FF 0940 L1210 LXI
5963 02 54 0950

59^&6 21 CF 50 0960
5969 11 54 OC 0970
596C 01 FB FF 0980

596F CD 00 01 0990
5972 2A F4 53 1000
5975 pp F2 53 1010

5978 pp 6A OC 1020
597B 21 89 59 1030
597E 22 6C OC 1040

5981 3E 49 1050

5983 32 73 OC 1060
5986 C3 9A 59 1070

5939 2A 7F 72 1080
598C pp OE OC 1090
598F 2A 6e OC IlOO

5992 36 01 1110

5994 pp F6 53 1120
5997 C3 F7 58 1130

599A 1140
599A 2A BC 73 1150
599D 36 4C 1160

599F 23 1170
59A0 36 4r 1180
59A2 23 1190

59A3 36 20 1200

59A5 23 1210
59A6 EB 1220

59A7 21 54 OC 1230

59AA 01 FB FF 1240
59AD CD 00 01 1250
59B0 EB 1260
59B1 36 20 1270
59B3 23 1280
59B4 36 2E 1290

59B6 23 1300
59B7 36 20 1310

59B9 23 1320

59BA EB 1330
59BB 2A 6A OC 1340

59BE 4D 1350
59BF 7C 1360
59C0 CD F9 59 1370
59C3 2B 1380
59C4 7E 1390
59C5 12 1400
59C6 13 1410
59C7 23 1420
59Ca 7E 1430

59C9 12 1440
59CA 13 1450
59CB 79 1460

59CC CD F9 59 1470
59CF 2B 1480
59D0 7E 1490

59D1 12 1500
59D2 13 1510
59D3 23 1520
59D4 7E 1530
59D5 12 1540
59D6 13 1550

59D7 3E OD 1560
59D9 12 1570
59DA 21 90 73 1580
59DD pp BA 73 1590

59E0 2A OE OC 1600
59E3 22 7F 72 1610
59E6 F3 1620
59E7 2A BC 73 1630
59EA CD C2 73 1640
59ED 2A BO 73 1650
59F0 2B 1660
59F1 22 6E OC 1670
59F4 2A 6C OC 1680

SHLXI F5
LXI H»LST+1
LXI D!r0C54H
LXI By-5
CALL MO^
LHLD BOFP
SHLD FPTR
SHLD OCAAH
LXI
SHLD 0C6CH
MUI fkw'Z'

STA 0C73H
JMP REAIX)
LHLD 727FH
SHLD OCOEH
LHLD 0C6EH
MVI M*1
SHLD EOFP
JMP S1090

^CNTR EQU 7390H
READO LHLD MENTR4-2CH

MVI M^'L"
INX H
MVI
INX H
MUI Hw' '

INX H
XCHG
LXI H»OC54H
LXI B»-5
C^V-L
XCHQ
HUI hw' '

INX H
MVI Ht'

INX H
rWI fiw' '

INX H
XCHG
U-LJ) OC^bAH
HOV CfL
HOU AvH
CALL BIMH
DCX H
HOV; ArN
STAX D
INX D
INX H
HOU AfM
STAX D
INX D
MOV AvC
Cf^JL BIMH
DCX H
MOV A»M
STAX D
INX D
INX H
MOV ArM
STAX D
INX D
MVI A^ODH
STAX D
LXI HyMENTR
SHLD MENTR+2AH
LHLD OCOEH
SHLD 727FH
DI
LH_D hCNTP+2CH
CALL MENTR+32H
LHLD hENTR+20H
DCX H
SHLD 0C6EH
LHLD OCACH

270

r

^9F7 FB
59F8 E9
59F9 21 31 54
59FC 47
59FD IF
59FE IF
59FF IF
5A00 IF
5A01 CD OC 5A
5A04 77
5A05 23
5A06 78
5A07 CD OC 5A
5A0A 77
5A0B C9
5A0C OF
5A0E CA 30
5A10 FE 3A
5A12 D8
5A13 CA 07
5A15 C9
5A16 2A A6 52
5A19 23
5A1A 22 A6 52
SAID 2B
5A1E 29
SAIF 29
5A20 29
5A21 11 OC 4F
5A24 19
5A25 11 OE 51
5A2S 01 Fa FF
5A2B EB
5A2C CD 00 01
5A2F 2A AA 52
5A32 E5
5A33
5A3A
5A37
5A38
5A3B
5A3C
5A3ri
5A3F
5A42
5A45
5A46
5A49
5A4A
5A4ti
5A4E
5A4F
SASO
SASl
5A52
5A55
5A56
5A59
5A5a
sasd
SA5e
SASr
^60
SA6i

5A64

^7

5A6b

5A7:>

^^77

11 9C 5
19
2B
3A E8 5
77
El
FE 43
C2 52 5
11 OC 5
EB
CD BA 5
EB
2A 18 5
EB
73
23
72
C9

11 A6 5!
EB
CD BA 5:
EB
2A 20 5^
EB
73
23
72

^ e:8 5;
^ 56
CO

^ 22 5.

CQ

2A A6
»«C5-

^ 2C

1A90 El
1700 PCHL
1710 BINH LXI HrADDS
1720 MOV BrA
1730 RAR
1740 RAR
1750 RAR
17A0 RAR
1770 CALL BINl
1780 MOV MrA
1790 INX H
1800 MOV ArB
1810 CALL BINl
1820 MOV MrA
1830 RET
1840 BINl fiHX OFH
1850 ADI 30H
IBAO CPI '9'+l
1870 RC
1880 ADI 7
1890 RET
1900 S1960 LHLD T1
1910 INX H
1920 SHLD T1
1930 DCX H
1940 TSfiiD H
1950 DAD H
19A0 DAD H
1970 LXI DrTST
1980 DAD D
1990 LXI DrAST
2000 LXI Br-8
2010 XCHG
2020 CALL MCK^
2030 LHLD T1
2040 PUSH H
2050 LXI DrTOST
20A0 DAD D
2070 DCX H
2080 LDA KST
2090 MOV MrA
2100 POP H
2110 CPI 'C'
2120 JNZ L2010
2130 LXI DrT2
2140 XCHG
2150 CALL ARRAY
2160 XCHG
2170 LHLD N3
2180 XCHG
2190 MOV MrE
2200 INX H
2210 MOV MrD
2220 RET
2230 L2010 LXI DrTl
2240 XCHG
2250 CALL ARRAY
22A0 XCHG
2270 LHLD LI
2280 XCHG
2290 MOV MrE
2300 INX H
2310 MOV MrD
2320 LDA KST
2330 CPI '\J'
2340 RNZ
2350 LDA F9
2360 ORA A
2370 RZ
2380 LHLD T1
2390 LXI DrT2
2400 XCHG
2410 CALL ARRAY
2420 XCHG
2430 LHLD DO

5A7A EB
5A7B 73
5A7C 23
5A7D 72
5A7E EB
5A7F 23
5A80 22 2C 54
5A83 C9
5AS4 OE 05
5AB6 C3 A1 5A
5A89 2A 31 54
5A8C 3A 30 54
5A8F 4F
5A90 D5

5A91 CD A1 5A
5A94 C2 99 5A
5A97 D1
5A98 C9
5A99 E3
5A9A El

5A9B 05
5A9C C2 89 5A
5A9F 04
5AA0 C9
5AA1 lA
5AA2 BE

5AA3 C2 BO 5A
5AA6 FE 20
5AA8 C3
5AA9 23
5AAA 13
SAAB OD

5AAC C2 A1 5A
5AAF C9
SABO 13
SABI OD

5AE2 C2 BO 5A
SABS OC
SABA C9
5AE7 2A A6 52
SABA 22 14 54
SABD 7C
5ABE B5
SABF C2 C4 5A
5AC2 3C
5AC3 C9
5AC4 2B
SACS 29
5ACA 29
5AC7 29
SACS 11 OC 4F
5ACB 19
5ACC 11 OE 51
5ACF OE OS
SADI CD A1 5A
5AD4 2A 14 54
5AD7 CS
5AD8 2B
5AD9 C3 BA 5A

5ADC 3A D8 53
5ADF FE 20

5AE1 C2 EA 5A
5AE4 CD D3 58
5AE7 C3 DC 5A
5AEA FE 41
5AEC DA DE SB
5AEF FE SB
SAFI 02 DE SB
5AF4 21 00 00
5AF7 22 10 54
SAFA 21 57
5AFD 11 OE 51
SBOO 01 F4 FF
SB03 CD 00 01

2440 XCHG
2450 MOV MrE
2460 INX H
2470 MOV MrD
2480 XCHG
2490 INX H
2500 SHLD DO
2510 RET
2520 STCMP mi Cr5
2530 JMP SEAR
2540 COMS LHLD ADDS
2550 LDA NCHR
2560 MOV CrA
2570 PUSH D
2580 CALL SEAR
2590 JNZ <i+2
2600 POP D
2610 RET
2620 XTW.
2630 POP H
2640 DCR B
2650 JNZ COMS
2660 INR B
2670 RET
2680 SE^ LDAX D
2690 CMP M
2700 JNZ INCA
2710 CPI ' '
2720 RZ
2730 INX H
2740 INX D
2750 DCR C
2760 JNZ SEAR
2770 RET
2780 INCA INX D
2790 DCR C
2800 JNZ INCA
2810 INR C
2820 RET
2830 S2060 LHLD T1
2840 SHLD I
2850 MOV ArH
2860 ORA L
2870 JNZ *+2
2880 INR A
2890 RET
2900 DCX H
2910 DAD H
2920 DAD H
2930 DAD H
2940 LXI DrTST
2950 DAD D
29A0 LXI DrAST
2970 MVI Cr8
2980 CALL SEAR
2990 LHLD I
3000 RZ
3010 DCX H
3020 JMP S20A0+3

0010 S1240 LDA XST
0020 CPI 20H
0030 JNZ L12S0
0040 CALL S1030
0050 JMP S1240
OOAO L1280 CPI 'fit'
0070 JC L14A0
0080 CPI 'Z'+l
0090 JNC L14AO
0100 LXI HrO
Olio SH_D K
0120 LXI HrL1300
0130 LXI DrAST
0140 LXI Br-12
0150 CALL MCX^

271

5B06 2A 10 54 0160
5B09 4D 0170
5B0A 44 0180
560B 21 08 00 0190
5E0E CD D1 57 0200
5B11 D2 23 5B 0210
5B14 0220
5B15 S9 0230
5B16 23 0240
5B17 22 10 54 0250
5B1A 2B 0260
5B1B 11 OE 51 0270
5B1E 19 0280
5B1F 3A DB 53 0290
5B22 77 0300
5B23 CD D3 58 0310
5B26 6F 0320
5B27 26 00 0330
5B29 22 12 54 0340
5B2C FE 30 0350
5B2E DA 40 5B 0360
5B31 FE 3A 0370
5B33 DA 06 5B 0380
5B36 FE 41 0390
5B3e DA 40 5B 0400
5B3B FE 5B 0410
5B3D DA 06 5B 0420
5B40 21 01 00 0430
5B43 22 14 54 0440
5B4<^ 21 9C 00 0450
5B49 22 16 54 0460
5B4C 21 OE 51 0470
5B4F 11 lA 51 0480
5B52 01 F8 FF 0490

CD 00 01 0500
5B58 2A 14 54 0510
5B5B EB 0520
5BoC 2A 16 54 0530
5B5F 19 0540
5B60 11 F6 FF 0550
5B^ 01 FF FF 0560
5BA6 19 0570
5B67 03 0580
5B<&8 7C 0590
5B69 B7 0600
5B6A F2 66 5B 0610
5B6D 69 0620
5B6E 60 0630
5B6F 29 0640
5B70 29 0650
5B71 09 0660
5B72 23 0670
5B73 •■TO 10 54 0680
5B76 2B 0690
5B77 11 33 54 0700
5B7A 19 0710
5B7E 11 ED 53 0720
5B7E 01 FB FF 0730
5B81 CD 00 01 0740
5B84 21 FB FF 0750
5B87 19 0760
5B88 11 lA 51 0770
SBBE OE 05 0780
5B8D lA 0790
5B8E BE 0800
5B8F C2 98 5B 0810
5B92 23 0820
5B93 13 0830
5B94 OD 0840
5B95 C2 8D 5B 0^0
5B98 CC C8 5B 0860
5B9B FC ca 5B 0870
5B9E F4 D3 5B 0^0
5BA1 2A 16 54 0890
5BA4 4D 0900

L1310 LHLD K
HOV; CrL
HOU
l_XI H»8

BHCW
JNC I_1330
MOV H^B
MOV LrC
INX H
SHLD K
DCX H
LXI D^AST
DAD D
LDA XST
MOV MvA

L1330 CALL S1030
MOV LrA
MVI HrO
SHLD T
CPI 'O'

JC L1360
CPI '9'-^!

JC L1310
CPI 'A'
JC L1360
CPI 'Z'+l
JC L1310

L1360 LXI Hrl
SHLD I
LXI HtNO+NO+NO+NO+NO-4
SHLD J
LXI H»AST
LXI D^BST
LXI Br-8
X2fiiJL MO<^

L1390 LHLD I
XCHC
LHLD J
DAD D
LXI Dy-10
LXI Br-1

01^4- DAD D
INX B
MOV ArH
ORA A
JP DIW-
MOV L^C
MOV H^B
DAD H
DAD H
DAD B
INX H
SHLD K
DCX H
LXI D^WOST
DAD D
LXI D»ZST
LXI B»-5

MOVE
LXI H»-5
DAD D
LXI D^BST
MVI C^5

L1400 LDAX D
CMP M
JNZ L1410
INX H
INX D
DCR C
JNZ L14O0

L1410 CZ JKM5
CM JKM5
CP iKre
LHJ) J
MOV C^L

272

5BA5 44 0910 MOV BrH
5BA6 2A 14 54 0920 LHLD I
5BA9 CD D1 57 0930 CALL BHCMP
5BAC F2 SB 5B 0940 JP L1390+3
5BAF 11 FB FF 0950 LXI Dr-5
5BB2 19 0960 DAD D
5BB3 CD D1 57 0970 CALL BHCMP
5BB6 21 lA 51 0980 LXI HrBST
5BB9 FA BF SB 0990 JM «+3
SBBC 21 D3 54 1000 LXI HrIDEMT
5BBF 11 E3 53 1010 LXI DrSOST
5BC2 01 FB FF 1020 LXI Br-5
5BC5 C3 00 01 1030 JMP MOVE
5BC8 2A 10 54 1040 JKM5 Lrt-D K
5BCB 11 FB FF 1050 LXI Dr-5
5BCE 19 1060 DAD D
5BCF 22 16 54 1070 J
5BD2 C9 1080 RET
5BD3 2A 10 54 1090 IKP5 LrtJJ K
5BD6 11 05 00 1100 LXI Dr5
5BD9 19 1110 DAD D
5BDA 'yz* 14 54 1120 SHLD I
5BDD C9 1130 RET
5BDE 21 ED 53 1140 L1460 LXI HrZ
5BE1 3A D8 53 1150 LDA XST
5BE4 FE 30 1160 CPI '0'
5BE6 DA 42 5C
5BE9 FE 3A
5BEB D2 42 5C
5BEE 77
5B EF 23
5BF0 E5
5BF1 CD D3 58
5BF4 El
5BF5 FE 30
5BF7 DA FF 5B
5BFA FE 3A
5BFC DA EE SB
5BFF 11 ED 53
5C02 CD C<S 57
5C05 19
SC06 4D
5C07 44
5C08 21 00 00
SCOB 11 ED 53
5C0E lA
5C0F 13
^10 D6 30
5C12 D5
SC13 5D
5C14 54
^15 29
^16 29
^17 19

^18 29
'^19 5p

^ID D1

OB
79
Bo

^IF
5C20

Si S 5c
5C27 I? ^ 54
®C2a ^ ^
5C2lj S ^

^ 5? ^ 5n
5C39 f J ^ 54

01 S ^
®?5F ^ FB FF

1170 JC L1580
1180 CPI '9'+l
1190 JNC L1580
1200 L1500 MO^ MfA
1210 INX H
1220 PUSH H
1230 Cfi^ S1030
1240 POP H
1250 CPI 'O'

12AO JC *+5
1270 CPI '9'+l
1280 JC L1500
1290 LXI DrZST
1300 CALL CHD
1310 DAD D
1320 MOV CrL
1330 MOV BtH
1340 LXI H»0
1350 LXI DrZST
1360 L1530 LDAX D
1370 INX D

SUI 30H
PUSH D
MOV EfL

^3 i? 0« 01
^ ^ 53

3a

1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650

MOV D^H
DAD H
DAD H
DAD D
DAD H
MOV ErA
r^I DwO

DAD D
POP D
DCX B
MOV A»C
ORA B
sINZ L1530
SHLD N3
LXI B^Nl

CALL BHCMP
JNC NOK
LXI H»30
Jl»^ F^e

NDK LXI H^NUM
LXI DrSOST
LXI B^-5
JMP MOVE

L1580 LXI H»SOS
CPI ' t'

5C47 C2 61 5C
5C4A E5
5C4B CD D3 58
5C4E El
5C4F FE 3D
SCSI 36 3A
5C53 23
5C54 CA 5A 5C
5C57 36 20
5C59 C9
5C5A 77
5C5B 23
5C5C 36 20
5C5E C3 D3 58
5C61 FE 3C
SC63 C2 81 5C
5C66 77
5C^7 23
5C68 E5
5C69 CD D3 58
5C6C El

5C6D FE 3E
5C6F CA 7A 5C
5C72 FE 3D
5C74 CA 7A 5C
5C77 36 20
5C79 C9
5C7A 77
5C7B 23
5C7C 36 20
5C7E C3 D3 58
SCSI FE 3E
5C83 C2 95 5C
5C86 77
5C87 23
5C88 E5
5C89 CD D3 58
5C8C El
scan FE 3D
5C8F CA 7A 5C
5C92 36 20
5C94 C9
5C95 FE 27
5C97 C2 CA 5C
5C9A 21 DD 54
5C9D 11 E3 53
5CA0 01 FB FF
5CA3 CD 00 01
5CA6 21 4E 52
5CA9 E5

5CAA CD D3 58
SCAD El
5CAE FE 27

5CBO CA B8 5C
5CB3 77
5CB4 23

5CB5 C3 A9 5C
5CE8 E5
5CB9 CD D3 58
5CBC El
5CBD FE 27
5CBF C2 C7 5C
5CC2 77
5CC3 23
5CC4 C3 A9 5C
5CC7 36 20
5CC9 C9
5CCA FE 7D
5CCC C2 DD 5C
5CCF CD D3 58
5CD2 FE 7D
5CD4 C2 CF 5C
5CD7 CD D3 58
5CDA C3 DC 5A
SCDD FE 25

1660 JNZ L1640
1670 PUSH H
1680 CALL S1030
1690 POP H
1700 CPI
1710 MVI Mr':'
1720 INX H
1730 JZ L1620
1740 MVI Mr' '
1750 RET
±760 L1620 MOV MrA
1770 INX H
1780 m^I Mr' '
1790 JW* S1030
1800 L1640 CPI '<-
1810 JNZ L1710
1820 MOV MrA
1830 INX H
1340 PUSH H
1850 CALL S1030
1860 POP H
1870 CPI '>'
1880 JZ L1690
1890 CPI '='
1900 JZ L1690
1910 MVI Mr' '
1920 RET
1930 L1690 MOV MrA
1940 INX H
1950 WI Mr' '
1960 JMP S1030
1970 L1710 CPI '>'
19B0 JNZ L1750
1990 MOV MrA
2000 INX H
2010 PUSH H
2020 CALL S1030
2030 POP H
2040 CPI
2050 JZ L1690
2060 MVI Mr' '
2070 RET
2080 L1750 CPI ""
2090 JNZ L1790
2100 LXI HrSTR
2110 LXI DrSOST
2120 LXI Br-5
2130 MOVE
2140 LXI HrCST
2150 L1770 PUSH H
2160 CALL S1030
2170 POP H
2180 CPI " "
2190 JZ QFND
2200 MOV MrA
2210 INX H
2220 JMP L1770
2230 QFND PUSH H
2240 CALL S1030
2250 POP H
2260 CPI ""
2270 JNZ L17S0
2280 MOV MrA
2290 INX H
2300 JMP L1770
2310 L1780 MVI Hr' '
2320 RET
2330 L1790 CPI '
2340 JNZ L1820
2350 COM C^^ S1030
2360 CPI '
2370 JNZ COM
2380 CALJL S1030
2390 JMP S1240
2400 L1820 CPI 'X'

273

5CDF C2 2E 5D 2410 JNZ L1930 5D71 C2 6B 5D 3160 JNZ FL
5CC2 21 D8 54 2420 LXI HfNUH 5D74 3E 5E 3170 MVI A»'t^

5CE5 11 E3 S3 2430 LXI DySOST 5D76 CD 24 OC 3180 CALL UHl

5CE8 01 FB FF 2440 LXI B»-5 5D79 CD 02 OA 3190 CALL. BLKl
5CCB CD 00 01 2450 CALL fWE 5D7C El 3200 POP H
SCEE 21 00 00 2460 LXI H^O 5D7D EB 3210 XCHG
SCFl 40 2470 HOV CvL 5n7E CD 9E 53 3220 CALL DECOUT
5CF2 E5 2480 HXI PUSH H 5DS1 CD FS 09 3230 CALL CRLF
5CF3 C5 2490 PUSH B 5DB4 El 3240 POP H
5CF4 CD D3 58 2500 CALL S1030 5D85 CD AD 05 3250 CALL OSEQ
5CF7 Cl 2510 POP B 5D88 CD F8 09 3260 CALL CRLF
5CF8 El 2520 POP H 5D8B CD 20 OC 3270 CALL WHO
5CF9 06 30 2530 SUI '0' 5D8E 2A OE OC 3280 LHLD OCOEH
5Cf=1B DA 19 5D 2540 JC L1910 5D91 •y^ 7F 72 3290 SHLD 727FH
5CFE FE OA 2550 CPI 10 5D94 C3 90 73 3300 JMP 7390H
5D00 DA OF 5D 2560 JC L1880 5D97 3E 20 3310 FNG MVI Piw'

5D03 D6 07 2570 SUI 7 5D99 32 lA 51 3320 STA BST

5D05 FE OA 2580 CPI 10 5D9C 2A FE 53 3330 LHLD 09
5IK)7 DA 19 5D 2590 JC L1910 5D9F D5 3340 PUSH D
5D0A FE 10 2600 CPI 16 5DA0 EB 3350 XCHG

5D0C D2 19 5D 2610 JNC L1910 5DA1 2A FC 53 3360 LHLD P9
5D0F 29 2620 L1880 DAD H 5DA4 23 3370 INX H
5D10 29 2630 DAD H 5DA5 23 3380 INX H
5D11 29 2640 DAD H 5DA6 23 3390 INX H
5D12 29 2650 DAD H 5DA7 23 3400 INX H
5D13 85 2660 ADD L 5DAa CD C6 57 3410 CALL CMD
SD14 6F 2670 MOU LvA 5DAB 19 3420 DAD D

SD15 OC 2680 IM% C 5DAC 7C 3430 MOU AfH
5D16 CZ F2 SC 2690 JMP HXI 5DAD B7 3440 ORA A

5D19 22 18 54 2700 L1910 SHLD N3 5DAE 21 01 00 3450 LXI Hwl

5D1C 21 IB 00 2710 LXI H»27 5DB1 F2 57 5D 3460 JP FNE
SDIF 79 2720 MOU A*C 5DB4 2A FC 53 3470 LHLD P9
5D20 FE 05 2730 CPI 5 5DB7 D1 3480 POP D
5D22 D2 57 SD 2740 JNC FhC 5DB8 70 3490 MOM MfB
5D25 B7 2750 ORA A 5DB9 23 3500 INX H
5D2^ CO 2760 RNZ 5DBA 71 3510 MOV M»C
5D27 21 25 20 2770 LXI Hw' X' 5DBB 23 3520 INX H
5D2A 22 E3 53 2780 SHLD SOST 5DBC 73 3530 MOV MvE
5D2D C9 2790 RET 5DBD 23 3540 INX H
5D2E 21 E3 S3 2800 L1930 LXI HtSOST 5DBE 72 3550 MOV H»D
5D3I 77 2810 MOU M^A 5DBF 23 3560 INX H
5D32 23 2820 INX H 5DC0 22 FC 53 3570 SH-D P9
5D33 36 20 2830 tiw' ' 5DC3 3A 04 54 3580 LDA Y9
5D35 C3 D3 58 2840 JHP S1030 5DC6 B7 3590 ORA A
5D38 E5 2850 FT«:2 PUSH H 5DC7 C2 14 5E 3600 JNZ L6400
5D39 CD DC 5A 2860 CALL S1240 5DCA 78 3610 MOV AfB
5D3C El 2870 POP H 5DCB FE 10 3620 CPI 16
5D3D E5 2880 FNEl PUSH H 5DCD DA De 5D 3630 JC L6390
5D3E 11 E3 S3 2890 LXI DfSOST 5DD0 D6 10 3640 SUI 16
5D41 21 D9 53 2900 LXI H^FNEIST 5DD2 47 3650 MOV BfA
SD44 CD 84 5A 2910 CALL STCMP 5DD3 3E 58 3660 MVI Aw'X'

5D47 El 2920 POP H 5DD5 32 lA 51 3670 STA BST
SD48 C2 57 SD 2930 JNZ FNE 5DD8 78 3680 L6390 MOV ArB

SD4B 21 57 2940 BLST LXI H»L13O0 5DD9 87 3690 ADD A
5D4E 11 09 53 2950 LXI DvFNElST 5DDA 80 3700 ADD B
5D51 01 FB FF 2960 LXI B»“5 5DDB 47 3710 MOV BfA
5D54 C3 00 01 2970 JMP MOUE 5DDC 2A OE 54 3720 LHLD Cl
5D57 E5 2980 Fl^ PUSH H 5DDF D6 3730 POSH D
5058 2B 2990 DCX H 5DEO C5 3740 PUSH B
SD59 29 3000 DAD H 5DE1 EB 3750 XCHG
5D5A 11 66 57 3010 LXI D^ETAB 5DE2 3E 10 3760 MVI
5D5D 19 3020 DAD D SDE4 CD A7 58 3770 O^LL decfmt

SD5E 7E 3030 MOU ArM 5DE7 CD 02 OA 3780 CALL BLKI

5D5F 23 3040 INX H 5DEA Cl 3790
5D60 66 3050 MOU HrM 5DEB 21 E2 54 3800 LXI HfMST

5D61 6F 3060 HOU LvA 5PEE 58 3810 MOV EfB

5D62 E3 3070 XTVC 5DEF 16 00 3820 MVI DfO
5D63 E5 3080 PUSH H 5DF1 19 3830 dad d

5064 2A 08 54 3090 U-LD CO 5DF2 7E 3840 MOV AfH

5067 11 04 00 3100 LXI 0^4 5DF3 CD 24 OC 3850 CALL WHl

5D6A 19 3110 DAD D 5DF6 23 3860 INX H

5D6B CD 02 OA 3120 FL CALL BLK1 5DF7 7E 3870
Ml

5D6E 2D 3130 DCX H 5DF8 CD 24 OC 3880 CALL ****

5D6F 7D 3140 MOU A^L 5DFB 23 3890
5070 B4 3150 ORA H 5DFC 7E 3900 MOV Af'’

274

SDFD CD 24 OC
5C00 3A lA 51
5E03 CD 24 OC
5E06 CD 02 OA
5E09 59
5E0A CD 9E 58
5E0D D1
5E0E CD 9E 58
5E11 CD F8 09
5E14 2A OE 54
SE17 23
SEIS 22 OE 54
5E1B C9

3910 CALL UHl
3920 LDA BST
3930 CALL UHl
3940 CALL BLKl
3950 MOV EfC
3960 CALL DECOUT
3970 POP n
3980 CALL DECOUT
3990 CALL CRLF
4000 L6400 LHLD Cl
4010 INX H
4020 SHLD Cl
4030 RET

5E1C CD
5E1F 2A
5E22 29
5E23 29
5C24 EB
5E25 2A
5E28 19
5E29 22
5E2C EB
5E2D 2A
5E30 EB
5E31 23
5E32 23
5E33 73
5E34 23
3E35 72
5E36 2A
5E39 7C
5E3A B5
5E3B CO
5E3C 21
5E3F CD
SE42 23
5E43 E5
5E44 2A
3E47 EB
5E48 CD
5E4B El
5E4C CD
5E4F 2A
5ES2 EB
5E53 CD
*56 C3
5E59 21
*5C 22
5E5F 3E
*61 32
*64 06
*66 11
^69 CD
*6C CO
*6D 21
^0 EB

CD
3t74 19

fe

8F 5E
lA 54

FS 53

2E 54

OE 54

23
22
2B
EB
21
CD
EB
2a
EB

04 54

53 57
AD 05

lA 54

9E 58

AD 05
OE 54

9E 58
F8 09
E3 53
31 54
05

30 54
23
3^ 54
09 5A

33 54

C6 57

00 54

00 54

22 51
BA 57

lA 54

0010 S6520 CALL S6150
0020 L6540 LHLD X
0030 DAD H
0040 DAD H
0050 XCHG
0060 LHLD P7
0070 DAD D
0080 SHLD N
0090 XCHG
0100 L>Ln Cl
Olio XCHG
0120 INX H
0130 INX H
0140 MOV fiwB
0150 INX H
0160 MOV M»D
0170 L4U Y9
0180 MOV AfH
0190 ORA L
0200 RNZ
0210 LXI H»L6570
0220 CALL DSEG
0230 INX H
0240 PUSH H
0250 LHLD X
0260 XCHG

0270 CALL DEx:ai/r
0280 POP H
0290 CALL OSEQ
0300 LHLD Cl
0310 XCHG
0320 CALL DCCOUT
0330 JMP CRLF
0340 CKRES LXI H»SOST
0350 SlU) ADDS
0360 MVI A»5

0370 STA NOff^
0380 ^^^I B»35
0390 LXI DvUOST
0400 C^^J_ COMS
0410 RNZ
0420 LXI HrWOST
0430 XCHG
0440 CALL CMD
0450 DAD D
0460 XRA A
0470 RET
0480 S6120 LHLD 89
0490 INX H
0500 SHLD S9
0510 DCX H
0520 XCHG
0530 LXI HwS

0540 CALL ^^^RAY
0550 XCHG
0560 LHLD X
0570 XCHG
0580 MOV M»E
0590 INX H
0600 MOV MrD
0610 RET

5ESF 2A 00 54
5E92 2B

5E93 22 00 54
5E96 EB
5E97 21 22 51
5E9A CD BA 57
5E9n EB
5E9E 22 lA 54
5EA1 C9

^A2 2A FA 53
SEAS 22 lA 54
5EA8 CD 77 5E
5EAB 21 CE 53
SEAE 01 00 00
5EB1 7E
5EB2 FE 20
5EB4 CA Cl 5E
5EB7 12
5EB8 23
5EB9 13
SEBA OB
SEBB 79
5EBC FE FB
5EBE C2 B1 SE
SECl EB
5EC2 22 FA 53
5EC5 69
SEC6 60
5EC7 22 lA 54
5ECA C3 77 5E
5ECD CD SF 5E
5ED0 4D
SEDl 44
5ED2 CD SF 5E
5ED5 FA 53
SEDS 11 DE 53
5EDB C5
5EDC 79
5EDD BO
SEDE C4 00 01
5EE1 Cl
5EE2 ED
5EE3 79
5EE4 1 FE FB
5EE6 C8
5EE7 36 20
5EE9 23
5EEA 3D
SEEB C3 E4 5E
5EEE 21 D3 54
5EF1 11 D9 53
5EF4 01 FB FF
5LF/- CD 00 01
5EFA 21 04 00
5EFD CD 3D 5D
5F00 21 30 20
5F03 22 D9 53
5F06 21 03 00
5F09 CD 38 5D
5F0C CD DC 5A
5F0F 3A E3 53
5F12 FE 2D
5F14 F5
3^15 CC DC 5A
SFIS CD 35 5F
5F1B FI

5F1C C2 ^ 5F
3=‘1F 2A 18 54
5F22 EB
5F23 CD C6 57
SF26 EB

3=^7 22 18 54
3='2A 3E 43
3=-2C 32 E8 53
5F2F CD 16 5A

0620 S6150 LHLD S9
0630 DCX H
0640 SHLD S9
0650 XCHG
0660 LXI HfS
0670 CALL «=tf%RAY
0680 XCHG
0690 SHLD X
0700 RET
0710 S6130 LHLD P8
0720 SHLD X
0730 CALL S6120
0740 LXI HrYST
0750 LXI BfO
0760 L6190 MOV AvM
0770 CPI 20H
0780 JZ L6200
0790 STAX D
0800 INX H
0810 INX D
0820 DCX B
0830 MOV A^C
0840 CPI -5
0850 JNZ L6190
0860 L6200 XCHG
0870 SHLD P8
0880 MOV LwC
0890 MOV H»B
0900 SHLD X
0910 S6120
0920 S6240 S6150
0930 MOV CrL
0940 MOV BwH
0950 CALL S6150
0960 SHLD P8
0970 LXI D^YST
0980 PUSH B
0990 MOV ArC
lOOO ORA B
lOlO CNZ MOVE
1020 POP B
1030 XCHG
1040 MOV AfC
1050 1 L6270 CPI -5
1060 RZ
1070 MVI M»' '
1080 INX H
1090 OCR A
1100 JMP L6270
1110 S2180 LXI HrIDENT
1120 LXI B^FHElSr
1130 LXI B»-5
1140 CALL MOVE
1150 LXI Hr4
1160 CALL FNEl
1170 LXI Hw'
1180 SHLD F7«:iST
1190 LXI Hr3
1200 CALL FNE2
1210 CALL S1240
1220 LDA SOST
1230 CPI
1240 POSH P
1250 CZ S1240
1260 CALL S2240
1270 POP p
1280 JNZ ♦+!!
1290 LHLD N3
1300 XCHG
1310 CALL CMD
1320 XCHG
1330 SHLD N3
1340 MVI Aw'C'
1350 STA KST
1360 CALL S1960

5F32 C3 DC 5A 1370 JMP S1240
5F35 21 E3 53 1380 S2240 LXI HvSOST
SF38 11 D8 54 1390 LXI D»NUM
5F3B CD 84 5A 1400 CALL STCMP
5r3E C8 1410 RZ
5F3F 21 E3 53 1420 LXI H^SOST

5F42 11 D3 54 1430 LXI DvICENT
5F45 CD 84 SA 1440 CALL STCMP

5F48 CA 67 5F 1450 JZ L2290

5F4B 21 DD 54 1460 LXI H»STR
5F4E 11 D9 53 1470 LXI DrFNElST

5F51 01 FB FF 1480 LXI B*-5
5F54 CD 00 01 1490 CALL MO^
5F57 21 02 00 1500 LXI H»2
SF5A CD 3D 5D 1510 CALL FhEl
5F5D 3A 4E 52 1520 LDA CST
5FA0 6F 1530 HOV LrA
5FA1 26 00 1540 MVI HwO
SFA3 22 18 54 1550 SFLD N3
5F66 C9 1560 RET
5FA7 CD B7 5A 1570 l_2290 CALL S2060
5FM 2A 14 54 1580 LHLD I
9FAD EB 1590 XCHG

5FAE 21 02 00 1600 LXI H92
5F71 7B 1610 MOU A«E
5F72 B2 1620 □RA D

5F73 CA 57 5D 1630 JZ FNE
5F76 E5 1640 PUSH H
5F77 21 9C 50 1650 LXI H»TOST

5F7A 19 1660 DAD D
5F7B 2B 1670 DCX H
5F7C 7E 1680 MOU A»M
SFTD El 1690 POP H
5F7E FE 43 1700 CPI 'C'
5F30 C2 57 5D 1710 JNZ FNE
5F83 21 OC 53 1720 LXI H»T2
5F86 CD BA 57 1730 CALL ARRAY
5F89 EB 1740 XCHG

5F8A 18 54 1750 SHLD N3
5F8D C9 1760 RET
5F8E 21 D3 54 1770 S2340 LXI HvlDENT

5F91 11 D9 53 1780 LXI DvFNElST
5F94 01 FB FF 1790 LXI Bf-5
5F97 CD 00 01 1800 CALL MOUE
5F9A 21 04 00 1810 LXI H»4
SF9D CD 3D 5D 1820 CALL FNEl
5FA0 3E 56 1830 MVI fkw'W'
5FA2 32 E8 53 1840 STA KST
5FA5 CD 16 5A 1850 CALL S1960
5FA8 C3 DC 5A 1860 JNP S1240

5FAB 3A E3 53 1870 S2380 LDA SOST
5FAE FE 2B 1880 CPI '+'
5FB0 CA B8 5F 1890 JZ L2420
5FE3 FE 2D 1900 CPI
5FB5 C2 2B 60 1910 JNZ L2590
5FB8 32 DE 53 1920 L2420 STA YST

5FBB 3E 20 1930 MUI A»' '
5FBD 32 DF 53 1940 STA YST+1
5FC0 CD A2 5E 1950 C^^ S6180
5FC3 CD DC 5A 1960 CM±. S1240

5FC6 CD 31 60 1970 C^UJ- 82610
5FC9 CD CD 5E 1980 S6240

5FCC 3A DE 53 1990 LDA YST

5FCP FE 2D 2000 CPI
5FD1 C2 DD 5F 2010 JNZ L2460

5FD4 11 01 00 2020 LXI Drl

5Fi:i7 01 00 01 2030 LXI BrlOOH
5FDA CD 97 5D 2040 CMO. FNG

5FDD 3A E3 53 2050 L2460 LDA SOST
5FE0 FE 2B 2060 CPI
5FE2 CA F7 5F 2070 JZ L250O
5FE5 FE 2D 2080 CPI
5FE:7 CA F7 5F 2090 JZ L2500
5FEA 21 92 54 2100 LXI H»W0ST495
SPED 11 E3 53 2110 LXI D^SOST

5FF0 CD 84 5A 2120 CMJL STCMP
5FF3 CA F7 5F 2130 JZ L2500

5FF6 C9 2140 RET
5FF7 21 E3 53 2150 L2500 LXI HrSOST
5FFA 11 EC 53 2160 LXI DrYST

5FFD 01 FB FF 2170 LXI B»-5
6000 CD 00 01 2180 CALL MOUE
6003 CD A2 5E 2190 CALL S6180
6006 CD DC 5A 2200 CALL S1240
6009 CD 31 60 2210 CMJ- S2610
600C CD CD 5E 2220 CALL S6240

600F 01 00 01 2230 LXI BrlOOH
6012 11 03 00 2240 LXI Dr3
6015 3A DE 53 2250 LDA YST

6018 FE 2D 2260 CPI
601A CA 25 60 2270 JZ L2560
601D ID 2280 DCR E

601E FE 2B 2290 CPI
6020 CA 25 60 2300 JZ L2560
6023 IE OE 2310 MUI Erl4
6025 CD 97 5D 2320 L2560 CMO. FNG
6028 C3 DD 5F 2330 JMP L2460
602B CD 31 60 2340 L2590 CM-L S2610
602E C3 DD^ 5F 2350 jr«> L2460

6031 CD B5 60 2360 S2610 CALL S2850
6034 3A E3 53 2370 L2630 LDA SOST
6037 FE 2A 2380 CPI
6039 CA 57 60 2390 JZ L2700
603C CD 59 5E 2400 CKRES
603F CO 2410 RNZ
6040 PF 2420 XRA A
6041 85 2430 ADD L

6042 CA 57 60' 2440 JZ L2700
6045 D6 IE 2450 SUI 30
6047 CA 57 60 2460 JZ L2700

604A D6 32 2470 SUI 50
604C CA 57 60 2480 JZ L2700
604F D6 23 2490 SUI 35
6051 CA 57 60 2500 JZ L2700
6054 D6 05 2510 SUI 5
6056 CO 2520 RNZ

6057 21 E3 53 2530 L2700 LXI HrSOST
605A 11 rc 53 2540 LXI DrYST
605D 01 FB FF 2550 LXI Br-5
6060 CD GO oi 2560 MDUE

6063 CD A2 5E 2570 CMJ- S6180
6066 CD DC 5A 2580 CALL S1240

6069 CD BS 60 2590 CALL S2850

606C CD CD 5E 2600 CALL S6240

606F 01 00 01 2610 LXI BrlOOH

6072 11 04 00 2620 LXI Dr4

6075 3A DE 53 2630 LDA YST
6078 FE 2A 2640 CPI

607A CA AF 60 2650 JZ L2830

607D C5 2660 PUSH B
607E D6 2670 PUSH D

607F 21 DE 53 2680 LXI HrYST
call CKRES+3 6082 CD 5C 5E 2690

6085 D1 2700 POP D

6086 Cl 2710 POP B

6087 fiF 2720 XRA A

6088 85 2730 ADD L

6089 C2 92 60 2740 jl^ |_2730

JMP L2830

I_2730 SUI 30

JNZ

608C 11 OF 00 2750
608F C3 AF 60 2760

6092 D6 IE 2770
6094 C2 9B 60 2780
6097 13 2790 INX D

JMP 1-2850
L2740 SUI SO

JNZ U2760

I_XI Dr7 ^

JMP '
L2760 LXI

SUI 35

6098 C3 fiF 60 2800
609B
609D

D6
C2

32
A6 60

2810
2820

60 AO 11 07 00 2830

60 A3
60 A6

C3
11

fiF
11

60
00

2840
2850

60 A9 D6 23 2860

276

60AB CA ^ 60
60AE; 13
60AF CD 97 5D
60B2 C3 34 60
60K 3A E3 53

2870 JZ L2830
2880 INX D

2890 L2830 CALL FNG
2900 JMP I 9630
2910 S28S0 LDA SOST

60B8 FE 28
60BA CA 73 61
60BD CD 59 5E
60C0 C2 DD 60
60C3 3E
60C5 95
60C6 CA 6A 61
60C9 D6 05
60CB CA SD 61
60CE D6 05
60DO E3 60
60D3 06 4B

60D5 CA FF 61
60D8 06 OA
60DA CA 87 61
60DD 21 17 00
60EO C3 57 5D
60E3 CD B7 5A
60E6 7C
60E7 B5
60ES C2 FI 60
60EB 21 OB 00
60EE C3 57 50
60F1 2B
60F2 11 9C 50
60F5 19
60F6 7E
60F7 FE 50
60F9 C2 02 61
60FC 21 15 00
60FF a 57 5D
6102 FE 59
6104 C2 lA 61
6107 01 00 05
610A 11 01 00
610D CD 97 5D
6110 2A 14 54
6113 2B

22 14
C3 06
FE 41
CA B1
FE 43
C2 37
2A 14
EB
21 OC
CD BA
01 00
CD 97
C3 DC
2A 14
EB

21 OC
CD BA
D5
2A 14
EB
21 A6
CD ba

? C6
2A 20
19
4D
06 02
Dl

? DC
^ 18

OOlO CPI 'i'
0020 J2 L3100
0030 CALL CKRES
0040 JN2 L2920
0050 MVI A»170
0060 SUB L

0070 JZ L3080
0080 SUI 5
0090 JZ L3060
0100 SUI 5
Olio JZ L2940
0120 SUI 75
0130 JZ L3260
0140 SUI 10
0150 JZ L3140
0160 L2920 LXI Hr23
0170 JliP FNE

0180 L2940 CALL S2060
0190 MOV ArH
0200 ORA L
0210 JNZ «46
0220 LXI H»ll
0230 JMP FNE
0240 DCX H
0250 LXI DfTOST
0260 DAD D
0270 MOV ArM
0280 CPI P'
0290 JNZ L2970
0300 LXI Hr21
0310 JW FNE
0320 L2970 CPI 'Y'
0330 JNZ L3000
0340 LXI BvSOOH
0350 LXI Dwl
0360 CALL FNG
0370 LfCJ) I
0380 DCX H
0390 SHLD I
0400 JMP F4290
0410 L3000 CPI
0420 JZ L3190
0430 CPI 'C'
0440 JNZ L3030
0450 LHLD I
0460 XCHG
0470 LXI H»T2
0480 CALL ARRAY
0490 LXI B^O
0500 CALL FNG
0510 •JtV S1240
0520 L3030 LHLD I
0530 XCHG
0540 LXI H»T2
0550 CALL ^tf^RAY
0560 PUSH D
0570 LHLD I
0580 XCHG
0590 LXI HrTl
0600 CALL ARRAY
0610 CALL CMD
0620 LHLD LI
0630 DAD D
0640 MOV CpL.
0650 MVI Bw2
0660 POP D
0670 C^^ FNG
0680 JMP S1240
0690 L3060 LHLD N3

6160 EB
6161 01 00 00
6164 CD 97 5D
6167 C3 DC 5A
616A 3A 4E 52
616D 5F
616E 16 00
6170 C3 61 61
6173 CD DC 5A
6176 CD OE 62
6179 3A E3 53
617C FE 29
617E CA DC 5A
6181 21 16 00

6184 C3 57 5D
6187 21 5B 20
618A 22 D9 53
618D 21 21 00
6190 CD 38 5D
6193 CD DC 5A
6196 CD OE 62
6199 21 5D 20
619C 22 D9 53
619F 21 22 00
61A2 CD 3D 5D
6rA5 01 FF 02
61A8 11 OO 00
61AB CD 97 5D
61AE C3 EC 5A
61B1 2A 14 54
61B4 22 lA 54
61B7 CD 77 5E
61BA 21 5B 20
61BD 22 D9 53
61C0 21 21 00
61C3 CD 38 5D
61C6 CD DC 5A
61C9 CD OE 62
61CC 21 5D 20
61CF 22 D9 53
6102 21 22 00
6iri5 CD 3D 5D
61ti8 CD 8F 5E
61DB 2A lA 54
61DE EB
61DF 21 A6 52
61E2 CD BA 57
61E5 CD C6 57
61Ea 2A 20 54
61EB 19
61EC 4D
61ED 06 12
61EF 2A lA 54
61F2 EB
61F3 21 OC 53
61F6 CD BA 57
61F9 CD 97 5D
61FC C3 EC 5A
61FF CD DC 5A
6202 CD B5 60
6205 11 10 00
6208 01 00 01
620B C3 97 5D
620E CD AB 5F
6211 2A E3 53
6214 11 08 00
6217 44
6218 4D
6219 21 3D 20
621C CD 43 62
621F 13
6220 21 3C 3E
6223 CD 43 62
6226 13
6227 21 3C 20

0700 XCHG
0710 LXI BfO
0720 CALL FNG
0730 JMP S1240
0740 L3080 LDA CSX
0750 MOV E»A
0760 DwO
0770 JMP L3060-P4
0780 L3100 CALL S1240
0790 CALL S3290
0800 LDA SOST
0810 CPI ' y
0820 J2 S1240
0830 LXI H»22
0840 JMP FNE
0850 L3140 LXI Hw' C"
0860 SHLD FNEIST
0870 LXI Hr33
0880 CALL FNE2
0890 CALL S1240
0900 CALL S3290
0910 LXI Hw' 3'
0920 SHLD FNEIST
0930 LXI Hr34
0940 CALL FNEl
0950 LXI Br2FFH
0960 LXI D^O
0970 CALL FNG
0980 JMP S1240
0990 L3190 LHLD I
1000 SHLD X
1010 CALL S6120
1020 LXI Hy' C'
1030 SHLD FNEIST
1040 LXI H»33
1050 CALL FNE2
1060 CALL SI240
1070 CALL S3290
1080 LXI Hw' 3'
1090 SHLD FNEIST
1100 LXI H^34
1110 CALL FNEl
1120 CALL S6150
1130 LHLD X
1140 XCHG
1150 LXI H,T1
1160 CALL ARRAY
1170 CALL CMD
1180 LHLD LI
1190 DAD D
1200 MOV CfL
1210 MVI B^IS
1220 LHLD X
1230 XCHG
1240 LXI HrTZ
1250 CALL ARRAY
1260 CALL FNG
1270 JMP S1240
1280 L3260 CALL S1240
1290 CALL S2850
1300 LXI El, 16
1310 LXI B,100H
1320 JMP FNG
1330 S3290 CALL S2380
1340 LHLD SOST
1350 LXI D,8
1360 MOV BfH
1370 MOV CtL
1380 LXI Hr^
1390 CALL BHCMFJ
1400 INX D
1410 LXI
1420 CALL BHCMPJ
1430 INX D
1440 LXI H,^ <'

277

^22A CD 43 62 1450 CAUL BHCMPJ 62F1 CD OE 62 2200 CALL S3290
^22D 13 1460 INX D 62F4 CD 8F 5E 2210 CALL 36150
622E 21 3E 3D 1470 UXI &3F7 2A lA 54 2220 LHLD X

6231 CD 43 62 1480 CALL BHCMPJ aTFPi •yy 10 54 2230 SHLD K
6234 13 1490 INX D 62FD CD 8F 5E 2240 CAUL S6150

6235 21 3E 20 1500 LXI >' 6300 3A 10 54 2250 LDA K
6238 CD 43 62 1510 CALL BHCMPJ 6303 C6 03 2260 ADI 3
623B 13 1520 INX D 6305 47 2270 MOV B»A

623C 21 3C 3D 1530 LXI 6306 2A lA 54 2280 LHLD X
623F CD 43 62 1540 CALL BHCMPJ 6309 EB 2290 XCHG
6242 C9 1550 RET 630A 21 A6 52 2300 LXI HfTI

6243 CD D1 57 1560 BHCMPJ CALL BHCMP 630D CD BA 57 2310 CALL f'^RRAY
6246 CO 1570 RNZ 6310 CD C6 57 2320 CALL CMD

62A7 El 1580 POP H 6313 2A 20 54 2330 LHLD Li

6248 D5 1590 PUSH D 6316 19 2340 DAD n

6249 21 E3 53 1600 LXI HrSOST 6317 4D 2350 MOV C»L
624C 11 DE 53 1610 LXI D»YST 6318 2A lA 54 2360 LHLD X

624F 01 FB FF 1620 LXI Bt-5 631B EB 2370 XCHG

6252 CD 00 01 1630 CALL MOVE 631C 21 OC 53 2380 LXI HtT2
6255 CD A2 5E 1640 CALL S61S0 631F CD BA 57 2390 CALL ARRAY

6258 CD DC 5A 1650 CALL S1240 6322 C3 97 5D 2400 JMP FNG

625B CD AB 5F 1660 CALL S2380 6325 21 28 20 2410 L3870 LXI Hy'
625E CD CD 5E 1670 CALL 36240 6328 22 D9 53 2420 SHLD FNEIST
6261 D1 1680 POP D 632B 21 IF^. OO 2430 LXI Ht31
6,^262. 01 00 01 1690 LXI BylOOH 632E CD 38 5D 2440 CALL FNE2

C3 97 5D 1700 JMP FNG 6331 CD jx: 5A 2450 L3SS0 CALL 51240
6268 CD B7 5A 1710 L3630 CALL S2060 6334 E5 2460 PUSH H
626B CA 74 62 1720 J2 L3650 6335 21 DD 54 2470 LXI H?STR
626E 21 OB 00 1730 LXI Hrll 6338 11 E3 53 2480 LXI D?S05T
6271 C3 57 5D 1740 JMP FNE 633B CD 84 5A 2490 CALL 3TCMP
6274 11 9C 50 1750 L3650 LXI D»T0ST 633E El 2500 POP H
6277 19 1760 DAD D 633F C2 99 63 2510 JNZ L3950
6278 2B 1770 DCX H 6342 11 4E 52 2520 LXI DtCST
6279 7E 1780 MOV AfM 6345 CD C6 57 2530 CALL CMD
627A FE 41 1790 CPI 6348 19 2540 DAD D
627C CA 94 62 1800 JZ L3700 6349 7D 2550 MOV AtL
627F FE 56 1810 CPI 'V' 634A FE 01 2560 CPI 1
6281 CA C7 62 1320 JZ L3760 634C C2 66 63 2570 JNZ L3910
6284 FE 59 1B30 CPI 634F 01 00 00 2580 LXI E»0
6286 CA C7 62 1340 JZ L3760 6352 3A 4E 52 2590 LDA CST
6289 FE 50 1850 CPI 'P' 6355 5F 2600 MOV E?A
628B CA 06 4F 1860 JZ F4290 6356 51 2610 MOV D»C
628E 21 OC 00 1370 LXI Hfl2 6357 CD 97 SD 2620 CALL FNG
6291 C3 57 5D 1880 JMP FNE 635A 01 00 08 2630 LXI B^SOOH
6294 2A 14 54 1890 L3700 LHLD I 63SD 11 01 00 2640 LXI D»1
6297 oo lA 54 1900 SHLD X 6360 CD 97 5D 2650 CALL FNG
629A CD 77 5E 1910 CALL 36120 6363 C3 93 63 2660 JMP L3940
6290 21 10 00 1920 LXI Hfl6 6366 21 4E 52 2670 L3910 LXI HfCST

62A0 lA 54 1930 SHLD X 636? 5F 2680 MOV ErA
62A3 CD 77 5E 1940 CALL S6120 63<^ 16 00 2690 MVI VrO
62A6 21 5B 20 1950 LXI Hw' L' 636C D5 2700 PUSH D
62A9 22 D9 53 1960 SHLD FNEIST 636D E5 2710 L3920 PUSH H
62AC 21 21 00 1970 LXI Hf33 636E F5 2720 PUSH F

62AF CD 38 5D 1980 CALL FNE2 636F 7E 2730 MOV A»M

62B2 CD DC 5A 1990 CALL S1240 6370 01 00 00 2740 LXI BjO
62B5 CD OE 62 2000 CALL S3290 6373 51 2750 MOV DfC
62Ba 21 5D 20 2010 LXI Hf" 3' 6374 5F 2760 MOV EfA
62BB 22 D9 53 2020 SHLD FNEIST 6375 CD 97 5D 2770 CALL F^4G
62BE 21 •yy 00 2030 LXI Hf34 6378 FI 2780 POP P
62C1 CD 3D 5D 2040 CALL FNEl 6379 3D 2790 DCR A
62C4 C3 D9 62 2050 JMP L37S0 637A CA 32 63 2300 JZ L3930
62C7 2A 14 54 2060 L3760 LHLD I 637D El 2810 POP H
62CA 22 lA 54 2070 SHLD X 637E 23 2820 INX H
62CD CD 77 5E 2030 CAUL S6120 637F C3 6D 63 2830 JMP L3920

62D0 21 00 00 2090 LXI HrO 6382 D1 2840 L3930 POP ^
62D3 lA 54 2100 SHLD X 6383 D1 2850 POP D
62D6 CD 77 5E 2110 CALL S6120 6384 01 OO 00 2860 LXI ByO
62D9 CD DC 5A 2120 L37a0 CALL S1240 6387 CD 97 5D 2370 CALL

LXI Bs^OOOH
62DC 2A E3 53 2130 LHLD S03T 638A 01 OO 08 2880
62DF 01 3A 3D 2140 LXI 638D 11 08 00 2890 UXI BfS

CAUL PNC ^2^0
U3940 CALL

jMF- L4000 2^
L3950 CALL

LXI H»1

62E2 CD D1 57 2150 CALL BHCMP 6390 CD 97 5D 2900

62E5 CA E£ 62 2160 JZ L3810 6393 CD DC 5A 2910
62EB 21 OD 00 2170 LXI H»13 6396 C3 C3 63 2920

62EB C3 57 5D 2180 JMP FNE 6399 CD OE 62 2930

62E£ CD DC 5A 2190 L38L0 CAUL S1240 639C 21 01 00 2940

278

63A2 FE 23

63A7 FE

63AC 23
63AD 23
63AE 23
63AF 23
63B0 22 10
63B3 7D
63B4 FE 02

A3B9 2A 10
63BC EB

^C6 FE 2C

53 2950 LDA SOST
2960 CPI

63 2970 JZ L3980-2
2930 CPI 'X'

63 2990 JNZ L3980
3000 INX H
3010 INX H
3020 INX H
3030 INX H

54 3040 L39S0 SHLD K
3050 MOV ArL
3060 CPI 2

5A 3070 CP S1240
54 3080 L3990 LHLD K

3090 XCHG
08 3100 LXX B»SOOH
50 3110 CALL FNG
53 3120 L4000 LDA SOS

3130 CPI 'j-'
63 3140 JZ L38S0

29 20
D9 53
16 00

63CB 21
63CE 22
63D1 21
63D4 CD 3D SD
63D7 C3 DC 5A
63DA 21 28 20
63DD 22
63E0 21
63E3 CD 38
63E6 21
63E9 11
63EC 01
63EF CD 00
63F2 21 04
63F5 CD 38
63F8 CD B7
63FB 7C
63FC B5
63FD C2
6400 21
6403 C3
6406 22
6409 CD 77
640C 2A
640F 11
6412 19
6413 2B
6414 7E
6415 FE 41
^17 CA 94 64

FE 56
CA 25 64

f+lF 21 04 00

C3 57 5D
21 00 00
22 OC 54
“ DC 5A
21 00 00
3A E3 53

23

642E:
6431

6434

as « «
643b
^3e
643F
6440

6442
644

FE

C2
23
23
23
23
22 10

42 64

^ P 00 oa

^ 5D
^ ^ 10 54

B4

C4 DC 3A

^50

3150
3160
3170
31B0
3190
3200

LXI Hr ')'
SHLD FNEIST
L.XI Hy22
CALL FNEl
JMP S1240

L4040 LXI Hr
D9 53 3210 SHLD FNEIST
IF 00 3220 LXl Hy31
38 5D 3230 CALL FNE2
D3 54 3240 L4050 LXI Hyll
D9 53 3250 LXI DyFNEIST
FB FF 3260 LXI By-5
00 01 3270 CALL MOVE
04 00 3280 LXI Hy4
38 5D 3290 CALJ. FNE2
B7 5A 3300 CALL S2060

3310 MOV AyH
3320 ORA L

06 64 3330 JNZ L4070
OB 00 3340 LXI H»H
57 5D 3350 JMP FNE
lA 54 3360 L4070 SHLD X
77 5E 3370 CALL S6120
14 54 3380 LHLD I
9C 50 3390 LXI DyTOST

3400 DAD D
3410 DCX H
3420
3430
3440
3450
3460
3470
3480

L

MOU AvM
CPI 'fk'
JZ L4190
CPI '\J'

JZ L4090
LXI H»4
JMP FhC

3490 L4090 LXI HfO
3500 SHLD LO

L4100 CALL S1240
LXI HrO
LDA SOST
CPI

JZ L4130-2
CPI 'X'

JNZ L4130
INX H
IHX H
INX H
INX H

L4130 SHLD K
LXI BfSOOH
XCHG
CALL FNG
LHLD K
MOV ArL
ORA H
CNZ S1240

3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
3620
3630
3640
3650
3660
3670
3680
3690

6454 CD SF 5E 3700 CALL S6150
6457 2A OC 54 3710 LHLD LO
645A 23 3720 INX H
645B 23 3730 INX H
645C 23 3740 INX H
645D 45 3750 MOV ByL
645E 2A lA 54 3760 LHLD X
6461 EB 3770 XCHG
6462 21 A6 52 3780 LXI HyTl
6465 CD BA 57 3790 CALL ARRAY
6468 CD C6 57 3800 CALL CMD
646B 2A 20 54 3810 LHLD LI
646E 19 3820 DAD D
646F 4D 3830 MOV CyL
6470 2A lA 54 3840 LHLD X
6473 EB 3850 XCHG
6474 21 OC 53 3860 LXI HyT2
6477 CD BA 57 3870 CALL ARRAY
647A CD 97 5D 3880 CALL FNG
647D 3A E3 53 3890 LDA SOST
6480 FE 2C 3900 CPI
6482 CA E6 63 3910 JZ L4050
6485 21 29 20 3920 LXI Hy" r
6488 22 D9 53 3930 SHLD FNEIST
648B 21 IF 00 3940 LXI Hy31
64aE CD 3D 5D 3950 CALL FNEl
6491 C3 DC 5A 3960 JMP S1240
6494 21 5B 20 3970 L4190 LXI Hy"
6497 22 D9 53 3980 SHLD FNEIST
649A 21 21 00 3990 LXI Hy33
649D CD 38 5D 4000 CALL FNE2
A4A0 CD DC 5A 4010 CALL S1240
64A3 CD OE 62 4020 CALL S3290
64A6 21 5D 20 4030 LXI Hy' 2'
64A9 22 D9 53 4040 SHLD FNEIST
64AC 21 22 00 4050 LXI Hy34
64AF CD 3D 5D 4060 CALL FNEl
64B2 21 10 00 4070 LXI Hyl6
64BS 22 OC 54 4080 SHLD LO
64B8 C3 2B 64 4090 JMP L4100
64BB 4100 ASPC EQU *

64EE 21 23 20 0010 L4240 LXI Hy'
64BE 22 D9 53 0020 SHLD FNEIST
64C1 21 IF 00 0030 LXI Hy31
64C4 CD 38 5D 0040 CALL FNE2
64C7 CD DC 5A 0050 CALL S1240
64CA CD OE 62 0060 CALL S3290
64CD 21 29 20 0070 LXI Hy' r
64D0 22 D9 53 0080 SHLD FNEIST
64113 21 16 00 0090 LXI Hy22
64n6 CD 3D 5D 0100 CALL FNEl
6409 01 FF 04 0110 LXI By4FFH
64DC 11 00 00 0120 LXI DyO
64DF CD 97 5D 0130 CALL FNG
64E2 C3 DC 5A 0140 JMP SI240
64E5 21 00 00 0150 L4290 LXr H.O
64E8 22 28 54 0160 SHLD K2
64EB 2A 14 54 0170 LHLD I
64EE 22 2A 54 0180 SHLD K3
64F1 EB 0190 XCHG
64F2 21 72 53 0200 LXI HyT3
64F5 CD BA 57 0210 CALL ARRAY
64FS 7B 0220 MOV AyE
64F9 B2 0230 ORA D
64FA CA 5E 65 0240 JZ L4400
64FD 21 28 20 0250 LXI Hy^ < ^
6500 22 D9 53 0260 SHLD FNEIST
6503 21 IF 00 0270 LXI Hy31
6506 CD 38 5D 0280 CALL FNE2
6509 2A 28 54 0290 L4320 LHLD
650C 22 lA 54 0300 SHLD X
650F CD 77 5E 0310 CALL S6120
6512 2A 2A 54 0320 LHLD K3

279

6515 22 lA 54
6518 CD 77 5E
6518 CD DC 5A
651E CD OE 62
6521 CD ar 5E
6524 22 2A 54
6527 CD SF 5E
652A 23
652B 22 28 54
65^ 3A E3 53
6531 FE 2C
6533 CA 09 65
6536 2A 2A 54
6539 11 72 53
653C EB
653D CD BA 57
6540 CD C6 57
6543 2A 2A 54
6546 19
6547 7D
6548 B7
6549 C2 52 65
654C 21 23 00
654F C3 57 5D
6552 21 29 20
6555 22 D9 53
6558 21 16 00
655B CD 3D 5D
655E 06 04
6560 2A 2A 54
6563 11 A6 52
6566 EB
6567 CD BA 57
656A CD C6 57
656D 2A 20 54
6570 19
6571 4D
6572 2A 2A 54
6575 11 OC 53
6578 EB
6579 CD BA 57
657C CD 97 5D
657F 2A 28 54
6582 7C
6583 B5
6584 CA DC 5A
6587 EB
6588 CD C6 57
658B 01 00 05
658E CD 97 5D
6591 C3 DC 5A
6594 CD DC 5A
6597 CD OE 62
659A 21 BO 54
659D 11 EI9 53
65A0 01 FB FF
65A3 CD 00 01
65A6 21 10 00
65A9 CD 3D 5D
65AC CD DC 5A
65^ 2A OE 54
65B2 22 lA 54
65B5 CD 77 5E
65B8 01 00 07
65BB 11 OO 00
65BE CD 97 5D
65C1 CD 03 4F
65C4 21 60 54
65C7 11 E3 53
65CA CD 84 5A
65CD C2 1C 5E
65D0 CD SF 5E
65D3 22 10 54
65D6 2A OE 54
65D9 22 lA 54

0330 SHLD X 65DC CD 77 5E
0340 CALL S6120 65DF 01 00 06

0350 CALL SI240 65E2 11 OO 00

0360 CALL S3290 65ES CD 97 5D
0370 CALL S6150 65E8 2A 10 54

0380 SHLD K3 65EB OO lA 54

0390 CALL S6150 65EE CD IF 5E
0400 INX H 65F1 CD DC 5A

0410 SHLD K2 65F4 CD 03 4F

0420 LDA SOST 65F7 C3 1C 5E

0430 CPI " r" 65FA CD DC 5A

0440 JZ L4320 65FD CD 03 4F

0450 LHLD K3 6600 3A E3 53

0460 LXI D»T3 6603 FE 3B

0470 XCHG 6605 CA FA 65

0480 CALL ARRAY 6608 21 65 54

0490 CALL CMD 660B 11 E3 53

0500 LHLD K3 660E CD 84 5A

0510 DAD D 6611 CA VC SA

0520 MOV AfL 6614 21 11 00

0530 QRA A 6617 C3 57 5D

0540 JNZ L4390 661A 21 5B 20

0550 LXI H»35 661D 22 D9 53

0560 JMP FNE 6620 21 21^ 00

0570 L4390 LXI 6623 CD 38 5D

0580 SHLD FNEIST 6626 CD DC 5A

0590 LXI H»22 6629 CD OE 62

0600 CALL FNEl 662C 3A E3 53

0610 L4400 MVI Bt4 662F FE 5D

0620 LHLD K3 6631 CA 3A 66

0630 LXI DfTl 6634 21 OO 00

0640 XCHG 6637 C3 57 5D

0650 CALL ARRAY 663A 21 3A 3D^

0660 CALL CMD 663D 22 D9 53

0670 LHLD LI 6640 21 OD 00

0680 DAD D 6643 CD 38 5D

0690 MOV C^L 6646 CD DC 5A

0700 LHLD K3 6649 CD OE 62

0710 LXI n»T2 664C 01 FF 03

0720 XCHG 664F 11 00 00

0730 CALL ARRAY 6652 C3 97 5D

0740 CALL FNG 6655 2A OE 54

0750 LHLD K2 6658 lA 54

0760 MOV A»H 665B CD 77 5E

0770 ORA L 665E CD DC 5A

0780 JZ S1240 6661 CD 03 4F

0790 XCHG 6664 3A E3 53

0800 CALL CMD 6667 FE 3B

0810 LXI BrSOOH 6669 CA 5E 66

0820 CALL FNG 666C 21 BF 54

0830 JMP S1240 666F 11 D9 53

0840 L4440 CALL S1240 6672 01 FB FF

0850 CALL S3290 6675 CD 00 01

0860 LXI H»W0ST+125 6678 21 OA 00

0870 LXI DrFNElST 667B CD 3D 5D

0880 LXI Bt-5 667E CD DC 5A

0890 CALL MOVE 6681 CD OE 62

0900 LXI Hr 16 6684 CD SF 5E

0910 CALL FNEl 6687 EB
0920 CALL S1240 66^ 01 00 07

0930 LHLD Cl 668B C3 97 5D
0940 SHLD X 668E CD DC 5A

0950 CALL S6120 6691 2A OE 54

0960 LXI Br700H 6694 OO lA 54
0970 LXI DrO 6697 CD 77 5E

0980 CALL FNG 669A CD OE 62

0990 CALL F3490 669D 2A OE 54
1000 LXI HrUOST+45 66A0 OO lA 54

1010 LXI DrSOST 66A3 CD 77 5E

1020 CALL STCMP 66A6 01 00 07

1030 JNZ S6520 66A9 11 00 00

1040 CALL S6150 66 AC CD 97 5D

1050 SHLD K 66AF 21 44 4F

1060 LHLD Cl 66B2 22 D9 53

1070 SHLD X 66B5 21 12 00

1080 CALL S6120
1090 LXr By600H
1100 LXI D»0
1110 CALL FNG
1120 LHLD K
1130 SHLD X
1140 CALL L6540
1150 CALL SI240
1160 CALL F3490
1170 JMP S6520
1180 L4590 CALL S1240
1190 CALL F3490
1200 LDA SOST
1210 CPI 'i'
1220 JZ L4590
1230 LXI HrWOST+50
1240 LXI DfSOST
1250 CALL STCMP
1260 JZ S1240
1270 LXI Ht17
1280 JMP FNE
1290 L4650 LXI Hr' C'
1300 SHLD FNEIST
1310 LXI Hj33
1320 CALL FNE2
1330 CALL S1240
1340 CALL S3290
1350 LDA SOSr
1360 CPI 2'
1370 JZ L46ao
1380 LXI Hy34
1390 JMP FNE
1400
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630

1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820

L4680 LXI =
SHLD FNEIST
LXI Hwl3
CALL FNE2
CALL S1240
CALL S3290
LXI Bt3FFH
LXI DwO
JMF* FNG

L4730 LHLD Cl
SHLD X
CALL S6120

L4740 CALL S1240
CALL F3490
LDA SOST
CPI
JZ L4740
LXI HfWOST+140
LXI D»F^iElST

LXI Bf-5
CALL MOVE
LXI HflO
CALL F^4E1
CALL S1240
CALL 33290
CALL S6150
XCHG
LXI B»700H

JMP FNG ci't40
L4800 CALL

LHLD Cl
SHLD X
CALL S61--0
CALL S3290

LHLD Cl
SHLD X
CALL
LXI B»700H

LXI D»0
CALL

LXI Hr IS

280

w

66BS CD 3D SD
A6BB CD DC 5A
66BE: CD 03 4F
66C1 CD SF 5E
66C4 22 10 54
66CZ CD SF 5E
66CA EB
66CB 01 00 06
66CE CD 97 5D
66D1 2A 10 54
66D4 22 lA 54
66D7 C3 IF 5E
66DA CD DC SA
66DD CD OF 62
66E0 21 4F 46
66E3 22 D9 53
66C6 21 19 00

66E9 CD 3D 5D
66EC 21 01 00
66EF 22 IE 54
66F2 21 00 00
66F5 22 1C 54
66F8 CD DC 5A
66FB CD 35 5F
66FE 01 00 01
6701 11 15 00
6704 CD 97 5D
6707 01 00 00
670A 2A 18 54
670D EB

670E CD 97 5D
6711 01 00 01
6714 11 08 00
6717 CD 97 5D
671A CD DC 5A
671D 3A E3 53
6720 FE 3A
6722 CA 4A 67
6725 21 2C 20
6728 22 D9 53
672B 21 05 00
672E
6731
6734
6737
673A
673D
6740
6743
6746
6747
674^
674D
6750
6753
6756
6759
675c
^5fr

6760
6763
^66
6767
6768
6769
676c
^6F
6772
6773

677c
677Fr

6i^8Q

CD 3D 5
2A OE 5
22 lA 5
CD 77 5
01 01 o:
11 00 0<

CD 97 5]
2A 1C 5-
23

C3 F5 6^
2A OE 5
22 10 5i
01 00 C
11 00 C
CD 97 5
21 01 C
22 14 E
EB
2A 1C
CD C6
19
7C
B7
Fa 79
CD 1C

14
23

? 5F
^ 10

to DC
aft le

L
lA

1830 CALL FNEl
1840 CALL SI 240
1850 CALL F3490
1860 CALL S6150
1870 SHLD K
1880 CALL S6150
1890 XCHG
1900 LXI B76OOH
1910 CALL FNG
1920 LHLD K
1930 SHLD X
1940 JMP L6540
1950 L4890 CALL S1240
1960 CALL S3290
1970 LXI Hf"FO"
1980 SHLD FNE13T
1990 LXI Hf25
2000 CALL FNEl
2010 LXI HfI
2020 SHLD 12
2030 L4920 LXI HfO
2040 SHLD 11
2050 L4930 CALL S1240
2060 CALL S2240
2070 LXI BrlOOH
2080 LXI Df21
2090 CALL FNG
2100 LXI BfO
2110 LHLD N3
2120 XCHG
2130 CALL FNG
2140 LXI BtIOOH
2150 LXI DfS
2160 CALL FNG
2170 CALL S1240
2130 LDA SOST
2190 CPI 'X'
2200 JZ L4990
2210 LXI Hf'
2220 SHLD FNEIST
2230 LXI Hf5
2240 CALL FNEl
2250 LHLD Cl
2260 SHLD X
2270 CALL S6120
2280 LXI B*701H
2290 LXI DfO
2300 CALL FNG
2310 LHLD 11
2320 INX H
2330 JMP L4930~3
2340 L4990 LHLD Cl
2350 SHLD K
2360 LXI Bf700H
2370 LXI DfO
2380 CALL FNG
2390 LXI HfI
2400 SHLD I
2410 L5000 XCHG
2420 LHLXi 11
2430 CALL CMD
2440 DAD D ,
2450 MOV AfH
2460 ORA A
2470 JM «+13
2480 CALL S6520
2490 LHLD I
2500 INX H
2510 SHLD I
2520 JMP L5000
2530 LHLD K
2540 SHLD X
2550 CALL S6120
2560 CALL S1240
2570 LHLD 12
2580 SHLD X

678B CD
67QE CD
6791 CD
^^94 22
6797 21
679A 11
679D CD
67A0 CA
67A3 3A
67A6 FE
67A8 C2
67AB 2A
67AE 22
67B1 01
67B4 11
67B7 CD
67BA CD
67BD 2A
67C0 22
67C3 CD
67C6 2A
67C9 23
67CA 22
67CD C3
67B0 2A
67X13 22
67D6 01
67D9 11
67DC CD
67DF CD
67E2 2A
67E5 22
67E8 CD
67EB CD
67EE 2A
67F1 22
67F4 CD
67F7 CD
67FA CD
67FD 22
6800 21
6803 11
6806 01
6809 CD
680C 21
6eOF CD
6812 21
6815 22
6818 CD
681B 2A
681E 23
681F 22
6822 EB
6823 2A
6826 CD
6829 19
682A 7C
682B B7
682C F2
682F 01
6832 11
6835 CD
6838 C3
683B 21
683E 11
6841 01
6844 CD
6847 21
684A CD
684D CD
6850 CD
6853 21
6856 22
6859 21
685C 11
6a5F CD

77 ^
03 4F
SF 5E
IE 54
60 54
E3 53
84 5A
DO 67
E3 53
3B
00 68
OE 54
10 54
00 06
00 00
97 5D
1C 5E
10 54
lA 54
77 5E
IE 54

IE 54
F2 66
OE 54
10 54
00 06
00 00
97 5D
1C 5E
10 54
lA 54
77 5E
DC 5A
IE 54
lA 54
77 5E
03 4F
SF 5E
IE 54
65 54
D9 53
FB FF
00 01
11 00
3D 5D
01 00
14
1C

54
5E

14 54

14 54

IE 54
C6 57

IS 68

00 05
FF FF
97 5D
DC 5A
D3 54
D9 53
FB FF
00 01
04 00
38 5D
68 62
77 5E
01 00
22 54
B5 54
E3 53
84 5A

2590 CALL B6120
2600 CALL F3490
2610 CALL S6150
2620 SHLD 12

2630 LXI HtWOST+45
2640 LXr DtSOST
2650 CALL STCMP
2660 JZ L5090
2670 LDA SOST
2680 CPI '9'
2690 JNZ LSI30
2700 LHLD Cl
2710 SHLD K
2720 LXI Ef600H
2730 LXI DfO
2740 CALL FNG
2750 CALL S6520
2760 LHLD K
2770 SHLD X
2780 CALL S6120
2790 LHLD 12
2800 INX H
2810 SHLD 12
2820 JMP L4920
2830 L5090 LHLD Cl
2840 SHLD K
2850 LXI Bf600H
2860 LXI DfO
2870 CALL FNG
2880 CALL S6520
2890 LHLD K
2900 SHLD X
2910 CALL S6120
2920 CALL 31240
2930 LHLD 12
2940 SHLD X
2950 CALL S6120
2960 CALL F3490
2970 CALL S6150
2980 SHLD 12
2990 L5130 LXI HfUO
3000 LXI DfFNElST
3010 LJ<I Bf-5

3020 CALL MOVE
3030 LXI Hf17
3040 CALL FNEl
3050 LXI HfI
3060 SHLD I
3070 1 L5140 CALL S65:
3080 LHLD I
3090 INX H
3100 SHLD I
3110 XCHG
3120 LHLD 12
3130 CALL CMD
3140 DAD D
3150 MOV AfH
3160 □RA A
3170 JP L5140
3180 LXI BfSOOH
3190 LXI Dt-1
3200 CALL FNG
3210 JMP S1240
3220 L5170 LXI HfIDENT
3230 LXI D»FNE1ST
3240 LXI Bf-5
3250 CALL MOVE
3260 LXI Hr4
3270 CALL FNE2
3280 CALL L3630
3290 CALL S6120
3300 LXI Hyl
3310 SHLIi F9
3320 LXI HrUOST+130
3330 LXI Di-SOST
3340 CALL STCMP

281

6862 CA 7D 68 3350 JZ L5210 6925 CD 97 5D 0510 CALL FNG

6865 21 5B 54 3360 LXI HfWOST+40 6928 2A lA 54 0520 LHLD X

6868 11 D9 53 3370 LXI DfFNElST 692B pp 10 54 0530 SHLD K

6368 01 FB FF 3330 I_XI Br-5 692E CD BF 5E 0540 CALL S6150

686E CD 00 01 3390 CALL MOVE 6931 EB 0550 XCHG

6871 21 1C 00 3400 LXI Hr2S 6932 CD C6 57 0560 CALL CMD

6874 CD 3D 5D 3410 CALL FNEl 6935 21 14 00 0570 LXI Hy20

6877 21 OO 00 3420 LXI HrO 6938 19 0580 DAD D

687A 22 22 54 3430 SHLD F9 6939 EB 0590 XCHG

68711 CD DC 5A 3440 1 L5210 CALL S12<0 693A 01 00 01 0600 LXI BylOOH

6880 CD OE 62 3450 CALL S3290 693D CD 97 5D 0610 CALL FNG

6883 CD 8F 5E 3460 CALL S6150 6940 D1 0620 POP D

6886 10 54 3470 SHLTi K 6941 Cl 0630 POP B

6889 2A OE 54 3480 LHLD Cl 6942 04 0640 INR B

68BC pp lA 54 3490 SHLD X 6943 CD 97 5D 0650 CALL FNG

688F CD 77 5E 3500 CALL S6120 6946 CD 8F 5E 0660 CALL S6150

6892 01 00 01 3510 LXI BflOOH 6949 pp 10 54 0670 SHLD K

6895 11 15 00 3520 LXI D,21 694C CD 8F 5E 0630 CALL S6150

6898 CD 97 5D 3530 CALL FNG 694F EB 0690 XCHG

689B 06 02 3540 MVI Bf2 6950 01 00 06 0700 LXI By600H

689D 2A 10 54 3550 LHLD K 6953 CD 97 5D 0710 CALL FNG

68A0 11 A6 52 3560 LXI DtTI 6956 2A 10 54 0720 LHLD K

6dA3 EB 3570 XCHG 6959 22 lA 54 0730 SHLD X

68A4 CD BA 57 3580 CALL ARRAY 695C CD IF 5E 0740 CALL L6540

68A7 CD C6 57 3590 CALL CHD 695F 11 FF FF 0750 LXI Dy-1
6962 01 00 05 0760 LXI BySOOH

63AA 2A 20 54 0010 LHLD LI 6965 C3 97 5D 0770 JMP FNG

68AIj 19 0020 DAD D 6968 CD 59 5E 0780 S3490 CALL CKRE3

68AE 4D 0030 MOV CyL 696B CO 0790 RNZ

68AF 2A 10 54 0040 LHLD K 696C 3E AO 0800 MVI Ayl60

68B2 11 OC 53 0050 LXI DyT2 696E 95 0810 SUB L

68B5 EB 0060 XCHG 696F CA 68 62 0820 JZ L3630

6886 CD BA 57 0070 CALL ARRAY 6972 IkS 05 0830 SUI 5

6869 CD 97 5D 0030 CALL FNG 6974 CA 25 63 0840 JZ L3a70

68BC 2A 22 54 0090 LHLD F9 6977 ri6 05 0850 SUI 5

68BF 11 OD 00 0100 LXI Dyl3 6979 CA SE 66 0860 JZ L4800

68C2 EB 0110 XCHG 697C D6 28 0870 SUI 40

68C3 CD C6 57 0120 CALL CMD 697E CA 55 66 0880 JZ L4730

68C6 19 0130 DAD D 6931 06 05 0890 SUI 5

68C7 19 0140 DAD D 6983 CA DA 63 0900 JZ L4040

68Ca EB 0150 XCHG 6986 D6 IE 0910 SUI 30

68C9 01 00 01 0160 LXI B»100H 6988 CA lA 66 0920 JZ L4650

68CC CD 97 5D 0170 CALL FNG 698B D6 OA 0930 SUI 10

68CF 2A OE 54 0180 LHLD Cl 698D CA 94 65 0940 JZ L4440

68D2 22 lA 54 0190 SHLD X 6990 D6 OA 0950 SUI 10

68D5 CD 77 5E 0200 CALL S6120 6992 CA 3B 68 0960 JZ L5170

68D8 01 00 07 0210 LXI Bf700H 6995 D6 23 0970 SUI 35

68DB 11 00 00 0220 LXI DfO 6997 CA DA 66 0980 JZ L4S90

6SDE CD 97 5D 0230 CALL FNG 699A D6 05 0990 SUI 5

68E1 2A 22 54 0240 LHLD F9 699C CA BB 64 1000 JZ L4240

68E4 pp lA 54 0250 SHLD X 699F D6 05 1010 SUI 5
68E:7 CD 77 5E 0260 CALL S6120 69A1 CA FA 65 1020 JZ L4590

68EA 2A 10 54 0270 LHLD K 69A4 C9 1030 RET

68EX1 pp lA 54 0280 SHLD X 69A5 21 D3 54 1040 L5730 LXI

6SF0 CD 77 5E 0290 CALL S6120 69Aa 11 D9 53 1050 LXI DyFf'^ElST

6aF3 21 44 4F 0300 LXI Hy^OD' 69AB 01 FB FF 1060 LXI By-5

68F6 22 D9 53 0310 SHLD FNElST 69AE CD 00 01 1070 CALL MOVE

68F9 21 12 00 0320 LXI Hr 18 69B1 21 04 00 1080 LXI Hy4

6aFC CD 3D 5D 0330 CALL FNEl 69B4 CD 38 5Ii 1090 C<=iLL FNE2

68FF CD DC 5A 0340 CALL S1240 69B7 21 00 00 1100 LXI HyO

6902 CD 68 69 0350 CALL S3490 69BA pp 26 54 1110 SHLD K1

6905 CD 8F 5E 0360 CALL S6150 69BD 3E 50 1120 MVI Ay'P"

6908 06 02 0370 MVI Br2 69BF 32 ES 53 1130 STA KST

690A 11 A6 52 0330 LXI DyTl 69C2 CD 16 5A 1140 CALL S1960

690D EB 0390 XCHG 69C5 2A 20 54 1150 LHLD LI

690E CD BA 57 0400 CALL ARRAY 69C8 23 1160 INX H

6911 CD C6 57 0410 CALL CMD 69C9 22 20 54 1170 SHLD LI

6914 2A 20 54 0420 LHLD LI 69CC C3 FE 69 1180

6917 19 0430 r»AD D 69CF 21 D3 54 1190
‘-?Zr^n^N£iST

6918 4D 0440 MOV CpL 69D2 11 D9 53 1200 LXI DrrriC-*'’-'

6919 C5 0450 PUSH B 69D5 01 FE FF 1210 LXI Bt-S

691A 2A lA 54 0460 LHLD X 69D8 CD 00 01 1220 CALL MUV&

691D EB 0470 XCHG 69DB 21 04 00 1230 LXI H»4

691E 21 OC 53 0480 LXI HfT2 69DE CD 38 511 1240 CALL

6921 CD BA 57 0490 CALL ARRAY 69E1 3E 46 1250 MVI

6924 D5 0500 PUSH D 69E3 32 E8 53 1260 STA *

J
282

69E6 CD
69E9 2A
69EC 23
69ED 22
69F0 21
69F3 22
69F6 3E
69F8 32
69FB CD
69FE 2A
6A01 22
6A04 CD
6A07 2A
6A0A 22
6A0D CD
^10 2A
6A13 22
6A16 CD
6A19 3A
6A1C FE
6A1E C2
6A21 CD
6A24 21
6A27 22
6A2A CD
6A2D 2A
6A30 23
6A31 22
6A34 3A
6A37 FE
6A39 CA
6A3C 21
6A3F 22
6A42 21
6A45 CD
6A48 CD
AA4B 2A
6A4E EB
6A4F CD
6A52 2A
6A55 19
6A56 EB
6A57 21
6A5A CD
6A5D E5
AA5E 2A
6A61 EB
6A62 CD I
6A65 2A
^68 19
6A69 EB
4A6A El
6A6B 73
6A6C 23
^6D 72
6A6E 21 ‘
^^^1 22 1
^^4 2l i

CD ;
2a :

6A7ti 4n

44
6A7p 21 c
6A82 a -
^A8S 2a I
6A88 ^ ^
^ I! (
7^ EB

2S“>
SS “
S^S'

IB asK

16 5A
20 54

20 54
01 00
26 54
59
ES 53
16 5A
26 54
28 54
DC 5A
A6 52
lA 54
77 5E
2C 54
lA 54
77 5E
E3 53
28
6E 6A
DC 5A
00 00
22 54
8E 5F
26 54

26 54
E3 53
2C
21 6A
29 20
09 53
16 00
3D 5D
DC 5A
26 54

C6 57
A6 52

72 53
BA 57

2a 54

C6 57
26 54

3B 20
D9 53
05 00
3D 5n
26 54

01 00
14 54
A6 52

OC 53
BA 57

14 54

C6 57

1270 CALL SI960
1280 LHLD LI
1290 INX H
1300 SHLD LI
1310 LXI Hfl
1320 SHLD K1
1330 MVI fir'Y'
1340 STA KST
1350 CALL S1960
1360 L5810 LHLD K
1370 SHLD K2
1380 CALL SI240
1390 LHLD T1
1400 SHLD X
1410 CALL S6120
1420 LHLD DO
1430 SHLD X
1440 CALL S6120
1450 LDA SOST
1460 CPI ' ('
1470 JNZ L5890
1480 L5850 CALL S:
1490 LXI HtO
1500 SHLD F9
1510 CALL S2340
1520 LHLD K1
1530 INX H
1540 SHLD K1
1550 LDA SOST
1560 CPI
1570 J2 L505O
1580 LXI Hw' y

1590 SHLD FNEIST
1600 LXI Hf22
1610 CALL FNEl
1620 CALL S1240
1630 LHLD K1
1640 XCHG
1650 CALL CMD
1660 LHLD T1
1670 DAD D
1680 XCHG
1690 LXI H»T3
1700 CALL ARRAY
1710 PUSH H
1720 LHLD K:2
1730 XCHG
1740 CALL CMD
1750 LHLD K1
1760 DAD D
1770 XCHG
1780 POP H
1790 MOV MrE
1800 INX H
1810 hOKf M^p
1820 L5S90 LXI Hr'
1830 SHLD FNEIST
1840 LXI H,5
1850 CALL FNEl
1860 LHLD K1
1870 MOV C,L
1880 MOV B.H
1890 LXI Hfl
1900 SHLD I
1910 LHLD T1
1920 XCHG
1930 LXI H,T2
1940 CALL ARRAY
1950 XCHG
1960 LHLD I
1970
1980
1990
2000
2010
2020

L5910 XCHG
CALL CMD
DCX D
DCX D
DCX D
MOV M»E

6A9B 23
6A9C 72
6A9D 2B
6A9E 2B
6A9F 2B
6M0 EB
6AA1 2A
6AA4 23
6AA5 22
6AA8 CD
6AAB D2
6A^ CD
6AB1 CD
6AB4 2A
6AB7 2B
6AB8 22
6ABB CD
6ABE 22
6AC1 CD
6AC4 22
6AC7 21
6ACA 22
6ACD 21
6AD0 CD
6AD3 CD
6AD6 CD
6AD9 3E
6ADB 95
6ADC CA
6ADF D6
6AE1 CA
6AE4 D6
6AE6 CA
6AE9 21
6AEC C3
6AEF CD
6AF2 CD
6AF5 22
6AF8 EB
6AF9 21
6AFC CD
6AFF EB
6B00 22
6B03 D5
6B04 CD
6B07 2A '
6B0A EB
6B0B El
6B0C 73
6B0D 23
6B0E 72
6B0F 2A :
6B12 EB
6B13 01 (
6B16 CD «
6B19 CD t

6BIC 3A E
6B1F FE :
6B21 C2 :
6B24 CD I
6B27 C3 3
6B2A 21
6B2D 11 E
6B30 CD E
6B33 CA 2
6B36 21 1
6B39 C3 ^
6B3C CD E
6B3F 01 O
6B42 11 O
6B45 C3 9

14 54

14 54
D1 57
93 6A
DC 5A
09 4F
20 54

20 54
8F 5E
2C 54
8F 5E
A6 52
3B 20
D9 53
05 00
3D 5D
DC 5A
59 5E
64

A5 69
23
CF 69
32
EF 6A
19 00
57 5D
DC 5A
SF 5E
10 54

OC 53
BA 57

lA 54

IF 5E
OE 54

2C 54

00 05
97 5n
68 69
E3 53
3B
2A 6B
DC 5A
19 6B
65 54
E3 53
84 5A
3C 6B
11 00
57 5D
DC 5A
OO 01
00 00
97 5D

6B48 21 00 00
6B4B 22 2C 54
6B4E 2A 26 54
6B51 EB

2030 INX H
2040 MOV MfD
2050 DCX H
2060 DCX H
2070 DCX H
2080 XCHG
2090 LHLD I
2100 INX H
2110 SHLD I
2120 CALL BHCMP
2130 JNC L5910
2140 CALL S1240
2150 CALL F5340
2160 LHLD LI
2170 DCX H
2180 SHLD LI
2190 CALL S6150
2200 SHLD DO
2210 CALL S6150
2220 SHLD.Tl
2230 LXI Hf" r'
2240 SHLD FNEIST
2250 LXI Hf5
2260 CALL FNEl
2270 CALL SI240
2280 CALL CKRES
2290 MVI AflOO
2300 SUB L
2310 *JZ L5730
2320 SUI 40
2330 JZ L5770
2340 SUI 50
2350 JZ L5930
2360 LXI Hf25
2370 JMP FNE
2380 L5980 CALL S1240
2390 CALL S6150
2400 SHLD K
2410 XCHG
2420 LXI HfT2
2430 CALL ARRAY
2440 XCHG
2450 SHLD X
2460 PUSH D •
2470 CALL L6540
2480 LHLD Cl
2490 XCHG
2500 POP H
2510 MOV MfE
2520 INX H
2530 MOV MfD
2540 LHLD DO
2550 XCHG
2560 LXI BfSOOH
2570 CALL FNG
2580 L6020 CALL S3490
2590 LDA SOST
2600 CPI 'f '
2610 JNZ L6050
2620 CALL S1240
2630 JMP L6020
2640 L6050 LXI HfW0ST+
2650 LXI DfSOST
2660 CALL STCMP
2670 JZ L6060
2680 LXI Hfl7
2690 JMP FNE
2700 L6060 CALL S1240
2710 LXI BflOOH
2720 LXI DfO
2730 JMP FNG

0010 S5340 LXI HfO
0020 SHLD DO

LHLD K1
XCHG

6B52 2A A6 52 0050 LHLD T1 6C16 CD 3D 5n 0810 CALL FNEl

6B55 cri C6 57 0060 CALL CMD 6C19 C3 AE 6C 0820 JMP L5670

6B58 19 0070 DAD D 6C1C 21 5B 20 0830 1 L5610 LXI Hy' Z'

22 lA 54 0080 SHLD X 6C1F 22 D9 53 0840 SHLD FNEIST

6E5C EB 0090 XCHG 6C22 21 21 00 0850 LXI Ht33

6B5D 21 OC 53 0100 LXI H7T2 6C25 CD 38 5D 0860 CALL FNE2

6B60 CD BA 57 0110 CALL ARRAY 6C2S CD DC 5A 0870 CALL B1240

6B63 EB 0120 XCHG 6C2B CD 35 5F 0880 CALL S2240

6E64 2A OE 54 0130 LS4LD Cl 6C2E 21 5D 20 0890 LXI Hy''

6B67 EE 0140 XCHG 6C31 22 D9 53 0900 SHLD FNEIST

6B6a 73 0150 MOV MfE 6C34 21 pp 00 0910 LXI H,34

6B69 23 0160 INX H 6C37 CD 38 5D 0920 CALL'FNE2

6B6A 72 0170 MOV MyD 6C3A 21 4r 46 0930 LXI Hr^FO"

6B6B 01 00 06 OISO LXI Ey600H 6C3D pp D9 53 0940 SHLD FNEIST

6B6E 11 00 00 0190 LXI D^O 6C40 21 lA 00 0950 LXI Hy26

6B71 CD 97 5D 0200 CALL FNG 6C43 CD 38 5D 0960 CALL FNE2

6B74 CD 77 5E 0210 CALL 86120 6C46 21 79 54 0970 LXI HyU0STT70

6B77 CD 59 5E 0220 CALL CKRE3 6C49 11 D9 53 0980 LXI DrFNElST

6B7A C2 97 6E 0230 JNZ L5440 6C4C 01 FB FF 0990 LXI By-5

6B7D 3E 91 0240 MVI A?145 6C4F CD 00 01 1000 CALL MOVE

6B7F 95 0250 SUB L 6C52 21 24 00 1010 LXI Hy36

6B80 CA CD 6B 0260 JZ L5550. 6C55 CD 38 5D 1020 CALL FNE2

6B83 ri6 2B 0270 SUI 45 6C58 2A OC 54 1030 LHLD LO

6B85 CA A5 69 0280 JZ L5730 6C5B EB 1040 XCHG

6B88 D6 28 0290 SUI 40 6C5C 2A 2C 54 1050 LHLD DO

6B8A CA CF 69 0300 JZ L5770 6C5F CD C6 57 1060 CALL CMD

6B8i:i D6 23 0310 SUI 35 6C62 19 1070 DAD D

6B3F CA 9D 6B 0320 JZ L5460 6C63 pp 2C 54 1080 SHLD DO

i6B92 D6 OF 0330 SUI 15 6C66 2A A6 52 1090 LHLD T1

6E94 CA EF 6A 0340 JZ L59B0 6C69 E5 1100 PUSH H

6B97 21 19 00 0350 L5440 LXI H^25 6C6A 19 1110 DAD D

6B9A C3 57 5D 0360 JMP FNE 6C6B 23 1120 INX H

6E9D CD DC 5A 0370 L5460 CALL S1240 6C6C pp 14 54 1130 SHLD I

6BA0 CD EE 5E 0330 call S2180 6C6F Cl 1140 POP B

6BA3 21 3B 20 0390 LXI Hf' i' 6C70 11 9C 50 1150 L5650 LXI DyTOST

6BA<S 22 ri9 53 0400 SHLD FNEIST 6C73 19 1160 DAO D

6BA9 21 05 00 0410 LXI Hf5 6C74 2B 1170 DCX H

6BAC CD 3D 5D 0420 CALL FNEl 6C75 36 41 1180 MVI My-'A^

6BAF CD DC 5A 0430 CALL 81240 6C77 2A 14 54 1190 LHLD I

6BB2 CD 59 5E 0440 CALL CKRES 6C7A EB 1200 XCHG

6BB5 3E 91 0450 MVI Arl45 6C7B 21 72 53 1210 LXI HyT3
6EB7 95 0460 SUB L 6C7E CD BA 57 1220 CALL ARRAY

6BBa CA CD 6E 0470 JZ L5550 6C81 EB 1230 XCHG

6BBB D6 2D 0480 SUI 45 6C82 2A 18 54 1240 LHLD N3

6BBD CA A5 69 0490 JZ L5730 6C85 23 1250 INX H

6BC0 ri6 28 0500 SUI 40 6C86 EB 1260 XCHG

6BC2 CA CF 69 0510 JZ L5770 6C87 73 1270 MOV MyE

6BC5 D6 32 0520 SUI 50 6C88 23 1280 INX H

6BC7 CA EF 6A 0530 JZ L5980 6C89 72 1290 MOV MyD

6BCA C3 AO 6B 0540 JMP L5460+3 6C8A 2A 2C 54 1300 LHLD DO

6BCD 21 00 00 0550 L5550 LXI H^O 6CSD EB 1310 XCHG

6BD0 22 OC 54 0560 SHLD LO 6CSE 19 1320 DAD D
6Bti3 2C 0570 INR L 6C8F pp 2C 54 1330 SHLD DO

6BD4 22 54 0580 SHLD F9 6C92 D5 1340 PUSH D

6BII7 CD DC 5A 0590 L5560 CALL SI240 6C93 2A 14 54 1350 LHLD I

6BDA CD BE 5F 0600 CALL S2340 6C96 EB 1360 XCHG

6BDB 2A OC 54 0610 L5570 LHLD LO 6C97 21 OC 53 1370 LXI HyT2

6Be:o 23 0620 INX H 6C9A CD BA 57 1380 CALL ARRAY

SBBl 22 OC 54 0630 SHLD LO 6C9D D1 1390 POP D

6BE4 3A E3 53 0640 LDA SOST 6C9E 73 1400 MOV MyE

6BE7 FE 2C 0650 CPI 'y'' 6C9F 23 1410 INX H

6BE9 CA D7 6E 0660 JZ L5560 6CA0 72 1420 MOV MyD

6BEC 21 3A 20 0670 LXI Ht' , :' 6CA1 2A 14 54 1430 LHLit I

ABET pp D9 53 0680 SHLD FNEIST 6CA4 23 1440 INX H

6BF2 21 05 00 0690 LXI Hf5 6CA5 pp 14 54 1450 SHLD I

6BF5 CD 3D 5D 0700 CALL FNEl 6CA0 CD D1 57 1460 CALL BHCnr

ABF8 CD DC 5A 0710 CALL S1240 6CAB D2 70 6C 1470

6BFB 21 38 54 0720 LXI HpW03T+5 6CAE 21 3B 20 1480 >-5670 ^

6BFE 11 E3 53 0730 LXI DySOST 6CB1 22 D9 53 1490 SHLD FNE1^3‘

6C01 CD 84 5A 0740 CALL STCMP 6CB4 21 05 00 1500 LXI HfS

6C04 CA 1C 6C 0750 JZ L5610 6CB7 CD 38 Sir 1510

6C07 21 79 54 0760 LXI HyUOSTTZO 6CBA CD DC 5A 1520

6C0A 11 D9 53 0770 LXI DyFNElST 6CBD CD 59 5E 1530 CALL CNr\&'^

6C0D 01 FE FF 0780 LXI By-5 6CC0 3E 64 1540 MVI

6C10 CD 00 01 0790 CALL MOVE 6CC2 95 1550 SUB L
p- f c:“7'T[0

6C13 21 24 00 0800 LXI Hr36 6CC3 CA A5 69 1560 JZ

284

6CC6 ri6 28
6CC8 CA CF S9
6CCB Ei6 32
6CCD CA EF 6A
6CEI0 21 00 00
6CEI3 22 OC 54
6CD6 2C
6CD7 22 22 54
6CDA CD BE 5F
6CDD C3 DD 6B
6CE0 <=y^
6CE1 03 04
6CE3 31 00 10
5Ce6 CDFD 09
6CE9 21 33 54
6CEC 11 F4 BO
6CEF 19
6CF0 11 OC 4F
6CF3 EB
6CF4 36 00
6CF6 23
6CF7 IB
6CFS 7B
6CF9 B2
6CFA C2 F4 6C
6CFXI CD 4B 5D
ADOO 21 00 10
6C03 22 F4 53
6D06 22 F6 53
AD09 22 F2 53
6D0C 36 01
6D0E 21 EA 51
6D11 22 FA 53
AD14 21 00 2C
AD17 22 FC 53
6D1A 22 F8 53
6D1D 21 FD 54
6D20 CD AD 05
6D23 CD F8 09
6D26 21 FF 4E
6D29 22 FE 53
6D2C 21 14 55
6D2F CD AD 05
AD32 CD 20 OC
6D35 CD 24 OC
6D3a 47
6D39 CD F8 09
6D3C 78
6D3D FE 59
6D3F 21 00 00
6D42 CA 46 6D
6D45 2c
6^ 22 04 54
^9 3E 20

32 na 53
CD DC 5A
CD 48 6B

22 D9 53
21 09 00

2A irr-

Ss""

S OA
60?; ^ 04
*0^ S OC
6»7A ^ ® 09
*070 ri ^ 55
*0^ ^ 05
*0B3 ^ 20 OC

CD H OC

1570 SUI 40
1580 J2 L5770
1590 SUI 50
1600 JZ L59S0
1610 LXI HtO
1620 SHLD LO
1630 INR L
1640 SHLD F9
1650 CALL S2340
1660 JMP L5570
1670 RUN XRA A
1680 OUT 4
1690 LXI P^IOOOH

1700 CALL CLEAR
1710 LXI HtUOST
1720 LXI Dr-TST
1730 DAD D
1740 LXI DyTST
1750 XCHG
1760 ZER MVI MrO
1770 INX H
1780 ncx D
1790 MOV A»E
1800 ORA D
1810 JNZ ZER
1820 CALL BL3T
1830 LXI HySRCFIL
1840 SHLD BOFP
1850 SHLD EOFP
1^60 SHLD FPTR
1870 MVI
1880 LXI HrSST
1890 SHLD Pa
1900 LXI HjPCQDES
1910 SHLD P9
1920 SHLD P7
1930 LXI HfL250
1940 CALL QSEO
1950 CALL CRLF
1960 LXI H,MEMLIM
1970 SHLD Q9
1980 LXI HyL2S0
1990 CALL OSEQ
2000 CALL WHO
2010 CALL WHl
2020 MOV B,A

2030 CALL CRLF
2040 MOV ArB
2050 CPI 'Y'
2060 LXI HrO
2070 JZ S+1
2080 INR L
2090 SHLD Y9
2100 MVI Ay/ ^
2110 STA XST
2120 CALL S1240
2130 CALL S5340
2140 LXI Hy'
2150 SHLD FNEIST
2160 LXI Hy9
2170 CALL FNEl
2180 LHLD P9
2190 MVI MyOFFH
2200 INX H
2210 MVI MrOFFH
2220 LXI riyL339
2230 XCHG
2240 CALL OSEQ
2250 CALL DEOUT
2260 MVI AyH
2270 CALL UHl
2280 CALL CRLF
2290 LXI HyL340
2300 CALL OSECJ
2310 CALL WHO
2320 CALL WHl

6D86 47 2330 MQV EyA
6D87 CD FS 09 2340 CALL CRLF
6D8A 78 2350 MOV AyB
6D8B FE 49 2360 CPI ^I'
6D8D CA 9E 6D 2370 JZ INTRP
6D90 FE 54 2380 CPI 'T'
6D92 CA A4 6D 2390 JZ TRANS
6D95 2A OE OC 2400 LHLD OCOEH
6D9S 22 7F 72 2410 SHLD 727FH
6D9B C3 90 73 2420 JMP 7390H
6D9E 11 56 55 2430 INTRP LXI DyL360
6DA1 C3 A7 6D 2440 JMP ^+3
6DA4 11 63 55 2450 TRANS LXI DyL370
6DA7 2A BC 73 2460 LHLD MENTR+2CH
6DAA EB 2470 XCHG
6DAB 01 F3 FF 2480 LXr By-13
6DAE CD 00 01 2490 CALL MOVE
6DB1 3E on 2500 MVI AyODH
6DB3 12 2510 STAX D
6DB4 21 90 73 2520 LXI HyMENTR
6DB7 22 BA 73 2530 SHLD ME^^TR-{-2AH
6DBA 2A OE OC 2540 LHLD OCOEH
6DBD 2"^ 7F 72 2550 SHLD 727FH
6DCO 2A BC 73 2560 LHLD HENTR42CH
6DC3 C3 C2 73 2570 JMP MENTR+32H
6DC6 2580 LSTBYT EQU

i
285

Symbol Table for listing 5.

F3490 4F03
F4290 4F06
F5340 4F09
PCODEG 2C00
MEMLIM 4EFF
3RCFIL lOOO
NO 0020
TO 0032
N1 7FFF

N2 0008
TST 4F0C
TOST 509C
LST 50CE
AST 510E
BST 511A
S 5122
SST 5iEA
CST 524E
OST 529E
T1 52A6
T2 530C
T3 5372
XST 53D8
FNEIST 5309
YST 53DE
SOST 53E3
KST 53E8
ZST 53ED
FPTR 53F2
BOFP 53F4
EOFF' 53F6
P7 53F8
P8 53FA
P9 53FC
09 53FE
S9 5400
F5 5402
Y9 5404
Z 5406
CO 540B
E9 540A
LO 540C
Cl 540E
K 5410
T 5412
I 5414
J 5416
N3 5413
X 541A
11 541C
12 541E
LI 5420
F9 5422
LOO 5424
K1 5426
K2 5428
K3 542A
DO 542C
N 542E
NCHR 5430
ADDS 5431
WOST 5433
IDENT 54D3
NUH 54D8

STR 54Dn L3910

MST 54E2 L3920

L250 54FD L3930

L2B0 5514 L3940
L339 5528 L3950

L340 5536 L3980

L360 5556 L3990
U370 5563 L4000

L6570 5753 L4040
L1300 57AE L4050
WHO 0C20 L4070
UHl 0C24 L4090

MOVE 0100 L4100
OSEQ 05AD L4130

CROUT 09FB L4190

CRLF 09F3 ASPC
CLEAR 09FD L4240
BLKl OA02 L4290

ceouT OAOC L4320
A«RAY 57BA L4390

CMD 57C6 L4400

BHCMP 57D1 L4440
READ 57EiE L4590

DECOUT 589E L4650
DECFMT 58A7 L4680
S1030 58D3 L4730

S1090 5aF7 L4740
rCNTR 7390 L4800
READO 599A L4890
S1960 5A16 L4920

STCMP 5A84 L4930
COMS 5A89 L4990

SE^ 5AA1 L5000

S2060 5AB7 L5090
S1240 5ADC L5130

FNE2 5D3S L5140

FNEl 5D3D L5170

BLST 5D4E L5210

FNE 5D57 S3490

FMG 5D97 L5730

S6520 5E1C L5770

L6540 5E1F L5810

CKRES 5E59 L5S50

S6120 5E77 L5a90

S6150 5E8F L5910

S6180 5EA2 L5980

S6240 5ECD L6020

B2180 5EEE L6050

S2240 5F35 L6060
S5340 S2340 5F8E

S23S0 SFAEt
L5440

S2610 6031
L5460
L5550

S2850 60 B5
S3290 620E

L5560
L5570
L5610
L56S0
L5670
RUN

INTPP
trans
lstbyt

BHCMPJ
L3630

6243
6268

L3650
L3700

6274
6294

L3760 62C7
L3780 62D9
L3810 62EE
L3a70 6325
L38S0 6331

6366
636D
6382
6393
6399
63B0
63B9
63C3
63nA
63E6.
6406
6425
642B
6442
6494
64BB
64BE
64E5
6509
6552
655E
6594
65FA
661A
663A
6655
665E
668E
66DA
66F2
66FS
674A
675F
67D0
6800
6818
683B
687X1
6968
69A5
69Cr
69F£
6A21
6A6E
6A93
6AEF
6B1^
6B2A
6B3C

6B^

6090
6PCB
6PP^
6PDP
6ClC
6C70

6^
6ceo

6DCS

286 r

Listing 6: Sample Code for
DEOUT, OSEQ and MOVE Routines

00J.O * SAMPLE source: CODE FOR UFILITIES DEOUT, OSEQ AND
0020 * MOUE REQUIRED BY THE TIWY PASCAL PACKAGE
0030 DEOUT MOO A,D
0040 CALL BYTEO
0050 MOV A»E

00-^0 BYTEO PUSH P
0070 AMI OFOH

0080 RAR
0090 RAR
OlOO RAR

0110 RAR
0120 CALL NYBO
0130 POP P

0140 ANI OPH
0150 NYBO ABI 30H
0160 CPI 3AH
0170 JC

0130 ABI 7
0190 JMP UHl
0200 OSEQ MOV AfM
0210 CPI 13
0220 RZ
0230 INX H

0240 CALL UHl
025G .IMP OSEQ

0260 MOVE MOV AtM
0270
02SO
0290

0300
0310
0320

0330

STAX D
INX H
INX
INX
MOV

ORA
JN2

D
B

AtE
C
MOVE

r

Appendix C:

An APL Interpreter in Pascal

APL in CDC Pascal

PASCAL compiler - e*T.H. ZURICH* SWITZERLAND PASCAL CYBER V2.0 78/10/06

UNIVERSITY OF MINNESOTA

OOlOO PROGRAM SCANNERUNPUT*♦ OUTPUT* APLFlLEII
OOllO
00120 LABEL 1001
00130 CONST

niiisj “■ ••
00160 MAXINPUTLINE ■ 1321
00170 INPUTARRAYSIZE ■ 1341

00190 • *00* MESSAGELENGTH ■ 601

00200 TYPE

00210 PACKEOSTRInG ■ PACKED ARRAYl1..MAXVARNAMELENGTM1 OF 0..81911
00220
00230
00240
00250
00260
00270
00280
00290

00300
00310

00320

00340
003S0

00360
00370

00380
00390
00400
00410

TOKENNOUN « IFORMRES*FORMARGtGLOBVAR,MONAOOPER.
REDUCTOPER * OYAOOPER * SPECOPER tCONSTANT•
STATEND)I

VALUES » RECORD
realval; real I
NEXTVALUEl ^VALUES!

ENDl
VARTAB a RECORD

VARNAMES PACKEDSTRINGI
FUNCTABPTR* trUNCTABt
VALTABPTRl tVALTABt
OEFEREOVALT ABPTRItFPARMTABI
NEXTVARTABPTRS tVARTABI

End I

VALTAB ■ RECORD

INTERMEDRESUlTI BOOLEAN!
OIMENSIONSI INTEGER!

<* VI *)
«* V2 - FTA(
(* V3 - VTAE

11*48.26*
C77/03/14I

*>
*>

291

00420
00430
00440
00450
00460
00470
00460
00490
00500
00510
00520
00530
00540
00550
00560
00570
00560
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800
00810
00820
00830
00840
00850
00860
00870
00680
00890
00900
00910
00920
00930
00940
00950
00960
00970

riRSTOlMENs tOlHENINFOl
FORWARDOROERl BOOLEANI
FlRSTVALUEt ^VALUES!
NEXTVALTABLINK t fVALTAB

END I

TOKENTABLE « RECORD
NEXTOKENS tTOKENTABLEt
CASE NOUN t TOKENNOUN OF P *>

FORNRESfFORHARGtGLOBVARt |* vtaB
IVARTABPTRi tVARTAB)!

NONAOOPERt (MONlNOXtINTEGER)t
REDUCTOPERt <TTEDINDXI INTEGER) I
OYAOOPERI <00P1NDXIINTEGER)I
SPECOPERS <CHARlNOXtINTEGER)I
CONSTANT! (VALTABPTRI tVALTAB)!
STATENDS (ENOAOJIINTEGER)I

ENDl
VFUNC ■ RECORD

NEXTSTHNT t ^TOKENTABLEI
NEX TVFUNCP TR11VFUNC t
STATLABELtPACKEDSTRlNG

END I

FUNCTAB « RECORD
FUNCNANEt PACKEOSTRINGI
ARITYI (NlLADICtMONADlCfOYAOlOt
RESULT I BOOLEAN! <• TRUE ■ EXPLICIT *)
RESULTNANEt PACKEOSTRINGI
LEFTARGI PACKEOSTRINGI
RIGHTARG! PACKEOSTRINGI
FlRSTATEHENTltVFUNCI
NEXTFUNCTABPTR S ^FUNCTABI
NUHOFSTATEMENTSl INTEGER!

END)

FPARHTABsRECORD
PTRVALitVALTABt (* SOI AND S02 •)
LASTPARNitFPARMTABI (* LINK TO LAST *)

SOI OR S02 «)
ENDl

DINENINFO ■ RECORD
NEXTOIHEN: tOlHENlNFOl
OIMENLENGTHi INTEGERI

END!

OPRECORD ■ RECORD
OPInDEX! INTEGERI
OPSYMBOLt INTEGERI

ENDl

OPERANDTABaRECORD
OPERPTRitVALTABI SVAL •)
LASTOPERltOPERANDTABI LINK TO LAST SVAL •)

END I

FI •)
F2 ♦)

i* F3 #)
I* F4 ♦)
f* rs •!
(* F6 •)

00980
00990
01000
01010
01020
01030
01040
01050
01060
01070
01080
01090
01100

<* SF •)
<• SI •)
<* S2 *)

(• S3 •)
0 LAST SF •)

OPTABLE a ARRAY(1«.16J OF OPRECORDI

VARTABPTRTYPE * tVARTABI
TYPEVALTABPTR ■ tVALTABt
TOKENPTR-tTOKENTABLEI
PTRFUNCTABatFUNCTABi
TYPEVALUESPTRatVALUESI

SUBRTABaRCCORO
CALLEOSUBRItFUNCTABI
TOKENCALLINGSUBRltTOKENTABLEI
ST ATEMCALLINGSUBRItVFUNCI
LASTSUBRPTRitSUBRTABI LINK

292

OHIO
01120
01130
01140
01150
01160
01170
01160
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280
01290
01300
01310
01320
01330
01340
01350
01360
01370
01380
01390
01400
01410
01420
01430
01440
01450
01460
01470
01460
01490
01500
01510
01520
01530
01540
01550
01560
01570
01580
01590
01600
01610
01620
01630
01640
01650
01660
01670
01680
01690
01700
OiTlO
**1720

0}7«o
®»760
«1790
JlBOO

*‘830

APLCHARSET»(ASYMB0L» BSYMBOLt CSYMBOL* OSYNBOLt ESYMBOLt FSYM80L* 6SYHB0L»
HSYMBOLt ISYHBOLf JSYMBOLt KSYNBOL* ESYMBOLt MSYHBOLt NSVHBOLt
OSYMBOLt PSYMBOLt OSYHBOLt RSYMBOLt SSYNBOLt TSYMBOLt USYNBOLt
VSYMBOL. WSYMBOL, XSYMBOL. VSYMBOL. ZSYMBOL, WbTMBOL.

ONESYMSOLi TBOSYMBOLt THREESVMBOLt FOURSYMBOLt FlVESYHBOLt
SlXSYMBOLt SEVENSYHBOLt EIGHTSYHBOLt NINESVHBOL* ZEROSYHBOLt

COLONt RiGHTARROMt LEFTARROWt SMALLCiRCLEt PERIOOt LEFTPARENt
LEfTBRACKETt RIGHTBRACKETi SEMICOLONt OUAORANGLEt

SPACEt

PLUSt MINUSt TIMESt OlVlOEt ASTERISK, IOTA, RHO, COMMA, TILDE,
LESSTHAN, LESSOREOUAL, GREATEROREQUAL,

GREATERTHAN, AnOSYMBOL, ORSYMBOL,

CEILING, FLOOR, LAR6ECIRCLE, FORWAROSLASH,

DOUBLEOUOTE, NEGATIVE, OUESTIONMARK, OMEGA, EPSILON,
UPARROB, OOWNARROW, ALPHA, UNDERSCORE, DEL* DELTA,
SINGLEOUOTE, EASTCAP, WESTCAP, SOUTHCAP, NORTHCAP,
IBEAH, T6EAH, VERTICALSTROKE, BACKWARDSLASH)t

VAR
XCOlONSYM,XRIGHTARROW,XLEFTARR0M,XL1TTLECIRCLE,XPERI0D,
XLEFTPAR,XRIGHTPAR,XLEFTBRACKEt,XRI6HTBRACKET,XSEMIC0LSYM,X0UA0SYMJlNTEGERI
CHARACTERiARRAYIAPLCHARSET) of INTEGER!
APLSTATEMENTtARRAY(l..INPUTARRAYSlZE) OF INTEGER!
OIGITSIARRAVIONESYMBOL,.ZEROSYMBOL) OF INTEGER!
ERRORMSGS!PACKED ARRAYI1..NUMBEROFMESSAGES,I..MESSAGELENGTHJ OF CHAR!

APLFILE!TEXT!
MOPTAB, DOPTAB, REDTAB, CHARTAB, SP£CTAB!0PTABLE!
SAVELABELJPACKEDSTRING!
name: PACKEOSTRING!

NEWTOKENPTR, OLDTOKENPTR, HOLOTOKENPTR, SAVETOKENPTRt tTOKENTABLEi
TESTFUNCPTR, NEWFUNCTABPTR, OLDFUNCTABPTRi tFUNCTAB!
NEWVARTABPTR, OLOVARTABPTR: tVARTAB!
LEFTVALPTR,R1GHTVALPTR,VALPTR<LVALUES I
NEWVALUES, NEWVALPTR: tVALUES!
NEWOlMt tOIHENINFO!
OIMPTR,NEWPTR,LEFT01HPTR,RIGHT01HPTRttDIMENlNFO!
VARPOInTERITVARTAB!
OLOVFUNCPTR, NEWVFUNCPTRttVFUNC!
NEWVALTABLINK, OLOVALTABLINKI tVALTAB!

POSITION!INTEGER!
LINELENGTH:INTEGER!
CODE,COLCNTIINTEGER!
FUNCSTaTEMENTS:INTEGER!

TOKENERROR, FIRSTFUNCT1ONiBOOLEAN!
Linet oolong,haslabel:boolean!
SWITCH, FUNCTIONMOOE, TOKENSWITCH, ITSANIOENTIFIERlBOOLEAN!

OPERTABPTRltOPERANOTAB! (• SV •)
PTRLASTOPERItOPERANDTA8!
|UBRT ABPTRItSUBRTAB!
PPARMPTRltFPARMTAB! (• pi ,,
LPARMPTRltFPARMTAB! ,• po •>
Hoy^l'^PTRttVFUNC! (• NL *)

LDttTOKENTABLEI (« HOLDC LAST SvMRni •!

<* PI *)
(* P2 *)

(• NL •>
HOLDS LAST SYMBOL •)

procedure INITPARSER!
begin

0PERTABPTRI«N1LI

01640
01650
01660
01870
01880
01890
01900
01910
01920
01930
01940
01950
01960
01970
01960
01990
02000
02010
02020
02030
02040
02090
02100
02110
02120
02130
02140
02150
02160
02170
02180
02190
02200
02210
02220
02230
02240
02250
02260
02270
02280
02290
02300
02310
02320
02330
02340
02350
02370
02380
02390
02400
02410
02420
02430
02440
02450
02460
02470
02480
02490
02500
02510
02520
02530
02540
02550
02560
02570

SUBRTA6PTRt»NlLI
LPARMPTRt-NlLI
RPARHPTRtaNlLI
VFUNCPTRsaNlLt
HOLDiaNlLI
XCOLONSrHiall
XR1GHTARR0WI«29
XLCFTARR0Wts3l
XLITTLEC|RCLCta4l
XPERlODtaSi
XLEFTPARia6l
XR16HTPARta7l
XLEFTBRACKETl«89
XRIGHTBRACKET1«9S
XSEMlCOLSYHlalO;
XOUADSYMtalll
NEW(OPERTABPTR)I
OPERTABPTRt.LASTOPERI-NlLt
PTRLASTOPER t aOPERTABPTRI

END I

PROCEDURE IN1T1AL1ZECHARACTERSET9 <*REAO INSTALLATION CHARACTER SET FROM FILE#1
VAR
TESTFORPREFIX * INTEGER 9
FiLECHARACTERtCHARl
SYMBOLINDEX S APLCHARSET 9
BEGIN
RESET(APLFILE)I
FOR SYMBOLINDEXtaASYMBOL TO BACKWARDSLASH DO

BEGIN
REA0<APLF1LE«F1LECHARACTER)9

(* THE FOLLOWING CODE WOULD BE REMOVED FOR NON-CUC INSTALLATIONS ♦)
TESTFORPREFlXSaORD<FILECHARACTER)9
IF (TESTFORPREFIX * PREFIXI) OR (TESTFORPREFIX * PREF1X2>

THEN
BEGIN

REAOiAPLFlLEtFlLECHARACTER)9
CHARACTER(SYHB0L1NDEX]I«100*TCSTF0RPREF1X ♦ ORO(FiLECHARACTER)I
END

ELSE
(* •)

CHARACTER!SYMBOL index)t«ORO(FlLECHARACTER)
END

END9 <• INITIALlZECHARACTERSET

PROCEDURE REA0INERR0RHSGS9
VAR
MSGROW f HSGCOL tINTEGER 9
BEGIN
REAOLN(APLFILE)9
FOR MSGROWtal TO NUMBEROFMESSAGES DO

FOR MSGCOL9«l TO MESSAGELENGTH DO
ERRORMSGSlMSGROWfMSGCOLlJas s((* BLANK OUT ERROR MESSAGES *)

FOR MSGROWl«l TO NUMBEROFMESSAGES DO
begin (* READ IN ERROR MESSAGES FROM FILE

MSGCOLt-09
WHILE NOT E0LN<APLF1LE) DO

BEGIN
HSGCOL9«MSGC0L ♦ 19
READ(APLFILE t ERRORHSGSIMSGROw * HSGCOL)> 9

END I
RCAOLN(APLFILE>9

END
END9 (• READINERRORMSGS *)

294

02610
02620
02630
02640
02650
02660
02670
02660
02690
02700
02710
02720
02730
02740
02750
02760
02770
02780
02790
02600
02810
02820
02830
02840
02850
02860
02870
02880
02890
02900
02910
02920
02930
02940
02950
02960
02970
02980
02990
03000
03010
03020
03030
03040
03050
03060
03070
030ao
03090
03100
03110
03120
03130
03140
03150
03160
03170
03180
03190
03200
03310
03320
03330
*3340
03350
03360
03370
03380
O3390

PROCEDURE FILLUPTABLESJ
begin

MOPTABIIJ
MOPTAB(2I
R0PTABI3]
HOPTABIAJ
HOPTABCSJ
MOPTABiei
M0PTABI7J
HOPTAB(B)
MOPTA8{9J

MONADIC
•OPSYHBOL
•OPSYMBOL
•OPSYHBOL
•OPSYMBOL
•OPSYHBOL
•OPSYMBOL
•OPSYHBOL
•OPSYMBOL
•OPSYHBOL

OPERATORS •
CHARACTER I PLUSH

t> CHARACTERIHINUSH
l> CHARACTERITIHESH
t« CHARACTERIDIVIOEJI

MOPTABIIHOPINOEX i> 2t
M0PTAB(2H0P1N0EX t- 31
MOPTABOJ^OPINDEX t> 4I

HOPTABIAHOPINOEX la 51
CHARACTERIASTERISK!I MOPTABI51•OPINOEX |a 61
CHARACTETtllOTAlt M0PTAB(6)^0PINDEX la 2II
CMARACTERIRHOH MOPTABITHOPINOEX l» 22|
CHARACTERICOMMAH MOPTABI81•OPINOEX !■ 231

CHARACTERITILDEH M0PTAB(9H0P1N0EX la II

(*
OOPTABI
DOPTABI
OOPTABI
OOPTABI
OOPTABI
OOPTABI
OOPTABI
DOPTABI
DOPTABI
DOPTABI
OOPTABI
OOPTABI
OOPTABI
DOPTABI
DOPTABI
DOPTABI

dyadic operators •)

IHOPSYMBOL ia CHARACTERIPLUS) I OOPTABI 11 •OPINOEX la spi
2H0PSYMB0L I* CHARACTERIHINUSH OOPTABI21 •OPINOEX |a 531
31^0PSYMB0L la CHARACTERITIHESH 00PTAB13H0PIN0EX la 541
4K0PSYMB0L I- CHARACTERIOIVIOEH OOPTABU) .OPINOEX la 551
SHOPSYMBOL la CHARACTERIASTERISKH OOPTABI5 I •OPINOEX la 561
6HOPSYMBOL la CHARACTERI IOTAH D0PTABI6K0PIN0EX la 871
7HOPSYHBOL la CHARACTER IRHOJI OOPT A8171 •OPINOEX la 881
SI^OPSYMBOL la CHARACTERICOMHAH DOPTABIB1•OPINOEX |a 891
9).OPSYMBOL la CHARACTERIEQOALSH OOPTABI9)•OPINOEX la 711

CHARACTERI NOTEOUALH OOPTABI 10 I^OPINOEX la 721

lal’nDciUuo'" *“ CHaRACTEHILESSTHaNH OOPTABI 11 J•OPINOEX la 731
ifCHARACTERILESSOREQUALH OOPTABI 121 •OPINOEX la 741

CHARACTER I GREATEROrEOUALH OOPTABI 13H0PIN0EX !■ 751
CHARACTERIGREATERTHANH OOPTABI 141 •OPINOEX la 761

lAi'nolIunn'' *" CHARACTERI ANDSYMBOLH OOPTABI 15 J •OPINOEX la 771
161.OPSYHBOL la CHARACTERIORSYMBOLH OOPTABI161.OPINOEX ia 781

<* SPECIAL CHARACTER *»
CHARTABl11.OPSYMBOL I* CHARACTERICOLONH
CHARTABI21.OPSYMBOL la CHARACTERIRIGHTARROWH
CHARTABI31.OPSYMBOL la CHARACTERILEFTARROWH

CHARTABI41.OPSYMBOL la CHARACTERISMALLCIRCLEH
CHARTABI51.OPSYHBOL la CHARACTERIPERIOOH
CHARTABI61.OPSYHBOL la CHARACTERILEFTPARENH
CHARTABI71.OPSYMBOL l» CHARACTERIRIGHTPARENH
CHARTABI81.OPSYMBOL la CHARACTERILEFTBRACKETH
CHARTABI91.OPSYMBOL la CHARACTERIRIGHTBRACKETH
CHARTABI101.OPSYMBOL la CHARACTERISEMICOLONH
CHARTABI111.OPSYMBOL la CHARACTERIQUADRANGLEH
CHARTA6I121.OPSYMBOL !■ CHARACTERISPACEH

SPECTABlil.
SPECTAB(21.
SPECTABI31,
SPECTABUl.
SPECTABI51.
SPECTABI61.

<*

«EDTABUJ.
«E0TABI21.
'*E0TABI31.
^EOTABUI.
«EDTABIS1.
REDTABI61,
'’EOTABI71,
reotabibi.
RE0TABI91.
"EOTABlloi
"EDTABIIII
RE0TAB112J

«EDTABtl31
''Eotabiiai

I .OPSYMBOLI-CHARACTERICOLON11
I .OPSYMBOLIaCHARACTERlRlGHTARROW11
I.OPSYMBOLlaCHARACTERlLEFTARROwn
I .OPSYMBOLlaCHARACTERILEFTPAREN11
I .OPSYMBOLlaCHARACTERISEMICOLON 11
I .OPSYMBOLIaCHARACTERf LEFTBRACKET11

reduction OPERATOR •}
OPSYMBOL la CHARACTERIPLUS11 REOTABt11.OPINOEX la 2l
OPSYMBOL la CHARACTERIHINUSH REOTABI21.OPINOEX la 3»
OPSYHBOL la CHARACTERITIHESH REOTABI3).OPINOEX la 4t
OPSYMBOL la CHARACTERIOIVIOEH REOTABU1 .OPINOEX la 51

CHARACTERIASTERISKH REOTABIS1.OPINOEX ia 61
OPSYMBOL la CHARACTERIEQUALSH RE0TAB161.OPINOEX la 21|
OPSYMBOL |a CHARACTERINOTEOUALH REOTABI71.OPINOEX la 221
OPSYMBOL la CHARACTERILESSTHANH REOTABI81.OPINOEX I- 231
OPSYMBOL la CHARACTERILESSOREQUALH REOTABI91.OPINOEX I- 241
•OPSYMBOL I- CHARACTERIGREATEROREOUALH REOTABI101.OPINOEX I- 251

CHARACTERIGREATERTHANH REDTABIH 1 .OPINOEX |a 261
•OPSYMBOL la CHARACTERIANDSYMBOlH REOTABI121.OPINOEX la 27|
• OPSYMBOL la CHARACTERIORSYMBOLH REOTABI131.OPINOEX la 281
•OPSYMBOL la CHARACTERICEILINGH REOTABI141.OPINOEX !■ 291

03300
03310
03320
03330
03340
03350
03360
03460
03470
03480
04610
04620
04630
04640
04650
04660
04670
04680
04690
04700
04710
04720
04730
04740
04750
04760
04770
04780
04790
04800
04810
04820
04880
04890
04900
04910
04920
04930
04940
04950
04960
04970
04960
04990
05000
05010
05020
05070
05080
05090
05100
05110
05120
05130
05140
05190
05200
05210
05220
05230

05240
05250
05260
05270
05280
05290
05300
05310
05320

RC0TABC15]«0PSYHB0L *« CHARACTERIFLOORJI RCOTABt15J*0P1NDEX tm 30t
REOTA0I161.OPSYMBOL tm CHARACTERILARGECIRCLEII REOTABClei.OPlNDEX tm 311

OIGlTS[ONESYM0OL]s«lt OlGlTSCTBOSYMBOLll-21 Dl6IT$ITHRE£$YHB0Llt*3l
Dl6lTSCr0URSYHB0L]t«4| DIGlTSiriVeSYNBOL)laSl OIGlTSISlXSYHBOt1t«6l
01GlTStSEVENSYMBOLn«7l OIGITSIEIGHTSYNBOLIlaBI
01G]TS(NlNESYMBOL]t»9l DIGITSIZCROSYMBOLU-Ol

ENOI {• riLLUPTABLES •)

PROCEDURE PRir^TAPLSTATEHENTl
VAR
PREFIX«NUMSINTEGER!
INDEX:INTEGER!
BEGIN
for index:»1 TO LINELENGTH DO

BEGIN
IF APtSTATEMENTIINDEX) > 6000

THEN
BEGIN

PREF1X:«APLSTATEHENT(1N0EX) DIV lOOt
tfRlTE(CHR(PREFIX))I
NUM:>APLSTATEHENT(INDEX) - 100*PREF1XI
MR1TE(CHR(NUM>)

END
ELSE

WRIT£(CHR(APLSTATEMENTiINDEX J)>
END!

WRITELN
ENOI <* PRINTAPLSTATEMENT *)

PROCEDURE SERRORCERRORINOEXIINTEGER)t
VAR
MSGCOLlINTEGER!
BEGIN
TOKENERROR:«TRUe!
FOR MSGCOLJ*! TO MESSA6ELENGTH DO

WRITE(ERRORHSGS(£RRORlNO£X*HSGCOL))I
1*<RITELN!
PRINTAPLSTATEMENT! (* ECHO STATEMENT TO USER *)
FOR MSGCOL:*! to (POSITION - 1) DO

WRlTEis r)!

WRITELN(CHR(CHARACTERIUPARR0WJ))I (* PRINT POINTER TO USER ERROR *)
END! (« ERROR

PROCEDURE SKIPSPACES!
BEGIN
WHILE (APLSTATEMENTKPOSITION) « CHARACTER[SPACE))

AND (POSITION <m LINELENGTH) DO
POSITIONt-POSiTION ♦ 1

END! (• SKIPSPACES *)

PROCEDURE GETAPLSTATEMENTI
VAR
iNPUTCHARtCHAR!
TESTFORPREFIX:INTEGER I
FiRSTTRYtBOOLEAN!
BEGIN
FOR LINELENGTH:>1 TO MAXlNPUTtlNE DO
APLSTATEMENTlLlNELENGTHJlsCHARACTERlSPACEIt BLANK OUT LINE *)
LINELENGTHl«OI
FIRSTTRY!»TRUE!
POSITION!*!!
LINET00L0NG:*FALSE!

APLSTATEMENT!INPUTARRAYSI2E)I*CHARACTERC0MEGA)I

296

<• SET ENO-OF-LINE *> " ^J'^CHARACTEKISPACEII
“EPE«T
begin

FIRSTTRYl»FALSEt^”^^ GETSEGUNPUT)| (* TEST FoR *CR* ONLY *)

WHILE (NOT EOLN) ANO (NOT LINETOOLONG) DO
ir linclength < haxinputline

THEN
BEGIN

LINELENGTHt*LINELEN6TH ♦ It
REAOdNPUTCHAR)!

US;?MJ«t?!!:SRO?lNp!?“H«?f installations

• PREFJXl) OR (TESTFORPREFIX ■ PREFIX2)

BEGIN
R£AD<lNPUTCHAR>t

^ ORD<INPUTCHAR)l

ELSE
<*

*)

^f*ESTATEMENTlLINELENGTN)l«ORD<INPUTCHAR)

ELSE LlNETOOLONGt«TRUE
END

UNTIL LINELEN6TH <> Ot i* REJECT NULL LINES •>
IF LINETOOLONG THEN SERROR(7I)
ENDI {• GETAPLSTATEHENT *)

FUNCTION ITSAOIGIT(TESTCHARtINTEGER)tBOOLEANI
VAR
OlGITiNDEXtAPLCHARSETt

‘ ••

for DIGITINOEXI«ONEsrMBOL TO 2EROSVNBOL 00
* CHARACTERIDI6ITIN0EXJ THEN ITSADIGITt>TRUE

ENOI <♦ ITSAOIGIT *)

FUNCTION ITSALETTER(TESTCHARIINTE6ERHB00LEANI

LET TERINOEX t APLCHARSETI
BEGIN (* TEST TO SEE IF INPUT CHARACTER IS A LETTER *»
ITSALETTERI-FALSEI
for LETTERINOEXI-ASYNBOL to ZSVMBOL 00

END»^(*^ITSALETTER'*ir^'**''^^^*’’**'^°^*’ ’**** ITSAlETTERI»TRUE

function CHARTONUM(TESTCHARlINTEGERHINTEGERI

OlGITindex IAPLCHARSETI
begin (* CHAGE A CHARACTER TO A NUMBER *)

OIGITINOEXJ-ONESYMBOL TO ZEROSYM80L 00

CHART0NUMI»0I6ITSI0IGITINDEX 1

NAMESMATCH(NAMEONEt NAMETWOlPACKEOSTRiNGJIBOOLEANI

®M?o

o'laS H"''**cm-TiuEl“° ‘IOENTIFIERS) are the same .)

Om^® if na2p^!,“J HAXVARNAMELENGTH DO
^'^® ** NAMETWOI INDEX!

'HEN NAMESHATChtsFALSE

05330
05340
05350
05360
05370
05360
05390
05400
05410
05420
05430
05440
05450
05460
05470
05480
05490
05500
05510
05520
05530
05540
05550
05560
05570
05580
05590
05600
05610
05620
05630
05690
05700
05710
05720
05730
05740
05750
05760
05770
05760
05600
05810
05620
05630
05840
05850
05860
05870
05880
05890
05940
05950
05960
05970
05960
05990
06000

06010
®602o
^6070

297

06160
06170
06240
06250
06260
06270
06280
06290
06300
06310
06320
06330
06340
06350
06420
06430
06440
06450
06460
06470
06480
06490
06500
06510
06520
06530
06540
06550
06560
06570
06580
06590
06600
06610
06620
06630
06640
06650
U6660
06670
06680
06690
06700
06710
06720
06730
06740
06790
06800
06810
06820
06830
06840
06850
06860
06670
06880
06890
06900
06910
06920
06930
06940
06950
06960
06970
06980
06990
07000

£NDI (« NAHESHATCH «)

PROCEDURE TABLELOOKUPdESTCHARfTABLELENGTHUNTEOERlTABLElOPTABLEI
VAR TABLEiNOEXtINTEGER)»

VAR
INDEXtlNTEGERI
BEGIN (* CHECK FOR MEMBERSHIP IN A GIVEN TABLE *>
tableindex:>oi
FOR INDEXJ»1 TO lABLELENGTH DO

IF TESTChAR » TAbLElINDEXI.OPSYMBOL
THEN TABLEINDEXt»lNDEX

ENOI TABLELOOKUP *)

PROCEDURE I0ENT1FIER(VAR NAMEXPACKEOSTRINGI VAR ITSANIDENTIFlERtBOOLEAN)I
VAR
NAHELEN&TH:INTEGER|
NAHETOOLONGX BOOLEAN t
BEGIN
ITSANIDENTIFIERIsFALSEI
SKIPSPACESI
IF ITSALETTERIAPLSTATEMENTIPOSITION 1)

THEN
BEGIN

NAMETOOLONG:«FALSEI
ITSANIOENTIFIERXsTRUEI
FOR NAMELENGTH:«1 TO MAXVARNAMELENGTH do (* BLANK OUT NAME *)

NAMEINAMELENGTH)laCHARACTERlSPACE 11
namelength:*o;
WHILE <ITSALETTER(APLSTATEMENTIP0SITI0N))) OR

(1TSAOIGIT(APLSTATEMENT(POSITIONJ)) DO
BEGIN i* build identifier *)

NAMELENGTHiaNAMELENGTH ♦ ll
IF NAMELENGTH <s MAXVARNAMELENGTH

THEN
NAMElNAMELENGTHj:*APLSTAT£MENTCPOSITIONJ

ELSE
NAMETOOLONG:sTRUEI

position:*position ♦ 1
ENOt

IF NAMETOOLONG
THEN

SERR0R(7G) (* NAME GREATER THAN MAXLENGTH *)
END

ENOI <• IDENTIFIER ♦)

PROCEDURE MAKEANUMBER(VAR REALNUMBERiREALI VAR ITSANUMBERXBOOLEAN)I
VAR
SIGNtOIGITCOUNTUNTEGERI
BEGIN (• CONVERT CHARACTER INPUT STRING TO NUMERICAL REPRESENTATION *)
ITSANUMBERxaFALSEl
SKIPSPACESI
SIGNXalt
OIGlTCOUNTiaOl
REALNUHBER:aO*OI
IFUPLSTATEMENTIPOSITION) « CHARACTERINEGATIVE1) OR

IITSAOIGITCAPLSTATEMENTIPOSITION]))
THEN

BEGIN
ITSANUMBEROTRUEI
IF APLSTATEMENTIPOSITIONI « CHARACTERINEGATIVE]

THEN
BEGIN

SlGNls-ll
POSITlONtaPOSlTlON * |

END I
IF NOT ITSAOIGIT(APLSTATEMENTIPOSITIONI)

298

07010
07020
07030
07040
07050
07060
07070
07030
07090
07100
07110
07120
07130
07140
07150
07160
07170
07160
07190
07200
07210
07220
07230
07240
07250
07260
07270
07280
07290
07300
07310
07320
07330
07340
07350
07400
07410
07420
07430
07440
07450
07460
07470
07460
0 7490
07500
07510
07520
07530
07540
07550
07560
07570
07580
07590
07600
07bl0
07620
07630
07640
07650
07660
07670
07680
07690
07740
0^50

07770

THEN
begin

SERRORd)! <* digit MUST FOLLOW A MINUS SIGN *)
ITSANUM8ER:»FALSEI

END
ELSE

BEGIN t* FORM WHOLE NUMBER PORTION *)

while ITSADIGITIAPLSTATEMENTIPOSITIONJ) DO
BEGIN

POSITION t«POS IT * APLSTATEMENT I POS I T IONI

ENOI

IF APLSTATEMCNTIPOSITIONI * CHARACTERCPERIODl
Then

begin
POSITION:»P05JTION ♦ II
WHILE ITSADIGITIAPLSTATEHENTCPOSITION]) DO

BEGIN (* FORM FRACTIONAL PORTION *)
REALNUHBERtvREALNUMBER ^

chartonuncaplstatehentipositionJ) •
• DIGITCOUNT) * 2«3025e51ll

DIGITCOUNTlsDlGlTCOUNT ♦ 1|
POSITIONSbPOSITION ♦ II

ENOI
IF DIGITCOUNT « 0

THEN BEGIN

SERR0R<2)I I* DIGITS MUST FOLLOW A DECIMAL POINT *1
ITSANUMBERIsPALSEI
END

ENOI

REALNUMBER*»REALNUMBER*SIGN
End

END
END I (* HAkEANUHBER *)

FUNCTION M0NA0ICREFERENCE:B00LEANI
VAR
SUBPOSiTIONf tableinoexuntegeri

IF NEWTOKENPTRt.NEXTOKENt.NOUN a STATEND
THEN MONAOICREFERENCEl- TRUE
ELSE

BEGIN

SUBP0SITI0N:*P0SIT10N - 1|
WHILE <SUBP0SITI0N > 01 AND

<APLSTATEMENTCSUBPOSlTIONlsCHARACTERlSPACED DO
SUBPOSITlONiaSUBPOSITION - II (* GET LAST NON-BLANK *)

IF SUBPOSITION <> 0 THEN

TABLELOOKUPlAPLSTATEHENT(SUBPOSITlON)96»SP£CTABttableINDEX)I
IF (TABLEINOEX <> 0) OR (SUBPOSITION

then monaoicreference«»true
0)

ELSE
IF (NEWTOKENPTR+.NEXTOKENt.NOUN <>

(NEWTOKENPTRf.NEXTOKEN^.NOUN <>
(NEWTOKENPTRt.NEXTOKENt.NOUN <>
(NEWTOKENPTRt.NEXTOKENt.NOUN <>
(APLSTATEMENTISUBPOSITIONI <>
(APLSTATEMENTISUBPOSITIONl <>

END
ENOI (•

(APLST ATEMENT t SUBPOSITION)
THEN MONADICREFERENCE:-TRUE

FORMRES) AND
FORMARG) AND
GLOBVAR) ANO
CONSTANT) ANO

characteriperiood and
CHARACTERtRlGHTPARENl)

<> CHARACTER!RIGHTBRACKETl)
AND

monadicreference

DVADICOPCHECKI

TABlEInDEX:INTEGER)

07780 BEGIN
07790 TABL£L00KUP(APLSTATEMENTIP0SIT10NJ*16»D0PTAB9TABLE1NDEX>I
07800 IF TABtElNDEX « 0
07810 THEN
07820 BEGIN
07830 TABLcLOOKUP(APLSTATEHENT(POSlTlON]tl2»CHARTAB9TABLElNOEX)I
07840 IF TA6LE1NDEX > 0
07850 THEN
07860 IF APLSTATEHENTIPOSITION) = CHARACTERISOUTHCAP1
07870 THEN
07880 BEGIN
07890 OLOTOKENPTROSAVETOKENPTRt
07900 DISPOSEINEWTOKCNPTRIt
07910 NEWTOKENPTRt«SAVETOKENPTRt
07920 POSITIONt>LlNELEN6TH ♦ II
07930 END (• THtS WAS A COMMENT - IGNORE REMAINDER OF LINE •)
07940 ELSE 5ERR0R(4> (• INVALID CHARACTER ENCOUNTERED •)
07950 ELSE
07960 BEGIN (« SPECIAL CHARACTER ENCOUNTERED •)
07970 N£WTOKENPTR+.NOUNS»SPECOPERI
07980 NEWTOKENPTRi^.CHARINDXOTABLEINOEX
07990 END
08000 END
08010 ELSE
08020 IF MONADICREFERENCE
08030 THEN SERR0R(74) (*M0NADIC REFERENCE TO DYADIC OPERATOR*)
08040 ELSE
08050 BEGIN (* OPERATOR IS DYADIC •)
08060 NEWTOK£NPTR*.NOUNt«DYAOOPERI
08070 NEWT0KENPTR**D0PINDAS«TA8L£1N0EX
08080 END
08090 ENDI(•DYADICOPCHECK*)
08100
08150
08160 PROCEDURE CHECKOTHERTABLESI
08170 VAR
08180 tableINDEX!INTEGER!
08181 CHKINDEXI INTEGER!
08182 FUNCTION NEXTNONBLANKtINTEGER I
08183 BEGIN
08184 CHKINDEXSSPOSITION * II
08185 MHILE iCHKlNDEX < LINELENGTH) AND
08186 (APLSTATEMENTICHKINOEX) « CHARACTERISPACE)> DO
08187 CHKlNDEXtsCHKINDEX ♦ II
06188 NEXTN0NBLANKI«APLSTATEHENT(CHK1N0EX1I
08189 ENDI (* NEXTNONBLANK *)
08190 BEGIN
08200 IF NEXTNONBLANK a CHARACTERIFORUARDSLASH)
08210 THEN
08220 BEGIN
08230 TABLEL00KUP<APLSTATEHENTCP0SITI0Nl9l6fRE0TAB*TABLEIN0EX>l
08240 IF TABLEINDEX a 0
0,8250 THEN SERRORi72) C* INVALID REDUCTION OPERATOR •)
08260 ELSE
08270 IF NOT MONADICREFERENCE
08280 THEN SERRORI73) (• DYADIC REDUCTION REFERENCE •>
08290 ELSE
06300 BEGIN (• OPERATOR IS VALID REDUCTION OPERATOR *>
08310 NEWTOKENPTRt.NOUNisREDUCTOPERt
08320 NENTOKENPTRt*REDlNOXlaTABLElNOEXI
08330 ENDI
08340 POSlTlONiaCHKINDEX ♦ It
08350 END
08360 ELSE
08370 BEGIN
08380 TABLEL00KUP<APLSTATEHENTCP0SlT10Nl*9«H0PTAa«TABLElN0EX»l
08390 IF TABLEINDEX > 0
08400 THEN DYADICOPCHECK
08410 ELSE

300

08420
08430
06440
06450
06460
06470
08480
06490
08500
08510
08520

IF NOT MONADICREFERENCe
THEN OYAOICOPCHECK
ELSE

BEGIN i* operator IS MONADIC *)
NEWTOKENPTRt.NOUN t«MONAOOPER|
NEWTOKENPTRt«MONINOXI«TABLEINOEXI

END I
POSlTlONSaPOSlTlON ♦ It

END

ENOt (• CHECKOTHERTABLES *)

08570

06580 PROCEDURE TRVTOGETANUMBERl
06590 VAR
06600
06610
06620
08630
06640
08650
06660
06670
06680
08690
08700
06710
08720
06730
08740
08750
08760
08770
08780
08790
08800
08810
08820
08830
08840
08850
06860
08670
08680
08890
08900
06910
08920
08930
08940
089SO
08960
08970
06960
08990
09000
09010
09020
**9030
09040
090SO
09060
09070

09090
09100

“Olio
®0l20
09130
O’lao

NUMBERCOUNT >INTEGER t
REALNUMBERIREALI
1TSANUMBER1BOOLEANI
begin
NUMBERCOUNTiaOl

MAKEANUMBERIREALNUMBER11TSANUMBER)<
IF NOT ITSANUMBER
then CHECKOTHERTABLES
ELSE

BEGIN (* STORE VALUES IN VALUE TABLE «)
NEH(NEMVALTABLINK)t

NEWVALTABLINK+.NEXTVALTABLINKl-OLOVALTABLINKI
OLDVALTABLINKl*NEBVALTABLINKI
NEWVALTABLINKt,FORMARDOROER:»TRUE»
IF FUNCTIONMOOE

then NEWVALTABLINKt.lNTERHEORESULTtsFALSE
ELSE NEWVALTABLINKt.INTERMEDRESULTIbTRUEI

SWiTCHOTRUEt
WHILE ITSANUMBER 00

BEGIN

NUMBERC0UNT<«NUMBERC0UNT ♦ II
NEWCNEWVALUESII
IF SWITCH > TRUE

then
begin

SWlTCHt>FALSEl

NEWVALTABLINK+.FIRSTVALUEIbNEWVALUES
End

ELSE

NEWVALPTR+.NEXTVALUES»NEWVALUESI
NEW V ALUES'f . RE AL VAL i «REALNUNBER I
NEWVALPTRi«NEWVALUESI
MAKEANUNBER(REALNUMBER11TSANUNBER)

END I

NEWVALUESt.NEXTVALUEl«NILt
IF NUMBERCOUNT > I

THEN
BEGIN

NEWVALTABLINKt.DlHENSIONSt>ll <• NUMBER IS A VECTOR *»
NEWINEWOIM)I

NEWVALTABLINKt.FIRST01MENl>NEWOIMI
NEWOIMt.OIHENLENGTHlaNUHBERCOUNTl
NEWOlM>.NEXTDlHENt>NlL

END
ELSE

begin

NEWVALTABLlNKt.OINENSlONSt-OI (* NUMBER IS A SCALAR *»
NEWVALTABLINKt.FIRSTOIMENl-NIL

END I
newt 0KENPTR«.nounIsCONSTANTI

g^NEWTOkENPTR^.VALTABPTR t»NEWVALTABLINK I

End; (» trvtogetanumber •>

09190 FUNCTION NAHEINVARTABLE(NAMEIPACKEOSTRINGIVAR VARPOINTERIVARTABPTRTYPEl
09200 TESTFUNCPTRtPTRFUNCTAB)tSOOLEANI
09210 VAR

09220 F0UN0:B00LEAN{
09230 BEGIN
09240 FOUNO:*FALSEl
09250 VARP0INTER*«0LDVARTABPTRI
09260 while (VARPOINTER o NIL) AND (FOUND « FALSE) 00
09270 BEGIN

09280 IF (NAMESMATCH(NAME*VARPOINT£Rt.VARNAME)) AND
09290 (VARPOINTERt.FUNCTABPTR « TESTFUNCPTR) (* TEST FOR GLOBAL VAR *)
09300 THEN FOUNDIaTRUE

09310 ELSE VARPOINTERI^VARPOINTER+tNEXTVARTABPTR
09320 ENOI
09330 NAHEiNVARTABLEtsFOUNOl
09340 ENOI (*NAMEINVARTABLE*)
09350
09400
09410 PROCEDURE AODNAHETOVARTABLECNAHEIPACKEDSTRING)I
09420 BEGIN (• NEW VARIABLE NAME ENCOUNTERED •)
09430 NEWINEWVARTABPTR)I
09440 NEWVARTABPTRt.NEXTVARTABPTRlsOLDVARTABPTRl
09450 oldvartabptri»newvartabptri
09460 NEWVARTABPTR^.VARNAMEX«NAME|
09470 NEWVARTABPTRt*VALTABPTRI*NILI
09480 IF NEWTOKENPTR <> NIL THEN
09490 IF (NEWTOKENPTRt.NOUN » FORMRES) OR (NEWTOKENPTRt.NOUN ■ FORMARG)
09S0O THEN NEriVARTABPTRt.FUNCTABPTRl«NEWFUNCTABPTR
09510 ELSE NEWVARTABPTRt^.FUNCTABPTR»«NlL
09520 ENOI <• ADDNAHETOVARTABLE •)
09530
09580
09590 FUNCTION FUNCTlONALREADYDEFINEOIVAR NEWFUNAMEIPACKEOSTRINGIVAR FUNCINDEXt
09600 PTRFUNCTAB)IBOOLEANl
09610 VAR
09620 FOUNDlBOOLEANI
09630 BEGIN
09640 F0UNDI»FALSEI
09650 FUNClNDEXlaOLDFUNCTABPTRl
09660 while (FUNCINDEX <> NIL) AND (FOUND > FALSE) AND
09670 (NEWFUNCTABPTR <> NIL) DO
09680 IF NAHESMATCHCFUNCINDEXt.FUNCNAHEfNEWFUNAME)
09690 THEN FOUND!«TRUE
09700 ELSE FUNCINDEXl-FUNClNOEXt.NEXTFUNCTABPTRI
09710 FUNCTlONALREADYDEFINEDS sFOUNO
09720 ENOI (* FUNCTIONALREEADYOEFINED *)
09730
09780
09790 PROCEDURE MAKETOKENLINK I
09800 BEGIN
09810 NEW(NEWTOKENPTR)I
09820 NEWT0KENPTR'^.NEXT0KENI*0LDT0KENPTRI
09830 SAVETOKENPTR*»OLOTOKENPTR|
09840 OLDTOKENPTRI-NEWTOKENPTR
09850 ENOI (* MAKETOKENLINK *)
09860
09910
09920 PROCEDURE PROCESSFUNCTIONHEADERI
09930 VAR
09940 OUMMYPTRt'^FUNCTABl
09950 NAMEltNAME2»NAHE3xPACKEDSTRlNOI
09960 ITSANIDENTlFlERfFUNCHEAOERRORlBOOLEANI
09970 ARITYINOEXIinteger;
09980 BEGIN
09990 FUNCHEAOERROR*«FALSEI
loooo functionmodei«true;
10010 FUNCSTATEMENTSI*-1I
10020 IF FIRSTFUNCTION THEN BEGIN
10030 FUNCSTATEHENTSI*0|

302

i(ro4o
lOOi^O
10060
10070
10060
10090
10100
10110
10120
10130
10140
10150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10360
10390
10400
10410
10420
10430
10440
10450
10460
10470
10460
10490
10500
10510
10520
10530
10540
10550
10560
10570
10580
10590
10600
10610
10620
}063o
10640
10650
l066o
10670
^0660
10690
10700

*0720

FlRSTFUNCTIONI«fALSEl

ARlTVINOEXt-ll
P0SIT10NJ*P0SITI0N ♦ 1|
10ENTIE1ER(NahE1«1T5AN10ENTIF1ER)I
IF NOT ITSANIOENTIFIER

THEN
BEGIN

** UNRECOGNIZABLE FUNCTION/ARGUMENT NAME *1

END
ELSE

BEGIN
NEB(NEBFUNCTABPTR) I
SKIPSPACES;

* CHARACTERILEFTARROK)

BEGIN

NEHFUNCTA6PTR4*RE5ULT>aTl9UCl i* EXPLICIT RESULT *l

NEl-FUNCTAePTR4.RESUCTNAMEt.NAlJEll ^ ^ *
P0SITI0N:«P0SITI0N ♦ II """til
identifier(NAMEl»ITSANIOENTIFIER)I
IF not ITSANIOENTIFIER

THEN
BEGIN

SERR0R(6)I(•unrecognizable NAME TO RIGHT OF EXPLICIT RES«)
FUNCHEAOERRORt*TRUC tXPLlClT RES*)

END
END

ELSE

explicit result *,

^'^TMEN^*^*®^ LINELENGTH) AND (NOT FUNCHEADERROR)

BEGIN

p£NTlFlER(NAHE2fITSANIOENTIFIER)I
IF NOT ITSANIOENTIFIER

THEN
BEGIN

name -i

END
ELSE

ARITYlNDEXla2
ENOI

SKIPSPACESI

LINELENGTH) and (NOT FUNCHEADERROR)
I nhN

BEGIN

IDENTIF|ER(NAHE3«1TSAN10ENT1FIER)I
IF NOT ITSANIOENTIFIER

then
BEGIN

FuScHElo^ROH.iTRSE’® ARGUMENT NANE •)
END

ELSE
ARITYINDEX:«3

ENOI
SKIPSPACESI

LINELENGTH) AND (NOT FUNCHEADERROR)

begin

characters, to rich, of fonctioh header a,

ENOt
CASE ARITYINDEX OF

I< BEGIN

303

10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10850
10860
10870
10880
10890
10900
10910
10920
10930
10940
10950
10960
10970
10980
10990
11000
11010
11020
11030
11040
11050
11060
11070
11060
11130
11140
11150
11160
11170
11180
11190
11200
11210
11220
11230
11240
11250
11260
11270
11230
11290
11300
11310
11320
11330
11340
11350
11360
11370
11360
11390
11430
11440
11450
11460
11470
11480

NEWrUNCTABPTRt.ARlTYSsNlLAOICl
NEWrUNCTABPTRt.FUNCNAMElaNAMElI

END I
21 BEGIN

NEwFUNCTABPTRt•AAITY t sHONAOlCl
NEWFUNCTABPTRt•FUNCNAHE:aNAME11
NEWFUNCTABPTRt.RIGHTARC:3NAME2t
AD0NAHET0VARTABLE(NAHE2)I
NEWVARTA8PTRt.FUNCTABPTRl*NEWFUNCTABPTRI

end;
3S begin

NEWFUNCTABPTR+.AR1TVJ«0YADICI
NEWFUNCTAbPTRt.LEFTARG:*NAMEll
NEMFUNCTABPTRt.FUNCNAHEtaNAHE2t
NEWFUNCTABPTRt.RIGHTAR6taNAHE3l
ADDNAMETOVARTABLE(NAHEl)I
NEWVARTABPTRt.FUNCTABPTR t-NEWFONCTABPTRI
ADDNAHET0VARTABLEiNAHE3>I
NEWVARTABPTRt.FUNCTABPTRj*NEWFUNCTABPTRI

END
ENOI i* CASE *>
IF FUNCTIONALREADYOEFlNEDiNEWFUNCTABPTRt.FUNCNAHEfDUMMYPTR)

THEN
BEGIN

SERROR(5)l <* FUNCTION ALREADY DEFINED *)
FUNCHEAOERRORtsTRUEt

ENOt
IF FUNCHEAOERROR

THEN BEGIN
DISPOSE(NEWFUNCTABPTRlt <• HEADER NO GOOD •>
FUNCTlONHOOEt-FALSEI EXIT FUNCTION MODE *1
NEWFUNCTABPTRI«OLDFUNCTABPTRI
END

END
ENOI {• PROCESSFUNCHEAOER •)

PROCEDURE DESTROYSTATEMENTI
VAR
DUMTOKENPTR:tTOKENTABLE I
AUXSUBRTABPTR:tSUBRTABI
BEGIN

IF SUBRTABPTR <> NIL THEN
BEGIN

WHILE SUBRTABPTRt.LASTSUBRPTR <> NIL 00
BEGIN

AUXSUBRTA6PTRt>SUBRTABPTRt
SUBRTABPTRI«SUBRTABPTRt.LASTSUBRPTRI
DISPOSE(AUXSUBRTABPTR)9

ENDI
OlSPOSE<SUBRTABPTR)f

ENDI
DUMTOKENPTR:■OLDTOKENPTR 9
WHILE DUMTOKENPTR <> HOLDTOKENPTR DO

BEGIN
OLDTOKENPTR:*OLDTOKENPTRt.NEXTOKEN9
DISPOSE(DUMTOKENPTR)9
DUMTOKENPTRl«OLOTOKENPTR

END 9
NewTOKENPTR**HOLDTOKENPTR9
OLDTOKENPTr:«HOLOTOKENPTR {* RETURN POINTER TO END OF LAST GOOD LINE
ENOI <* OE5TROYSTATEMENT *)

PROCEDURE REVERSELINKLIST(VAR ARGPTRiTYPEVALTABPTR)I
VAR
HOLDtTEMPTRJtVALUESi
BEGIN (• REVERSELlNKLIST •)
VALPTRl«ARGPTRt.FlRSTVALUEI

11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11680
11690
11700
11710
11720
11730
11740
11750
11760
11770
11780
11790
11800
11810
11820
11840
11850
11860
11870
11880
11890
11900
11910
11920
11930 I
11950 I

11960
12020
12030
12040
12060
12070
12080
12090
12100
12110
12120
12130
12140
12200
1^210
2220
22T0

12280
12290
12300
If^io
2330

12340
^3S0

}|360

}*380
12390

TEMPTRl»VALPT«ti;N£XTVALUEf
while TEMPTR <> NIL 00

BEGIN

HOLDl»TEMPTRt.NEXTVALUEI
TEMPTRt.NEXTVALUEI«VALPTRI
VALPTR:«TEMPTRI
TEMPTRlaHOLO

ENDt

ARGPTRt.ElRSTVALUEt.NEXTVALUEl-NILI
ARGPTR^•FIRSTVALUEtxVALPTRt
IF ARGPTRt.FORtfARDOROER * TRUE

THEN ARGPTR^.FORMARDORDERIsFALSE

procedure parser(VAR tokentabpthitokenptrivar ptrtooa.typevaltabptrh

AUAOPERrABPTRltOPEHAMnTAat SEARCHING *) AUAOPERrABPTRttOPERANOTABI ** SEARCHING *)
AUXSUBRTABPTRttSUBRTABI
AUXRPARHPTRltFPARHTABi
AUXLPARMPTRttFPARHTABI

cCtun?^?'"^*''’ “ expression *)

NPVjlNTEGERl <• NUMBER OF INDICES •}

donepakseibooleani

PROCEDURE ERROR(ERRORINOEXJINTEGER)I
VAR
HSGCOL:INTEGER I
BEGIN

IKRITE(= =,ERRORlNDEX,i i) t
FOR MSGC0L:»1 TO MESSAGELENGTH 00

RRITECERRORMSGStERRORlNDEXiMSGCOLJ)I
WR1TELNI

GOTO 100; (* return to scanner *)
End; <♦ error *>

PROCEDURE release;
begin (* RELEASEOPERTAB *1

OPERTABPTR;>PTRLASTOPER t

WHILE opertabptr^.lastoperonil do
BEGIN

AUXOPERT ABPTR:=OPERTABPTRI
OPERT ABPTR:■OPERTABPTRt.LASTOPERI
DISPOSE(AUXOPtRTABPTR)I

END)
END! <* RELEASEOPERTAB *)

procedure EXPR£SSI0N(VAR VALI0EXPiB00LEAN)IF0R«AR0I

procedure RETURNTOCALLINGSUBRI
V AR

NAMEPTRttVARTABI
begin (* RETURNTOCALLINGSUBR *)

IF SUBRTABPTR^.CALLEDSUBRt,result THEN
BEGIN (* place explicit RESULT IN OPERTAB *)

IF NOT NAMEINVARTABLE(SUBRTABPTRt.CALLEDSUBRt.RESULTNAME.NAMEPTR.
THEN ERRORlii. .. J^£5TABPTRt.CALLEOSUBR) WLinxhe.nANEPTR.

ELSE ^'*'*®'*‘**^ *• ♦SVMSOt NOT r0UNO« •»

BEGIN

305

12400
12410
12420
12430
12440
12450
12460
12470
12480
12490
12500
12510
12520
12530
12540
12550
12560
12570
12580
12590
12600
12610
12620
12630
12640
12650
12660
12720
12730
12740
12750
12760
12780
12790
12800
12810
12820
12830
12840
12850
12860
12870
12680
12940
12950
12960
12970
12980
13000
13010
13020
13030
13040
13050
13060
13070
13080
13090
13100
13110
13120
13130
13140
13150
13160
13170
13180
13190
13200

AUXOPERTABPTR »■OPERTABPTR t
NEW<0PERTABPTR>I
OPERTABPTRt.LASTOPERt*AUXOP£RTABPTRI
PTRLASTOPERl-OPERTABPTRI
OPERTABPTRt.OPERPTRs-NAMEPTRt.VALTABPTRl

END I
END I

(• RETURN TO CALLING FUNCTION •)
VFUNCPTRs»SUBRTABPTR^«STATEHCALLlNGSUBR|
T0KENTABPTRt«SUBRTABPTR4.T0KENCALLlN6SUBRt«NEXT0KENl
IF SUBRTABPTRt*CALLE0SU6Rt.ARlTY<>NlLA01C THEN

BEGIN (• MONADIC OR DYADIC •>
AUXRPARHPTR t-RPARHPTR t
RPARMPTRt«RPARMPTRt.LASTPARM«
DlSPOSEiAUXRPARNPTR)I
IF SUBRTABPTRt.CALLEDSUBRt.ARlTYsDYADlC THEN

BEGIN (* DYADIC ONLY •)
AUXLPARMRTR tsLPARHPTR t
LPARMPTRJ*LPARMP7R^#LASTPARM»
DISPOSE(AUXLPARHPTR)I

END I
ENOl

AUXSUBRTABPTRI«SUBRTA6PTRI
SUBRTABPTRI«SUBRTA6PTRt.LASTSUBRPTRI
DISPOSE IAUXSUBRTABPTR)!

ENDI (• RETURNTOCALLINGSUBR

FUNCTION SPECSYMBOL(SYMlINTEGER)IBOOLEANI

VAR
VALlDSYMiBOOLEANt

BEGIN (* SPECSYMBOL •)
VALlDSYH:«FALSEi
IF TOKENTABPTRt»NOUN>SPECOPER THEN

IF TOKENTABPTRt.CHARlNOXsSYM THEN
BEGIN

HOLD t sTOKENTABPTR »
T0KENTA6PTRt«T0KENTABPTRt*NEXT0KENI
VAL1D5YMI«TRU£9

END)
SPECSYMBOLtsVALlDSYHI

END9 (• SPECSYMBOL •)

PROCEDURE CALLSUBRt
VAR

PTRTOVARTABttVARTABi
BEGIN «• CALLSUBR •)

IF SUBRTABPTRf•CALLEDSUBR«*AR1TY<>NILA0IC THEN
begin

IF NOT NAMEINVARTABLE(SUBRTABPTRt.CALLEOSUBRt.RIGHTARGfPTRTOVARTAB#

SUBRTABPTRt«CALLEDSUBR)
THEN ERROR132)9

IF PTRTOVARTABt.FUNCTABPTRoSUBRTABPTRt.CALLEOSUBR THEN
ERROR(32>t(« PROGRAM LOGIC ERROR* VARIABLE NAME OF •>

(• FUNCTION ARGUMENT NOT FOUND IN SYMBOL TABLE •>

AUXRPARMPTR t >RPARMPTR t
NEW(RPARMPTR)I
RPARHPTRt.LASTPARM t «AUXRPARMPTR t
PTRTOVARTABt,OEFEREOVALTABPTRl«RPARMPTRI
IF SUBRTABPTR«.CALLEDSUBRt.ARITY«DYAOlC THEN

BEGIN (* IF DYADIC *) _
IF NOT NAMEINVARTA8LE(bUBRTABPTRt.CALLEDSUBR*.LEFTAKU*

PTRTOVARTAB.SUBRTABPTRt.CALLEDSUBR) THEN ^
IF PTRTOVARTABt.FUNCTABPTRoSUBRTABPTRt.CALLEDSUBK

ERR0R(33M <• SAME AS ERR0R(32t •>
AUXLPARHPTR>«LPARMPTR|
NEW(LPARHPTR|t
LPARMPTRt.LASTPARM:«AUXLPARMPTRI

306

13210
13220
13230
13240
13250
13260
13270
13280
132'^0
13300
13310

13320
13330
13340
13350
13360
13370
13430
13440
13450
13460
13470
13480
13490
13510
13520
13530
13540
13550
13560
13570
13580
13590
13600
13610
13620
13630
13640
13650
13660
13670
13680
13690
13700
13720

PTRTOVARTABt.DEFEREOVALTABPTRl*LPARMPTRl
LPARMPTR^.PTRVALiaOPERTABPTRt.OPERPTRI
AUXOPERTAbPTRlaOPERTABPTRI
OPERTABPTR*»OPERTABPTRt,LASTOPER|
OISPOSE(AUXOPERTABPTR)I
PTRLAST0PLR:*0PERTA8PTRI

END!

RPARMPTRt.PTRVALJaOPERTABPTRt.OPERPTRI
auxopertabptr:»opertabptri
OPERTABPTRlaOPtRTABPTRt.LASTOPERI
DISPOSE(AUXOPERTABPTR)I

PTRLAST0PER:=0PERTABPTRI
END;

TOKENTABPTRlaSUBRTABPTR'r.CALLEOSUBRt.FlRSTATEMENTt MFXT«=TMwri

function functcall:boolean I
VAR

PTRTOFUNCTABI+FUNCTABI
NAMEOFFUNC:PACKEOSTRlNG«
validfn:boolean»

BEGIN (* FUNCTCALL *)
VALIDFNiaFALSEI
IF TOKENTABPTRt.NOUNaGLOBVAR THEN

begin

NAMEOFFUNCl-TOKENTABPTRt.VARTABPTRt.VARNAME*
THEN BEG IN

AUXSUBRTABPTRlaSUBRTABPTRI
NEWISUBRTABPTR)I

SUBRTABPTRt.LASTSUBRPTR:=AUXSU8HTABPTR»
SUBRTABPTRttCALLEOSUBRiaPTRTOEUNCTABi
SUBRT ABPTRt.TOKENCALLINGSUBRIaTOKENTABPTRI
SUBRTABPTR't.STATEMCALLlNGSUBRtaVFUNCPTRI
hold:aTOKENTABPTRI

TOKENTABPTRlaTOKENTABPTRt.NEXTOKENI
VALIOFN:=TKUEt

END I
END I

FUNCTCALLJaVALlDFNT
END» I* FUNCTCALL *)

13730
13740
13750
13760
13770
13780
13790
13800
13810
13880
13830
13840
13850
13860
13870
13880
13890
13900

39X0
3920
3930

}394o
3950

13960

PROCEDURE NUMBRITEIREALNOIREALU
VAR

PREFIX.ROOTI INTEGER!
SIGOiG.COLCNTtINTEGER!
begin <* OUTPUT A NUNBER *)
IF REALNO >b 0*0

ELSE '"**^*^^*” 1*EALN0I12I2) <* OUTPUT POSITIVE NUMBER *J

BEGIN (• OUTPUT NEGATIVE NUMBER *)
REALNOIa-l,0*REALNOI

SI60IG!-TRUNC((LNIREALNO!)/(LN<I0.0)1>!
FOR COLCNTtal TO <7 - SIGOIGI 00

WRITEIE =)!
IF CHARACTCRINEGATIVEI < 6000

ELSE * CHARACTER INEGATIVE J))

BEGIN

PREFIXtaCHARACTERINEGATIWEl OIV 100!
ROOTlaCHARACTERINEGATIVE! - (100*PREFIX>!
WRITE(CHR(PREFIX>» CHR(R00T))|

END!
SlGDIGtasiGOIG * 5!
WRlTE<REALN0tSlG0IGi2)!

End

13970
139B0
14010
14020
14030
14040
14050
14060
14070
14080
14090
14110
14120
14130
14140
14150
14160
14170
14160
14190
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300
14310
14320
14330
14340
14350
14360
14370
14380
14390
14400
14410
14420
14430
14440
14450
14460
14470
14480
14490
14500
14510
14520
14530
14540
14550
14560
14570
14580
14590
14600
14610
14620
14630
14640
14650
14660
14670
14680

ENDI (* NUMMftlTE

PROCEDURE OUTPUTVALI
VAR

cntunteger;
AUXVALUESPTRttVALUESI

DlMHOLOt 01H£Nlff0IHEN2f 01MEN3nNTE6ERt
OUTCNTlfOUTCNT2fOOTCNT3:INTEUERI
IDIHENSUNTEGERI

BEGIN (* OUTPUTVAL *)
CNTSsOI
WRlTELNtMRlTELNI

IF NOT OPERTABPTRt#OPERPTR»«FORWARDORDER THEN
REVERSELINKL1ST<0P£RTABPTR1‘.0PERPTR) I

AUXVALUESPTRl«OPERTABPTRt,OPERPTHt.FIRSTVALUE»
IOIM£NSI«OPERTABPTRt.OP£RPTRt.DIMENSIONS!

IF NOTdOlHENS IN (0..3]) THEN
BEGIN

FOR COLCNT««l TO HESSAGELENGTH DO
WRITE!ERRORHSGS1601 COLCNT1)!

WRITELNI
END

ELSE
IF AUXVALUESPTR*NIL THEN
BEGIN

FOR COLCNTt*l TO HESSAGELENGTH DO
WRITE(ERRORHS6S161tCOLCNTI)I

WRITELNI
END
ELSE

IF 1DIHCNS«0 THEN
BEGIN

NUHWRlTE(AUXVALUESPTRt.REALVAL)I
WRITELNI
END

ELSE
BEGIN

0IMENll*0PERTABPTR^.0PERPTR+.FlRSTDIMENt.0lMENLEN6T«l

IF 1DIHENS>»2 THEN 01NEN2 l«
OPERTABPTRt.OPERPTRt.FIRSTOIMEN^.NEXTDIMENt.OIMENLENGTH

ELSE 01HEN2i»ll
IF IDIMENS«3 THEN D1HEN3S*

OPERTABPTR^.OPERPTR+.FIRSTOIMENt.NEXTOIMEN^.
NEXTOlHENt.DIHENLENGTH

ELSE DIHEN3t»ll
IF ID1HENS«3 Then begin ROTATE OIHENSIONS *1

DlMH0LDl«01HENll DlHENlt»OlHEN2l
01H£N2l«01MEN3l 0IHEN3ts0lHH0LDI
ENDI

TO 0IMEN3 DO

a TO DIMENI DO

FOR 0UTCNT3I
BEGIN

FOR OUTCNT2I
BEGIN

FOR OUTCNTlt>l TO D1HEN2 00
BEGIN

CNTI*CNT ♦ 1»
IF(! (CNT-l)MOO 5)a0) AND

<CNT<>1) THEN
BEGIN

WRITELNI
WRITE!: =)l

ENDI
NUHWRlTE(AUXVALUESPTRt,REALVAL)I
AUXVALUESPTRJsAUXVALUESPTRt.NEXTVALUtI

ENDI
IF iDIMENS>=2 THEN

BEGIN
WRITELNI

308

14690
14700
14710
14720
14730
14740
14750
14760
14770
14830
14840
14850
14060
14370
14880
14890
14900
14910
14920
14980
14990
15000
15010
15020
15030
15040
15050
15060
15070
15080
15100
15110
15120
15130
15140
15150
15160
15170
15180
15190
1S200
15210
15220
15230
15240
15250
15260
15270
15280
15290
15300
15310
15320
15330
15340
15350
15360
15370
15380
15390
15400
}S<,lo
5420

5^30
JS440
}S45o
}S46o

*S4eo

CNT>>0t
ENOI

END!
KRITELNI WHITELNI
END!

<*WR1TELN»*>
END!

ENOI (* OUTPUTVAL •)

function VARIABLEIBOOLEANI
V ar

(iLOBOROUMMyiBOOLEANI
PASSEOAOJitVARTABI
RARGIBOOLEANI
PARMPTRJtVALTABi

VALIOVARtBOOLEANI
V ALIDINOEA:BOOLEANI

<* GORD *)
<• K •)
(* RD *>
(* PT •)

PROCEDURE INPUTVALI
VAR

AUXPTRTOOAitVALTABi
AUAVALUESPTRItVALUESI
AUXaVALUESPTRitVALUESI
REALVIREALI

BOOLViBOOLEANt
CCNTRtCNTIINTEGER!
AUXOlMENINFOPTRt-»OIHENINFOI

BEGIN (* INPUTVAL •>
CNTt>GI
POSITIONtalt
AUXPTRTOOAIbRTRTOOAI
NEW(PTRTOOA)!

AUXPTRTOOA^.NEXTVALTABLINKIaPTRTOOAI
AUXOPERTABPTRIaQPERTABPTRI
NEWIOPERTABPTR)!
PTRLASTOPERIaOPERTABPTRI

• •-ASTOPERI aAUXOPERT ABPTR I
OPERT ABPTR^.OPERPTRIaPTRTOOAI
NEB<AUX2VALUESPTR)I
PTRTOOAt.rIRSTVALUE »■AUXZVALUESPTR!
for CCNTRtai TO MESSAGELENGTH 00
Ds- * ERRORMSGS (631 CCNTR]) I UR I TELN I
RCAuLNI
GeiAPLSTATEMENTI
REPEAT

MAKEANUMBERIREALV*BOOLV)|
SKIPSPACESI
IF NOT BOOLV THEN

BEGIN
FOR COLCNTt«l TO HESSAGELENGTH DO

WRlTE(ERR0RNS6S[62fC0LCNT))t
WRITELNI

POSXTlONt«ll
CNTt»0»

AUX2VALUESPTRS>0PERTABPTRt.0PERPTRt.FlRSTV4l UFi
FOR CCNTRlsl TO MESSAGELENGTH DO ^
^^U^*TE(ERR0RMSGSC63#CCNTRJ)IMRITELNI

getaplstatehent
END

ELSE
begin

CNTI«CNT«1I
AUXVALUESPTR t »AUX2VALU£SPTRI
NEW(AUX2VALUESPTR)t
AUXVALUESHTRt.REALVALI-REALV•

AUXVALUESPTR'».NEXTVALUEl«AUX2VALUESPTR|

1&490
15500
15510
15520
15530
15540
15550
15560
15570
15580
15590
15600
15610
15620
15670
15680
15690
15700
15710
15720
15730
15740
15750
15760
15770
15780
15790
15B00
15610
15820
15830
15840
15850
15860
15870
15880
15890
15900
15910
15920
15930
15940
15950
15960
15970
15980

15990
16000
16010
16020
16030
16040
16050
16110
16120
16130
16140
16150
16170
16160
16190
16200
16210
16220
16230
16240
16250
16260
16270

end I
UNTIL P0S]TI0N>LINELENGTH|
D1SP0SE<AUX2VALUESPTR)I
auxvaluesptr^*nextvalue*»nili
PTRTOOAt.INTERMEDRESULT:«FALSEI
PTRTOOA^.DlMENSIONStslI
PTRTOOAt.FORWARUORDER * *TRUEI
PTRTOOAt.NEXIVALTABLINK:sNlLI
NEW(AUX0IHEN1NF0PTR)I
PTRTOOAt.FIRSTDlMENlaAUXOIMENlNFOPTRl
AUXDlHENlNFOPTRt.DlHENLEN6THl«CNT»
AUXOlMENlNFOPTRt.NEXTOlHENXsNILI

ENOI i* INPUTVAL

PROCEDURE GETARRAYPOSITION<VAR VALUESPTRlTYPEVALUESPTR)I

VAR
INDICEXREALI
KCNTIINTEGER!
SLtINTEGER!
AUXOIMENINFOPTRXtDIMENiNFOl

BEGIN (• GETARRAYPOSITION •)
IF NPVOPARMPTRt.DIMENSIONS THEN ERR0R!35)I

(* tWRONG NUM* OF SUBSCRiPTSt ♦)

SLX«0!
AUXOPERTABPTRI»OPERTABPTR!
AUX01MENlNF0PTR*»PARMPTRt.FIRST0IMENI

FOR KCNTl«l TO NPV DO
BEGIN

IF AUXOPERTABPTRt.OPERPTRt.OlMENSIONSoO THEN
ERR0R(35)I C* tNON-SCALER iNDICESt *)

INDICEXsAUXOPERTABPTRt.OPERPTRt.FIRSTVALUEt.REALVAL!
IF IN01CE-1.0*TRUNC<INDICEK>0«0 THEN

£RR0R(37)! <* tNON-INTEGER INDICESt *>
IF NOT(TRUNCCINOICE)
IN (l..AUX01MENlNF0PTRt.0IMENLENGTHl) THEN

ERR0RI38)I (* tOUT OF RANGE iNOEXt •)
SL»»<SLtAUXDlMENINFOPTRt#OIMENLENGTH)♦TflUNC<INOICE)-1!
AUX0PERTABPTRt»AUX0PERTA8PTRt.LAST0PERI
DISPOSE(OPERTABPTR)!
OPERTABPTRisAUXOPERTABPTRI
AUXDlMENlNFOPTRJ=AUXOlMENlNFOPTRt.NEXTOlMEN!

ENOI
VALUeSPTRl*PARHPTRt.FIRSTVALUEl
WHILE SLOO DOI* DETERMINE WHICH VALUE IN

(* PTISVAL(5V))ISVAL(SV1)) . . . I S^AL (SV-NPV* 1) J*)

C* tn SVAL<SV-NPV) *)
BEGIN

VALUESPTR*«VALUESPTRt.NEXTVALUEl
SL:*SL-1I

END!
ENOI (* GETARRAYPOSITION •)

PROCEDURE LINKRESULTS!
VAR

PTRTOVALUESXtVALUESi
BEGIN (* LINKRESULTS •)

IF NPV»0 THEN
BEGIN

IF NOT GLOBORDUMMV THEN
IF RARG THEN

RPARMPTRt.PTRVAL:»OPERTABPTRt.OPERPTR
ELSE

LPARMPTRt.PTRVAL**0PERTA6PTRt.0PERPTR

ELSE
PASSEDADJt,VALTABPTR:»0PERTA8PTRt.0PERPTR

END
ELSE

i
310

16280
16290
16300
16310
16320
16330
16340
16350
16360
16370
16380
16390
16400
16410
16420
16480
16490
16500
16510
16520
16530
16550
16560
16570
16580
16590
16600
16610
16620
16630
16640
16650
16660
16670
16680
16690
16700
16710
16720
16730
16740
16750
16760
16770
16780
16790
16800
16810
16820
16830
16840
16900
16910
16920
16930
16940
16960
16970
16980
16990
ITOOO
17010
7020
7030

}7040
}705o
J7060

7070
i7oeo

BEGIN

P**7MPTR««PASSEOADj»,VALTA0PTR

GETARRAYP0SITI0N(PTRT0VALUES)I "'’''■"’•f'TRVALI

THEN
not . SCALAR.

AUXOPERTABPTRlsOPERTABPTRt

ENOI (• LINKRESULTS •)

STACKPOINTERSI procedure
VAR

AUXPTRTOOAitVALTABi
PTRTOVALUES,AUX VAlUESPTRI♦VALUES I

BEGIN I* STACKPOINTERS *) I

IF NPV-0 THEN
begin

AUXOPERTABPTRtaOPERTABPTRI
NEVIOPERTABPTRH

OPERTABPTR't .laSTOPER t >AUX0PERTABPTR t
OPERTABPTRt.OPERPTRl-PARMPTRI
ptrlastoperoopertabptr

END
ELSE

BEGIN

AUXPTRTODAoPTRTOOAt
NEU(PTRTOOA)I

* *NTERMEORESULT j aTRUEI
PTRTOOAt.DIMENSIONSIaOl
PTRTODAt.FIRSTDiMENJaNILI
PTRT OOAt•FORWAROOROER t ktroeI
NEM(AUXVALUESPTR)t

AUXOPERTABPTRt.OPERTABPTR»
NEV(OPERTABPTR)l

OPERTABPTRt•LAST0PER:»AUX0PERTABPTRI
OPERTABPTRt.OPERPTRl.pTRTOOAI
PTRLASTOPERIsOPERTaBPTRi

END I

ENOI (* STACKPOINTERS •)

FUNCTION SlMPLEVARlABLEtBOOLEANt
V ar

VALIOSVtBOOtEANi
BEGIN (* SINPLEVARIABLE *)

VALIDSVI-FALSEI
RARGJaFALSEl
GLOBOROUNHV t >FALSEI
IF ASSIGN Then

begin

IF ITOKENTABPTR».NOUN«FoRHRES) or

6L0B0R0UHHYI«TRUCI

PASSEDAUJi«TOKENTABPTRt.VARTABPTRl
HOLOr.TOKENTABPTRl

.NEXTOKEN I

17090
17100
17110
17120
17130
17140
17150
17160
17170
17160
17190
17200
17210
17220
17230
17240
17250
17260
17270
17280
17290
17300
17310
17320
17330
17340
17350
17360
17370
17380
17390
17400
17410
17420
17430
17440
17450
17460
17470
17480
17490
17500
17560
17570
17580
17590
17600
17620
17630
17640
17650
17660
17670
17680
17690
17700
17710
17720
17730
17740
17750
17760
17770
17830
17840
17860
17870
17880
17890

END
ELSE

IF TOKEN!AbPTRt.NOUNsrORHARG THEN
BEGIN

IF NAHESMATCH
iTOKENTABPTRt.VARTABPTRt.FUNCTABPTRt.LEFTARGf
TOKENTABPTR^.VARTABPTR^.VARNAME I THEN RARGx»fRUE»
PASSEOADJSaeTOKENTABPTR^«VARTABPTR

END
END
ELSE

BEGIN
IF aOKENTABPTRt.NoUNaFoRMRES) OR

aOKENTAbPTRt*NOUN«GLOBVAR) THEN
BEGIN

PARMPTRX'TOKENTABPTR^.VARTABPTR'^.VALTABPTRI
IF PARMPTRONIL THEN

BEGIN
H0LDx*T0KENTA6PTRI
TOKENTABPTRlaTOKENTABPTRt.NEXTOKENI
VALlOSVXsTRUE

END
END

ELSE
BEGIN

IF TOKEN!ABPTR'f.NOUNsFORMARG THEN
BEGIN

IF NAHESNATCH
(TOKEN!ABPTR+.VARTABPTR^.FUNCTABPTRt.LEFTARGt
TOKEN!ABPTRt.VARTABPTRt.VARNAME) THEN

PARNPTRX«LPARHPTRt.PTRVAL
ELSE

PARMPTKisRPARHPTRt.PTRVALI
HOLDXsTOKENTABPTRl
T0KENTABPTR*»T0KENTA8PTRt.NEXT0KENI
VALIOSVtsTRUEt

ENDI
END I

ENDI
SIHPLEVARIABLEOVALIDSVI

ENDI (* SIMPLE VARIABLE

PROCEDURE INDEX(VAR VALIOIXBOOLEAN)I
V AR

VALl0EltVALlDE2xB00LEANt
BEGIN (• INDEX •)

VALlDlt«FALSEl
EXPRESSlONiVALIDElM
IF VALlOEl THEN

BEGIN
NPVt«l| (• NO* OF INDEX EXPRESSIONS •)
while SPECSYHBOL(XSEHICOLSTH) DO

BEGIN
NPVX*NPV*H
EXPRESS10N(VALIDE2)9
IF NOT VALIDE2 THEN ERROR(39)1

(• tINVALIO INDEX EXPRESSIONS «)
ENDI

VALlOllBTRUei
ENDI

END! (• INDEX •)

BEGIN (• VARIABLE *)
VALlOVARl-FALSei NPVI«0I
IF NOT ASSIGN THEN

IF SPECSYMBOL(XQUAOSYN) THEN
BEGIN

17900
17910
17920
17930
17940
17950
17960
17970
17980
17990
18000
18010
18020
18030
18040
18050
18060
18070
18080
18090
18100
18110
13120
18130
18140
18150
18160
18170
18180
18190
18200
18210
18220
18230
18240
18250
18260
18270
18280
18290
18360
18370

,18380
16390
18400
18410
18470
18480
18490
16500
18510
18530
18540
18550
18560
18570
18560
18590
18600
18610
18620
18630
18640
1«6S0
18660
18670
18680

*®7io

INPUTVALI
VALIOVARfsTRUE

END
ELSE

BEGIN

IF SPECSYMBOLURIGHTBRACKET) THEN

index (VALIOINOEXX
IF (NOT VALIOINOEX) OR

then error04)I («
end I

(NOT SPECSYMBOL(XLEFTBRACKET)
invalid index expression .)

IF simplevariable then
BEGIN

stackpointersi
VALlOVARlaTRUE

END
END

ELSE

IF SPECSYHBOL(XOUAOSYH) THEN
begin

OUTPUTVALI
VALlOVARtaTRUE

END
ELSE

begin

IF specsymbol(xrightbracket) then

INDEX(VALIOINOEX)t

IF (NOT VALIOINOEX) OR (NOT SPECSYMBOL(Xi FFTROArKrri

END) «• invalid IS

If SIMPLEVARIABLE THEN
BEGIN

LINKRESULTSI
VAL10VARI«TRU£|

£NOI
END I

VARIABLEIayAL1DVARI
ENDI (* VARIABLE *>

procedure PRIHARY(VAR VALIO.BOOLEAN), (. RECURSIVE ENTRY *)

VALlOXiBOOLEANt
ASSlGNIBOOLEANt

function VECTORIBOOLEAN!
VAR

VEC<BOOLEANI
BEGIN (* VECTOR *)

VECiaFALSEt

AUXOPERTABPTRlaOPERTABPTRI
NEW(OPERTABPTR)t
PTRLASTOPERIaOPERTABPTRI

OPERTABPTR+,LASTOPER|«AUXOPERTABPTRi

VE?f .nextoken I
END!

VECTORiaVECI
ENOI (* VECTOR *)

begin (* PRIMARY *)

VALIOIaTRUEl
IF NOT VECTOR THEN

18720
18730
18740
18750
18760
18770
16780
18790
18600
18810
18820
18830
18840
18850
16860
18870
18880
18890
18900
18910
18920
18930
18940
IB950
19010
19020
19030
19040
19050
19060
19110
19120
19130
19150
19160
19170
19180
19190
19200
19210
19220
19230
19240
19250
19310
19320
19330
19340
19350
19370
19380
19390
19400
19410
19420
19430
19440
19450
19460
19470
19460
19490
19500
19510
19570
19560
19590
19600
19610

BEGIN
ASSlGNOFALSEt
IF NOT VARIABLE THEN

IF SPECSyHB0L<XRI6HTPAR) THEN
BEGIN

EXPRESSI0N<VAL1DX)I
IF NOT VALIDX THEN ERROR(14)

(• tNON-VALlO EXP WITHIN PARENSt *>
ELSE

IF NOT SPECSYNBOL(XLEFTPAR) THEN ERROR415)
(* tRIGHT PAREN NOT BALANCED WITH LEFT PARENt •>

ELSE
VAL1DI«TRUE

END
ELSE

IF NOT FUNCTCALL THEN VAL1DI»FALSE
ELSE

BEGIN
CALLSUBRI
PRIMARY(VAL10)|
END I

ENDI
ENOI (• PRIMARY •)

PROCEDURE EXPRESSION! (• RECURSIVE *)
VAR

OONEXPfVALIDPRlvVALIDFUNCtVALlOASSNlBOOLEANl
CODES INTEGER!

PROCEDURE ASSIGNMENT(VAR VALIDASBOOLEAN)t
BEGIN (• ASSIGNMENT •)

VALlOAisFALSEl
IF SPECSYMBOL(XLEFTARROW) THEN

BEGIN
ASSlGNSsTRUEIASSlGNliaTRUE!
IF VARIABLE THEN VAL10At«TRUE
ELSE ERROR(8)! (• RESULT OF AN ASSN NOT A VALID VARIABLE •>
VALlDASaTRUE!
ASSiGNSaFALSEl

END!
ENOI (• ASSIGNMENT •)

FUNCTION MOPSBOOLEANI
VAR

VALIOMSBOOLEANI
BEGIN (* MOP *)

VALIDMSsFALSEI
IF (TOKENTABPTRt.NOUNsMONADOPER) OR

(TOKENTABPTRt.NOUN«REOUCTOP£R) THEN
BEGIN

IF TOKENTABPTKf.NOUN«HONADOPER THEN
CODEs«HOPTABCTOKENTABPTRt«MONlNDX)«OPlNDEX

ELSE
C0DES>RE0TAB(T0KENTABPTR'».RED1N0X].0P1N0EXI

HOLDS*TOKENTABPTR!
TOKENTABPTRs«TOKENTABPTRt.NExTOKENI
VAL10HS«TRUEI

ENOI
MOPt«VALIDM|

ENOI (* MOP *)

FUNCTION OOPIBOOLEANI
V AR

VALIODSBOOLEANI
BEGIN (• OOP •)

314

19630
19640
19650
19660
19670
19680
19690
19700
19710
19720
19730
19740
19750
19760
19770
19780
19790
19800
19810
19820
19830
19840
19850
19860
19870
19880
19890
19900
19910
19920
19930
19940
19950
19960
19970
19980
19990
^0000
20010
20020
20030
20040
20050
20060
20070
20100
20110
20120
20130
20140
20150
20160
20170
20210
20220

20230
20240
20250
20260
20270
20250
20290
20300
20310
20320

20340

20360

VALIOOtsFALSEl
IF TOKENTABPTRt.NOUNxOYAOOPER THEN

®®’ then VAtlOOtaTRUC

THEN
IF SPECSVNBOLfXPERlOO) THEN

begin

then
oCGlN

^^HEN^BEGlir^**^*®'’^"* .OOPINOXI .OPINOEXOBO

COOEIbCOOE«(100«

END
ELSE

END ♦INVALID INNER PRODUCT EAP *>

ELSE

^*^g^2Jj^'^TA0PTRf,NOUN«SPECOPER THEN

then
oIlGIN

CODEI«1OPCODEI
VALIODOTRUE

END
ELSE

EW0RC26) <* tlNVAL OUTER PROO EXPt *)

ERROR(26) (* SAME AS ABOVE *|

ELSE
VALlODt«TRUE

ELSE
VALlOOlsTRUEl

END I

DOP:aVALIDD»
ENDl (• OOP *)

ITSeOOLEAN(TESTlREAL) I BOOLEAN I

■ 1.0) OR (TEST « O.O)
Then itsbooleanistrue
ELSE lTS600LEANt«F.ALSE

CNDI (* 1T50OOLEAN *)

WOCEOURC COK.INTEGER,.

siSi «rL- -"I
R.SG.

then SFLOXTt-1.0 »

20370
20380
20390
20400
20410
20420
20430
20440
20450
20460
20470
204B0
20490
20500
20510
20520
20530
20540
20550
20560
20570
20580
20590
20600
20610
20620
20630
20640
20650
20660
20670
20680
20690
20700
20710
20720
20770
20780
20790
20800
20810
20B20
20830
20840
20850
20860
20870
20880
20890
20900
20910
20920
20930
20940
20950
20960
20970
20980
20990
21000
21010
21020
21030
21040
21050
21060
21070
21080
21090

ELSE SFLOATtvO.OI
22«72t IF VALUE <> SFLOAT (•INEQUALITY*)

THEN 5FLOATI«1*0
ELSE SFLOATSBO^OI

23t73l IF VALUE < SFLOAT («LESS THAN*)
THEN SFLOATt-UO
ELSE SFLOATtaO.OI

24f74t IF VALUE <• SFLOAT (*LESS THAN OR EQUAL TO*)
THEN SFLOATs>U0
ELSE SFLOATOO.OI

25«75: IF VALUE >* SFLOAT <*GREATER THAN OR EQUAL TO«)
THEN SFLOATSbI.O
ELSE SFLOATxcO.OI

26f76t IF VALUE > SFLOAT (•GREATER THAN*)
THEN SFLOAT:«1.0
ELSE SFLOATxsO.OI

27»77t IF (ITSBOOLEAN(VALUE)) AND (lTSe00LEAN(5FL0AT)) THEN
IF (VALUE s 1.0) AND (SFLOAT s 1.0) (• AND •)

THEN SFLOATt»l«0
ELSE SFLOATtsO.O

ELSE ERR0R(19)I (* VALUE NOT BOOLEAN •)
2at7d: IF (ITSBOOLEAN(VALUE)) AND (1TSBOOLEAN(SFLOAT)) THEN

IF (VALUE s 1.0) OR (SFLOAT a UQ) (• OR •)
THEN SFLOATtsl.O
ELSE SFLOATt»0.0

ELSE ERROR(19); (* VALUE NOT BOOLEAN •>
29 t IF VALUE > SFLOAT (•MAXIMUM OR CEILING*)

THEN SFLOAT:*VALUE;
30 t IF VALUE < SFLOAT (*MINIMUM OR FLOOR*)

THEN SFLOAT:=VALUei
31 t IF (VALUE*SFL0AT) < 0.0

THEN ERROR(50) (*NUMBER AND BASE OF DIFFERENT SIGN*)
ELSE SFLOATX=(LN(ABS(SFLOAT>)) / (LN(ABS(VALUE))) (*LOG TO A BASE*)

END (*CA5E*)
ENUI <* OYADCOHP *)

PROCEDURE INDEXGENERATOR(ARG:TyPEVALTABPTR))
(* MONADIC IOTA OPERATOR *)

VAR
IOTAindex*TOPVALUEtinteger;
BEGIN
IF ARGt.DIMENSIONS <> 0

THEN error(21) (*ARGUMENT NOT A SCALAR*)
ELSE

IF ARGt.FIRSTVALUEt.REALVAL < 0,0
THEN ERR0R(22) (* ARGUMENT IS NEGATIVE •)
ELSE

IF (ARGt.FIRSTVALUEt.KEALVAL) - (1.0*TRUNC(ARG*.FIRSTVALUE*.HEALVAL))
<> 0.0

THEN ERR0R(23) (*ARGUMENT IS NOT AN INTEGER*)
ELSE

BEGIN
N£m(NEWVALTABL1NK>;
OLUVALTABLlNKt.NLXTVALTABLlNKtsNEWVALTABLINKI
NEMVALTABLINKt.NEXTVALTABLINK;sNlLt
NEWVALTABLlNKt.FORMAROORDERXsTRUE)
NEBVALTABLINK*.INTERMEDRESULT * *TRUEI
NEWVALTABLlNKt.DlMENSIONSSsli (*RESULT IS A VECTOR*)
NEW(NEWD1H)I
NENVALTABLlNKt.riRSTDl»«ENl«NEHDlHI ^on*i
T0PVALUei»TRUNC(AR04#riRSTVALUEt*RE4LVAL)l (•LAST IMOEX OEHCRIi
NEWOlMt.DlMENLENGTHSaTOPVALUEl
NEWOlMt.NEXTDIMENlsNlLI
10TAlN0EXt*lt
SWlTCHt«TRUEl
WHILE lOTAlNDEX <- TOPVALUE DO

BEGIN
NEW(NEWVALUES)I

21100
21110
21120
21130
21140
21 ISO
21160
21170
21180
21190
21200
21210
21220
21230
21240
212S0
21260
21270
21280
21330
21340
21350
21360
21370
21380
21390
21400
21410
21420
21430
21440
21450
21460
21470
21480
21490
21500
21510
21520
21530
21540
21550
21560
21570
21580
21590
21600
21610
21620
21630
21640
21650
21660
21670
21680
21690
21700
21710
21720
21770
21780
21790
21800
21810
21820
2 830
21840
21850
21860

ir SWITCH ■ TRUE
THEN

begin

SWlTCHl«FALSCf

g^J^''''A‘-TABl.INKt.FlHSTVALUEI-NEWVALUES

ELSE

‘ «NEH VALUES I
NEWVALPTRtaNEMVALUESt
I0TA1N0EXI«10TAIN0EX ♦ 1

END t
IF SWITCH ■ TRUE

^ nr *’’ST V ALUEI «N IL
<*RESULT IS VECTOR OF LENGTH 0*)

END '^E“VALUESt.NEXTVALUE:-NIL

END! (• INDEXGENERATOR *)

procedure RAVEL(ARGtTYPEVALTABPTRlI
(* MONADIC COMMA OPERATOR *)

V ar

ELEHENTSiINTEGER!
BEGIN
NEW<NEWVALTABL|NK»|

OLOVALTABLINKf.NEXTVALTABLINKt.NEWVALTABLINKI
NEWVALTABLINKt.NEXTVALTABLINK:«NiLI
NEWVALTABLINK>,INTERHE0RESUCTI«TRUEI
NEWVALTABLINK^.FORWARDORDERJaARGt.FORWARDORDFR t

SWirCH:aTRUEl
VALPTRl«AR6t.FlRSTVALUE»
£LEHENTS1s0»
while VALPTR <> NIL DO

BEGIN <*0UPLICATE VALUES INTO RESULT*)
NEW(NEWVALUES)| «c:>ui.i i

NEWVALUES*#REALVAL J»VALPTRt,REALVALl
ELEMENTStvELENENTS ♦ 1{
IF SWITCH » TRUE

THEN
begin

SWITCHXsFALSEI

NEWVALTABLiNKt*FIRSTVALUEI"NEWVALUES END
ELSE

NEWVALPTRl«NEWVALUESI
g^VALPTR!■VALPTR+.NEXTVALUE

NEWDlMt.DlMENLENGTHl«ELEMENTS»
IF SWITCH > TRUE

Then NEWVALTABLINKt.FlRSTVALUEl»NIL
•^2^'*VALUESt,NEXTVALUE!«NlL

END! {• RAVEL ♦)

procedure smapeofiargitypevaltabrtriI

begin ** **°'^^*^ operator •)

NEW(NEWVALTABLINK)|

neS«lJ«.'-JI!U!*2P^''*‘-t^®‘-*nki-newvaltablinki

'*EWVALTABLlNKt.OIMENSIONSi-l| (.RESULT IS A VECTOR*)

21670
21880
21890
21900
21910
21920
21930
21940
21950
21960
21970
21980
21990
22000
22010
22020
22030
22040
22050
22060
22070
22080
22090
22100
22110
22120
22170
22180
22190
22200
22210
22220
22230
22240
22250
22260
22270
22280
22290
22300
22310
22320
22330
22340
22350
22360
22370
223B0
22390
22400
22410
22420
22430
22440
22450
22460
22470
22480
22490
22500
22510
22520
22530
22540
22550
22560
22570
22580

NEW(NEW01M)I
NEW01N4*DlHENLENGTHt«ARGt.01N£NSI0NSI
NEWVALTABLINKt.FlRSTOIHENt»NEWDlMI
NEWDlH^*NEXT01HCNt«NlLI
SWlTCHt«TRUEI
OlMPTRt>ARGt»riRSTOlMENI
MHILE OIHPTR <> NIL 00

BEGIN <*ARGUHENT OlHENSlONS BECOHE RESULT VALUES*)
NEW(NEWVALUES)t
NEWVALUESt.REALVALssOIHPTRt.DlHENLENGTHt
IF SWITCH > TRUE

THEN
BEGIN

SWlTCHiaFALSEl
NEWVALTABLINKt,FlR5TVALUEt«NEWVALUES

END
ELSE

NEWVALPTRt.NEXTVALUE)*NEWVALUES»
NEWVALPTRt>NEWVALUESt
DlHPTRt»01MPTRt.NEXTDlMEN

ENDI
IF SWITCH > TRUE

THEN NEWVALTABLlNKt.FIRSTVALUEl-NlL f*RESULT IS A VECTOR OF LENGTH 0*)
ELSE N£WVALUES*«NEXTVALUEtBNlL

ENOI <* SHAPEOF •)

PROCEDURE REOUCTION(ARGtTYPEVALTABPTR)t
VAR
COUNTERtROWLENGTH;integer I

SFLOATtREALI
BEGIN
IF (ARGt.OlMENSlONS > 0) OR (ARGt.FlRSTVALUE « NIL)

THEN ERR0R(24) (•ARGUMENT IS A SCALAR OR VECTOR OF LENGTH ZERO*)
ELSE

IF (ARG^.OlMENSIONS « 1) AND (ARGt.FlRSTDIHENt*DlMENLENGTH « 1)
THEN ERROR(51) (*AR6UMENT IS A VECTOR OF LENGTH ONE*)
ELSE

BEGIN
NEW4NEWVALTA6LINK)f
OLOVALTABL1NK**NEXTVALTABL1NKI«NEWVALTABL1NKI
NEWVALTABLINK4*NEXTVALTABLlNKt«NILI
NEWValtABLINK*•INTERMEDRESULT t sTRUEI
IF AR6t«F0RWARD0RDER « TRUE

THEN REVERSELlNKLlSTfARG)!
NEWVALTABLINK*•FORWARDORDER tsFALSEI
NEWVALTABLINK*.DINENS10NSl«AR6t»DlMENSl0NS * It
DlNPTRl-ARGt.FlRSTDlMENI
SWlTCHIsTRUEl
while D1HPTR*«NCXTD1MEN O NIL DO

BEGIN (•build OlHENSlONS OF RESULT*)
NEW(NEWDIH)t
IF SWITCH m TRUE

THEN
BEGIN

SWlTCHscFALSEI
NEWVALTABLlNKt.FIRSTDlHENl«NEW01H

END
ELSE

NCWPTR*»NEXTD1HENI«NCWD1HI
NEWOXM*.DlHENLENGTHt»DlMPTRt.OlHCNLENGTHI
NEWPTRsvNEWDlMl
DlMPTR{«DlHPTRt.NEXTDlHEN

ENDI
IF SWITCH * TRUE

THEN NEWVALTABLlNKt.FlRSTOlHENlsNlL
(*ARG IS VECTORtRESULT IS SCALAR*)

ELSE NEMDlM*«NEXTDlHENtsNlLl

318

22590
22600
22610
22620
22630
22640
22650
22660
22670
22660
22690
22700
22710
22720
22730
22740
22750
22760
22770
22780
22790
22800
22810
22820
22830
22840
22850
22860
22910
22920
22930
22940
22960
22970
22980
22990
23000
23010
23020
23030
23040
23050
23060
23070
23080
23090
23100
23110
23120
23130
23140
23150
23160
23170
23180
23190
23200
23210
23220
23230
23240
23250
23250
23270
23280
23290
23300
23310
23320

R0li<LEM(>THJ*DIMPTRt.DIMENLEN6THI
VALPTR:■ARGt.FIRSTVALUE I
SMlTCHi«TRUCt
WHILE VALPTR <> NIL 00

BEGIN <*PERFORM REDUCTION*)

FOR COUNTER:>2 TO ROWLENGTH DO
begin

DYAOCOMP<SFLOAT»VALPTRt.REALVAL»COOE)l
g^VALPTR:»VALPTRt.NEXTVALUE

NEW(NEWVALUES)I
NEWVALUE5t.REALVALl«SrL0ATt
IF* SWITCH * TRUE

then
BEGIN

switch:>falsei

NEWVALTABLINKt.FlRSTVALUEl»NEWVALUES
END

ELSE

NEWVALPTRt.NEXTVALUEl»NEWVALU£SI
NEWVALPTR t«NEWVALUCS

ENPt

NEWVALUESt,NEXTVALUE:*NIL
END I

ENOI (•reduction*)

PROCEDURE MONADIC(ARGiTTPEVALTABPTRI TOKENITOKENPTR)I
BEGIN OPERATIONS KITH COOES BETWEEN I AND af M

IE TOKENS.NOUN * REDUCTOPER
then reduction(ARG)
ELSE

IF CODE > 20
THEN

CASE CODE OF

211 INOEXGENERATORIARGH
22: SHAPEOFtARG)I
23: RAVEL(ARG)

END (•CASE*I
ELSE

BEGIN

NEK(NEKVALTABLINK)I

OLDVALTABLlNKt.NEXTVALTABLINKI»NEKWALTAaLlNKl
NEKVALTA8LINK*.NEXTVALTABLINK:-NILI
NEKVALTABL1NK*,INTERMEDRESULT:»TRUEI
NEWVAL TABLINK t•FORHAROOROER t aARGf•FORMAROOROFR t

01MPTRt«ARG*.FlR5TDIMENI
While dinptr <> nil oo

dimensions of ARG INTO RESULT*)

THEN
BEGIN

SWlTCHt«FALSEl

NEWVALTABLlNKt«FlRSTDlHCNt*NEWUIH
END

ELSE

NEWPTRt.NEXTDIHEN:»NEKDlMl
NEMPTR(>NEMOIM:

UIMPTR:«OIMPTRt.NEXTOIMEN
END)

IF SWITCH = TRUE

then NEWVALTABHNKt.FIRSTDIHEN:»NIL (*RESULT IS A SCALAR*)

23330
23340
23350
23360
23370
23380
23390
23400
23410
23420
23430
23440
23450
23460
23470
23480
23490
23500
23510
23520
23530
23540
23550
23560
23570
23580
23590
23600
23610
23620
23630
23640
23650
23660
23670
23680
23690
23700
23710
23760
23770
23780
23790
23800
23810
23820
23830
23840
23850
23660
23870
23880
23890
23900
23910
23920
23930
23940
23950
23960
23970
23980
23990
24000
24010
24020
24030
24040
24050

ELSe NEWDlMt«NCXTDlH£N:«NILl
SW1TCH>«TRUEI
VALPTRlsARGt.FIRSTVALUEl
WHILE VALPTR <> NIL 00

BEGIN
NEW(NEWVALUES)«
IF SWITCH « TRUE

THEN
BEGIN

SWlTCHl*FALSEt
NEWVALTABLINKt.FlRSTVALUES«NEWVALUE5

END
ELSE

NEWVALPTRt.N£XTVALUEl*NEWVALUESl
NEWVALPTRt-NEWVALUESI
CASE CODE OF

it IF ITSaOOLEAN<VALPTR^.REALVAL) (• LOGICAL NEGATION
THEN NEWVALUESt«REALVALl>l«0 - VALPTRt.REALWAL
ELSE ERR0R<19)I (*VALUE NOT BOOLEAN «)

2t NEWVALUESt.REALVALl>VALPTRt.REALVALI <• NO-OP •>
3t NEWVALUESt.REALVALts0«0 - VALPTRt.REALVALI (• NEGATION •)
4S IF VALPTRf.REALVAL > 0.0 (* SIGNUH •>

THET4 NEWVALUES^*REALVALl«1.0
else

IF VALPTRt.REALVAL < 0.0
THEN NEWVALUE5t.REALVALl>-1.0l

51 IF VALPTRt.REALVAL « 0.0 <• RECIPROCAL •)
THEN ERR0R<54) (•ATTEMPTED INVERSE OF ZERO*)
ELSE NEWVALUES^.REALVALlsl.O / VALPTRt.REALVAL!

61 NEWVALUESt.RCALVALl*£XP(VALPTRt.REALVAL)
ENOI <*CASE»)
VALPTRi-VALPTRt.NEXTVALUE

end;
IF SWITCH s TRUE

THEN NEWVALTABLlNKt.FlRSTVALUElsNIL
ELSE NEWVALUESt.NEATVALUElsNlL

end
ENDS (• MONADIC •)

PROCEDURE CATENATE(LEFTARGfRIGHTARGtTYPEVALTABPTR)5
(* DYADIC COMMA OPERATOR - JOINS 2 ARGUMENTS •)

VAR
RESULTLENGTH)integer I
BEGIN (‘CATENATE*)
IF (RlGHTARGt.OlHENSlONS > 1) OR (LEFTARG-f.DIMENSIONS > D

THEN ERR0R(53) (‘ARGUMENT(5) WITH RANK GREATER THAN 1*)
ELSE

BEGIN
NEW<NEWVALTAaLlNK)»
OLDVALTABLINKt.NEXTVALTABLINKt«NEWVALTABLlNKl
NEWVALTABLlNKt.NEXTVALTABLlNKlsNlLt
NEWVALTABLINKt.INTERMEORESULTt«TRUEI
IF LEFTARGt.FORWAROORDER « FALSE

THEN REVER5ELlNKLlST(LEFTARG>t
IF RIGHTARGt.FORWARDORDER « FALSE

Then reverselinklist(rightarg)i
NEWVALTABLINKt.FORWAROORDERS«TRUEt
NEWVALTABLlNKt.DIMCNSIONSi«ll (‘RESULT IS A VECTOR*)
NEW(NEWDIM)I
NEWVALTABLINKt.FlRSTDlMENlsNEWOlMI
NEWDlMt.NEXTDIMENSxNlLl
resultlength:*o;
IF LEFTARGt.DiMENSIONS » 0

THEN RESULTLENGTHI-RESULTLENGTH ♦ 1 (‘LEFT ARG IS A
ELSE RESULTLENGTHibRESULTLENGTH ♦ LEFTARGt.FlRSTOlM

IF RiGHTARGt.OIMENSIONS « 0
THEN RESULTLENGTHt>RESULTLENGTH « 1 (‘RIGHT ARG IS
ELSE RESULTLENGTHSsRESULTLENGTH ♦ RIGHTARGt.FiRSTDl

1 (‘LEFT ARG IS A SCALAR*)
LEFTARGt.FIRSTOlMENt.OlMENLENGTHI

1 (‘RIGHT ARG IS A SCALAR*)
RIGHTARGt.FlRSTOlMENt.OlMENLENGTH»

320

24060
24070
24080
24090
24100
24110
24120
24130
24140
24150
24160
24170
24180
24190
24200
24210
24220
24230
24240
24250
24260
24270
24280
24290
24300
24310
24320
24330
24340
24350
24360
24370
24380
24390
24400
24410
24420
24430
24440
24450
24460
24470
24480
24530
24540
24550
24560
24570
24580
24590
24600
24610
24620
24630
24640
24650
24660

, 24670
24680
24690
24700
2^710
24720
24730
24740
24750

24770
^"►780

IF RESULTLENGTH = 0

then NEWVALTABLINKt.FIRSTVALUEl-NIL <*RESULT IS VECTOR OF LENGTH 0»)

BEGIN <*TRANSFER VALUES TO RESULT*)
LEFTVALPTRJ.LEFTARGt.FIRSTVALUEl
WHILE LEFTVALPTR o NIL 00

BEGIN <*TRANSFER LEFT ARG VALUES (IF ANVI «i
NEW(NEWVALUES)| Ur ANY) *)
IF SWITCH « TRUE

then
begin

SWlTCHlsfALSEl

g^^^*^'^^*-7A8LINKf*FIRSTVALUEJ»NEWVALUES

ELSE

NEWVALPTRt.NEXTVALUEl-NEWVALUESI
NEWVALUESt*REALVALl»LErTVALPTRt.REALVALi
NEWVALPTRI.NEWVALUESI ^

£^^^^TVALPTRi«LEFTVALPTRt*NEXTVALUE

RIGHTVALPTRl«RlGHTARGt,FlRSTVALUEl
WHILE RIGHTVALPTR <> NIL 00

IF SWITCH » TRUE
then

BEGIN
SWlTCHt«FALSet

END
ELSE

NEWVALPTRt.NEXTVALUE:=NEWVALUES*

NlSvALPTRliNlSvAfuEil'""'''*""'""-""""''*^
ENO

NEVVALUESt,NEXTVALUEl«NIL
END (*TRANSFER OF VALUES*)

END
ENOI (* CATENATE *)

PROCEDURE INDEXOFILEFTARG.RIGHTARGITYPEVALTABPTR)I <* DYADIC IOTA OPERATOR *) ^^*^''*‘-TABPTR) I

IF LEFTARG'^.OiMENSlONS <> 1

ELSE argument IS NOT A VECTOR *)

BEGIN

NEW(NEWVALTABLINK)I

OLDVALTABLINK+.NEXTVALTABLINK:»NEWVALTAaLINKi
^!l2!iM^®‘-*'"<^*NEXTVALTABLINK.-Na,
NEWVALTAaLINK+*|NTERMEDRtSULT:»TRUEI
IF LEFTARGt.FORWARDORDER « FALSE

then REVERSELINKLIST(LEFTARG)I
JlI!!»^‘-I^‘^‘-*'^^^*^0'’‘<A*’OORDER:«RlGHTARGt.FORwARnnBnrDi

then NEWVALTABLINKt.FIRSTOI)4EN:-NlL «*RIGHT ARGUMENT IS A SCALAR*)

BEGIN (*BUILD DIMENSIONS OF RESULT*)
SWITCHIsTRUEl
DlMPTRl-RIGHTARGi^.FIRSTOlMENI
while OIMPTR <> nil DO

BEGIN

24790
24800
24610
24820
24830
24840
24850
24860
24870
24880
24890
24900
24910
24920
24930
24940
24950
24960
24970
24980
24990
25000
25010
25020
25030
25040
25050
25060
25070
25080
25090
25100
25110
25120
25130
25140
25150
25160
25170
25180
25190
25200
25210
25220
25230
25240
25250
25260
25310
25320
25330
25340
25350
25360
25370
25360
25390
25400
25410
25420
25430
25440
25450
25460
25470
25480
25490
25500
25510

NEW(NEWDIN)I
IF SWITCH > true

then
BEGIN

SWITCHI*FALS£I
N£WVALTABLlNKt.FlRSTDIHEN:sNEWOIH

END
ELSE

NEWPTRt.NEATDlHENlsNEWOIMI
NEW0IHt.DlHENLENGTHt«DlHPTRt.DlH£NLEN6TH|
NEWPTRt«N£WDIHI
DIMPTR*«DIMPTRt.NEXTDlMEN

ENOI
N£MDlHt.NEXTOlHEN:«NlL

ENOI
SWITCHt«TRUEl
RIGHTVALPTRI-RIGHTARGt.FIRSTVALUEl
WHILE RIGHTVALPTR <> NIL 00

BEGIN
NEWINEWVALUES) I
IF SWITCH * TRUE

THEN
BEGIN

SWITCHt«FALSEI
NEWVALTABLlNKt«FlRSTVALUElsNEWVALUE5

END
ELSE

NEWVALPTRt»NEXTVALUEl>NEWVALUES;
1C0UNTI«1I
LEFTVALPTRI*LEFTAR6+.FIRSTVALUEI
TESTLENGTH:«LEFTARG+.FlRSTOlMENt,OIMENLENGTHl (*LENGTH OF LEFT ARG*)
0NEM0RE:»TESTLENGTH ♦ II <*LEN6TH of left ARG PLUS ONE*)
MAP1N0EXI»0NEM0REI
WHILE (ICOUNT <* TESTLENGTHl AND iMAPINDEX = ONEMORE) 00

BEGIN (*TRY TO MATCH VALUE IN RIGHT ARG WITH ONE IN LEFT ARG*)
IF LEFTVALPTRt.REALVAL = RIGHTVALPTRt*REALVAL

then NAPINDEXisICOUNTt (*VALUE HATCH*)
ICOUNTICOUNT ♦ II
LEFTVALPTR:«LEFTVALPTRt.NEXTVALUE

END)

NEWVALUESt,REALVALl»MAPINDEXI
NEWVALPTR:«NEWVALUES)
RlGHTVALPTRl«RIGHTVALPTRt.NEXTVALUE

ENOI (*IF NO HATCH# INDEX BECOMES ONE MORE THAN LENGTH OF LEFT ARG*)
NEWVALUESt,NEXTVALUE:»NIL

END
ENOI <* INOEXOF •)

PROCEDURE reshapeILEFTARGtRIGHTARGiTYPEVALTABPTR)I
<« DYADIC KHO OPERATOR - CHANGE DIMENSIONS OF «>

VAR
RESULTLENGTH# elements:INTEGER I
DIMPTRltDIHENINFOl NEWPTRitVALUESI
BEGIN (* RESHAPE *)
IF LEFTARGtrOlMENSIONS > 1

THEN ERR0R<56) (* LEFT ARGUMENT NOT A VECTOR OR A SCALAR *)
ELSE

BEGIN
NEW(NCWVALTABLINK)I

OLOVALTABLINK'^•NEXTVALTABLINKS«NEWVALTABLINKl
NEWVALTABLINK'r,NEXTVALTABLINKl«NILl
NEWVALTABLINKt.INTERMEDRESULTSsTRUEl
IF LEFTARGt.FORWAROORDER = FALSE

THEN R£VERSELINKLIST(LEFTARG)I
IF RIGHTARGt.FORWARDORDER = FALSE

then REVERSCLINKLIST(RIGHTARG)I
NEWVALTABLINKt.FORWARDORD£R:«TRUEI
IF LEFTARGt.FIRSTDIMENsNlL

322

25520
25530
25540
25550
25560
25570
25580
25590
25600
25610
25620
25630
25640
25650
25660
25670
25680
25690
25700
25710
25720
25730
25740
25750
25760
25770
25780
25790
25800
25810
25820
25830
25840
25650
25860
25870
25880
25890
25900
25910
25920
25930
25940
25950
25960
25970
26020
26030
26040
26050
26060
26070
26080
26090
26100
^^>110
26120
26130
26140
26150
26160
26170
26180
26190
26200
26210
|6^^o
26230

26240

NEWVALTABLINKt,OIMENSIONSl»l ELSE

LEFTVALPTRt-LEFTAROt.riRSTVALUEl
SUITCHtaTRUEl

SmewoiS)

LEFTVALPTRtBLEFTVALPTRt.NEXTVALUEl
IF SWITCH z TRUE

THEN
BEGIN

SWITCHI«FALSE<

^^NEWVALTABUNK+.FIRSTOIHENIbNEWOIM

ELSE

DlMPTRt.NEXTDIMENl-NEWOlMI
0IMPTRJ»NEWDIM

END I

NEWDIM+.NEXT0IMEN1*N1LI
Rl6HTVALPTRJ«RIGHTARGt,FIRSTVALUEI
ELENENTSI>0I SWITCHlsTRUEl
WHILE ELEMENTS < RESULTLENGTH 00

NEW(NEWVALUES) I

‘‘EXTEND right ARGUMENT IF NECESSART*!
THEN RIOHTVALPTR:«RIGHTARGt.FIRSTVALUEI "tCtSSART I

Then
begin

SWITCHI*FALSE»

NEWVALTABLINKt.FiRSTVALUEJ.NEWWALUES END
ELSE

NEWPTR-r,NEXTVALUE:»NEWVALUESl
NEWPTRr»NEWVALUES;

RIGHTVALPTRIsRIGHTVALPTR*.NEXTVALUE
END I

NEWVALUEi.t^.NEXTVALUE;=NIL f
END

£NO* <« «ESMAPE *)

PROCEDURE innerproouctileftarg.rightarg.tvpevaltabptr),

HOLDIREALI

SFLOAT,VALUE«HEAL»

oiMP?R.::Er;A%^:!?S^ hultiplicahon.,

IF LEFTARGt.FlRsrulMEN <> NIL
Then

<> NIL DO

left

begin

ARGdF ANY)*)

323

26250
26260
26270
26280
26290
26300
26310
26320
26330
26340
26350
26360
26370
26380
26390
26400
26410
26420
26430
26440
26450
26460
26470
26480
26490
26500
26510
26520
26530
26540
26550
26560
26570
26580
26590
26600
26610
26620
26630
26640
26650
26660
26670
26660
26690
26700
26710
26720
26730
26740
26750
26760
26770
26780
26790
26800
26810
26820
26630
26840
26850
26860
26870
26880
26890
26900
26910
26920
26930

NEW(NeMVALTABLlNK)I
OLOVALTABLINKt.NEXTVALTABLlNKxcNEWVALTABLlNKI
NEWVALTABLINKf.NEXTVALTABLlNKS«NlL<
NEWVALTABL]NKt.lNTERHEDRESULTS>TRUEl
IF LtFTARGf.FORWARDORDER * FALSE

THEN REVERSEL1NKL1ST(LEFTAR6)I
IF RlGHTARGt.FORWARDORDER « FALSE

THEN ><EVERSELINKL1ST(RIGHTARG)I
NEWVALTABLINKt.FORWAROOROERxsTRUEl

NEWVALTABLlNKt.OIMENSIONSXxLEFTARGt.OlHENSlONS * RIGHTARGt•DIMENSIONS
-21
IF NEWVALTABLlNKt.OlHENSIONS < 0

THEN N£WVALTABLlNKt*01HENSlON5l«0|
SWITCH)-TRUEI
LASTLEFTUIMl«OI
IF LEFTARGt.FlRSTDlNEN <> NIL

THEN
BEGIN <«COPY ALL BUT LAST OF LEFT ARG DIMS INTO RESULT*!

LEFTSKIPibII
DIMPTRtsLEFTARG**FlRSTOIMENI
WHILE DIHPTRt.NEXTDIHEN <> NIL DO

BEGIN <*COPY LEFT ArG DIMENSIONS*) ,
N£W<NEw01N)t
NEWDIHt.DlMENLENGTHtaOlMPTRt.OlMENLENGTHI
LEFTSKlPi>LEFTSKIP*DlHPTRt»DlNENLENGTHI
IF SWITCH « TRUE

THEN
BEGIN

SWiTCHtsFALSEl
NEWVALTABLINKt.FlRSTDlMENONEWOIH

END
ELSE

NEwPTR**NEXTOlMENtsNEWOIHI
NEWPTRtxNEWDIMI
0IMPTRt«01MPTRt.NEXTDIMEN

END I
LASTLEFTDIHXaOIMPTRt.DlMENLENGTH

END I
IF RIGHTARG'^.FIRSTDIHEN <> NIL

THEN
BEGIN <*COPY ALL BUT FIRST OF RIGHT ARG DIMS INTO RESULT*)

RIGHTSKlPt«l|
01HPTRx«RI6HTARGf.FIRSTDIMEN^^NEXTOIMENI
WHILE DIMPTR <> NIL DO

BEGIN (•COPY RIGHT ARG DIMENSIONS*)
NEW(NEW0IN>I
NEW01Ht«DIMENLENGTHf«DIMPTR*.0IHENLENGTHt
RIGHTSKlPl«RIGHTSKIP*DlHPTRt«OIMENLENGTHI
IF SWITCH « TRUE

THEN
BEGIN

SW1TCHI«FALSEI
NEWVALTABLlNKt.FlRSTDlHENONEWOIH

END
ELSE

NEWPTRt«NEXTDINENt«NEWOlMS
NEWPTRs«NEWOIMt
0IMPTRl«0IMPTR4.NEXT0lN£N

END
END I

IF SWITCH « TRUE
THEN NEWVALTABLINK*tFlRSTDlMENt«NIL
ELSE NEWDlMt.N£XTDiHENI«NILl

IF LEFTARG^.FIRSTYALUE » NIL
THEN LEFTSKIP:»Ot

IF RIGHTARGt.FIRSTVALUE « NIL
Then rightskipx-oi

SW1TCHI*TRUEI
IF R1GHTARG4.FIRST0IMEN <> NIL

324

26940
26950
26960
26970
26980
26990
27000
27010
27020
27030
27040
27050
27060
27070
27080
27090
27100
27110
27120
27130
27140
27150
27160
27170
2^160
27190
27200
27210
27220
27230
27240
27250
27260
27270
27280
27290
27300
27310
27320
27330
27340
27350
27360
27370
27380
27390
27400
27410
27420
27430
27440
27450
27460
27470
2/480
27490
27500
275i0
27520
27530
27540
27550
27560
27570
27580
27590
27600
27610
27680

(♦EXTEND ARG*)

IF FIHSTRIOHTOIH > LASTLEFTOIM
then C0MM0NLEN6THI-FIRSTRI0HTDIM
Else CONHONLENGTHtaLASTLEFTOlNI

ICOUNTIaOI

LEFTVALPTRtaLEFTARGt.FlRSTVALUEl
WHILE ICOUNT < LEFTSKIP DO

BEGIN (*LOOP FOR EACH ROW IN LEFT ARG*)

JCOUNTraoI'^**'^^'” <*H0LD start OF ROW POSITION**

WHILE JCOUNT < RIGHT5KIP 00

RIGHTVALPTR:=RIGHTAR6t.FIRSTVALUE!
LCouNT;=o;
I^HILE LCOUNT < JCOUNT DO

BEGIN (*SKIP TO STARTING VALUE IN RIGHT ARG*J

RIGHTVALPTRtxklGHTVALPTRt.NEXTVALUEl
IF RIGHTVALPTR = NIL

END;
KCOUNTlaQ!
WHILE KCOUNT < COMMONLEN6TH DO

element in ROW/COLUMN*!
SFLOATssRIGHTVALPTRt.RtALVAL!

VALUE°=SFLOAT I
IF KCOUNT = 0

'""OX'!"-)
52*53*78: SFLOAT:=U.O!
54*55*56*77; SFLOAT:=1,0!
71*72*73*74*75*76: (*NULL CASE*)

END (*CASE»>
ELSE

SFlOAT:sHOLO!

DYADC0MP<SFL0AT*VALUE*INPROICODE)I
HOLD:=SFLOATI (*SAVE SUMMER RESULT*)

LEFTVALPTR:sLEFTVALPTRt.NExTVALUE;
IF LEFTVALPTR = NIL

= (‘EXTEND ARG‘)

WHILE MCOUNT < RIGHTSMP DO
BEGIN (*SKIP TO NEXT VALUE IN RIGHT ARG*)

MCOUNT:=MCOUNT ♦ 11

Hl6HTVALPTR:=RlGHTVALPTRt,NEXTVALUE;
IF RIGHTVALPTR = NIL

END;^^*"^ '’^®^TVALPTR:=RlGHTARGt.FlRSTVALUE;

KCOUNT:=KCOUNT ♦ 1
end;

NEW<NEWVALUES>!

NEWVALUESt.REALVAL:=SFLOAT;
IF SWITCH = TRUE

THEN
BEGIN

switch:=false;

NEWVALTABLlNKt.FlRSTVALUE!=NEWVALUES
End

ELSE

NEWVALPTRt.NEXTVALUE;=NEWVALUESI
NEWVALPTR:=NLWvalues;
JCOUNT!=JCOUNT ♦ 11

end;
ICOUnTi=ICOUNT ♦ 1

end;
IF SWITCH s TRUE

27630 THEN NEWVALTABtlNKt»riRSTVALUei«NIL
27640 ELSE NEWVALUESt*NEXTVALUEt«NlL
27650 END
27660 ENDI (* INNERPRODUCT •}
27670
27720
27730 PROCEDURE OUTERPRODUCT(LEFTARGtRlGHTARGlTYPEVALTABPTR)I
27740 VAR
27750 ouTPRocoDEtIntegerI
27760 SFLOATiREALt
27770 BEGIN
27780 OUTPROCOOEt*CODC OIV 101
27790 NEW(NCWVALTABLlNK}t
27800 OLDVALTABLlNKt.NEXTVALTABLlNKt»NEWVALTABLINK|
27810 NEMVALTABLlNKt.NEXTVALTABLINKSaNILI
27820 NEWVALTABLlNKt.lNTERMEORESULTlBTRUEl
27830 IF LCFTARG4.F0RWAR00R0ER > FALSE
27840 THEN REVERSELINKLIST4LEFTARG)I
27850 IF RlGHTARGt.FORWARDORDER « FALSE
27860 THEN REVERSELINKLIST<R1GHTARG>I
27870 NEWVALTABLINKt»FORWAROOROERl«TRUEI
27880 NEWVALTABLlNKt.DlHENSlONSSBLEFTARGt.DlMENSlONS ♦ RlGHTARGt.DlNENSIONSI
27890 SWITCHIbTRUEI
27900 DIHPTR|BLEFTARG4.FlRSTDlHENt
27910 WHILE OlHPTR <> NIL DO
27920 BEGIN (bCOPY LEFT AR6 DIMENSIONS TO RESULT*)
27930 NEW<NEWD1M>I
27940 NEWOlMt.OlMENLENGTHSBOlNPTRt.DlNENLENGTHI
27950 IF SWITCH ■ TRUE
27960 THEN
27970 BEGIN
27980 SWlTCHtaFALSEI
27990 NCWVALTABLINK4*FlRST0INENtBNEWDIM
28000 END
28010 ELSE
28020 NCWPTR4«NEXTDlHENtBNEWDlHt
28030 NEWPTRIbNEWDIHI
28040 01NPTRt«DlHPTR9.NEXT0IMEN
28050 ENDI
28060 OlMPTRtBRlGHTARGt.FIRSTDlMENI
28070 WHILE DIHPTR <> NIL DO
28080 BEGIN <*COPY DIMENSIONS OF RIGHT ARG TO RESULT*)
28090 NEWINEWDIM))
28100 NEWDlNt»DlMENLENGTHS«DlHPTRt*DlNENLENGTHI
28110 IF SWITCH • TRUE
28120 THEN
28130 BEGIN
28140 SWlTCHtaFALSEl
28150 NEWVALTABL1NK4.F1RSTDIMENIBNEWD1H
28160 END
28170 ELSE
28180 NEWPTRt.NEXTOlMENtBNEWDlNI
28190 NEWPTRtsNEWOlMI
28200 01NPTRts0IHPTR4«NEXTDlN£N
28210 ENDI
28220 IF SWITCH ■ TRUE
28230 THEN NEWVALTABLINK4.F1RST01NENIbN1L
28240 ELSE NEWOlMt.NEXTDIMENlBNlLI
28250 SWITCHIbTRUEI
28268 LEFTVALPTRlBLEFTARGt.FIRSTVALUEl
28270 while LEFTVALPTR <> NIL DO
28280 BEGIN
28290 RIGHTVALPTRIBR1GHTARG4.F1RSTVALUEI
28300 while RIGHTVALPTR <> NIL DO
28310 BEGIN
28320 SFLOAT t bRIGHTVALPTRt «REALVALI
28330 DYADCOHP(SFLOAT«LEFTVALPTR4»REALVAL«OUTPROCOOC>t
28340 NEW <NEWVALUCS>I
28350 IF SWITCH • TRUE

28360
28370
28380
28390
26400
28410
26420
28430
28440
26450
28460
26470
28480
28490
28500
28510
28520
28530
28580
28590
28600
28610
28620
28630
28640
28650
28670
28680
28690
28700
28710
28720
28730
28740
28750
28760
28770
28780
28790
28800
28810
28820
28830
28840
28850
28860
28870
26880
28890
28900
28910
28920
28930
28940
28950
28960
28970
28980
28990
29000
29010
29020
29030
29040
29050
29060
29070
29060
^^090

then
BEGIN

SWlTCHiaFALSei

else

NENVALPTRt« NEXT VALUE isNEWyALliE^t
NENVALUESt.REALVALl«SFLOATl
NEWVALPTRI.NEWVALUESI

ENUI

C.ND I

IF SWITCH ■ true

Then newvaltablink+.firstvaluei-nil
ELSE NEWVALUESt.NEXTVALOEl.NIL

endI <* OUTERPRODUCT *)

PROCEDURE 0YADIC(LEFTAR6»RleHTARGUYPEVALTABPTR) I
VAR operators with codes of 52 AND hJghER i)

COMPATIBLE tBOOLEANI
argitypevaltabptri

SFLOATIREALI
begin

IF CODE > 1000
then INNERPROOUCT(LEF TAR6.RIGHTARG»

IF CODE > 100

THEN OUTERPRODUCTILEFTARG.RIGHTARG)

IF CODE > 80
THEN

CASE CODE or

871 IN0EX0F(LEFTAR6tRlGHTAR6)l

881 reshapeILEFTARG.rightARG)I

ELSE

begin (.simple DYADICS*)

COMPATIBLEI.TRUE)

IFT(LEFTARGt.OI)(ENS10NS >. 1, aNO (RIGHTARGt.DIMENSIONS >. 1,

*^THEN^COM2l?ISf?!*2*?er R^ORTARGt.OlMENSlONS
THEN COMPAT1BLE1.FALSE (.DIFFERENT RANKS/NEITHER SCALAR.)

hatch - CHECK LENGTHS.)

* -left ARGt .FIRSTOIMENI

MHILC LCFTOINPTR <> NIL DO
BEGIN

IF LEFTOlHPTRt.oiNENLENGTH <>

THEN
FntN CONPATiBLCtaFALSCt (^DIFFERENT LFMiiTM<Ck«t

RIGHTDIHPTRl.R16HT0IMPTRt.NEXT0IMEN END
END I

‘*A«6UMENTS SUITIBLE FOR DYADIC OPERATION.)

BEGIN (.BUILD DIMENSIONS OF RESULT.)

OLDVALTABLlNKt bNExTVALT ABLINK t*NEWVALTABLINKi

NEWVALTABLINKt.NEXTVALTABLINKl.NlLl ’

NEWVALTABLlNKt.INTERMEOKESULTl»TRUEI

327

29100
29110
29120
29130
29140
29150
29160
29170
29180
29190
29200
29210
29220
29230
29240
29250
29260
29270
29280
29290
29300
2931P
29320
29330
29340
29350
29360
29370
29380
29390
29400
29410
29420
29430
29440
29450
29460
29470
29460
29490
29500
29510
29520
29530
29540
29550
29560
29570
29580
29590
29600
29610
29620
29630
29640
29650
29660
29670
29680
29700
29710
29720
29730
29740
29760
29770
29780
29790
29800

IF LEFTARGt.FORMARDORDER <> RlGHTARG^»FORtfAROOROER
THEN REVERSEL1NKL1ST(LEFTARG)I

NEWVALTABLlNK4.FORWARDOROERt«ARGt.FORWAROORDERI
NEWVALTABLlNKt.01HENSl0NSt«ARGt.DIMENSIONSt
SWlTCHt>TRUEl
OIHPTRl>ARGt.FiRSTDlHENt
WHILE DIMPTR <> NIL DO

BEGIN ('COPY DIMENSIONS TO RESULT*)
NEW(NEWDIM)t
NEW0IH^.01MENLENGTHt«01HPTR'f.01HENLENGTH9
IF SWITCH s TRUE

THEN
BEGIN

SWITCHtsFALSEI
NEWVALTABLlNKt.FIRSTOIMENtaNEWDlM

END
ELSE

NEWPTRt.NEXTDlMEN:>NEWDlHl
newptr:>newoimi
DlHPTRtsOlHPTRt.NEXTDlMEN

END!
IF SWITCH = TRUE

THEN NEWVALTABLINKt.FIR5TOlMEN:sNlL <*RCSULT IS A SCAL«)
ELSE NEWDlMi'.NExTOlHENtaNlLI

SWITCHssTRUE)
RlGHTVALPTKt«RlGHTARG*.FIR5TVALUEl
LEFTVALPTR:»LEFTARGt.FIRSTVALUEI
VALPTRtxARGt.FIRSTVALUEt
WHILE VALPTR <> NIL DO

BEGIN <*PERFORH OPERATION*)
NEW(NCWVALUES)I
SFLOAT:*RIGHTVALPTRf.REALVAL;
OYADCOMP(SFLOATfLEFTVALPTR*.REALVALffCOD£)I
NEWVALUESt•REALVAL:«SFL0aT t
IF SWITCH * TRUE

THEN
BEGIN

SW1TCHI>FALSE<
NCWVALTABLlNKt.FlRSTVALUE:«NCWVALUES

END
ELSE

NEWVALPTRt.NEXTVALUEt>NEWyALUESt
NEWVALPTRI«NEWVALUES9
VALPTRt»VALPTR^.NEXTVALUE«
LEFTVALPTRtsLEFTVALPTRt.NEXTVALUEl
RlGHTVALPTRORlGHTVALPTRt.NEXTVALUEt
IF LEFTVALPTR ■ NlL

THEN LEFTVALPTRtiLEFTARGt.FIRSTVALUEt (*EXT£NO AR6*)
IF RIGHTVALPTR > NIL

THEN RlGHTVALPTRt«RlGHTARGt.FlRSTVALUE <*EXTEND *)
END I

IF SWITCH > TRUE
THEN NEWVALTABLINKt.FlRSTVALUE:«NlL <*VECTOR OF LEN 0*)
ELSE NEWVALUESt.NEXTVALUEtaNlL

END
ELSE ERR0R(55) <*ARGUHENTS INCOMPATIBLE FOR DYADIC OPERATION*)

END
END! <* DYADIC *)

PROCEDURE FUNCALLCWAR VALIOFUNKIBOOLEAN)I
VAR

VALIDPMIBOOLEAN9
BEGIN (• FUNCALL *)

VALlDFUNKtsFALSEI
IF FUNCTCALL THEN

BEGIN
IF TOKENTABPTRf.NOUNOSTATENO THEN

BEGIN

328

I

29810
29820
29830
29840
29850
29860
29870
29880
29890
29900
29960
29970
29990
30000
30010
30020
30030
30040
30050
30060
30070
30060
30090
30100
30110
30120
30130
30140
30150
30160
30170
30180
30190
30200
30210
30220
30230
30240
30250
30260
30270
30280
30290
30300
30310
30320
30330
30340
30350
30360
30370
30380
30390
30400
30410
30420
30430
30440
30450
30460
30470
30480
30490
^OSOO
30510
30520
30530
30540
^0550

IF NOT VALIOPN THEN ERROR(17)|

END! ♦'-^'^TARG of dyadic FUNC CALL NOT A PRINARYt

CALLSCfBRt
VALIOFUNKI«TRuE|

ENDi
END! (• FUNCALL *)

BEGIN (* expression •)
PRIMARy(VALlDPRI)I
IF NOT VALIOPRI THEN

BEGIN

VAL10exP:«TRUEI
A5S1GN1t«TRUE

END

ELSE VAL10EXPs«fALSE
END

ELSE BEGIN
DONEXP:«rALSEI
WHILE NOT DONEXP DO

BEGIN

FUNCALL(VAL10FUNC)I
IE VALIOFUNC THEN

BEGIN
EXPRESSION(VALIOEXP)I
OONEXP:«TRUe

END
ELSE

begin
ASSIGNMENT(VAL10A5SN)I

<TOKENTABPTRt.NOUN«STATENO)

OONEXPS«TRUEI
VALlOEXPSsTRUEt

END 9
IF NOT VALIOASSN THEN

IF MOP THEN
begin

riw«u*viurtKiA»PTRt.urtKPiK»MOLO) I

OPERTABPTRt.OPERPTRi*NEWVALTABLINK
END

ELSE
IF NOT OOP THEN

begin

THEN

VALIO£XPt«TRUE9
DONEXPtaTRue

END
ELSE

begin

NOT PRECEDED BY A PRI

IF NOT VALIOPRI THEN
ERROR(13) (• DYAD OPER
ELSE

begin

®I^£IC‘0PERTABPTR*.0PERPTR,
OPERTABPTRt(LASTOPERtcOPERPTR)i
auxopertabptri-opertabptri
OPERTABPTRI-OPERTABPTRt.LASTOPERI
PTRLASTOPERI -OPERTABPTR | ’
dispose(AUXOPERTABPTR)I

END I * -NEBVALT ABL INK I
ENOt

END I

30560
30570
30580
30590
30650
30660
30660
30690
30700
30710
307^0
30 730
30740
30750
30760
30770
30760
30790
30600
30610
30820
30630
30840
30850
30660
30870
3086U
30890
J09U0
30910
30920
30930
30940
30950
30960
30970
30960
30990
31000
31010
31020
31030

ENOI
ENDI

END! (« EXPRESSION •)

BEGIN (4 PARSER *)
ASSIGN:sFALSE| AS5IGN1isFALSEl
OONEPARSE:=rALSE;
repeat

EAPRESSiON(VALIOExP)1 CHECKS FOR VALID EXPRESSION *)
IF NOT VALIDEXP THEN ERRORUO) tINVALlO EXPRESSIONt 4)
ELSE

IF 5PECSYMBOL(XRIGHTARROW) THEN IF NOT((OPERTA0PTRt.OPERPTRt,F1RSTVALUE
=NIL) ANO (OPERTABPTRt*OPERPTRt.OlMEN5lONS>0))THEN

<4 BRANCH 4)
(4 RESULT OF EXPRESSION IS AT OPERTA0PTR

IF 0PERTABPTRt.0PERPTRt*FIR5TVALUEt.REALVAL
-I •04TRUNC(OPLRTABPTRt,OPERPTR+.FIRSTVALUEt .REALVALK>0.0 THEN

ERR0R(12) (4 STMT.NUM.TO BRANCH TO NOT AN INTEGER 4)
ELSE
IF 5UBRTA3PTR = NIL THEN

BEGIN (4 FUNCTION MODE 4)
tokentabptrs=holo>
DONEPARSfc:=TRUE

END
ELSE

IF TRUNC (OPERT AbPTR t. 0PERPTR'^. FIRST VALUED. RE ALVAL) IN
[1.. (SUBPTABPTRt.CALLEOSUBRt.NUMOFSTATEMENTS)3 THEN
BEGIN

VFUNCHOLD:=SUBRTABPTPt.CALLEDSUBRt .FIRSTATEMENTI
FOP CNT:=1 TO TRUNC(OPERTABPTRt,OPERPTRt,FIRSTVALUEt,

realval) do begin
vfuncptk:=vfuncholl)<
TOKENTABPTR:=VFUNCPTRt,NEXTSTMNT;
VFUNCHOLD:=VFUNCPTR+.NEXTVFUNCPTH

END;
AUXOPERTAbPTR:=UPERTABPTR;
0PERTA8PTR:=0PERTAtiPTRt.lASTOPER;
dispose(Auxopeptabptr);
ptrlastoper:=opertabptr;
T0KENTABP1R:=VFUNCPTR+.NEXTSTMNT

END

31050
31060
31070
31060
31090
31100
31110
31120
31130
31140
31150
31160
31170
31160
31190
31200
31210
31220
31230
31240
31250
31260
31270
31280
31290
31300
31310

330

ELSE <4 SUCCESSOR
ELSE (4 SUCCESSOR

BEGIN
IF NOT A55IGN1 THEN
outputval;
ASsiONi;=false;
IF SUBRTABPTR=NIL THEN

BEG1N(4 INTERPRETIVE *)
HOLDS=TOKENTAbPTR;
rOKF_NTAdPTR:=TOKENTABPTRt .NEXTOkEN;
D0NEPAR5E:=TRUt

END
Else (4 function 4)

BEGIN
VFUNCPTK:=VFUNCPTRt,NEXTVFUNCPTR;
oonesuccessor;=false;
repeat

if VFUNCPTRONIL then
BEGIN

TOKENTAtiPTR:=VFUNCPTRt .NEXTSTMNT ;
donesuclessor;=true

END
ELSE

BEGIN
PETURNTOCALLINGSUBRI
IF TOKENTABPTRt,NOUN*STATENO THEN
DONESUCCESSOR;«TRU£ t

31320
31330
31340
31350
31360
31370
31380
31390
31440
31450
31460
31470
31480
31490
31500
31510
31520
31530
31540
31550
31560
31570
31560
31590
31600
31610
31620
31630
31640
31650
31660
31670
31680
31690
31700
31710
31720
31730
31740
31750
31760
31770
31780
31790
31800
31810
31820
31830
31840
31850
31860
31870
31880
31890
31900
31910
31920
31930
31940
31950
31960
319/0
319qo
31990
32000
32010
3^020
32030
32040

END I
UNTIL DONESUCCeSSORl

ENOl
END

until OONEPARSEI

EN”“fp«sEB ••

BEGIN (* SCANNER

INITIALIZECHARACTERSETJ
REAOINERRORMSGSI

filluptablesI* tables etc. *)

FUNCTIONMOOEl-FALSEl
FlRSTFUNCTlONJaTWUEl
OLDVALTABLINKJ-NILI
OLDFUNCTABPTRJ.NIH
OLDvARTABPTR1«NILI
OLOTOKENPTHJ-NILI NErtTOKENPTR»«NILI
NEWFUNCTA8PTR««NIH NEKVFUNCPTRI«NILl
HOLDTOKENPTRl»NILI TOKENERRORl-FALSE I
NEWVALTABLINKJ-NILI NEhVARTABPTRI-NIL I
GETAPLSTATEMENH

CHARACTER(FORWARDSLAShI) or
BEg’in CHARACTER!ASTERISK)) DO <• /* ENDS PROGRAM *>

SKIPSPACESI

TOKENSWITCH:*TRUEl

BEGIN (* SCANNING *)

■'riEli^iKL^^SSiuPEi .• EWCTION OELI.ITE.

IF FUNCTIONMOOE
then

begin (* END OF CURRENT FUNCTION *)
IF NEMFuNCTABPTR <> NIL THEN

THEN
BEGIN

«>^nrM^^I''^'’^”^*'^^*TFUNCTA8PTR:=OLDFUNCTABPTR;
0LDFUNCTABPTR:=NEBFUNCTA8PTRI
NEWVFUNtPTRt.NEXTVFUNCPTRj-NIL

END

ruScU0NM00?:-?j;iEr STATEMENTS.)
P0SITI0N:=P0SITI0N ♦ l

END

EESE^^5%s?°?Ei:‘'ssrL‘ET.r ••
BEGIN

IF TOKENSWITCH s TRUE
THEN

""?5KENl.I?jH,l^LSEr "" " STATEMENT *,

«KeSSu*T“-"*“”"' -OSIIION*.

NEWTOKENPTRt.NOUNt-STATENO;
NEWT0KENPTR-f.ENDA0J:*0|
HASLABEL:=FALSE

end;
maketokenlink;

IDENTIFIER(NAME*ITSANIDENTIFItR) I
IF NOT ITSANIDENTIFIER

then TRYTOGETANUMBER
ELSE

BEGirg (* process identifier *)

331

32050
32060
32070
320B0
32090
32100
32110
32120
32130
32140
32150
32160
32170
32180
32190
32200
32210
32220
32230
32240
32250
32260
32270
32280
32290
32300
32310
32320
32330
32340
32350
32360
32370
32380
32390
32400
32410
32420
32430
32440
32450
32460
32470
32460
32490
32500
32510
32520
32530
32540
32550
32560
32570
32580
32590
32600
32610
32620
32630
32640
32650
32670
32660
32690
32700
32710
32720
32730
32740

SKIPSPACESI
IF (APLSTATEHENTCPOSITIONJ = CHARACTEKICOLONI) AND

(NEWTOKENPTRt.NEXTOKENt.NOUN * STATEND)
THEN

BEGIN (* PROCESS STATEMENT LABEL
SAVELABELSaNAMEI
HASLABELt^TRUEl
POSITlONt*POSlTION ♦ 1

END
ELSE

BEGIN (» PROCESS VARIABLE NAME *)
IF NOT FUNCTIONMOOE

THEN NEWTOKENPTRt.NOUNssGLOBVAR
ELSE

IF NAMESMATCH«NAMEfNEWFUNCTABPTRt,RESULTNAME>
THEN NEWTOKENPTRt.NOUN<«FORMR£S
ELSE

IF (NAHESMATCH(NAHEfNEWFUNCTABPTRt.L£FTARG>)
OR (NAMESMATCH(NAME«NE«FUNCTABPTRt.RIGHTARG))

then NEWTOKENPTRt.NOUNtsFORMARG
ELSE NEWTOKENPTRt.NOUNtsGLOBVARl

IF NEWTOKENPTRt.MOUN <> GLOBVAR
THEN TESTFUNCPTR:*NEWFUNCTABPTR
ELSE TESTFUNCPTR:»NILI

IF NOT NAMEINVARTABLE(NAME.VARP0INTER,TESTFUNCPTR)
THEN

BEGIN

AOONAMETOVARTABLEINAHE)t
NEWTOKENPTRt.VARTABPTRl-NEWVARTABPTR

END

ELSE NEWTOKENPTRt.VARTABPTRisVARPOlNTER

ENUt
SKIPSPACESI

END I
IF NEWTOKENPTR <> NIL THEN
IF (TOKENERROR) OR (NEWTOKENPTRt.NOUN ■ STATEND)

THEN DESTROYSTATEMENT
ELSE

IF FUNCTIONMODE
THEN

BEGIN
FUNCSTATEMENTSt*FUNCSTATEMENTS ♦ ll
IF FUNCSTATEMENTS > 0

THEN
BEGIN (* CATALOG FUNCTION STATEMENT *)

NEW(NEWVFUNCPTR)I
IF FUNCSTATEMENTS * 1

THEN NEWFUNCTABPTRt.FlRSTATEMENTlaNEWVFUNCPTR
ELSE OLDVFUNCPTRt.NEXTVFUNCPTRIsNEWVFUNCPTRI

OLOVFUNCPTRr*NEWVFUNCPTRI
IF HASLABEL

THEN NEWVFUNCPTRt.STArLABELI*SAVELABELl
NEWVFUNCPTKt.NEXTSTMNT:*NEwTOKENPTR

END
ENU

ELSE
IF APLSTATEMENTIn <> CMARACTERtDEL)

THEN
BEGIN

PARSER(NEWTOKENPTRfNEWVALTABLINK)I
100s DESTROYSTATEMENT

ENDI
READLNI

T0KENERR0R:»FAL5EI
GETAPLSTATEMENTI

end;
END.

332

Authors Directory

Stephen R Alpert
Worcester Polytechnic Institute
Worcester MA 01609

Larry R Atkin

Health Information Services
542 Michigan Av
Evanston IL 60202

Kenneth L Bowles
Professor, Director
Institute for Information Systems
University of California San Diego
La Jolla CA 92093

Kin-Man Chung
124 Scottswood Dr
Urbana IL 61801

Vincent DiChristofaro
1327 McKinley St
Philadelphia PA 19111

Gary A Ford, Assistant Professor
Dept of Mathematics
Arizona State University
Tempe AZ 85281

Gharles H Forsyth

Computer Communications Networks Croup
University of Waterloo
Waterloo Ontario
Canada n2l 3Gi

Peter W Frey
ept of Psychology
orthwestern University

*^^905100 IL 60201

Helmers

byte Publications Inc.
p*" 'vlain St

®‘erborough NH 03458

Randall J Howard

Computer Communications Networks Group
University of Waterloo
Waterloo Ontario
CANADA N2L 3G1

Alan Kaniss
1327 McKinley St
Philadelphia PA 19111

Larry Kheriaty
Computer Center
Western Washington University
Bellingham WA 98225

Dr B Gregory Louis
OB/GYN Dept
St MichaeLs Hospital
30 Bond Street
Toronto CANADA MSB 1W8

David A Mundie
104B Oakhurst Cir
Charlottesville VA 22903

John Santini
1327 McKinley St
Philadelphia PA 19111

Allan M Schwartz
114-2 Nimitz Dr
West Lafayette IN 47906

Stephen P Smith
POB 841
Parksley VA 23421

Herbert Yuen
POB 2591 Station A
Champaign IL 61820

333

1

•

I

«1

A

u

I

I ■

* M

f

t* A

«
- v-nv^

4

BYTE Books

Blaise W Liffick, technical editor

Lynn Woodbury, designer-production manager
Patricia Curran, production editor
Richard Farley, production art

Holly LaBossiere, production art
Wai Chiu Li, production art

Deborah Porter, production art

George Santa Company, printing

BYTE Magazine

Christopher P Morgan, executive editor
Raymond G A Cote, editor in chief

The BYTE
BOOK of
Pascal
B(this book not only provides a general introduc¬
tion to the Pascal language, but is also a tremendous
resource for software. There are two versions of a
Pascal compiler [one written in BASIC; the other in
BOBO assembly language), a p-code interpreter
written in both Pascal and 8080 assembly lan¬
guages, a chess playing program, and an APL
interpreter. II

Blaise W. Liffick
Editor

OTHER BYTE PUBLICATIONS
All PAPERBYTE® BOOKS contain programs
in machine readable object code; the
PAPERBYTE® bar code format:

RA6800ML: An MB800 Relocatable Macro
Assembler

Jack E. Hemenway
LIIMK68; An MBBOO Linking Loader

Robert 0. Grappel & Jack E. Hemenway
TRACER; A BBOO Debugging Program

Robert 0. Grappel & Jack E. Hemenway
MOIMDEB: An Advanced M6800 Monitor-
Debugger

Don Peters
SUPERWUMPUS

Jack Emmerichs
Tiny Assembler 6800, Version 3.1

Jack Emmerichs
BASEX: A simple Language and Compiler for
8080 Systems

Paul Warme
K2FD0S: A Floppy Disk Operating System
for the 8080

Kenneth B. \A/elles
BAR CODE LOADER

Ken Budnick

Other BYTE BOOKS™, collections of favorite
articles from past issues of BYTE magazine,
plus new material and addenda:

Programming Techniques: Program Design
Blaise W. Liffick fed)

Programming Techniques: Simulation
Blaise W. Liffick fed)

Programming Techniques: Numbers in
Theory and Practice

Blaise W. Liffick [ed)
Ciarcia's Circuit Cellar

Steve Ciarcia
The BYTE Book of Computer Music

Christopher P. Morgan [ed)

Eon^si

X0004OMAM9

07-078967-3 BOOHS or KTERCST TO COWtITER PHM>IE' ISBN □-

