A REWARD BOOK

I

AGH|

N

MASTERINGE

HGODE

ONRYOUR

[[ONINB

Mastering Machine
Code on Your ZX81

Toni Baker

with illustrations by Cathy Lowe

Reston Publishing Company, Inc.
A Prentice-Hall Company

Reston, Virginia

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Contents

AN INTRODUCTION 9
A brief summary of the book.

INTRODUCTION TO HEXADECIMAL AND
MACHINE CODE 11

Computers count in sixteens, not tens. This system is called
hexadecimal, and is quite useful to get to know.

SIMPLE ARITHMETIC 17
“Simple" means very simple! Plusses and minuses only.
Shares and timeses are left till later!

PEEKING AND POKING AND MORE ABOUT
LOADING 29

An explanation of how to use memory in RAM. A *SCROLL
Backwards” program is included to demonstrate this.

MORE PLACES TO STORE MACHINE CODE 39
A very explicit guide to the use of REM statements, vari-
ables area, and protected regions of RAM,

STACKING AND JUMPING 47
How to use the stack to store data. jumping and condi-
tional jumping, and the use af subroutines explained.

PRINTING THINGS TO THE SCREEN 55

In BASIC the PRINT statement is perhaps the most widely
used instruction of all. Here's how to use it in machine
code.

CHAPTER 8

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

CHAPTER 15

CHAPTER 16

A DICTIONARY OF MACHINE CODE 63
All the instructions. A complete explanation of every single
machine language instruction used by the ZX.

A PROGRAM TO HELP YOU DEBUG 75

A machine code editing program, itself written largely in
machine code. The speed it offers is likely to make your
fluency in machine code develop very strongly.

SCANNING THE KEYBOARD 87

Using the keyboard in programs has obvious advantages.
Here we cover the function INKEYs for the NEW ROM and
explain how to recreate it on the OLD. An elegant little
program called GRAFFITT! is developed which shows how
the character set is generated.

DRAUGHTS PART ONE 99
The first part of this program, which allows a player to in-
put a move, and checks for cheats!

A TOUCH OF CULTURE 109
Music and pictures. Music from the keyboard, and pictures
from the screen. Watch out for the program LIFE.

DRAUGHTS PART TWO 119

The output of the computer’s move. This section does not
decide upon a move to make; it merely outputs a move
assuming the decision has been made already.

GRAPHICS GAMES 125

A section intended only for the ZX81 because the games in-
cluded here rely on the SLOW mechanism. (And in machine
code the word ''SLOW’ should absolutely not be taken
literally.)

DRAUGHTS PART THREE 133
The making of the big decision. . . . Which move to choose.

HOW TO DISASSEMBLE THE ROM 143
The ROM holds many secrets, but it, and any other machine
code program, may be disassembled fairly simply. A hex-
listing program is given, and an outlinc as to how a full
disassembler-program may be written is also given.

CHAPTER 17

THE ARITHMETIC SUBROUTINES 155

Have you ever wondered how floating point numbers work
in machine code? How you can add and subtract them?
Multiply and divide them? Even take sines and cosines!?
This chapter will tell you how.

APPENDICES 165

Useful information you might need when writing programs.

Foreword

| was staggered when Toni first brought the manuscript for this book to us
at the National ZX80 and ZX81 Users' Club. We'd talked about it, and Toni had
given me a broad idea of the contents of the book, but until | had the chance to
read it, | did not realize just what a comprehensive and easy-to-understand work
it would be,

The book has been written for those who know BASIC, but haven’t much
idea about machine code, and want to get down and master this most useful addi-
tion to one’s programming skills. We've waited for over a year for a book like this,
and now it is here.

If you've decided that GUESS MY NUMBER and SIMON are OK for a
while, but now it's time to start exploring the full potential of your computer,
and time to begin developing all your potential programming skills, then this
book may well prove just what you've been waiting for.

When Toni first came to us with the idea for the book, | stressed that it
must be designed to lead someone who knew absolutely nothing about machine
code through from the true basics to the point where they would have a real -
knowledge of how to use it. I'm pleased to say that she has done just that, and if
you work through the book with your ZX81 or ZX80 turned on, entering the
programs and routines as instructed, you'll certainly end up Mastering Machine
Code on Your ZX81 or ZX80.

Tim Hartnell

National ZX80 and
2ZX81 Users’ Club,

London,

August 1981

Mastering Machine
Code on Your ZX81

EEEEEEEEEE

=% &
/AN J 4
o,)| (B
/%,..-......—’W . Q
AN INTRODUC\TION % 7

: ////////i I

AN INTRODUCTION

This book is designed for those people who have a reasonable underatanding
of BASIC, but whose knowledge of machine code is zero. Starting at firat
principles with BASIC programs, we gradually introduce the concept of a
machine code subxoutines, and develop this theory throughout the book.
Before long you'll find your underestanding of machine language increasing,
and you'll acon begin writing your own routines and programs.

Machine language is no moxe than a second computer language - very much
like BASIC is in fact, We start by learning the simplest of instructions,
and become familiar vith them by uasing them in BASIC programs. An example
would be a SCROLL program given in chapter four, which moves the screen
downward instead of upvard. This effect is rather intereating, and certainly
surprizing.

Printing stringe is the next thing covered, and thia involves making use of
the PRINT subroutine in the ROM. The routine is demonatrated by printing a
draughts board which later on in the book we shall make use of.

We explain the machine code equivalent of the INKEY# function, and use the
technique of acanning the keyboard to write a typewriter-type program which
uses greatly enlarged versions of the keyboard charasciers.

The same keyboard scanning technique is used to generate musical notes in
rather surpriging manner. Two whole octavea can be produced from your machine,
enabling you to play a wide variety of tunes at the touch of the keyboard.

The computer is made to generate many Intricate and fascinating displays in
the program LIFE. It challenges the skill of an unwary human operator in
graphice games such as SPIRALS. A draughts program ia included, with several
interesting features. This is actually a teaching game because you are
encouraged to add your own features to it as you progress,

Careful study of the listings of these programs will teach you a great deal
about machine ocode, but of course the biggeat stepa in learmning will come
from experiment. By writing your own programs, or by adapting mine - by all
meana do - they are intended for this purpose, and some in faot are
deliberately improvable for this reason.

To make the best use of thia book you are advised to work through from start
to finish, and where asked to alter or improve programs you should make an
attempt to do so, It's not difficult, since the book progresaes very slowly,
but will require some thought.

The last two chapters in the book are rather ambltious. An algorithm by which
the ROM may be disassembled is given, but only guidelines are given as to how
you may write a program for it. All of the arithmetic subroutines are
explained in detail, even NEW ROM floating point functions like SIN and COS,
and how the numbera are atored.

The heavily tabulated appendices at the back are designed to be used as a
source of reference throughout the book. Any piece of information you need
to know can generally be found in theae appendices, or in chapter eight,
which is a kind of "catalogue® of machine code.

The firat chapter begins on the next page, and starts with an introduction
1o the use of "hexadecimal™....

10

\ \\\\\\\\\.\\\\\\\\\\\\\\\.\\\\\\\

\\\\ \\\ \\\\\\\\Q\\\\\\i\\\\
I \\\\\\

\\\\\\\\\\\\\\ \Q
\

\
}///I/////”.

N
INTRODUCTION TO \\
\ HEXADECIMAL AND \

MACHINE CODE

®_\N
.‘
(0

4

nmE-

-

27727222
'.tllul!llb;
Imgy=

“—{lll

‘g\\&\\\\\\\\\‘\\\\\\\\\\«\\\\\\\\\\\

:\\%\7”/}'

—
%7
, ”//////rl/

—qnwiliD

/J_ﬁ
Y=
Y-

PN \\\\\\\\\\\\\\\\\}.\\\\ C

s)‘
\J
wh

.,.,'.'..(.]

OK, 80 your ZX80/81 ia all fired up und ready, and that ominous inverse-K is
sitting there glaring atl you from its little corner and waiting for you to
type something in. What do you do?

Well the first thing ia to set up the machine so that it can accept
programs in machine code instead of in BASIC. This is not difficult, but
unfortunately for us, when Qinclair designed his machine he forgot to include
a button saying GC~INPC-MACHIRE~CODE-MOIE, so the routine for doing this is
going to have to be a BASIC program.

If you have a NEW ROM machine tyre one of the following sequences,
depending on how much memory you have:

ix AK 16k
FCKE 16388,173 TOKB 16388, 32 POKE 16388,48
FOKE 16389, 67 POKE 16389,78 FOKE 16389,117
NEW W NEW

The effect of this ias quite siraightforward. The addresses 1£3868
and 16389 together hold a aystem variable called RAMIOP. It contains the
address of the first byte which the computer cannot use - at least not for
BASIC, Under ordinary circumstances this address is the one immediately after
the last byte in memory, eo thet tne whole of the memory is available for
BASIC programming. What we have done ie to alter that address, so that some of
the memory is unavailable for BASIC, and becomes a safe place in which to store
machine ccde.

If you have an OLD ROM machine, don't worry - you can still atore
machine code in spare areas of the memory, but you MUST NOT type NEW, or you
will lose it ell.

Tha best addresses in which to atore machine code are best found by
trial and error. We shall adopt the following standard sddresses, which should work
perfeotly for all of the routines in thie booig

OLD RCM 1K: 17225
NEW HCM 1K: 17325
4K 20000
16X: 30000

Throughout the remainder of this book I shall use the address 30000,
Please read this as one of the alternatives above if you have lese than 16K,

OKi1~- Now we're ready to start. Type in the following BASIC program:

When you have %g g };39200

typed thie progrem 34 15 yguwn THEN INPOT A%
40 IP AB="S" THEN STOP
*HEXLD” and don't
forget to SAVE zg g:nxfiig-cons A# +CODR A#(2) =476
1. 70 LET ag=ag(3 10)
80 GO TO 30

(Por the OLD ROM you must replace 1ines 50 and 70 as follows:)

50 POKE X,164CODE(Ag)+COIR(TLE(a8))¢36
70 LET AS-TLA(TIP g)) o

Can you see how the program works? Or at least what it daes? In brief - it will
accept a machine code program, & will store it at addresses 30000 onwards. (Or
20000, or whatever.) The program will stop when you input an "S". Note that
although it will enter machine code, it will NOT attempt to run it.

12

Now for the big question you've all been dying to ask - what exactly IS mechine code?
Well machine code, or machine langusge as it'm otherwime known, is ancther computer
lanpguege - much like BASIC is - only at a much lower level, which means that very
complicated instructions, such 2s FOR/NEXT loops, are simply not available, Howaver
this aleo makes 1t quite an easy language to learn. Like BASIC it consista of a
set of instructions, each of which tells the computer to do & different, and
quite specific, task. One such instruction is RET, which is more or less equiva-
lent to BASIC's RETURN.

Unlike BASIC, however, the computer ian't programmed to undersatand all
of the various inetructicns as we do. If you were to RUN the above program and
enter "RET" then this simply would not make sense to the poor old 2X8l1 (or '80).
To make 1ife easiwer for it, every instruction has a numerical code, which it DOES
understand directly. For example the code for RET is 201. Every code lies
somevhers in the range 0-255, and it is usually more convenient to write these
codes in a system called HRXAIECIMAL.

COUNTIRG IN ‘BCI

Our friend Mr. Sinclair brisfly covers this obscure system of counting in the Zx8)
instruction manual by describing an imaginary race of sixteen fingered "Martians”
who would regard counting in tens as being equally abasurd. In these modern days of
science we kmow enough about Mars to realise that it i{s extremaly unlikely to host
sixteen fingered peopls, but the principle of counting in sixieens is still very
very aound,

Briefly, for those who have not read the ZX81 manual, hexadecimal, or
hex for short, is a means of counting which uses sixteen symbols instead of ten.
The first ten symbols are the same as the onea we're used to. These are:

0. 10 2. 3. 4' 5' 61 70 Bo 9-
There are six new symbole which represent the numbers 10 to 15. These are:
A, B, C, D, R, F.

The fun really starte when we want to represent numbers bigger than fiftecen, for
believe it or not, aixteen is written as 10{ Worse still, seventeen is written
11. This continuea up as far as twenty-five, written 19, and then when we come

to twenty=-six we have to start using the new symbols againj twenty-six becomes
1a.

A complete table of all of the numbers from O to 255 is ahown here.
This is intended to help you to understand the hexadecimal system of counting.
You should try to refer to it am little as postidble, but don't worry if you
find yourself using it all the time at first, you'll find you get used to it
muach quicker than you expect.

The symbols down the left hand side are the first hex digit, the aymbols
along the top are the second digit, The leading seros may of course be cumitted
if there aere any, but it is sometimes more convenient to leave hex codes as two
digits rather than one,

If there is ever any confusion about whether a number is written in hex
or not, you should meke it clesr by writing s smell letter h (standing for hex)
or a amall letter 4 (for decimal) af'ter the number, so that 19h means twenty-
five, and 19d means nineteen. Usually you wont need to do this because numbers
1ike CD can only possibly be hexadecimal, and numbera like 118, which are three
digits long, can only be in deoimal, (Computing does not ume hex numbers which
are three digits long, though it doeas use oneas which are FOUR dijits long).

Knowing at least the fundamentals of counting in hex is virtuslly
parsmount as far es machine code is concerned, so don't be afraid to keep coming
back to this section, or to keep refering to the table - that's what it's there
for.

13

© 1 2 3 4 5 & 1 &8 3 4 B 9 D E I
Q [+] 1 2 3 4 bl [7 8 9 10 1 12 13 14 15
1] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3n
2] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 S1 52 53 54 S5 56 57 58 59 60 61 62 63
4 64 65 € 67 68 69 70 M T2 13 74 5 W 77T W P
5] 80 8 82 83 84 8 8 87 8 B9 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

® I~

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
144 145 146 147 248 149 150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

[Y-]

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

[t 1 9 © b
N
o
@

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

There are fundamental differences between machine code programming and BASIC prog=-
remming. One of the moat fund tal diff ies that of LINE NUMBERS.

As you know, every BASIC imstruction in a program must be preceeded by
& line number, so that the computer knows in which order to execute them. 1f no
line rmmber is given the computer will interpret the instruction as a CCYMAND
and will execute it immediately,

In machine code, thers are no line numbers. Also, the 2X80/81 will not
allow you to use macnine ocode inetructiona as commands, they MUST foxrm part of
a program. The instructions are oxecuted in the order that they are stored. For
example, if the computer had just finiehed executing the inetruction which was
atored in location 30000, it would then go on to execute the instruction held in
location 30001, It will continue in this way until it recieved an instruction
telling it to do othexwise,

Unlike BASIC, it will NOT automaticly etop when it reaches the end of
the program. It will plough right on through the addreeses, and every time it
finda a rmumber which is not mero it will eimply treat that oumber as a code for
some instruction and try to execute it. Usually this will result in what is
called a CRASH.

ABOUT CRASHING
cmhin‘ is the name we give to what happens when your (up until now at least

tely well-behaved) Sinclair machine unwittingly tries to execute samething
it shouldn't, or if there ia a drastic mistake in your machine-coding which will

1%

confuse the poor machine and give it a rather nasty headache. The effect of a
orash is very unmistakable- The soreen will either go blank or will go into its
"LET*S-FRODUCE~SOME-MOIERN-ART® mode. If this happens you will get pretiy (or
otherwise) patterns on your TV not unlike those produced during SAVE.

When this happens you will undoubtedly try to bdbreak out, by using the
HREBAK key, and will discover to your horror that the HREAK key doesn't work! In
fact RONE of the keys will work after a crash, except possibly to produce slight
variations in the TV picture. This is the prime reason wvhy we dislike crashes,
for THE ONLY WAY TO THEN GET BACK TC NORMAL 1S TO DISCONNECT THE POWER SUPPLY!
When you reconnect you will of course have lost all of your program and will
have to relOAD it.

If a BASIC program contains e mistake it will usually ROT WORK.

If a machine-code program contains a mistake it will usually CRASH!

BCW TO PREVENT CRASHES

We have already atated that a machine code program will not automatiocly stop at
the end of a program = it must be told to do so by a specific instruction. For
The 2ZX80/81, that instruction is REP. (Return - ie return to BASIC).

There is an instruction aimilar to STOP in BASIC, that instruction ia
HALT. DO _NOT USE THIS IRSTRUCTION! On other computers you can uee HALT to end &
program, but not on the ZX's. HALT produces a condition similar to a crash, for
it means "Do nothing whetsoever until somebody breaks out.® The problem is of course
that you CAN'T break out because you'll find that the keyboard no longer worka,
To summarise; To end a machine code program ALWAYS use RET. NEVER use HALT.

A program must have at least ane return instruction in it somevhere,
otherwise it will never return to BASIC, unleas you actually disconneci the power
supply, and this is not usually a desirable thing to do,

This chapter has demslt with how to reserve space for machine code progrsms, and
has given you a program with which to load it. It has not told you how to make
use of thi2 program, nor has it explained how to run machine code programs once
they have been loaded. The fundamentals of counting in hex have been introduced,
end the notion ef a crash has been mentioned.

Once you have understood this chapter, you may turn to chapter three
for your firet lesson in machine language programming.

16

EEEEEEEEEEEE

O © '
; }///;7//////’/‘_,; g |
4 st b oo s m— . ‘..

HM

N\ BhirzzzzzZ |[i/ ||

; g\\\\ﬁ}j \'i
I

—

HIMMN

YHEXLD" REVISITED

You remember the program I asked you to suve in chapter two? Well now it' time
to break it out, wipe the dust from it, ard after you've reserved yoursell some
machine code space os cescribed at the atart of the previous chapter, you can
LOAD it.

Now press RUN, and newline.

The program is waiting for a string input. what it in fact wante is
some kind of HEXADRCIMAL input. This means that every time you want to input
a machine language inatruction you have to know its mumerical code, ard you have
to know it in hex.

The code for RET is, es we have already stated, 201, What is this in
hexadecimal? Divide it by sixteen and you get twelve remainder nine. Now the
hex aymbol for twelve ia C, the hex symbol for nine is 9. If you look 201 up
in the table in chapter two you'll find that it is written C9. Is this a co-
incidence?

Input C9. You have now told the computer that the first instruction
of you machine language program is RET.

The computer is now waiting for another input. Break out of the program
by inputting "s".

Your program is now complete. It conciets of the single instruction RRT. This is
ugually written
c9 RET

to remind you that the hex-code for RET is C9. The machine language instuctions

are sometimes called OPCOIES to distinguish them from their corresponding HEX-CODES,
€9 ie a hex-code, RET is an Opcode. Hex-codes are used by the machine - it will

not understand opcodes. Conversely, opcodes are used by humans, because we would
find it extremely difficult to work in hex-codes.

I you now look st the screen you'll aee that the oomputer has gone
back to command mods. It is weiting for an instruotion. Suppose we now wish to
run the machine code program that we've just typed in, We can do this either ae
part of a BASIC program, or, as we are going to do, as a direct command. If your
routine was loaded to address 30000 then the command is

PRINT USR 3C000

If your routine began at some other address simply use this tigure instead of the
30000 in the above command. Note that OLD ROM users will need brackets around the
number following the word USH.

You vill have found that the computer has printed 30000 in the top left
hand corner of the screen. Can you see why this {s sof It aturted off with the
rumber 30000 - this is the addrees you gave it when you typed PRINT USR 30000.
The program told it to RET, or return to BASIC, having done nothing at all to
this pumber, so that's exwotly what it did - ii returned to BASIC and it returned
the number 30000 with it.

Before we can advance to learning any more instructions, we are going
to have to break for a while and explore the concept of RECISTERS. A Register is
like a variable, in that it hes a name - usually & letter of the alphabet - and
it can stora numbers in much the same way that BASIC variables can. The big
difference is that registers can only etore numbers in the range O to 255. (Or
in hex, 00 to FF).

18

There are seven registers which are most commonly used for machine code

routines. Their names are A, 3, C, D, E, H, L. To give a larger degree of
flexibility it is also possible to use the resisters in pairs. when this
is done you cen alternatively store numbers either in the range =32768 to

32767 or in the range O to 65535, using the register-paira, as they are
nown, BC, IE,and HL.

To make thie clear, if register H contains the value 2, and register L
contains the value 23, the register—pair HL is said to contain the value
n256#23, wnich is 535. If H were to contain a value of 128 or mors, then
AL could instead be thought of as containing a negative value, equal to
(B-256)m256 L.

THE _INSTRUCTION LD

Consider the BASIC instruction IET A=42. In machine language we aesign varibles
(registers) using the instruction LD. We could, for example write LD &, 42. Note
there is no equals nymbol as there is in BASIC, instead e comma (,) is used to
separate the A from the number. The effect of this instruction is exactly what
you'd expect it to be - the previous value of A is overwritten, and a new value,
in this case 42, ies assaigned in ite place.

Each different LD instruction has & different code. For example the
code for LD A, is 3B, The number 42 is 2A in hex, so the full instruction in hex
ie 3E2A. Note that this is TWO BYTES in length (every two hex digits is one byte).
Compare this with the number of bytes in the RASIC inatruction LET A=42,

The remaining codes are as follows:

ID A, 3B
1D B, 06 Ip B, O1
b C, o8
LD D, 16 wms, 1
b B, 1§
LD H, 2% W, 21
b L, =

Using the program “HEXLD" enter the following program, by inputting the symbols
in the left hand column. Once the whole program has besn entered, break out by
inputting "S".

2600 LD R,00h
B2A LD L,2Ah
c9 RET

Now that the program is loaded you can run it by typing as s direct ¢ mman
PRINT DSR 30000. What happens? ° ¢

Now try entering this progrem:

0600 LD B,00
OE24 LD C,24
c9 RET

If you possess an OLD ROM then the first proprem shonld return a value of
forty-two, and the second program stiould return a valus of 30000, However
the NEW ROM will work the other way round, and return 30000 for the firet
program, and forty-iwo for the second, The reason ie the fact that USR
vworks differently for the two ROMs. For the CLD RCM, USR something means
load HL with that something and then run the machine code. On the NEW ROM
it mesns load BC with that eomething before running the machine code. Wnen

19

returns the number you ares left with is the value of HL (OLD ROM)
::sgg (NEW ROM). The nra{oprogrum leaves BC unchanged (on the NEW ROM it
vwill have been sssigned 30000) but will load HL with 42. The OID RCM will
return HL (42) and the NEW ROM will return BC (30000). The second program
is the reverse. It will leave HL unchanged. (On the OLD ROM HL will have
been sseigned 30000) BC will then be loaded with 42, Which ROM will
return whieh number? Which ROM do you have? Try it and asee.

HL, by the way, stands for High/Low. Because any number in HL is estored
in two parts the part that is atored in H is called the HIGH part, and the part
that is stored in L is called the 1OW part. BC and DE aleo have high and low
parts, with the firat letter for the high part, and the second letter for the low

What 18 42 in hexadecimal to FOUR digita? Answeri= 002A. What do you
think the following program will do? Try it and find out.

OLD ROM HEY_RON
210024 01002A
c9 €9

You may be surprized to dimcover that when you type FRINT USR 30000
to run it you get the answer 10752 - NOT 42! Now run this program:

LD _ROM NEW_ROM
212400 012400
€9 c9

ROW you will get 42, Notice the way the 2A and thes 00 have been awapped
around. Although this is rather strange it ies in faot USUAL for the ZX80/f1 to
think of ite numbers aa having the low part FIRST, and the high part SECOND. In
fact vith the exception of line numbers, and in FOR/NEXT loops the 2ZX80/81 will
elwaye store its numbers "the wrong way around.” In the instmmction LD HL, the
first byte is always 21h, The second byte is the new value of L, and the last byte
ia the new value of B, Not# that this is always three bytes long,

To summariee: The LD instructions which operate on register pairs, rather
than on single registers, use values stored "the wrong way round.®

LDi. m One Variable To ther

If we were restricted in BASIC to only using LEF instructions of the form LET A=
a mumber we would be a bit stuck. We necd to be a bit more flexable than that. For
instance something 1ike LET A=B would be useful. Well we can certainly manage

that in machine code. The codes are:

1D A n c b E i L

A i3 KL Kb TA 78 T ™
B a7 40 41 42 43 44 45
c 4F 48 49 4 4B 4c 4D
D 57 50 51 52 53 54 55
B SP 5e 59 SA 5B s¢ 5D
B 67 €0 61 62 €3 €4 (33
L 6P 68 69 €A (3] 6C 6D

20

In the above table you read the left-hand-column registers first, and
the top-row regiatars seoond, so that the code for LD D,A 18 57, and the code
for ID A,D is 7A. Notice how each of these ie a mevre ONE BYTE in length. Compare
this with the equivalent BASIC instruction LET AsD, whick takes a total of ten
bytes in all (eight on the old ROM) if you include the line number, the line
length, end the end of line character.

And now for some aimple arithmetic. Those of you vho have been thinking ahead may
have been wondering how we can add and subtract registers like we can in BASIC.
After all, the single=byte representation of 1D A,B, for example, doesn't leave
a lot of room for manoeuvre.

In fact, we use a different instruction altogether to add registers
together. The instruotion is ADD. You can think of an ADD instruction »8 being
a LET statement with an expression involving "plus” on the right hand eside of
the equals. A ussful example would be

ADD HL,IR
which has the effect LET HL*HL*TR

The instruction ADD HL,DE will take the contents of the regieter-peir LE, and will
add this number to the contents of register-pair HL. The result of this calculatio
will then be stored in register-pair HL. As you oan see, if we were working in
BASIC and we were dealing in variables instead of register-pairs then we would
have performed the operation LET RL-HL*IE.

Well almost, but not auite. There is in fect one amall difference - the
difference is what happens when you get what is called an overflow. You
see register pairs oan store all of the (hexadecimal) numbers betwsen 0000
end FFFF. Those from 0000 to TFFF are the integers O to 32767 in decimal,
those from 8000 to FFIF can either represent numbers from 32768 to 65535,
or numbers in the range -32768 to -1. You can use either form, but when
the USR function returns & decimal number to BASIC the ODD ROM will use
-32768 to 32767 and the NEW ROM will return a number between O and 65535.
An OVERFIOW is what happens when you go beyond these ranges. In BASIC any
overflov will simply etop the program and give you an error meseage. What
do you suppose will happen in machine code?

OLD ROM first then: the BASIC for the OLD ROM deala with numbers from
~32768 to 32767. What is the number 32767 in hexadecimal? Dividing by 256
to split it into two bytea gives 127 remainder 255, so the first byte ia
127 (7F) ard the second byte is 255 (FF). Now enter this program:

OLD ROM CNLYs 110100 LD DE,1
21FFTF LD HL,32767
19 ADD EL,DE
(] REP

The program will eimply attempt to add one to the number 32767, Run it
(using the direct command PRINT USR(30000)) and the result may estoniah
you. By the way, did you notice how the 00 and 01, and also the TF and FP,
had been swopped around in the above listing? You muet always remember to
do this in machine code. Did you notice also that the code for adding the
reristers (ADD HL,IE) was only one byte long? In fact the byte 19h. All of
the ADD codes are one byte in length.

If you want to rdd one to BC for instence then you muet do something like
this

210100 LD HL,1
09 ADD HL, 8C
44 Lb B,H
4D 1T C,L

21

Notice how B and C have to be loaded sepatately aince there is no such
instruction as LD BC,HL. If you have a NEW ROM and you went to ses what
happens on an overflow load and run this program:

NEW ROM ONLY: 210100 LD FL,1
O1FFFF LD BC,ER5%E
09 ADD HI ,BC
44 LD B,R
4D LD C,!
c9 RET

Another thing you should notice is that only register-pairs may be added
to register pairs, and that only single-regiaters may be added tc singlo-registers,
:::a };ﬁy WT add a single-register to a register pair, or vice versa. AID A,RL is

ADD HL,BC 09 AID A,A 87
ADD HL,DE 19 ADD A,B 80
ADD HL,HL 29 ADD A,C 81
ADD A,D 82
AID A,B 83
ADD AR 84
ATD A,L 85

If overflowing register-PAIRS had you thinking, then think about over-
flowing SINGLE registers, for they oan only hold numbers from O tc 255. What
happens when they overflow? Well yes, they simply start again at zero, but the
question ia can we do enything about this? In fact we can. Whenever we add two
numbers, sometimes there is an overflow, or CARRY, and sometimes there isnt, The
computer sets aside a NEW register, called F (which we cannot use directly) ta
store various bits of information., Cne of these dits of information is called
the CARRY EIT.

An ADD instruotion will always reaseign the CARRY BIT. If thers is no
carry, it will be set to zero. If there is a carry, it will be set to one. We
oan use the value of the CARRY BIT by using the machine code instruction ADC,
vhich means "ADD with CARRY".

It vorks like this. S8uppcse the machine comes acroas the instruction
ADC A,B. It will take the contents of register B, and it will adé the contente of
register 4, as in the previous instruotion ADD A,B, and then it will add the
CARRY EHIT to thie new number. Having done this it will store the result in register
A, overflowing if necessary. The ocarry bit will always be reaseigned to either
sero or one, depending on whether or not there is an overflow.

So ADD A,B effectively means [LET AsA+B
followed by LRT CARRY=INT((A+B)/256)

wvheras ADC A,B effectively means LEI AvA+B+CAKRY
followed by LET CARRY=IRT((A+B+CARRY)/256)

Study the programs that follow. If the value of the A register is

irrelevant, then are thease programs equivalent (ie do they both do the same
thing?) or not? Can you understand why?

The first program ie

118533 LD DE,13189

21C778 LD HL,21687

(19 ADD HL,IE

44 LD B,H

(o I C.L} NFW ROM only
c9 RET

and the second program is

6 1D 1,51

1ra b £33

2678 1D H,123

2ECT b L,19%

7D LD A,L

83 AID A

6F LD L,A

7c 1D AH

8A ADC A,D

67 1D H,A

(44 4] n.n} al
(ap L C,L NEW KOM only
c9 RET

In actual faot they are exactly the eame. You cen learn two thinga from
this; firstly that the instruction LD does not in any way affect or alter the
value of CARRY, for if it did the two LD instruotions between ADD 4,E and AIC A,D
would really meas things up; secondly that the inpiruction ADD HL,DE is much
shorter, and much neater, than going all round the houses by adding each byte
separately. And never forget to swop the order of the bytea round in LD instructi
on pairs - compare the firat two lines of program one with the first four lines
of program two,

Nov run both of the above programs just to verify that they are the
same. What would happen if the ADC A,D in program two were replaced by ADD A,D?

Now that you understand the difference between ADD and ADC we shall go
on to cover some other ways cf adding. Firat though, the codes for AIC:

ADC HL,BC ED4A ADC A, &
AXC HL,TE EDSA ADC A.B 88
ADC HL,HL EDEA ADC A,C 89
ADC A,D 8A
ATC AE B
ADC A8 8C
ADC AL 8D

Notice how the codes for ADC HL, are all TWO bytea long, rather than
one. The firat byte is ED, and the second byte depends on what you are edding. Do
got think of ED aa meaning ADC HL, though, since it may have wany other possible
meanings as vell, depending on what follows it.

ADDIIG CONSTANTS

We can also use the AID and ADC instructiona to add numerical constants directly
to the A register. An example would be ADD A,3 which would, us you'd expeot,add
three to the current value of A. It would also assign CARRY to one or ;oro.
depending on whether or not this addition ceueed A to overflow beyond 255.

The code for ADD A, is C6, and the code for ADC 4, is CE. Rote that we cannot
add constants to any regiater other than A.
Suppose wa wished to add 57 to HL. One way wonld be as follows:

113900 1D I®,578
19 ADD HL,DE

f DB
but this method has the disadvantage that it requires the use o N
which may be needed for other things. Another way of achieving the same thing,
but this time only bringing the A register into use, is thusi

™ LD 4,L
€639 ATD A,57d
6F 1D L,A

o LD A,H
CcR00 ADC 1,0
67 LD 0,4

23

Notice how the instruction ADC A,0 was used to add any carry digit there
may heve been from adding 57 to L.

AND FINALLY,.,,

There is one more way that we can add constantas to a register, and that is by
using tha instruction INC.

INC A means add one to the value of A. Unlike ADD, INC may bs used on

register, so statements 1ike INC D (add one to the value of D) or INC I

?nﬂﬂd one to the value of register-pair IB) are allowed.

If A contained the value 255, then INC A will set A to zero, but
WITROUT setting CARRY equal to one. In fact INC will not alter the value of
CARRY at all. If it was one before an INC instruction, it will be one after such
an instruoction. It it was zero before an INC, it will be zero after an INC,

In short:

IRC B is equivalent to LET Bs=B+l

INC BC 03 IN A 3¢
IN IE 13 IN B 04
IN AL 23 I ¢ oc
I D 14
I E 1c
I A 24
IN L 2c

Remember, the difference between AID A,1 and INC A is that ADD A,1 will
asaign a new value to CARRY, whereas INC A will leave it unaltered. INC, by the
way, is short for 1NCREMENT,

The valué of CAERY can bs altered directly without any of the other
reglsters being affected, There ir en instruction SCP, vhich stands for SEI' CARRY
FLAG, ant its Job is to masign to OARRY a value of one. The code for this inste
ruction is 37h. Alternatively, it is possihle to remet CAFRY to zexo, although
there is no specifioc imstruction to do thia. One way would be to say ADD A,0 for
example. Adding zero will of course leave the value of A unchanged, but an AID
inatyuotion will always reassign CARRY.

CARRY is called a FLAO Tather than a register, becanse it can only
store the numbers one and zero. It is not posaible to assign a value of two to
CARRY, nor any other number im fact, only one and zero.

There is one other way to directly change the value of the carry flag,
that is by using the instrmotion CCF, which standa for COMPLFMENT CARRY FLiG.

It will change the value of CARRY from one to zers, or from zero to ome. In BASIC
terms these three instructiors may be listed thus,

37 SCP LET CARRYs=1

€600 ADD 4,0 LET CAHRY=0

3F CCF LET CARRY=1-CARRY
) ON

In machine languesge, there are codes for subtraction, which are used in exaotly
the same way as the addition codes. The instruction is SUB, for SUBTRACT, and
in exactly the same way as ADD, there is also an instruction SBC, for SUBTRACT
WITH CARRY.

It worka like this, SUB A,B will take the value of register B, and
will subtract it from the value of register A. The result of this calculation
is atored in register A. The carry fleg is reassigned to zero if there is no
overflow, or to one if the result overflows to below zerc (in which case the
value of A will have 256 added to it.)

ly the A
also be written as simply SUB B, because it is on
ieu:i:{:rm:zioh may have things subtracted from it. Do not get confused
by this convention - the two terma mean exactly the same thing.

24

The codes for SUB are:

SUB A,A 97
SUB A,B 90
SUB A,C 9N
SUB A,D 92
SUB A,E 93
SUB AE 94
SUB A,L 95

It is also possible to subtract numerical constants from the A register.
For example the instruction SUB A,100 will subtract 100 from the number stored
in register A. The result is ctored in regiaster A, and the carzy flag is re-
assigned to gzero if there is no overflow, or to one if there is an overflow. The
code for subtracting constants is D6, so that SUB A,100 is D664 (eince 100 is
written as 64 in hexadecimal)

SUB A, D6

You should note the fact that elthough there are instructions such es
ADD HL,BC, there are MO instructions to subtract register-pairs,

SUBTRACT WITH CARRY (SBC) on the other hand, WILL work for register pairs,
but as with ADD and ADC, only the value cf YL may be altered. For single registers
it is only the value of A that may be changed.

SBC A,C will subtract the value of C from the vslue of A, and will then
subtract the value of CARRY from this result. The final answer will be stored in
register A. CARRY will be resssigned as before.

The codes for SBC are:

S3C HL,BC 42 SBC A,A 9F
SBC HL,DB 52 SEC A,B 98
SBC HL,HL D62 SBC A,C 99
SBC 4,D N
SBC A,E 9B
SBC A,H 9
SHC A,L 9

':'o SUBTRACT WITH CARRY e numericel constant trom the A register the code
in DE follewed by the number itself in hex. What ias the code for SBC A 200?
What precisely does thie inatruction do? e

DEC io short for DECREMENT. Tt is, a8 you may heve gathered from its wierd acunding

name, the opposite of INC (Increment). Ite pupoms is to deorease the value of any

reglster by one without changing the value of the carry flag. So DEC IE has the

;;;ect of LET IB=IE-l, remembering of course that if you decrement zero ycu get
Compare thece two routineas

€600 ADD A,0
D602 SUB 4,2
ED52 SBC HL,INE
and

€600 ADD 4,0
3D IEC A

3D DEC A
EDS2 SEC HL,IE

Are they the same? And if not, why not? One of these two routines will
Subtract two from A, and will subtract IE from HL - The other routine is wrong.
Which 4 which? 25

In fact i1 {a the firet example which is vrong. The instruction SDC HL,DE
will aubtract both DE and the carry flag, so the carry flag muat first be reset
to zero, This is vhat ADD A,0 is for. Aut having done that, the firnt ezemple will
slter the cerry flag AGAIN vith the instruction SUB A,2. The chences ore that it
vill be resct to 7ero, but {f A happens to equal one or mero than the SUB will
not only change A to 255 or 254, 1t will slno set tue carry flag to ONE. Go that
the effect of SBC HL,IE would then be to rseisn RL a value of Hl~IR-1, NOT HL~IE.
In the cecond example, the instruction IEC 4 {a used twice. MT will not
chanse the carry-fles, so it will still be tevo when the tnstruction £BC
HL,TF is reached, and the subtraction will then &0 ahead oorrectly.

GCot it? IIC and IEC do not alter the value of the cerry fleg - the other
srithmetic inetructions do. The other instructions ve've covered are RET and LD,
Neither of these will alter CARRY at all.

EC BC 0B TEC A 3D
DEC IR 18 DEC B 05
DEC HL 28 c © o
IEC D 13
IFC B)
DEC R 25
IEC L @a

this chapter we have dealt with how to load machine langusge programe, and how
{: run thn? The use of the instructions RET and LD were explained, and the
orithmetic instructions ADD, ADC, SUB and SBC were imtroduced slong with IRC and
TEC. The purposs of the cerry flag hsa been covered, and the inetructions SCP
(Set Carry Plag) and CCP (Complement Carry Flag) have becn mentioned.

You are pgt expeoted to remember any of the hex-codes which the computer
uses - not even the experts do that! A11 of the codes are printed in an appendix
in the beck of the book. All you have to knov are the words we use for them -

FCODES — and what they do.
the @ Bofore you proeozd to chapter four, ses if you can tackle some of the
following exceroises., If you find some of them difficult don't worry about it,
Just take them alowly, and think clearly.

Fnter the following machine langusge program using HEXLD: You will have %o look
up the various hex-codes yourselfl

Now use the direct comrand FRINT USR 30000 to run it. What 414 you get?
If you got sero well done. If, on the other hand, you got «31004 or 34532
then you did something fundamentally wrong. The instructions LD BC, and

LD HL, both need THRER bytea altogether to make them work, not two. What

inatructions did you Teally give the computer to make it come up with 31004

or 345327 And howv exactly d1d it arrive at that answer? Row try again until
you get sero,

26

Delete HEXLD by typing NEW (or on the 0ld ROM by deleting each line
individually) The machine code program will STILL BE THERE. Type in the following
BASIC programs

10 INPUT A

20 INFUT B

30 POKE 30001,A-INT(4/256)0256
40 POKE 30002,INT(A/256)

50 POKB 30004 ,B-XNT(B/256)»256
60 POKE 30005,INT(B/256)

70 PRINT A,B

90 FRINT

100 GO TO 10
This BASIC progrsm will replece the second, third, fifth, and sixth bytes of the
sachine code routine by the values you input in lines 10 and 20, Run the program
andﬁtnput some values to see what happens. Try going outaide the range -32768 to
32767,

Now ses if you can write a similar program, includéng a COMPLETELY NEW

mechine code routine, whioch will print a TABLE of values of A and B on the ascrean,

and the result of subtraciipg A frem B in each case, Let A and B both take on all
of the values from 1 to 10 inclusive.

Write a machine code routine which will produce a one if BC is greater
than or equal to DE, and e gero otherwise. How could you test this? (HINT: see
previous exceroises on this page) Do so.

write a short machine code routine which will set the carry flag equal

to one, but without altering any of the registers. Do it WITHOUT using the
instructions SCF, CCF, or ADD 4,0,

27

RRRRRRRRRRR

/ 0)‘
) B

ABOUT LOAD

(R IEE RN X X 111},

;\\ii\igﬁj \“*I'
///)//////ﬁ LS

FEECING AND POXING AND
MORE ABOUT 1D~11G

For those of you who thought maybe seven registers might not be enough, it's
Just as well we can PEEX and POKE, and thus make use of all the addresses
in the RAM. (The RAM, which stands for Random Access Memory by the way,

18 the portion of mamoxy which we are alloved to alter - the addresses
mmbered from 16384 upwards. The add-on 16K pack is RAM for instance.)

If there's any number we have to stors somewhere, aither permanantly

or temporarily, then it makes ssnse to just POKE that number momewhere -
(almost anywvhere will do) then when we need it again all we have to do

is to PEEK at that address and voila - there it is!

A LESSON IN PEEKTNG

If you've ever seen any machine language printed anywhere, you may have
wondered why obscure brackets kept turning up here and there. What, for
example, is the difference betveen LD HL,16396, and LD HL,(16396)%

It's not just for variety, or to make it look pretty, they
do actuslly mean somethingi brackets d a ber or register-pair
vill refer to the contents of the ADIRESS in the brackets. So

LD HL,16396 neans LET HI=16396
and 1D HL,(16396) neans LET HL-PEEK 16396+256#FEEK 16397

The second oxupio may have oonfused you. The only address in brackete is
16396, so how does 16397 come into it? What happened is a kind of side-
eoffect. H and L can each hold ONE BYTE, so the pair HL atores TWO BYTES
altogether. The address 16396 only holds ONE byte, so another one has

to come in from somevhere. In practice this other byte comes from the

next poasible addrese, in the above case, 16397. The real effect of the
instruction LD HL,(16396) is LET L=PEEX 16396, followed by LET H=PEEK 16397.

There is alsc a reverse instruction, which is
LD (16396),HL

This ia effectively POXEing. The result of the inatruction ie

POXR 16396, HL~INT(HL/256)n256
POKE 16397,INT(HL/256)

or 1f you think of H and L separately:

POKE 16396,
POKE 16397,H

In BASIC, this particular pair of instructions is used quite frequently.
I'1l give you an sxample. Suppose you've just written a BASIC program,
and you want to kmow how long it im. You can find out the number of bytes
your program occupias by using the expression PEEX 16404+256mPEEK 16405
to find the address of the END of your program (inocluding the screen

and all of your variablea) and then subtraot 16509 (the SPART of your
progran) from this nuaber. There is a similar expression for the OLD ROM,
vhich is PEEK(16394)+256nPREX(16395)=16424. A very simple machine code
mrogram {o oalculate this value would be:

30

OLD RoM NEW _ROM
112840 LD IR,16424 117040 LD IR,1650
240140 LD HL,(16394) 241440 1D HI-.(12434)
c600 ADD A,0 C600 ADD A,0
ED52 SBC HL,IE ED52 SBEC HL,IB
c9 RET 44 LD B,H
4D Lp C,L
c9 RET

The inatruction ADD A,0 18 used to set the carry flag to zero, so that
the immediately following instruction will slways produce the correct

ansver. Remember that there is no such instruction as SUB HL,IB, so if
ve ever need to subtract HL from IEB we are forced to use SBC instead.

This won't subtract properly unlesa CARRY equals mero.

Notice how the hex—code for LD HL,(16404) is built up. The first byte is
2A. Now, although you're not expected to remembar this, the last time we
used a LD HL, instruotion the code was 21 (hex). The difference im the
ERACKETS! LD IRSTRUCTIORS WHICH USE ERACKET'S BAVE A COMPLETELY DIFFERENT
HEX-CODE. The next two bytes are 14h and 40h:- this is the number 16404

in hexadecimal - if you divide 16404 by 256 you get sixty-four (40h)
remainder twenty (14h). In the EEX~COIE these two bytes have besn switched
around to give 1440 rather than 4014. You must always remember to do this
in machine code.

If you atore thie machine code program above RAMIOP (This ia somsthing
that only NEW ROM users can do easily) as I've described then you can
type in or LOAD any BASIC program and find its length in bytes simply by
the by now familisr direct command PRINT USR 30000

16404 will ALWAYS contain the address of the end of all the variadles in
your program - this is its jJob. It is one of the SYSTEM VARIABLES which are
used to help the ROM know what it is doing. If you alter this value by
POKBing or LDing then the poor machine will get very confused, although,

as we phall see later, this is scmetimes an advantage.

Make sure you understand exactly how the above program works, and why
every line is needed. The most importsnt instruction is still the firat
one wve learned - RET. If any of the others are missing then you will get
the wvrong answer, but at least you'll get AN answer. Without RET the
program will CRASH,

Not all of the variables (registers) can be Lhed from addreases. The
instructiona you sre allowed to use, together with their codes, and a
breakdown of exactly what they do, are listed here.

A (m) 3A LET ASPEEK pq
EDAB LET C-FEEK pq
1D BC.(N) LET B‘M(N"l)
B LET E-FEEK pq
1 1, (a) 5 LED DPEEX(pq+1)
24 LET L-PEEK pq
1 AL, () LET HePEEX{pq+l)
AID FOXRING:
LD (mg.A 32 POKE pq,4
b6] (m +BC ED43 FOKR pq,C
POKE pq+1,B
1D (pq),IB ED53 POKE pq,B
FOKB pq+l,D
LD (pq),HL 22 POKR pq,L
31 POKE pq+l,H

You will notice that only the variable A may be assigned a FEEK value, or
POKEd anywhere, by itsslf - all of the other registers may be used in pairs.
Usually this is quite a useful feature, but there are times when you'll
want to assign a single register (a usual choice is L) without disturbing
the value of A. There isn't really any way around this I'm afraid, but

what you cen do is to assign both halves of a register pair as described
above, and then reset one of the registers to zero afterwards.

Suppose you needed to know how far down the screen the PRINT position was.
If you look in your ipstruotion manual you'll find that PEEXKing 16442 will
tell you exactly that. (On the OLD ROM you'll need 16421 instead) The
problem is to LD this into HL, because the number we're atter is ONE BYTE
long - it ISN'T stored n either 16441 or 16443 - and one way of doing it
is this:

242540 LD HL,(16421) ED4B3A40 o

B3A4 LD BC, (16.
2600 b H" 0600 D B,(’)(442)
c9 RET c9 RET

A8 you can see, the first imstruction will succesefully load the contents
of 16421/16442 into the L or C register as required, but it will also load
H or B with 16422/16443, 8o R or B must be reset to zero before we return

to BASIC, otherwise the figure printed by the routine will be virtually
meaningless.

The other way of getting PREX 16442 into BC is to go via the A register,
8ince thia register can be LDed directly all by itself. But as you will see
this offers no adventages, since we still have to reset B to ero anyway.

QLD ROM NEW_ROM

342540 LD A,(16421) 3A3A40 LD A,(16442)
2600 LD H, 0600 LD 8,0

(54 LD L,A 4P LD C,A

c9 REP c9 RET

If you atill aren't convinced that the second instruction ia necess t
omitting it to see what happena. You'll find you get the number 299;1";}' ~
added to the resl answer. Can you see why? You started off with the number
;Ioggo and :nl: v;l(;omd/;hz)u)w part. The HICH part was unchanged. (The
part is 0000/256).) It ha to be 117. The fact
comss in because 117w256 is 29952, ppens ! ¢ faotor of 29952
Both of the above programs, as they are written, will have the same
effect = they will tell you the line number of the PRINT position, that
is, they will tell you how far down the screen the next character to be
printed will be.

Try feeding in OME of the above two programs, and then type in this BASIC
programi

10 FOR 1=0 TO 20

30 PRINT USR 30000

50 NEXT I

Remember, only NEW RCM users may type NEW without wiping out the machine
code. Run it and see what happens, Now insert more lines,

20 FOR J=0 TO 3
30 PRINT TAB(8mJ)IUSR 30000;
40 NEXT J

and again, RUN it and mee what happens. OLD ROM users should replace the
new line 30 by FRINT USR 30000, (ie with a comma st the end of the atate-

ment). 32

FOXBING IN MACHINE CODE

POKEing is just as essy. To put line 50 of your BASIC program at the top
of the screen at the next automatic listing you can POKE 16419,50. (On the
OLD ROM it is POKE 16402,50.) You must make aure the fjj cursor is 50 or
more first though. In machine code:

LD ROM NEW ROM
IR32 LD 4,50 3E32 LD 4,50
321340 LD (16403),a 322340 LD (16419),a
c9 RET c9 RET

Note that it doesn't actually matter what number returns to BASIC - (in
actual fact it will be 30000) - the important thing is that the system
variable called S~TOP (Screen Top) is POKEd with 50. That is what this

program does.

Now look at the HEX-COIF of LD (16419),A. The first byte is 32h. This is
the code for LD (pq),A, where pq representa some arbitrary sddress, The
remeinder of the code is 2340, which is the number 1€419 in hexadecimal
(with of course the firet and laet bytes switched arcund) So even though
we humans would write our OPCOLE with the (1€419) firet, end the ,Ai second,
the machine language code always puts the instruction itself FIRST -
despite the fact that the instruction iteelf actually incorporates the

A at the end of the OPCODE., You muat not put the 32n last, for the
inatruction 234032 would mean something totally different. In fact it
would probably end up crashing, because it would take it to maan

23 INC HL
40 1D B,3
32 1D (7777),A

With the (?2??) address made up of your next two bytes of machine code,

There are some othex PEEK and POKE instructions which
use register
throughout. Thesa are: s nanes

LD A,(BC) OA LET A*PEEK BC
LD A, mg 1A LET A-FEEX IR
LD A, (HL TE LET A=PEEK HL
1b B,(HL A6 LET B<PEEX HL
1D ¢, (HL, 4B LET C-PEEK HL
LD D, (HL 56 LEP D-PEEK HL
1D B, (AL LET R-PEEK HL
LD H, (5L, 66 LET B-PEEK HL
Lb L, (HL, (3] LET LePEEX HIL
LD (BC),A 02 POXE BC,A
Lb DE;.A 12 FOKE IE,A
ID (HL),A 77 POKE HL,4
1d (HL),B 70 POKE BL,B
Ld (HL),C n POKE HL,C
1D (HL),D 72 FOXE HL,D
I (HL),B 7 FOKE HL,B
Ip m.;.n 74 POKE HL,H
1D (HL),L) POKR HL,L

33

If you study the codes of the instructions that have (HL) in them you'll
see that they form a regular pattern. In faot it looks very muoch like thers
ought to be an instruction LD (HL),(HL) with code 76 just to fill up &
small hole in the regular pattern. In sctual fact there is no such
instruotion, and code 76 corresponda to an inatruotion called HALT,

To demonstrate what I mean, hers is a small table of all of the LD codes,
vhich uss registera A to L, and sddress (HL):

Ww|(B ¢ D B H L (H) A
B 40 41 42 43 44 45 46 47
C |48 49 4A 4B 4C & 4 4F
D 50 51 52 53 54 55 56 57
E 58 59 54 5B 5 5D SB SF
): { 60 61 62 63 64 65 €665 67
L |68 63 6éar €B 6c 60 6B 6F
(@) |70 . 72 73 M 715 - 1
A 7 9 W B ¢ ™ T

Do you see vhat I mean sbout a regular pattern with LD (HL), (EL) missing?
Of eourse, it's not an instruction you'll ever want to use, since it does
abzolutely nothing, but it's worth pointing out that you must never even
ATTEMPT to use it because, aas I've said, 76 is the oode for HALP.

why is any veriable in brackets a rogister pair rather than a single
registexr? Why is any variable NOT in drackets a single register rather
then a register pair? If HL contained a valua of 16434, what is the diff-
erence between LD B,(HL) and LD BC,(16434)? What im the precise effect of
each? See if you can write & program in machine language whioch will assign
to HL a value of PEEK 16442 ONLY, using one of the LD ,(HL) instructions.

We have now covered all of the basic LD inatructions which operate on the
registers A, B, C, D, B, H, L. We shall now take a look &t some of the
other ways of loading these variablea.

W BLOCKS

Loading BLOCKS means loading huge chunis of memory all in ome 80. For
example, if you had a machine code routine stored beginning at location
30000 and you wanted to move it completely to location 20000, then if
you wvere really really patient you ocould write a new machine code routine
along the lines of

112048 LD IE,20000
213075 LD HL, 30000
= 1D A, (HL)
12 Id (IR),A
23 INC HL
13 INC DE
™= LD 4,(HL)
12 LD (IE),A
23 INC HL

and 80 on.

You could shorten things a bit if you knew about the instruction LDI, which
means LOAD WITH INCREMENT. This is & very apecial instruction which does
four things all in one go. First of all it will tranefer the contents of
the ADNTRESS astored in HL into the ADDRESS stored in DE, then it will
increment both HL end IE, and it wvill decrement BC. It will not alter the
value of register A. To summarise:

34

Lo EDAO POKE DE,PEEK HL
LET HLsHL+1
LET DE+DB+1
LEP BC*BC-1

The above program could therefore have been completely rewritten as

215015 B T 00
1D HL
EDAO LDI !
EDAO D1
EDAC 11
I;é 80 on.

Thexre is no list of variables after the opcode LDI, because the instruction
viIl ALWAYS load from (HL) to (IE). You must not write LII (DB),(HL) because
this does not make sense. Further, it is impossible to load in this manner
in any other combdination. Loading from (HL) to (BC) for example simply
cannot be done in a single instruction.

There is also an instruction LID, or LOAD WITH DECHEMENT, which has the

same effeot as LDI except that DE and HL ere a ted and not inc: d.
Neither of these instructions, aa with all LD instructions, will in any

way alter the value of CARRY. The code for LDD is EDAB.

REFEATING THINGS

Bven with LDI and LDD st our disposal, it would still be a very tedious
affair to move something from, say, 30000 to 20000 if that something were
around fifty bytee long. If it were a hundred we'd probably give up in
dispair. Fortunately for us both LDI and LDD have a REPEAT facility. If,
instead of writing IDI we wrote LDIR, with the extra R standing for REFEAT,
then the instruction LDI would be carried out over and over again, and
would not stop until the value of BC was zero. So if the routine we

wvanted to move wes in fact 100 bytes long then we could move it using the
routine

016400 1D BC,100
112048 LD DE, 20000
213075 LD HL,30000
EDBO LDIR

When the machine reaches the imstruotion LDIR, BC will conmtein e value of
100, After LDI had been carried out once, the firet byte would have been
transfered, IE would be increased to 20001, HL would be increased to 30001,
and BC would be decressed to 99, After a second attempt, the second byte
would have been transfered, and BC would contain a value 98. After LDI

had been carried out one hundred times, the whole routine would have been
suocesafully transferred, and BC would conmtain @ value zero and so the
program would contimue with the next instruotion. If this routine were the
entire program then the next instruction should of cocurse be RET,

The four imstructions LDI, LDD, LDIR, LDIR each do slightly different things.
Make sure you understand the differences between them. They also each have
a different code, all beginning with ED. The codés arse

LDI EDAO
LID EDAB
LDIR EDBO
LDIR EDB8

35

I shall now give you a prosram which will enable you to SCROLL the screen
BACKWARIS, 8o that the soreen moves downwards, not upwards, and the print
position i8 moved to the top of the screen. It will work on the OLD ROM
provided 1)all twenty-two lines of the screen ere full, ie contain thirty-
two characters plus a newline character, 2)you do not attempt to PRINT
anytning agsin (however you can alter the screan by POKEing the display
file). It will work on the NEW ROM provided 1)RAMIOP is at least 19712
(effectively this means if you have 4K or more plugred in) 2)every time
you use the statement SCROLL you fill the bottom line (for example by
using the statement PRINT "™thirty-two spaces", your next PRINT should be
a PRINT AT.

A complete explanstion of the program vwill aleo be given.

017602 LD BC,726
2A0C40 LD HL,(16396)
09 ADD HL,BC

54 LD D,H

5D 1D E,L
018502 LD BC,693
240040 LD HL,(16396)
09 ADD HL,BC
EDB8 LIIR

c9 RET

The £creen may now be acrolled BACKWARDS by using the NEW ROM siletement
PRINT AT USR 30000,0; Cn tne CLD RCM the corresponding statement ias

LET L USR{30000) but remember that on the OLD RCM once the ecreen ie
rvll you can only "PRINT* by POKPing into the display {ile. The machine
code routine will leave a value of zero in BC (See the description of the
last instruction, LIIR) so having executed the machine code it will then
PRINT AT 0,0; ie it will move the NEW RCM print position to the top of
the screen. This is precisely the opposite of SCROLL.

The firet instruction is LD BC,72€. This is the number of characters in
the soreen. There are twenty-two lines and each line contains tnirty-three
characters &thirty—two plus one new-line charsoter) hence the total number
ia 22w33=726. The address 16396 (together with 16397) containa the address
of the START of the diplay file. (The first character in the display file
is a new-line, so the acreen itself actually starts one charecter further
on.) This address is LDed into HL. Remember that LD HL,(16396) will load
TWC bytee into KL, not one. The ADD instruction will then calculate the
address of the LAST byte of the ascreen.

In order for LDIR to work, we need thie address in DE, not in HL, and so
since LD IE,HL is not a valid inatyuction it needs ™0 instructions,

b IL,H and LD E,L to acoomplish thias. We can now use HL for something
else.

We need the address of what WILL BE the laat character of the screen after
we've finished sorolling (or antiscrolling if you want to call it that).
Since it is the bottom line that will be loat, then this will be the last
character of what is currently the TWENTY-FIRST line. So we need tne start
addrese plus 21%33, or €93,

The next three instructions in the program: LD BC,693; LD HL,(16396); and
ADD :L,BC will achiave this, and the result will be left in HL. Thia ie
precisely what we need for LDDR to work. LDDR will tranafer from the address
contained in HL to the address contained in IB, ie it will move the leat
character of the twenty-firet line to the last charwucter of the twenty-
second line, before HL and DE are both decremanted, or decreased by one.

36

How many times do we need to mske such a transfer? We have to move twenty-
one lines sltogether, so we have to make sure that we do not use LIDR
until BC contains a value of 21m33, or 693, As it happens, it already does,
since we assigmed it to 693 earlier on in the program. We may new quite
happily use the instruotion LDIR to BLOCK LOAD the first twenty-one lines
of ecreen down to their new position occupying the LAST twenty-one lines
of screen. Note that the old eoreen will be completely overwritten by the
new screen with the exception of the first (top) lime, whioch will be left
unchanged. This is why the BASIC statement PRINT AT 0,0;"thirty-two
spaces” is needed after every antiscroll.

The following NEW ROM BASIC program is designed to demonstrate the
ANTISCROLL feature at work. It isn't a terrificly exciting geme, or a
pattern making artistic genius, or anything, but it will show you exactly
what the machine code wa've juat been working on will do. You can of course
ingert the routine into any program - there are some graphice games which
would be immensely enhanced by the ability to SCROLL in either direction.
This program sets up a striped pattern accross the screen, with each stripe
composed of a random charecter chosen from the whole 2X81 sat. The pattern
on the screen vill then wait for you to tell it what to do. Pressing the
"up" key will move the pattern upvards, and preasing the "dovn" key will
move the pattern downwards. These are of the st control
xeys I'm refering to, except that you don't need to use SHIFT.

The listing is written for both FAST and SLOW modes. In FAST, line 110 should
read PAUSE 40000, but in SLOW it should be changed to IF Imﬁ"’" THEN GOTO
110. Otherwise enter the program as liated.

UE_AND TOWN

10 DIN Ag(22,32)

20 FOR I=0 TC 22

30 LET BF=CIRE(63*RD+128%(RNDC.5))
40 FOR J=1 TO 5

50 LE? Bg=Bg+BE

60 HEXT ;(-

70 LET 3%(1)=

80 PRINT AZ(I)

90 NEXT I

100 LET a=1

110 PAUSE 40000

120 LET B=A+1

130 IF B=23 THEN LE? B=1

140 LED C=A-1

150 IF C=0 THEN LET (=22

160 LET BgeINKEYZ

170 IF Bg="6" THEN PRINT AT USR 30000,0;A%(C)
180 TF Eg="7" THEN SCROLL

190 TF Bg="7" THEN PRINT Ag(B)
200 IF Bg="6" THEN LEP A=C
210 1F BF="7" THEN LKT A=B
220 070 110

37

This chapter has tried to develop a desper understanding of the LD
instruction, ond hes expleined how LD can be used to asccess the memory
addrecoes of the computer. The apecialised load instructions LDI (Load

vith Inorement), LDD (Load with Decrement), LDIR (Load with Increment and
Repeat, or BIOCK LOAD with Incresent), LDIR (Load with Decrewment and Repeat,
or BLOCK LOAD with Deorsment) have besn covered.

EXERCIIES

Based on the Antisoroll program in this chapter, vrite a machine langusge
prograa to BCROLL forvards, os the keybosrd SCROLL does. (This exercise
in especially useful if you do mot have SCROLL on your keyboard.) Then
see if you can write a machine language program which scrolls forward, but
which will ONLY SCROLL THR BOTTOM RALP OF THE BCRREN, so that the top ten
1lines are unaltered, the eleventh line is lost, and the tvelfth to twenty
firet lines are all moved up one line.

Write a BASIC program making use of the routine, You will need the BASIC
statemsnt FRINT AT 21,0)"thirty-tvo spacea®™ every time the machine cade
routine is used. Try leaving this out just to see what happens.

If you can't cope with the challenge of writing such a SCROLL progran,
then I'11 give you a hint or two. You will need to use LDIR instead of
LDIR, otherwise all you'll get is a pretty peattern, and you'll need to
atart blook loading at the BEGINNING of the soxeen, NOT the end. The
instruction LD HL,(16396) will always give you the addrees at whioh the
ncreen basinn. Don't forpet that a full line ocontsins thirty-three
charsctera, not thirty-two, since there is always a new-line charscter
there o well.

38

EEEEEEEEEEE

T
N

T0 S
MACHI

\\\\Bhiizzzzz | I]

£ ConE ‘
b fh\\\@\\\%/ il E

Q
-—
O

SOME NEW PLACES TO STORE MACHINE
CODE

Storing mechine code abeve RAMIOP will protect it from being erassed by
HEW, or overvritten by a program, but it hus the dieadvantage that you
ocan never eave it., There are several alternative locations in which we
can store machine langusge programs, and we shall explore & few of the
pomeibilitea in this chapter,

Using HEM.
To stere & mechine language routine that ie fifty bytes long, make the
first line of your program

1 REM 123456789012345676890123456789012345678901 23456 7890

ie a REM statement with fifty characters after it. If your routine was
8ixty bytea long then you'd need sixty characters after the word REM.
If it vere only three bytes long you would only need three characters
after the word REM. It dcesn't actually matter what these characters
aotually are, but sounting upwerds im ones, as I have dona, will ensure
that you don't lose count halfway through. You will need to LOAD "HEXLD"
before you add this new lina one, and then change line 10 to

10 LET X»16514 (or 16427 on the OLD ROM)

OLD ROM users should ensure that line one does not appear on the automatic
LISTing. You can use the command FOKE 16403,10 to remove it. If this has
no effect try moving the cursor to line 10 and try sgain.

BOW you can enter a machine code program exactly as before, except that

to execute it you must say USR 16514 imetesd of USR 30000. On the OLD ROM
you must say USR(16427). BUT you MUST BOT type NEW. Deleta HEXLD by entering
the line numbers one at a time, and do mot delete line one! On the OLD ROM
you must not even attempt to 1list 1line ome or you may cause a crssh.

40

Now there are iwo very important differences between using 16514 and ueing
30000. Firstly, SAVE will atore the machine code as well as the BASIC
program -~ this is sometning you cannot do in upper memory. Secondly, the
command NFW will erase it. It is tnus an integral part of the program,

and can only be used witn that one HASIC program and no other (unless you
delete it line by line and then type in a mew program 1line by 1line). If
you have written a machine code routine specifically to accompany some
BASIC program then this method is an obvious choice, but it does have one

big disadvantage - on the OLD ROM the command LIST will usually cause a
aystem crash.

There {s mnother very very good place to store machine code, that ia immediately
after the program area, This hase meveral advantages: 1) The BASIC surrcunding
program can be safely listed - even on the OLD ROM. 2) The MACHINE COIE can

be SAVED. 3) Using RUN, as opposed to GOTC 1, will not wipe it out., To load

a machine code routine that is, say, 20 bytes long, type the following

REFCFE yru tyre in eny RBASIC:

OLD ~OM1 1 REM 45678901234567890
MEW RCM: 1 RFM 6789012345€7890

Then ae o direct ccmmand type:

CLD ¥C¥: POKE 16424 ,-1
ITEW ROM: PCEE 16509,-1

Yom heve now recerved e epace of twenty bytes in which to store whatever
ra~nine code you like. The starting addrees is a little more complicated
thourh = it 18 on the OLD ROM PEF 16392)+256wPFFK(16€393)-20, end on the
YEW LOM PEEX 16396+ 9SKwPEEK 16397-20 . The PEEK expression ia the end of
the machine code, and the minue twenty is there to find the start, Thie is
2n excellent way of storing machine language routines. You begin loading
1t from asddress FREK 1€396+256#PEEX 16397-length-of-routine, and you can
execute 1t with the expression USR (FEEX 1639€+256wPREK 16397-length-of-
rentine). Firet though, there is one disadventage to get round. As I've
ev~leined things so far there in no wsy you can actually load en editing
profram 1ie HEXID: If you LCAD before you apply the above technique then
MXLD will cisappear along with the RLN statement ae soon as you POKE
1€509, If you +ry to LOAD after ycu've reeerved a space then the very

ret ol LCADIng will overwrite this space.

Fere then ie a step by step method of reserving a space for machine code
in 2 plece thet ie 1)editable, 2)SAVEable, and 3)unLISTable.

STUP CME, TCAD an aditing program such as HEYLD.

S TY0. AAd » new line ot the EFD of the program: 9999 REM followed by
© number of arhitrary characters. On the CID ECM you'll need three charac-
ters lesr then the number of bytee in the machine code routine, on the
new ROM yeu'll need five bytes less than the machine code, The best wey of
doing thir iz to f111 the REM statement with digits, and simply start
courting from 4 (CILD RCM) or 6 (MW RCM). Like this - for a fifteen byte
routine:

CLD RCM: 9999 REM 456789012345

NEW ROM: 9999 REM 6789012345

Of course 1t doeen't pctnally matter if you have too many characters, but
it is o waste of mpece if ycu reserve srea and then don't use it.

41

STEP THREF. Add the following lines anywhere in the procrem. I've pat them
at 9000, but it doeen't matter. If you use BON) then jurt remember to reed
8000 every time you see 9000 written on thie pere.

OLD ROM 9000 IET XaPEEK(16392 W 256uPRRK(1€393)

NEW ROM 9000 LET X=PEEK 1€396+2°EwFEEK 1F397

OLD RCK 9010 POKE X-(four more then the number of
charactera in the REM statement),-1

REW RCM 9010 FOKE X~(six more than the number of

characters in the REM statement),-1
BOTH 9020 STCP

If you counted up to fifteen in line 9999 (as above) then 9010 should be
FOKE X-16,-1, If you counted up to twenty then line 9010 ehould inatead
be POKE X~21,-1, and ao on. Remember though to start counting at four or
six though, as ebove.

% Run the program from line 9000, snd then delete 1lines 9000, 9010,

STEP FIVE, Replace all references to the machine-code~starting-address on
your editing program by the expreszion PEEK 16396+256»PFEK 1€397 minus the
number you counted up to in the REM statement, OLD ROM users should instead
use PEEK(16392)+256wFEEX(16393) minus the number you counted up to in the
REM statement.

You are now complete. The only thing you must not do ia type VNEW, eince
this will erase the machine code., Other than that you are in complete
command

REM_STATEMENTS

For the purposes of atoring machine code, OLD and NEW ROM REM statements are
completely different. Let's examine them one at a time. Pirat of all for the
014 ROMs

There are several important points about OLD ROM REM siatements. Most people
already kmov that a "blank" REM statement - that is a atatement conaisting
of the work REM and nothing else - has the effect of ensuring that the next
line is not executed. It is therefore the same as GOTO the-line-after-next,
and can be used in BASIC programs deliberately with this meaning.

The biggest limitation of an OLD ROM REM statement is the fact that you may
not store the byte 76 (hex) in the line, except in extremely limited cases,
which I shall explain. The reascn is that a character 76 is interpreted by
the ROM a8 an end of line marier. The two bytes immediately after such a
character will be interpreted as representing the line rumber of the next
BASIC program line, and the following byte will be the first character in
that line. Thus if the following data were POKEd into a REM statement in 1line
one the following would happens

DATA: 39 76 01 O1 P8 B4 D5
RESULTs

1REM T
257 LET { THEN
2 next line of program...

42

If you tried to RUN this program you would get a ayntax error in "line 257".
Typing RUN 2 would be uselees, bacause the program hes for line b
from top to bottom, and as soon as it hit the "line mumber” 257 it would
tnink to itself "ah - there obvicuasly isn't a line 2 in the program - 1I°'l1
have to RUN it from here instead.”™ The same applies to all GO TO's in the
program vhich have destinations between 2 and 257. You must only allow

76's in your data IP the next two bytes form a "line number™ less than the
next line number in the program, and IF you never try to execute this “new
line".

on the other hand - this treatment does offer one or two advantages. For
inatanoe, if you made your REM statement too long and you want to shorten
i1t, if your machine code data ends at address A just type

POKE A+2,2
POKE At1,0
POKE A,118

then aimply delete "line 2" by typing in it's line number. It doean't matter
if there is already a line numbered 2 in the program - typing the line number
slone will only delete the firat "line 2" in the program - all your excess
REM characters in other words,

Conversely, if you find you don't have enough charactera after the word REM
Just type in a line 2 consisting of a second REM statement full of arbitrary
charactera. In this way as scon as the "real® end of line marker is over-
wvriten line 2 will become part of line 1, with enough characters for whatever
you need,

Alas, the NEW ROM does not fit any of these descriptions. NEW ROM REMs are
quite, quite different.

The first, and most important differance, is that you can put character 76's
into the REN data and the machine won't notice. BUT if you do @0 be prepared
to be confused by the LISTing - even the ROM gots confused over it = but you
don't need to worry because even with supposed new-line markers in mid-line
the program will RUN quite amoothly, and will not interpret the remainder

of the line as a different line.

On the other hand, it's a little more difficult to extend the length of a
REM statement, If you vant to overrun into line two you'll have to do some
very clever POKEing first, but I'll explain how to get round that in a minute,
The obtvious way of making a line longer is simply to use EDIT and sdd more
oharacters. Unfortunately for us this is usually not a very wise thing to do.

If the data in the line does not contain a byte TR then by all means go ahead
8nd use EDIT - you are quite safe, and nothing will go wrong.

If the data in the line does contain a byte 7R then DO_NOT use EDIT. In the
lating, a byte 7E ia invisible, and the five bytes of data that follow
immediately after it will also be invisible, dut they are still there! If

on the other hand you use EDIT, all aix of these invisible bytes will simply
Vanish without a trace.

TE ia used by Sinclair to mean *This is a (floating point) number®. Whenever
Jou use a decimal number in a program listing the ROM will automatically
follow this number with a byte TE, followed by five more bytes which contain
® number itself in floating-point-binary-form. Both the byte TE and the
five bytes that follow will be invisible from the listing. This is what
Cuaes all the problems in editing REM statements. Now slthough I agree that
thia {p & very very efficient means of storing floating point numbers in
% program, it is also true that Sinclair Research could have used ANY byte

43

for this purpose - they didn't specifically have to use TE. It is of course
the purest of coincidences that TE happens to be one of the most commonly
used machine language inatructions of all.

The only practical means of adding more charactera to a REM statement
containing machine code on the NEW ROM is to let the data overrun into line
two, but there are problems even there, thanks to our kind friends at Sinclair
Research. You see the start of every line of program is preceeded by two
invisible bytes which store the length of the line, so that even if you
overwrite the end-of-line-marker, the ROM will still try to interpret the
second line from the same point. To get round this you have to actually

POKE these invisible bytes with different values. The following is a small
routine which will enable you to increase the length of a REM statement at
1line ons.

Step one i8 to insert a new line 2 to your BASIC program consiating of the
word REM followed by a number of arbitrary characters. Then, at ANY point
in the program insert the following five lines - (They will shortly be
deleted anyvay):

LET A=16515+PEEX 16511+256éwPEFK 16512
LET A~A+PEEX A+256wPEREK (A+1)-16511
POKE 16511,A-256uINP (A/256)

POKE 16512,INT (A/256)

STOP

Simply run this routine and line 2 will automatically be a part of line 1,
You can delete this routine now - ita job has been done., LIST line one -
you'll see that line two still looks quite separate, but try moving tha
cursor down - you'll find it skips over line two altogether. Try deleting
line 2 by typing in its line number - it won't work because now the computer
doesn't know that line 2 is there! Whatever the listing may look like, the
ROM will now ignore line 2 altogether, taking it to be part of line one.
You may now quite happily overwrite the end-of-line-marker at the end of
line one with no {11 effects.

Conversely, the following routine will shorten a REM statement by a minimum
of aix bytes. Y

LET A=the address of the last byte which you wish to preserve
in the REM atatement of line 1.

LET BwA-16511

LET C*PEEK 16511+256mPEEX 16512-B-4

POKE 16511,B-256%INT (B/256)

POKE 16512,INT (B/256)

POKE A+1,118

POKE A+2,0

POKE At3,2

POKE A+4,C-256mINT (C/256)

POKE A+S,INP (C/256)

STOP

Again you simply RUN the routine once, and then dslete it. Now LIST the
program and you'll find a new line 2 has appeared, Delete this by typing its
line number and your REM statement will mow be as short as you need it.

44

USING THE VARIABLES ARFA

Another place where machine code may be stored is in the variablea area.

To do this you must first of all reserve the space. To store a machine code
routine of n bytes (n is the length) OLD ROM users should type TIM 0(n/2),
and NEW ROM users should type DIM Of(n). You may now write your machine
code.

On the OLD ROM the starting address will be PEEK(16392)4256%PEEK(16393)42,
provided the array O is the first item in the variables area. Thie will be

the case if the DIM was the first DIM, FOR, INPUT, or LET statement executed
since the last time you used RUN or CLEAR. If you DIMensioned O as a direct
command you should remember to type CLEAR firat. You can say in your

program something along the lines of LET A-mnc(lsssz)nsé-pm(ls)%)fz

right at the very start, and this value will not change throughout the program.

On the NEW ROM the starting address is PEEK 16400+2S6mFEEK 1640146, provided
the character array (# ia the first item in the variables area. This will be
true if the DIM was the firast DIM, FOR, INPUT, or LET statement executed
since the last time you used RUN or CLEAR. You can dimension Off as a direct
command, but you wuat remember to type CLEAR first. There is however one

big difference between the OLD and NEW ROMSs here. On the NEW ROM the value
PEEK 16400+256%PEEK 16401+6 will change during the running of your program
if you have less than 31K plugged in, If you have more than 3}X then you
don't need to worry, but othervise you must recalculate the expression every
time you wish to acceas the machine code.

One last important point is that having stored machine-code in the variables
srea, any future use of either RUN or CLEAR will completely wipe it all out,
never to be seen again., For this reason I do not advise using it for machine
code storage. It WILL SAVE and RE~LOAD, again provided you never type RUN or
CLEAR.

45

‘ }/I/I///////’/”- I ¢
Y'Y Y P . \ .

JUMP

(K 3N NN ¥ K J

Wzzz2Z8ll

. i \\\\'\ﬁf
2l

N

THE _STACK

There ia an area of RAM that js eet aside for storing various pieces of
information to help the machine know wvhat it's doing. It works like this:

The vord “stack” in somethins that the compuler pecple have got straight
out of a dictionary. It meana exsctly what ie eounds like! Imagine a stack
of cardboard boxes. Fach box is really a memory location, so each has an
address, but if you want to know what's in spy particular csrdboard box
then the only nne you can eacily look at ia the top one. If you tried to
ull one of the boxes from momewvhere in the middle then all the boxea
above it would fall down. Conversely, to add a new box to the stack, the
only place you can easily put it is at the top.

The memory locationa in the stack sre just like that. You cen put thinge

on top of it, but ONLY at the top, and you can take things FROM THE TOP,
There are two apecial words that go with the stack - one word which means
“stacking & new number onto the top", and a mecond word that means “removing
® number from the top”™. The firat word is PUSH, and the second word is

TOP, ro if you PUSH the number five onto the stack, and then you PUSH the
number one-thousand, and then you PUSH say 1€426, the first number

you can POP is 16426, becaure thie number is at the top einoe It wae put
there last. The next number to be POPped will be 1000, and then five.

The atack is atored very very high in the address, so tnat there is less
chance of programn “colliding™ with the stack as either one or the other
is built up. In the 0ld ROM the bottem of the stsck is at the very top of
memory - 17407 for 1K, 20479 for 4K, and 32767 for 16X. In the new ROM the
whole atack movcs around - the bottom of the atack ia at an address atored
in one of the eystem veriables - EAR-8P - to be found at 16386 and 1€387.
The stack ia actuslly very peculiar, because it's UPSIDE DOWN. The BOTTOM
of the stack is at the T0P of available memory, and the TOP of the etaock
is BFIOW it! It turns out to be moxe efficiont this vay, It's not sctually
a deliberate plot to confuse the whole human race so that the world may

be taken over by ZX computers, even if it does at times sesm like it. 8o
Temember - the etack, or the MACHINE STACK ss it's sometimes celled, is
1ike a stack of cardboaxd boxes piled up on & shop floor, except that in
a darins feat of defiance of Newton's lawve this steck inatead decides to
reside on the ceiling end build up downwarde, The top - the only part you
can eaesily get at - ie lower down thsn thea bottoml

The stack ia so important to the computer that a special RECISTER is set
aside just to store the ponition of the TOP of the atack. (The part with
the lowest address - the part we oan get to.) That register is called 8P,
which stande for STACK FOINTER. It is actually a regieter-PAIK, becausn
it can mtore two separate bytes, but unlike the other register-paire BC,
IB, and HL, we CANNOT treat the two halves independently - they Jjust won't
separate.

Here's how the instructions PUSH and POP work. Suppose HL conteined a value
12345. This means that H contains a value of INT(12345/256), or 48, amd

L containa & value of 12345-256wINT(12345/256), or 57. Now the instruction
PUSH HL would store the number 12345 at the top of the mtack. It would do
it by first of ell stacking the RIGH part, and then stacking the LOW part.
It would slso slter the value of SP accordingly since two more bytes have
been edded to the atack, and the position of the top will therefore have
woved (down) by two addreases.

It is unfortunately not posaible to PUSR ningle registera onto the steck,
you may only PUSH register-pairs, mo BC may be FUSHed but B on ito own may
uot. It is vorth noting Lhat the instruction PI'SH NC will not in eny way

slter the value of BC, it will eimply copy it without changing it. Thie
of course goes for all P lmtmedom.

48

PUSE can be thought of in BASIC ss a sequence of three statements:

PUSH HL POKE SP-1,H
POKE SP-2,L
LET SP*8P-2

POP of course works the other way round. FOP HL will first of all remove
L from the stack, and will then remove H. SP will be changed, since the
top of the stack will have moved.

FCP HL LET L-mzsr)
LET H-PEEX(SP+1)
LET SP-SP+2

Verify by using the BASIC equivalents given, that PUSH HL followed by
POP DE is the same thing as LD D,B followed by LD E,L.

FUSE

Here are the codes for the imstruction PUSH. Ome of them will require
a small degree of explanation.

PUSH AF F5
PUSH BC c5
PUSH IR %
PUSH HL B

The register-pair AF, which cannot normally be used in this way, is made
up of smaller eingle regieters A end F, in the same way that BC is composed
of B and C. A is the register which we've been using throughout the book

8o far, but P ia something completely different. The F atands for FLAGS,
and is eo called becsuse it stores the value of all the FLAGS used. (A FLAG
is a memory that can only store zero or one). One of these FLAGS we've
elready seen - the OARRY flag. The F register has the oapability to store
eight flage altogether, but im fact only six of them are used. We shall

see what theae are, and how to wse them, later on.

FoP

The codes for the POP inatruction are very aimilar to the codea for PUSH.
They ares

FOP AF Fl
POP BC cl
POP IB n
FOP HL K]

One of the major uses of PUSH AF and POP AF is simply to put the value of
A onto the stack. The fact that F has been stacked with it is irrelevant.
FUSH AP will conveniently astore the value of A until {t's needed again,
&t which point its value may be recovered by the use of POP AP. This can
be useful if you have to use the A register to perform calculations of
Some kind that couldn't be performed by any other register, but when the
Value of A will still be needed later on in the program.

Por example, to 8dd twenty~five to the value of B without altering the
Value of any other register:

» PUSH AF
78 LD A,B
c619 ADD 4,25d
47 LD B,A
n FOP AF

49

Why will only B and no other rsgister be altered? (Not even the CARRY
flag!) See if you can work out precisely what the above routine is doing,
before you read on,

ALTERING SP

We c&n actually use SP in much the same way that we use DE and BC. We can
add and sudtract it, and we can loed it. The hex codes are

1D SP,HL by’
1D SP,mn 31
LD SP'(N) ED7B
LD (mq),SP EBD73
AID HL,SP 39
ADC HL,SP ED7A
SEC HL,SP 72
INC 8P 33
DEC SP 3B

This is very powerful, and very useful. Suppose you wanted to exchange the
values of D and E without altering anything elae. The following routine
will do juat that

3 PUSH DE
5 PUSH DE
33 INC SP
byl POP DE
33 INC SP

The final instruction INC SP was necessary in order to restore the Stack
Pointer to its original value, If this is not done you may cause a pretty
nasty crash,

SP 18 not the only very specialised register in use, There is another two
byte register called PC, or PROGRAM COUNTER. Its job is to remember
vhexeabouts we are in the program. Every time it has to execute an instructien
it will take a look et what FC says. If it says 30004 then it will execute
the instruction at loocation 30004, and then it will inorxement the value
of PC by the number of bytes in thet instruction, @o that NEXT time round
it will be looking at the next instruction in sequence., For example, if
30004 oontained the instruction LD A,B then this would be carried cut

and FC would be increased to 30005. If the instruction at 30005 was LD A,2
then once this was carried out PC would be increased by TWO, since LD A,2
is a TWO-BYTE instruction. PC would then be reading 30007 where the next
instruction begins.

If you alter the value of PC then the effeot is like a BASIC GO TO. The
only difference is that machine code does not use line numbers, so you
have to GO TO the right ADIRESS rather that the right line number. The
machine language instruction that does this job is JP, which of course is
short for JUMP. JP 30000 means GO TO address 30000 and continue executing
this machine code program from there. Of course all this instruction
REALLY does is to load the number 30000 into register PC (but without
inorementing it at the end of the instruotion), so that it thinks 30000
is the next addrees in the program. It is far more useful for us human
beings to think of it as kind of GO TO though, because that's what we're
used to.

Be caxeful with JP though. If you create an infinite loop in machine code
then TOUCH! You're astuck with it, and what's more you can never break
out unless you actually switch the machine off at the meins. Some other
computars will let you break out of machine code, but the ZX81 will not,
neither will the ZX80. An example of an infinite loep would be

50

7 30000 LD (HL),A
23 30001 INC HL
€33075 30002 JP 30000

' tten the actusl addresses in the middle column. Usually this isu't
:o;:.w:lnd important lines are marked with LAEELS, or words which tell us
vhich lines do what. These LABELS do not appear in the hex, amd wa only
in fact write them for our own convenience. If for instance we decided to
¢all the first line START then our pretty bed program could be written

17 SPART LD (HL),A
23 IN HL
€33075 JP START

ther instuction similer to JP, called JR or JUMP RELATIVE.
}t‘:n:: ;::p forward a given number of bytes. In many ways it is better
than JP because it is only two bytes long instead of three, and because
a vhole reutine may be RELOCATED without changing JP destinations all over
the place. JR O has no effect whatsoever, and the next instructiom will
be executed in sequence, however JR 1 will cause the next imstruction
(sssuming it to be a single byte imstruction) te be skipped. To skip
over a two byte inatruction, or two single-byte imstructions, you will
need to uee JR 2.

It is aleo possible to jump backwarde using JR, since there is a convention
that any hex number greater than TF will be treated as a negative mumber,
obtained by subtracting 256 from the number it would normelly represent.
To make 1ife easmier I have included a second table of hexadecimal numbers,
only this time usimg the negative sign convention.

o 1 2 3 4 5 [3 7 8 9 A 3 c D E

¥

o W B 0O e W

-128 -127 =126 -125 -124 -123 =122 -121 =120 -119 =118 =117 -116 =115 -114
-112 =111 =110 -109 =108 -107 =106 =105 ~104 ~103 =102 -101 =100 =99 =98
-96 -95 -94 -93 -92 -91 -90 -89 -88 -87 -86 -85 -84 =83 B2
-80 =79 ~78 =77 =76 =15 =74 =T3 =72 =T1 =70 —69 -68 -67 =66
-64 -63 <62 -61 ~60 =59 =58 =57 =56 =55 =54 =53 =%2 =51 =50
48 -47 46 45 -44 -43 -42 -41 -40 -39 =38 =37 -36 -35 =34
-32 231 =30 -29 -28 <27 -26 -25 -24 23 22 -21 -20 -19 -18
<16 15 14 <13 <12 <11 -10 =9 =B -7 -6 <5 <=4 -3 <2

~113
-97
-81
-65

Here the number -5 is represented im hex by FB, and so it is therefore

possible to use the instruction JR =5, but note that because of this convention

ve ars unable to say JR 129 for instances, because 129 in hex is 81, which
would here be taken to mean -127, and would be a jump backwards. The range
ve are limited to is therefore from =128 to 127.

JR O, a8 we have said, does abesolutely nothimg, It will continue with the
next instruction. It is important to remember that all relative jumps are
counted from the NEXT imstructiom. JR O means execute the NEXT PLUS ZERO
instruction, JR 1 means execute the NEXT FLUS OKE imetructien. Consequently

if we were to say JR -2 then you must count backwards for two bytes, atarting

&t gero with the NEXT inatruction. You will fimd that two bytea leads you
to exactly the instruction we have just executed - the instructien JR -2.
JR =2 1a therefore an infinate loop, and is not a recommended instructiom
to use in a program.

51

The Tather silly (infinite loop) program a couple of pagee back can now be
rewritten in one less byte using JR inatead of JP,

7 START LD (HL),A
3] IX HL
18FC JR -4 or JR START

You have probably by mow reglised that JP snd JR are more or lees useless
on their own, in the same way that the BASIC statement GOTO would be uselees
if it weren't for IF/THEW statements and GOTO N. We need someé kind of a
CONDITIORAL jump, ao tnat we can say IF some condition is true THEN jump

10 a nev address py, otherwise we exe virtually certain to produce an
infinite loop. Although machine language docen't have quite the same kind
of flexidbility as an IF/THEN statement, there are four conditioms we can
check for using JR, and eight conditions we can oheck for using JP. These
are:

JR e 18 JUMP RELATIVE by e bytes.

JRZe 28 IF the last result caloulated was zero
then JUMP RELATIVE by e bytes.

JRN2e 20 IP the last result calculated was non-zexo
then JUMP RELATIVE by e bytes.

JRCe 38 IP CARRY*l THEN JUMP RELATIVE by e bytes.

JRNRCe 30 IP CARRY=0O THEN JUMP RELATIVE by e bytes.

and for JP:

JP | c3 JUMP to address pq.

JPZp CA IF the last reault calculated was zero
THER JUMP to yq.

JP NZ pq C2 IF the laat result calculated was nom-zero
THEN JUMP to pq.

JFECpqg DA IP CARRY=1 THEN JUMP to pq.

JP RC pq D2 IF CARRY"0 THEN JUMP to pq.

JPFEm EA see below,

JP PO pq E2 see below,

JPMp FA IF the last result calculated was negative
(Minue) THEN JUMP te pq.

JPPp F2 IF the last result calculated was positive

(Plus) THEN JUMP to pq.

Nov although this is a far cry from IF A¥ “HELLC® THEN PRINT "GOCDBYR"
as you're used to, you'll soon see that even this horrendous task may be
evaluated in machine code. First though I think I ought to explain about
the instructions JP FE end JP PO. The P actuslly stande for PARITY, nnd
the B end O mean Even and 0dd. what we are doing is testing one of the
flage - a flag called P/V. It's not all that difficult to understand -
it worke like this.

P/V stands for Parity/Overflow. V stande for Overflow because O is too
confusing - 1t could mean zero or it ecculd mean 0dd (as in JP PO), g0 in
their wisdom, and expsrtise at epelling, the computing bods decided to
call it V. The P/V fleg is a rather overworked little beast beceuse it
does two johs at once. The first job is to check the PARITY of the lost
result calculated. Thia means you simply count the number of 1's (cr N's)
in the binary form of the last result. (The binary form is always written
to cight digite even if this means adding reveral leading zeroes,) If
the number of 1'e is ODD then the Parity is ODD. If the number of 1's

is EVEN then the parity ia EVEN.

52

The eecond jor this ia; has to do is %o check for en overflow., If we
regard numhers from 0O to T as pooitive, end (rem 8N 1o I* =& re;ative
(g€ Aeserihed in the secticr on JR) Then ar cverflow happens if the
n=izn® ia chancer accidently. For example 41 (positive) plus 41 (peaitive)
eguals 82 (which i= nepetive), This is 2n overflow, but note this ie

NOT a CAlRY. JF PE in this case means JOMP if there has been an overflow,

Ve

and JF FC meanc JUMF if there hae not been an overtlow.

The various tests, if combined with other instructions properly, can really
check for any situation conceivable. In fact there's only one other kind

of instruction you need in order to make JP and JR as poverful as IF/THEN/
GOTO - that instruction is CP, or COMPARE.

CP will compare the regieter A with any other register, or with any constant
number. It will do thie by working out whet would happen if that register
or number were to be subtracted from A. It will not alter the value of any
of the regieters, but it will alter all of the FLAGS. The conditional JP
and JR instructions work by checking the value of the flags. Apart irom

tne cerry flag, some of the other flags are the sign flag, which stores

s one if the last oaloulation wes negetive, and a zero if the last calculation
was positive; the zero flag, vwhich stores a one if the result of the last
calculation was zero, asmd a gzero otherwise; and the parity flag, which
stores a one for parity-even, and & zero for parity-odd. Although this

may sound complicated you don't actuslly remember any of it, aa long as

you know how to use CP.

If A=3 THEY COTC pq ir quite easy to represent in machine code., It is CP B
followed by JR 2,e. CP B will compere B with A (CP always compares with 4,
&o that CF A is mennineleaa) which is does by working out A-B. The result
isn't stored in any of the registers, 8o A and B both remain unchanged. The
next inetruction JR Z,e, will only jump if the result A-B is zero - in other
vorde if A equals B,

IF A¢B THEN GOTO pg may be achieved in machine code in two ways. The first
instruction is CP B which will compare B with A by performing A-B. Now if

A is less than B then A-B will be negative, and so you could well use

JP M pq, but you could also do it in amother way which will allow you to
use JR instead of JP, since if A ia positive, and A-B is negative, then
tnere will be a carry, and so you may use the instruotion JR C e.

Of oourse this will not work if A wes "negative™ (ie in the range B0-FF)
to start with unless subtracting B caused another overflow by going through
00, This could not happen unless B was in the range 80-FF as well.

CALLING.,,

Even in machine code we can have subroutines. GOSUB the routine starting

at address pq is CALL pq. RETURN is RET. This particular instruction should
look very familiar, since it is the very same RET that we've been using to
get back to BASIC at the end of & routine., This is because every USR routine
is really a SUBROUTINE, even though we coneider it as a program in its own
right. Unfortunately there's no such thing as & CALL RELATIVE instruction,
as there is with JUMP, so CALL must always be a three byte instruction. In
exactly the same wvay as with JP we can impose IF/THER conditione, which
vork in precisely the same way and are written with the mame letters to
define the conditions. These are:

CALL W oD REP ¢y
CALL 2 pq cc RET 2 c8
CALL NZ pq c4 RET M2 co
CALL C pq 0 RET C 8

53

e D4 RET NC 0
ou 75 B¢ RET PE B
CALL PO E RET PO ®
CALL M ¥C RET M ¥8
CALL P ¥ BET P ¥

A8 you may or may mot have guessed, instructions like BET Z (return if wzerc)
oan also be used to end s machine code routine, ie IP RESULT 0 THEN REPurn
to BASIC.

It ie very important howsver that the value of SP is not altered during

a subroutine, eince the instructions CALL and RET both use the stack.
CALL vorks by PUSHing wvhat would have been the next address to be executed
onto the stack, end RET works by POPping the firet item on the stack.
Thereafter both of these instructions asot exactly like JP. Therefore it

is possible to alter the RET addrees, should you need to, by POPping the
firat item on the stack (the previous RET addrees) and then PUSHing a

nev address. For example, to change the FET address to 20000 you could
use the sequence

El FOP HL
21204 LD HL,2000
ES PUSH HL

Another useful trick is to store the value of the stack pointer somevhe
at the start of a subroutine, and then retrieve it at o.? end. On th‘:ln:;
ROM a good place to stors this value is the address 16507 because neither
this nor 16508 are used at all by the ROM - it is the two "spare” bytes
between the system variablea and the program, On the 0ld ROM you don't
have this spare space, but you can overwrite some of the other systems
warisblea, for example the frame ccunter at address 16414. The advantage

of doing this is that you can PUSH and POP to your heart's tent
8till be sure of a safe RETurn. v content and

At the start of a subroutipe:

ED737B40 LD (1650
and at the end of a subroutine: (265072
EDTR7B40 LD 8P, (16507)
c9 RET
SES

To make aure you have understood using the stack, and conditional jumps,
write a program which will PUSH every number between one and fifty onto
the stack (using PUSH AF) and then somehow manage to successfully return
to BASIC. (HINT: CP 32 (Compare with 32 (hex) (50 decimal)) ies quite a
useful inatruction here.

You'll need to know the verious codes for CP. These are as follows:

CP A 3F CPE B

CP B B8 CP H): 4

cr ¢ B9 cPL BD

CP D BA CP (AL) EE
CP n FEnn

In the next chapter we'll begin loading a program which ie designed to
play a game of draughts. Now don't worry if this sounds rather complicated-
I did say we'd begin loading it. I'm afraid you won't get the whole
program until you've nearly completed the whole book, so keep a ceasette
handy reserved just for this program, and you can reSAVE it at each new
stage. You'll need et lerst AK for this.

54

R R Y

w %;/E_—\—_ ——
N

=3

2%
'.ﬂllllln;
mEp=>

3!

Wi

]

AN AN NURNNNNNNNRNNNRNRY ’ 0O

K\}}\\.\}&\\b}\\.\\.\.\.\\.\)}.\i

3 N\
PRINTING THINGSIY N
NXTO THE SCREEN \ \

R R e H Ry

NN S

N *\\\ NN \\\ NN

BALONAN A.\&\\‘_‘E

D

/——rf——'/
-17/4/_////
_7//A p
Y.

Y

O

(T =

/,
Y=
%

%f

K

Z

/

'l
&7

PRI R

[N}
]

|
Iy

AUGHTS

In order to write a program ss extensive as draughta, we'll necd a fairly
powerful BASIC program in order Lo help us load it. The following is a second
verslon of HFXLD - called HEXLD2 - vhich has a couple of improvements over Its
predecesaor, One such improvement is the ability to input etrings of characters
such ae "To be or not to be" which will then be incorporated in the machine
code one character at a time, To achieve this you must input ";TO BE OR NOT TO
BEI™ =« that i{s, the text must be surrounded by memicolons - this ia very
Important.

HEXLD2 1iats ss followe. OLD ROM usera should use the veraion on the left, and
NFN ROM users the version on the right.

OLD ROM
10 ILINT "WHITE TO %’1’%57 "WRITK TO "
20 18P AY 20 INPUT Af
30 MIrT g 0 I
40 GCSUR 200 20 mlr.: ;ﬁo
50 P:INT 0 PRINT
S fo g
" ABT"® THEN INFUT 0 IF Ag="»
80 IF Af*"S" THEN STOP ;o 1F u.-s.f.lﬂnl” T A
90 IF COIR(AB)=215 TIEN GUTO 300 90 IF COIR Af=25 'mm G010 300
100 FHINT ClD ‘(le'-i N 100 PHINT AS(10 2);"tvo apaces®;
CllB(CODr TLA(ME)))
"tvo apacea™
110 POIK X,16CODE(ASHCONP(TLA(AR))+36 110 FORE X,16wCODE ASCOIE AE(2)-476
120 LET XX+l 120 LET X-Xrl
130 LT szrvﬂ('rwu!)) 130 1ET Ag-AB(3 T0)
140 070 7 140 GoTO 70
200 1ET x-o 200 LET X-4096wCODE A$+256nCODE AS(2)
210 FOR 1) T¢ 4 +16nCODE AS(3)+CODE AS(4)
220 LET X=1€mX+CODR(Af)-28 -1?2332
230 LFT Af=TIZ(A8) 210 KETIRN
240 MFXT 1
2%0 RETIKN
300 LET +f=TIE(AR) 300 LFT Ag=A(2 TC)
310 FRINT *.";CHIZ(COTR(AR))s 310 FRINT "."jAf(1);"4vo spaces®)
“twvo apaces";
320 FOXE X,CUDF{Ag) 320 FOKE X,COIR Af
330 IF CCIF(Af)~226 THEN POXE X,118 330 IV CODE Af=216 THEN POXE X,118
340 LET ABTLE(AR) 340 LIT Agea¥(2 10)
350 LEP X-Xel 350 I¥T X-X+1
360 IF MOT fOTE(AS)=?15 THEN GOTO 310 360 IF CODR Mves THEN COTO 310
370 LET AR=TIA(AE) 370 LET Af=Ag(2 TO)
180 GOTO 70 530 GOTO 90

This proprem §n baeicly the mame es HEXLD except for two femtures. Firstly
you are required to input the sterting addresa (in hexadecimal) at which
the mnchine code is to be loeded, and secondly it will allow you to input
strinys of data vaing their charactier codes, rather than hex - this is
what the routine starting at line 300 1a for, If you input “CDOBOBCY™ it
vill be interpreted an CALL 0808 followed by RET - this is exactly the
same ap before - however f you inntead input LN graphic A graphic A
TANg® it will meen exactly the rame thing. If you compare character codes
with hexadecimal by lonking {t up in the manual you'll find the hex for
LN is CD, hex for graphic A in OR, and hex for TAN {8 (9. The aemicolan
is used to trll the program where the data aterts snd ends.

SUBROUTINES WITH D,

Let's look at some uaes for this. Perhaps the moet useful subroutine we
could imngine would be one which prints a atring of characters to the
rereen, There ie already a subroutine in the RCM which will print a
=ingle character. Try this program. lLoad it tc address 4E0O. ('f you only
nave 1K you'll have to find mome nther suitable address).

D FoN™ e Row
CTEOO START CALL PRPCS (OLD ROM only)

3E94 3897 LD A,inverse asterisk

€T2007 Ccposos CALL PRINT

342540 LD A,(S.POSN))

3D EC A - (CLD HOM CNLY)
c8 RET 2

1671 1879 JR START

You'll diacover upon running it that the screen fills up with inverse
asterisks, and that it fills up very, very fast, (Much faster than PRINT
"inverse asterisk"/RUN). The ROM subroutine PRINT will place tha character
vhose code is stored in the A regiater at the current PRINT position on the
screen., In the new ROM, locating the print position is automatic, but in the
old ROM you have to call up a completely different aubroutine - PRPOS (Print
Position) = firat, in order that the second subroutine, PRINT, knows where to
place the image on the screen. FRPOS wipes out the value of the A regiater,
but PRINT does not. Note that OLD-ROM=~PRINT, and NEW-ROM-FRINT, work by two
completely different methode, even though wae are using them in precisely the
same way, except that for the (LD ROM we have to check for end-of-screen.

1t 18 in fact possible to put this entire program into e il statement.
NEW HCM users with only 1K might like to try clearing the machine with
NEW and then typing line 1 REM Y inver=e asterisk LN graphic A graphic A
/ RAND (You'll need to type THFN RAND and delete the word THEN to get the
word RAND in position) Thie is precisely the above prosram, but entered
direct from the keyboard instead of loaded via a separate program, Now the
command RAND USR 16514 will almost instantly fill the screen! Shock -
Horror - A full screen in 1XK!!?

What we want though is a subroutine which can print any message, from
"YES" to "OR WHAT A BEAUTIFUL MURNING™. Suppose such & subroutine exists
and it's called SPRIRT (String Print) We want to be sble to use &n inst-
ruction ecmethin; along tne lines of CALL SPRINT WITH ®OH WHAT A BEAUTIFUL
MORNING®™. Here's how it will works

cp2eee CALL SFRINT
2D2A313134 DEFM HELLO
FF DEFB FF

Here DEFM means Define Message. It's not actually a machine language
instruction, but is used to specify deta within a progrem. If you look

at the hex equivalent you'll see that 2D is hexadecimal for the character
code of H, 2A for E, 31 for L and 34 for 0. TEFB ie also data ~ it means
define byte. We could have put IEFB C9 and it would nave meant the byte
(9. Here we are using it to specify the end of the data to be used by
SPRINT. We rust ensure, however, that the machine does not try to execute
these bytes, since in machine languaze terms they don't make a great deal
of aense, Let's take a look at how we could go about writing such a
subrcutine as STRINT which at the «rre time ensuree thst we don't iry

to execute the data (ie the word "HELLO" and the byte FF)

You may remember from the last chapter that CALL weorks by PUSHing the
return addresc onto the stack and then jumping to the required addrers.
KFT worke aimilarly - it PGPS an address from the stack and then jumpe
to it. Therefore if the word "AFLIO" immediately follows a CALL instruc-
tion then the address at the top of the stack will be the addrers of the
first character of data ~ the "H" - we ocar obitain this witn the single

57

instruction POP HL. If ve then increment AL by one and PUSH it back onto
the stack then the offect of the next RETURN will be to jump back to the
NEXT address in line - the "E". We can test for the end of the data by

looking for the byte FF (vhich is not a printable character). Follow
this sudbroutine through.

Rn % SPRIRT POP HL

T] LD A,(HL)
23 23 INC HL

ES BS PUSH HL
FEFF FEFF CP FP

cs cs RET 2

F5 PUSH AP

CALL mros} OLD ROM ONLY

Fl POP AP
CD2007 [0 471] CALL FRINT
18EF 18F4 JR SFRINT

The firat four lines are designed to look at the charaoter stored at the
current return addrese and then increment the return eddress. The next two
lines will only return from the subroutine if the byte FF has been found.
Note that CP FF will compare A with FF, not HL which was the last thing
referred to. CP will always compare A vith something = in this case the
hex value FF. The RET' instruction (actually a REP Z or return if zero, but
it vorks in precimely the same way) will, if you examine the listing
olosely enough, return you to the byte AFTER the FP, not to the FF itmelf.
Finally, if FF has not yet been found, the subroutine PRINT will be called
and the single oharacter now in the A register will be printed to the

soreen. The whole routine will then be repeated over and over again until
the end of the meseage iz found.

Enter the program HEXLD? to enadle you to load machine code. Add an
additional line to it = line one - which should be a REM statement with
fifty axbitrary characters after the word REM. OLD ROM users must ensure
that this line is never listed, LIST 9999 followed by LIST 2 will ensure
thie. Now RUN the program. The messsge WRITE TO will greet you. Input
"402B" for the OLD ROM, or "4082" for the NEW ROM. This is the addrees,
in HEX, of the firet character after the word REM. When promted type in
the following - (here / means newline) - E1/7E/23/ES/FEFF/C8/ (014 ROM
usera only should type F5/CIR006/F1) CD2007 or CDOBO8/18EF or 18F4/
CD2B40 or CD8240/;0H WHAT A EEAUTIFUL MORNING3/FF/C3. The last four linea
wers CALL SFRINT (Notice how the two bytes of the addresa have been
switched around), IEFM OH WHAT A BEAUTIFUL MORNING, DEFB FF, and RET.

Now do you see the purpose of the BASIC routine in HEXLD? which begina at
line 300. Imagine how tedioua it would have been to have had to type in
342D003C2D263900... and a0 on instead of jOH WHAT A BEAUTIFUL MORNING; It
has exactly the saeme effect. Now type in as a direct command RANDOMISE USR
(16444) (OLD ROM) or RAND USR 16526 (NEW ROM) and vhat happens?

We shall uss thia routine to print a draughts board for us. You'll need
at least 4K to load this program, but once loaded it will quite heppily
£it and Tun in 1K. If you only have 1K altogether it might be an idea ta
try and borrow some memory from somewhere, end then give it back only once
you've got the whole of draughts in = but be warned - the listing is
spread very thinly throughout the whole of the book.

I1f you take a look at line 330 of REXLD? you'll see that every time you
input a double-asterisk (mm) it will automatiocally be changed into a newline.
This is a point of convenience. We can input a newline if we want, by just
deleting the quote marks at the input prompt and instead typing CHRE(118),
but it is far simpler, and far more convenient, to only have to type shift-H.
If of course you ever need two asterisks in a row you can always type a
single asterisk twice.

The next machine code program forms the very firat part of IRAUCHTS. It is
the routine which enables us to print the playing board, For the OLD ROM we
shall begin loading this program such that the firat address used is 4C04.
Por the NEW ROM the firet addrees will be 4C09. NEW ROM users should remember
(or write down) the sequence of BASIC commands

POKE 16389,76
VEW

which should be typed in BEFORE HEXLD? is entersd. Now enter the following
machine code. WRITE TO 4C0O4 (OLD) or 4C03 (NEW).

48 SPRINT POP HL Inorement the return

TR LD A,(BL) address,

23 ING HL

ES PUSH AL

FEFP CP FFP Return if no more text.

c8 RET 2

F5 PUSH AF

CEBO006 CALL PRPOS) OLD ROM ONLY

1 FOP AP

CD2007/CDO8O8 CALL PRINT Print one character of

18EF/18F4 JR SPRINT the text at a time.

€DO044C/CD0%4C CALL SFPRINT Print the draughts
board,

O01D1ELF2021222124 76 TEFY 12345678 Date for

1DOOBCOOBCOORCOOBCID76 lWwuwl the SPRINT

1EBCOOBCOOBCOOBCOO1ETE WWWY2 subroutine.

1FOOBCOOBCOOBCOOBCIFT6 SNYNNS

2080008000800080002076 4 ___4

2100800080008000802176 e

22AT00ATO0ATO0AT002276 6BEBB6

2300ATOOATOOATOOAT2376 7TBBBpR

24A700A7004700470024 76 e¥ BB

gglmmzoe:z?esms 2343678

76

76

0000000000000000000000000000

¥F Bnd of data.

c9 Return to Basic.

The command RAND USR 19477 (The address of the CALL SPRINT instruction)
will produce a complete draughts board picture on your screen elmoat
instantly, Try it.

There is now one thing left to rectify - that is, we cannot as yet SAVE

machine code that is stored high in memory, We shall now lsarn how to do
8o, Add the following lines:

OLD ROM NEW RO¥

n4c00 TO * 500 PHINT "4CON TC 3
3‘1’3 ;R;llg A; ' 910 INPUT A
£20 PRINT A% 620 PEINT A8
530 GOSUB 200 520 GOSUR 200
540 LET Y=(X-19454)/2 540 LET Yex-19456
550 DIM O(Y) S<0 oIM OA(Y)
560 FCR X=1 T0 Y S60 FCH X1 TC Y .
570 LET AsPEEK(19455 +2xX) 570 LET CH(X)=C4R# PEEK (1945€+X)

573 IF A>127 THEN LET A«A~?5€
576 LET O(X)=PEEK (19454+2xX)+2€ma

580 NEXT X
233)sﬂ:\g X 590 SAVE "inverse npacen’
€00 FCR X=1 TC Y 600 FOR X+1 1C Y
610 POKE 19454+2ux.o(x2 ¢ £10 FCXE 194564X,CCDE Og(x)
A 2uX,0(X)/?
ro py xRS 620 BT X
630 CLEAR 630 CIEAR
640 STCP €40 STCP

Now, to SAVE your machine code type RUN 500, At thie stape enter 4CAO.
It doesn't actually matter which address you give it, sc long as this
address is larger than the last address of machine code, (Sc far the lzst
> 6).
address hoppens to be 4C3 'l)‘he program will then SAVE sutomatically (line
590). Incidently if you're wondering why I've put SAVE "inverse space"
in the NEW ROM version try instead using SAVE "space" and see what happens
to the line, When you LOAD the program back, OLD ROM ucers will need to
type GOTO 600 before doins anything else. NEW ROM users won't because the
program will continve automatically. Here'a now the program worke: An
array of sufficient eize to hold all the bytes to be saved is dimensioned
in line 550, after which the machine code is copied into this array and
SAVED. The routine at 600 does the reverse - it copies the machine code
from the array up to the required aidress.

AND....

We leave draughts for the moment in order to introduce a few more machine
language instructione which we'll need in order to continue with the progrum,
The first of these is AND. Unfortunately for sanity the word AND doesn't
wean quite the same thing as it does in BASIC. We're all used to seeing
expresaions like IF X21 AND Yel THEN... In machine code however we use the
word in a completely different context. For example AND B is a complete
machine code instruction. So is AND (HL) or AND FO, In order to see how

it worke it is neceesary to take e brief look at numbers in ELNARY.

BINARY ia yet another form of counting - like decimal or hex. Decimal mekes
use of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. nex uses A, B, C, D,

E end F as well. Binary on the hané uses only the digits O end 1. Converting
from hex to binary is very simple - much simpler than changing from

decimal to hex - simply convert each digit one at a time from this table:

FMM EI.__H‘ARI XA BINARY

HEXADECIMAL

0000 8 1000
! o001 9 1001
2 co1o I 1010
H ~o1 B 1011
4 0100 c 1o
5 0101 5 N
€ 0110 E 1m0

o111 F e

Therefore C9 (hex) ic the same as 11001001 (binary). Can you see how the
binary splits up into two halves, 1100 (C) and 1001 (9)? The same ism true
of ell numbers. What is 1E (hex) in binary? What is 01100111 in hex? Now
aee if you can work out what 123 (decimal) is in binary. (Hint: convert
to hex first)

AND aseigns a new value to the A register, This new value is determined by
a) the previous value of the A register, snd b) the value written after the
word AXD in the inatruction. Suppose A contains SA, and B contains 1F, and
the computer then comes across the instruction AND B, Here's how the new
value ia calculated:
A 01011010
B 00011111
new value 00011010
as you can see, the digits of the new value
are zerc if there is a zerc in the corresponding position of either or
both of the old values, and a one if both the 0ld valuea contained a one
in that position. To make this clear just look at the colummns = you'll see
thet in all cases two zerces lead to a zero, two ones lead to a one, and
8 mixturs of zeroces and ones lead to a serc. The function is called AND
since e one is only obtained if A AND B have a corresponding cne. It may
appear to you to be rather a uselesa function, but it is in fact one of
the most widely used machine language instructions there is. Some examples
of its use are:
AND A leaves A unchanged, but resets the carry flsg.
AND TP if A contains a printable character, prevents
1t from being inverse < both of these examples we shall make use of,

Uk is pretty similar. The rules are that two serce: lead to e zero, two ones
lead to a one., The difference here is that a mixture of zerces and ones
lead to a one rather than s 2ero. Instead of AND A then we could have used
CR A to reset the carry flag. The function ie called OR since a one is
obtained if A OR B have & correaponding one. Cne use for the OR function
could be OR 80 which, if A f{s a printabls character, will ensure that it

i8 an inverse character, This also we shall use, There ia one other function
ve need to kmow - it 1s called XCR.

IR

X0R is not a character out of Flash Gordon, despite its sound, it is in
Tact short for Exclusive-OR, which is a variation on ordinary OR. Its
difference ie that two ones will lead to a sero. Everything else is the
same A8 in ordinary OR, ie two zeroer equals zero, a mixture equals one.
It follows then that XOR FF will change every single binary digit of A
(this is called "complementing") from e zero to a one or vice versa. Also
note that XOR A will combine A with iteelf and hence come up with eight
zeroes., It in effect resets both A and the carry fleg to zero, having the
same effect as SUB A,A. This too is useful.

The reason we are interested in these functions is the manner in which we
shall represent kings in our draughte game. A8 you have seen from the
initiel playing board ordinary pieces are inverse B or inverse W (for
Black or White). Kinge however shall be ORDINARY B or ORTINARY W. Thus &
human'e piece can either be 27 hex (the cheracter code of B) or A7 (the
character code of inverse B), so to check whether or not we've found

one we just put it into the A register, use OR 60, and compare it with
A7. This seves us from making two separate comparisons.

Y N
. l/%\}»}\\\‘»}\}}}.}\.\m;\.\:&‘.\.\.\\}}}\}\\N}.\.\}.\f'
)

L)

=7 =

IR
3 N
A\ D

NS ‘\\\\\\\\\\‘

BT 1 (D

)
S
N

L AT TS
e
ImAD=>
W

hmig

A -_

' N2

N SRR ORI 3
R R R R R RS
OSSN NNNRANAANANNNNNANNNANAGY

e

(L

-
-

.
A

‘ 22 0sve > am s ob o wmmm % S
o | N R Y R R A PR R

f\\\\ A DICTIONARY Q\\\\\;

| .;\\“x(\'\ﬁﬂﬁ‘(j 1

A Y

Y

% 7

7 o— a_(/—“—_-/-
T
UYL
3

(T

U

;o s .\4
K
%

o,0 O 0O

NN
L

I c‘.‘\‘\’\‘\'&‘sﬁx"\‘\‘{\\'\{“_&iiii‘\‘\‘{\'\\{4

SPECIAL RECISTERS

The 280 has two apecial registers which can be made use cof. The firet {s
called IX.

It is special becaure ac well am just assigning it, s= {t can be uzed
just like any other regieter pair with 1D TX,0000 for instance, we car
use it to £ind the contente of an address = ueing (IX) = just like we
can vith (HL). IX is different because we car add a constant to the
address, Thus LD B, (IX47B) works! If IX were ONOQ0 then 1D B, (IX+78) will
losd B with the contents of memor; locotion 00TB. In no other way can
we assign & single register from en addrees in one inatruction.

There is a warning that goes with using IX thewgh. If you are uring SLOW
then you must not alter the value of 1X a2t all, ntherwiee you might
cauae a crash,

The other special regiater is called IY. It is 'red in exactly the s&me
way s IX, except that the RCM iteelf gives ur an added edvantsge. When
you jump into & machine language routine, IY starts off as 4000 (hex), sa
that all of the system variables may be accesced directly. (The system
veriables start off at 4000.) For example, LD L,(I¥+0C) will load L with
the low pnrt of the addreas at which the display file begins.

Changing the valus of IY will not cause a crash. It will he reset to
4000 as soon as you retuxrn to BASIC. This ies done automatically by the
ROM.

To find the hex code of any instruction involving IX or IY pretend you
are uvaing HL insterd and look up the code for that. Then preceed it by
DD for IX, or FD for IY. If the IX or 1Y is in brackets then it must
have a diaplscement, even if that displacement is 00. (For instance, in
LD B,(IY+04) the displacement is 04.) This byte should be added to the
hex code, and should be the third byte of the code, even if tnis means
splitting the original code in two.

Thua if the code of LD (HL),44 is 3644, then tha code of LD (IX+20)},44
is DD3€2044. Note how the dimplacement 20 has been inserted into the
middle of the original code in order to make it the third byte. We have
now reached the siage of using four byte instruction codee. Thie is the
longest a 280 inatruction can possibly be.

THE FLAGS REGISTER

Another apecial register is the FLAGS register, sometimea called the STATUS
Tegiater. Usually it abbreviates itself to just F, and cohabitates with A
in the hope that no-one will notice it. Ita purpose ia to atore various bits
of information about the results of calculationa. Some instructions will
alter all of the flaga, soms will alter only some of them, and some won't
actually alter any flags at all. A complete 1ist of what instruction does
what is included in an appendix at the back of this book.

As for the register itaelf: it is, like any other register, eight bita in
length, but each bit has a different purpose (although two of them aren't
used). These bits are each used as an individual flag which can store a value
of either zero or one. The flags are, from left to right; Sign, Zero, not-
used, Half-oarry, not-used, Parity/Overflow, Subtract, and Carry. The two
unused flaga are both more or lesa random, but the rest are quite specific.
They work like this:

64

The SIGN flag atores the sign (positive or negative) of the last result. A
positive number resets thias flag to zero, and a negative number seta it to
one. For the purposes of this flag, zero is counted as positive. The value
of the S flag is therefore alwaye equal to the leftmost bit of the result.
It may be tested using instructions like JP P (Jump if positive) of JP M
(Jump if negative (Minus)).

The ZFRO flag checks whether or not the last result was actually zero. If so
the flag is set to one, but otherwise it is reset. Watch out for this flag
though - it can be very deceiving - many of the register-pair instructions
aimply do not change it as you'd expect: instructions like DEC or ADD for
instance will only change the zero flag if applied to single registers. You
are advised to check with the appendix if you are unsure.

The AALF-CARRY flag is set if there is a carry from bit 3 into bit 4, or, in
the case of register-pairs, from bit 11 into bit 12, It is used internally by
the Z80 for such instructions as DAA, but cannot easily be tested by the
programmer. It is poseible to examine it using the sequence PUSH AF/POP BC/
BIT 4,C and then testing the zero flag, but this ie rarely done.

The PARITY/OVERFLOW flag does two joba at once. The PARITY of a result is
either odd or even, depending on the rumber of ones in the result (when
written in binary). The Parity flag 1s assigned in exactly the opposite
manner to that which you'd expect. If the parity is even, the flag ia one

(an odd number), and if the parity is odd, the flag ia zero (an even number).
The following instructions asaign this flag according to the parity of the
result:s ANDr, ORr, XOR T, RLr, RIC *, RR *, RRC r, SLA r, SRA r, SRL r,
RLD, RRD, DAA, end IN r,{C). An OVERLOW represents an "accidental® change of
sign of the result - a carry from bit 6 into bit 7 effectively. The following
instructions assign this flag according to whether or not ve have an overflowi
ADD A,r, ADC A,r, ADC HL,s, SUB A,r, SBC A,r, SBC HL,s, CP r, NEG, INC T, and
DEC r.

The subtract flag, alao called the N flag, simply lete the machine know
whether or not the last inatruction was an addition, or a subtraction. You
can't get hold of this flag unless you make uae of PUSH and POP as I've
described under HALF-CARRY, but in general you'll know what the last inst-

ruction was anyvay. This flag is primarily used internally by the 280 for
instructions such as DAA.

The CARRY flag you know about. It detects a carry from bit 7 into (the non=
existant) bit 8, or in the cese of register-paira, from bit 15 into what
vould have been bit 16. It is aleo assigned by shift and rotate instructions,
in which one bit is "loat" from a register and moves into the carry. This is
Probably the most frequently accessed flag of all,

ALL THE INSTRUCTIONS

f: how we've seen a fair number of 280 instructions, sc you'll be wanting
b expand your vocabulary of these. Here now is a detailed 1ist of all of
bee inetructiona that ere available to you. I ehall cover them in alpha-
xnthull order eo that you may use thim chapter as a kind of dictionary of
8tructions. For precisely the same reason I shall ra-cover the ones you've

already seen. You should d
nonory arg ould reread them anyway aince it will prove a useful

ADC Starting with ADC. It comes in two forms; ADC A,r and ADC HL,s.
Here we are using r to stand for either A, B, C, D, E, H, L, & numerical
constant, or an addreas pointed to by either (HI.). (Ix¢ﬂ or (1y+#d). s
stands for one of the register pairs BC, IR, HL, SP, IX, or IY. AIC A,r
is a single byte instruction. It calculates the sum A plus r plus the
carry flag. The result is stored in A. ADC HL,s is a two byte instruotion
which evaluates HL plus & plus the c flag, and stores the result in
HL. Can you see why (ignoring the flaga) ADC A,A does precisely the same
job as RLA? ADC alters all of the flags.

ADD Very aimilar to ADC except that the carry flag is not used in
‘the initial calculation. It is however still altered by the finml result.
There are one or two important differences betwesn AID and AIC however.
Pirstly the set of instructions ADD HL,8 (where s means the same as it did
in ADC) are one byte instructions rather than two, and mecondly it ia
pexrmissable to use two further seta of inatructions ADD IX,s and ADD 1Y,s.
Altering the value of IX however im nrt advimable if you sre using SLOW
IY may be safely altered but will alvays be reset to 4000 (hex) on return
to BASIC.

ARD Only one form here - AND r. The value of the A regiater is
‘altered one bit at a time. If such a bit ia zero it will be unaltered.
If a bit is one it will teke on the value of the corresponding bit of
Tr. Thus AND 00 {s always zero, AND FF will leave A unchanged. AND alters
all of the flags - specifically the carry flag will always be remet to
zero.

KT Wow this is a new one. What happens is that from time to time
you'll want to know whether an individual bit of aome register is one

or not, but for asome reason or other it becomes impractical to try and
rotate or shift it into the carry. BIT is specially designed to help

you out here. Suppose you wented to know the value of BIT 5 of B. The
instruction is simply BIT 5,B - the result is then either zero or non-
#ero, which you can exploit using JR Z for instance, or RET NZ., BIT does
not alter the value of ANY of the registera, nor does it change the value
of the carry flag. Its hex codea are listed in a table at the end of this
book - it is 8 two-byte inntruction. I tend to find it's not used very
often, but when it is used it comes in very handy indeed.

CALL You've sesn this ons before - it's rather like GOSUB. Ite exact
function is an follows: PUSH the return address onto the stack, and JUMP
to the call address. The return addrese is uaed by the RET instruction
80 it is vitally important that a subroutine should not alter the atack.
You may only push things onto the stack in a subroutine if you pop them
off pgain before you attempt to return. CALL may also be used with
conditiona - for example CALL 2,pq (pq is an absolute address) which
means CALL pq if the last calculation was gero, otherwise continue with
the next instruction.

CCP Complement carry fleg. If the carry fleg was zero then change
1% to one. If it was one then change it to zero.

In the form CP r it will calculate the result of subtracting
T from A, however the answer NOT stored anywhere, nor is the previous
value of either A or r altered, It will on the other hand alter all of
the flags, so conditions like jump if zero, or jump if cerry, will still
work., CF r followad by JR Z will jump if A equals r.

CPD Imagine this as CP (HL), followed by DEC HL, followed by I®C BC.
The zero flag is altered ss if a aingle CP (BL) instruction had been
executed. Another flag altered is the P/V flag, which works as follows:

if BC decrements to zero then the P/V flay is also zero. If BC does not
dacrement to zero then the P/V flag is set to one. Thus JP FO will jump
only if B3C now equals gzero. P FE will jump only if BC ia not now equal
tc zero. The carry flag is not altered at all by this instruction.

CFIR Basicly this is the asme as CPD except that the instruction is
executed over and over sgain - a kind of automatic loop. CPIR stands for
Compare with Decrament and Repeat, The loop will end in one of two cases.
2) if A equals (AL) - in which case the zero flag vill be set, or b) if
80 reaches zero - this will affect the P/V flag as in CPD. If neither of
these conditions ir true the imstruction is re-executed.

cPL A8 CPD except that HI is {noremented instead oi' decremented.
CFIR As CPIR except that HL is incremented instead of decremented.

CPL An abbreviation for complement. The register A is altered bit
by bit. If any particular bit starts off as zero it is changed to one and
vice versa. In other words if A starts off as 11010101 (binary) the
instruction CPL will change it to 00101010 (binary). The flags are not
altered, nor are any of the other registers,

DaA Suppode you wanted to add 16 (decimal) to 26 (decimal) without
converting them to hex, The following seems plausible: LD A,16 then

ADC 4,26, Unfortunately, because the machine works in hex the final value
of A will be 3C, not 42, The instruction DAA (Decimal Adjust accumulator)
will chenge A from 3C to 42. How it works is rather complicated - it makes
a note of what's been csrried where and whether you've added or subtrascted
and 8o on = but it does always work. For instance the sequence LD A,42
then SUR A,06 will again leave A with 3C, but this time round DAA will
change A to 36, since 42 (decimal) minus 6 (decimal) is 36 (decimel). The
instruction changes every flag appropriately.

IEC This is another cne of those inatructions that comes in two
forms. It can be dec r (n eingle register) or dec s (a register pair).
dec r is very eimple to understand - the value of the register r is
decreased by one, the carry flag ia unaltered, and the zero flag is
changed appropriately. Dec 8 is the one you went to watoh for, becauase
the zero flag 1s NOT ALTERED! Nor are any of the other flags! Thus DEC BC
followed by JR N2,-3 is either an infinite loop or has no effect} You'll
have to be very careful to Temember this - a lot of my earlier programs
orashed because I didn't,

Not a Welsh name, nor is it short for Diane or Diana, It is in
fact an abbreviation (surprize! surprizel) It stands for Dieable Interrupts,
and although this sounds pretty confusing its use ies immensely simple. An
interrupt is whet you get if you send little bleeps into the pina of the
280 chip, DISABLING the interrupts means that if such a thing happens in
future it s to be ignored. That's about all I can tell you I'm afraid -
You'll have to consult the hardware boffs for s more detailed explanation.

e Yet another abbreviation - this time for Decrement B and Jump-

Telative if Not Zero. So if B is 7, DJNZ will reduce it to 6. If B is zero,

DNz will change it to FP. If R is one however, DJNZ will change it tn

2éro, and will then Jump to a nev destination. The form of the instruction

s DINZ e, where e is a single dyte, If B is not decremented to zero the

® 18 ignored, if it is then e specifies how far to Jump. If e is between
and TF then the jump is FORWARDS, if e ie between 80 and FP then the

67

Jump is BACKWARDS (with FF -1, ¥E =2, and so on). Start counting from the
next instruction, 8o that DINZ N0 is just the same as LEC 3, except that
DINZ does not alter any of the flags.

E Guess what? Another abbreviation, EI atands for Enable Interuptas,
and is the opposite of DI. From now on, if the ZE0 recieves an interrupt,
then execution of the current instruction is completed, and contxol then
Jumps to an interrupt routine. For a slightly better explanation look
under IM.

EX At last - an instruction with a sensible name. Ex mesns exchange.
There are five different EX instructions - these are FX AF,A¥', EX DE,HL,
EX (SP),HL, EX (SP),IX, and EX (SP),TY. They don't alter eny of the flage.
wWhat they do is, an you'd expect, swop the values over - thus KX DE,HL
replaces DE by the value HL used to ¢contain, end HL by the value DE used
to contain, The last three are rather interesting - the old value of HL
(or IX or 1Y) is pushed onto the stack, tut simultaneously the old valpe
at the top of the stack is popped and loaded into HL. The position of

the stack pointer is therefore hanged, AF' (Pr d AF dash) is

a register pair distinot from the real AF, and this is the only instruction
which uses it. It ia used by the SLOW hardware, so don't use EX AF,AF'
wvhile you're in SILOW.

As vell as AF!' there are also BC', TR' and RL', which are just
& set of six new registers (or three new register pairs) which oan only
be acceeaed by this one single instruction. EXX is an exchange instruction.
It means exchange BC with BC' (ie B with B' end C with C'), DE with DE',
and AL with HL' = all in the same go. This is quite safe, and dces not
affect SIOW in the way that AF' doea, It is useful for preserving the valuea
of the registera when calling a RCM subroutine which relies upon A but
wipes out the other registers, eg RXX/CALL ROM=-SUFROUTINE/EXX. The previous
values of BC, IE, and HL are now unchanged. Some of the programs later on
in this book will make uae of thia technique,

HALT Ton't be fooled by your own intuition - thia isn't the same as
STOP. It means do nothing, or wait forever. Once you hit a MALT instruction
1t will just sit there, effectively executing NOP instructions, over and
over again. In fact the only way you can get out of it, once you're stuck
there, i8 by sending the little chip an interrupt signal, ao EI followed
by HALT is safe since the herdware ensures that interrupts turn up pretty
frequently, wheras DI fnllowed by HALT ie rather disaecterous.

P There are three forms of this instruction, These are IM 0, IM 1,
and IM 2. They are there to change the Interrupt Mode (yes, another
abbreviation) to either zero, one, or two. What this means is that the
next time an interrupt is detected the following will happen., IF THE
INTERRUPT MODE IS ZERQs The interrupt device iteelf must eupply an
instruction to be executed, IF THE INTERRUPT MOIE IS ONE: The instruction
RST 38 is executed., IF TEE INTERRUPT MODE IS TWO:1 The interrupt device
muat supply one byte of data. This is used es the low part of an address,
There is a register called I (which we so far haven't uaed) and the
value of this reglster is used as the high part of an address. The
machine then looks up this addreas and should find a second address
stored there. Confusing isn't it? This second address is used as a
subroutine call.

IR Short for input, but nothing like the INPUT we are used to
in BASIC. It ie thie instruction from which Sinclair builds the LCAD
routine snd a keydoard scan. It has two forms - the first is IN A,(n)
where n is a numerical constant. n refera to an external device - a

different n for each different device. Cne byte of data is read from
device n, and lcaded into A. IN A,(n) has no effect on the flags. The

second form DOES alter the flags - it is IN r,(C). The number held by
the C Tegister is used to specify the device. The number input is loaded
into register r,

I Input with decrement. This is a deliberate digression from
alphabetical order so that all of the input instructions can go together.
IND can be thought of as IN (HL)(C) followed by DEC B followed by DEC HL.
The cerry flag ia not altered, but the 2ero flag is altered to show
whether or not B has decremented to zero.

g&rng As IND but the inatruction re-executes over and over again,
stopping only when B reaches zero.

IND As IND except that HL is incremented instead of decremented.
INIR As INDR except thet HL ia incremented instsad of decremented.

INe Don't Panict At long last we're back to semsible instructions

we can all understand. INC r increases the value 4f register r by one.
Every flag except the cerry fleg is altered. INC 8 on the other hand
(where & 18 a register-pair rather then a single register) will not change
ARY of the flags. It atill does the same job of course, increasing the
value of register-pair s by one and zooming back round to 0000 if s atarts
off at FFFF, but don't umse a check for zero after an INC & instruction
becsuse it simply won't work, IN' HL/JR 2 means jump if the instruction
before IMC HI came to zexo, KOT if HL has reached zero., INC H/JR 2 does
work,

JP If you can underatand GOTO 10 you can understand JP 4300. The
destination is an address, not a line number, but the principle is exactly
the same, JP is the machine language GOTO. We can also have conditional
Jumps, for example JP N2,4300 mesna jump to 4300 IF NOT ZFRO. (In other
vords if the zero flag is not eet.) There is another form of JP which
aleo has en analogy in BASIC - variamble destinations. If you understand
GOTO N you'll understand JP (HL). In this form you can't have conditions,.
JP WC,(HL) for instance 1s not allowed. Also only three registers may

be used as variables - these are HL, IX, and IY. Fven 8o these are very
powertul instructions - HL oen be the result of a calculation, possibly
even generated at random,

JR The same as JP but slightly lesa powerful, and one byte shorter.
Only four of the eight conditions may be used - JR Z, JR NZ, JR C, and
JR NC. It is impossible to say JR PO. It is also impossible to say JR (HL).
JR does not use an absolute addreas - the R stands for relative. You
write the inatruction as JR e (or JR 2,e or whetever) where the e is

a single byte which apecifies how far we must jump, JR O has no effect,
and JR FE is an infinite loop, since FE represents minue two. The jump
is forward if e is between O and 7F, and backward if e ie between 80 and
1D The most used inatruction in the whole of machine language.

All it does is to transfer data from one place to another. It has many,
many forms, the simplest being LD rl,r2, that is to transfer data from
one register to another. LD A,(BC) is alao legal and is a one byte code,
80 is LD A,(IF). These are reveraable, ie LD fnc).n and LD (IE),A are
also legal. Remember that the brackets mean the contents of the address
BC (or DB). Two special registers R (the memory refresh register as s
called which is used in outputting to the soreen) and I (see IM) may be
loaded to and from A (but only A) es in LD 4,I, LD A,K, LD 1,A, and LD
R,A. The register pairs may all be loaded with either numerical constants
or the contents of absolute addresses ~ LD s,mn or LD s,(pq). Conversely
any address may be loaded with the contents of one of the register pairs
~ ID (pq).8. Note that register-pairs hold two bytes not one, and these

are transferred to and from pq and pqsle. You con dc the same with A on
ita own - LD A,{pq) and LD (pq),A are both allowed, but no other register
can do this on its own. Finzlly the register pair SP - the stack pointer
= may ba loaded directly with either HL, IX, or IY.

In othar words there's a lot you can do and a lot you can't do.
You can't say ID HL,SP for instance, even though LD SP,HL is ellowable.
Fortunstely, since LT is used ec very, very often it is extremely easy
to become familiar with.

1bD Losd with decrement, Effectively LD (IR),(RL) followed by
™= HL, DEC IE, and TEC BC all in one go. The carry flag and zero flag
are uncltered, as ia the sign flag, but the P/V flag becomes zero if
BC becomes zero, one otherwise, thus JP PO will jump only if BC is zero
after the instruction.

LDDR As LDD, but the inatruction ie repeated continuelly until BC
Teacher sero.

phng A8 LDP, except that IB and HL are both incremented instead of
‘decremented.

LDIR As LDIR except that DE and HL are both incremented instead of
‘decremented.

Neg alters the accumulator and all of the flags. As you may
have gathered from the name it negates A. If A contains 1 then NB' will
change it to minus one (FF). If A conteins minus eix (FA) then NEG will
alter it to plus six (06), The same effect may be achieved using CPL
folloved by INC A - thia alternative means of negating » number does not
affect the carry fleg as NI doee, but REG is faster.

NoP This wonderons 1ittle inatruction (which incidently is short
for No Operation) har a very simple purpose - ita purpose is to waste
time, for it does nothing &t all! It's almost like a REM statement in
fact, except that you can't put messages after it. It har two major uses:
1) as & delay, and 2) to overwrite previous machine coding when debugging.
I'd eay it was virtually indispensable.

OR In the form OR r this instruction is practically the opposite
of AND r. Bit by bit, the value of the A register is changed. If a bit
is one then it will be unaltered, but if it is zero it will teke on the
value of the corresponding bit in r, If A contains 00 then OR r is the
seme as LD A,T (except for the flaga). If A contains F¥ then CR r will
not change it. All of the flags are changed as you'd expect them, and
the carry flag is reset to zero.

ouT As with IN, OUT is nothing like the BASIC understanding of output.
The instruction OUT (n),A, vhere n is a one-byte numerical constant, will
transfer the contents or A to external device n. Similarly OUT (C),r will
transfer the contents of register r to the device pointed to by register

C. OUT ie used in the RCM to SAVE things. OUT has no effect whatacever on
the flags.

ourp Qutput with Decrement. The carry flag is unchanged, but the zero
Tleg depends on the final result of B, OUTD is equivalent to OUP (C),(HL)
followed by DEC HL followed by IEC B.

OTDR A elightly different spelling in no way slters the fact that this
ia atill an Qutput with Decrement and Repeat inatruction - all it does is
leads us to digress {rom alphebetical order in order to maintain coneistancy.
Equivalent to OUTD repeated until B is sere.

QUTI As OUTD except that HL is incramented instead of decremented.
70

OTIR As CTIR except that HL is inoremented instead of decremented.

Remove two bytes of data from the top of the stack and load them
2{0 a register pair. Any register pair may be used except for SP. In
addition the flags register may be combined with A, allowing the instruc-
tion FOP AP. Specifically, the low part of the register pair is popped
first, and then the high part. The machine remembers that the stack is
now two bytes shorter by altering the value of SP automatically.

PUSH FUSH s is the opposite of POP s. It storea the contents of any
Tegister pair (except SP, but including AF) at the top of the stack. It
nremembers” that it hae done this by sltering the value of SP. The high
part of s is pushed first, then the low part, so that the low part is at
the top. After a PUSH instruction SP will point to the address of thia
low pert.

With this instruction you can actually alter individusl bite
of any register. In computing circles "set™ means change to one, and
"reset” means change to sero, so RES is the inatruction that changes the
required bit to zero. For instance, to reset bit 3 of D the required
instruction is RES 3,D. RES has no effect on eny of the flags.

RET RET is used to return from a subroutine. It works by popping
an addreaa from the top of the stack, and then jumping to that address.
It is possible to alter the addrees to which a subruutine will return by
sltering the value at the top of the stack. For example POP HL/INC HL/
PUSH HL will increase the return addrese by one. You could for instance
atore one byte of deta immediately after the CALL instruction, then

POP HL/LD A,(RL)/IM EL/PUSH HL will store that byte in A while at the
same time ensuring that the subroutine will return to the address after
that data. Another trick is to push an Martificial®™ return address onto
the stack and then JP (or JR) to a subroutine instead of calling it. Now
it will "return" to wherever you want it to go! Return may be used with
conditions if needed. It does not alter the flags.

REI] Used to end an interrupt subroutine (see IM). Its function ie
the same as RET, but RETI must be used instead of RET becausa the chip
doee clever thinges if you get a second interrupt in the middle of an

interrupt subroutinel As soon as an interrupt subroutine is called a DI
instruction is automatically executed, but there are such things as

non-maskable interrupts, that it almighty euperhigh-powered intexrrupts
that ovarride even DI, these can cause confusion if you don't use RETI.

RETR Used to end a non-maskable interrupt subroutina. Its function
is the same as RETI except that the Interrupt Mode (which was altered
by the non-maskable interrupt in the firat place) is alao restored to
its previous value,

RLA An sbbreviation for Rotate Left Accumlator. Each bit of A
1s moved one position to the left. The leftmost bit 1= moved into the
carry, and the rightmost bit takes on the previous value of the carry.
For example, if A contained 10010101 (binary) and the carry contained
O then after a RLA instruction A will contain 00101010 and the carry
will contain ome. Only the cerry flag is altered by thie instruction.

RL On the other hand, there is enother instruction which may be
'rppned to any register. It is RL r. In fact every nov and again the
inatruction RL A tends to disguise itself as RLA - due pomaibly to printing
errors or bad handwriting. Cn the face of it they seem to do the same
thing - RL means Rotete Left and its funotion is exactly as deacribed

in RLA. The difference however, is in what heppens to the flags, for RL
will alter ALL of them, RLA will only elter the carry. RL may of course

be applied to any register, not just A,

n

Ineidently « RI A dosc precisely Lhe same thing an ADC A,A,
Aewn Lo the Inrt flag - exoept ona - one yon can’t jet st = enlled the
H flam, The nnl: vy yon can poraibly te)l the difference {a by following
1% with n DAA inetructicn, ADT A,A, by the way, in twice an fast.

RICA Almost the mama » RIA, but nnt quite, Rach bit of A In maved
onn m-iuun o the 1eft, The leftmoat bit in moved BOTH inte the ecorry,
AUD into the richimnnt porition of A. If, nn before, A ntarted off with
1001MM And the carry was zero, then after RICA Lt will be 00101011,
The cerry will alan be one. Only the easrry flag im changed - the previous
vrlue of which {n loat forever,

RIC DIC v will Rotate Left with Carry the register r in the same
vny that RICA Aoee with A, RLC A im 8 valld inatruction, which ie not the
anme aa RICA. RIC B 18 » valid inatructinn, but plense note there s no
ruch inetruction as RICB. The spacing ia very importsnt here. RIC r will
nlter all of the flape.

RLD Kot to be confused with RL D, thie ia a COMILETFLY DIFPENENT
‘Inatruction which vorka as followsr Write the value of A and the valve
of addrenn (HL) in hex. The second hex~digit of (NL) ia Ahifted lelt nn
thet {L hecomer the firat digit. The first digit overwrites the second
dipit of A. The cenond digit of A moves to the second digit of (ML), Thuo
1f A containe 25 (hex) snd (HL) conteins ER then after an RLD haa been
carried out A will contain 78 snd (HL) will contain BS. RLD, incidently,
atande for Rotate Lef't Jeoirel.

RRA A5 TILA except that the bits are moved right ineilcesd of left.
HR A8 RL except that the bite are moved ripght inatead of left.

RRCA As RICA except that the bits are moved right instead of left,
nc Ap RIC except that the bits are moved right instesd of left.

i) The contente of (HL) are moved one hex-digit to the right, the
rightmoat digit moving into the rightmost digit of A, which in turn
becomea the left digit of (HL). If A equals 25 and (HL) equals EB then
after RHD A wi1) equal 2B and (HL) will equal SE. Note that RRD twice

is the some e» RLD once, and vice versa. All of the flags except carry
sre mltered.

RST The asme ao CALL, except that lt ie only one byte long
AITOGETNER! Tt in much less powverful though for two 5 1) you may
not uae conditiona, RST O im legal but RST HZ,0 18 not. 2) only one of
eight &us 0 addrarses may he called, There axe O, 8, 10, 1R, 20, 28,
30, or 38. On the OLD ROM, R'T O im the rame arn NEV. On the MW ROM
hovever RST O will move RAMTOP to its highemt possible location, which
the PASIC inatruction NEW will not do. RST O im the seme thing an pulling
out the mains lead and then reconneoting it.

S SRAC, like AT, acmee in two forms, The first is SD" A,r, which
vill firnt of al) cubtrmct v from A, #nd will then subtract the carry

digit. Similarly SRC HI,m will rubtract both a and the carry fleg from
Hl.. SBC A,A 18 quite umeful - if the carry 1s zero both A and the carry
will end up gero = 1f the carry ia one then A will be reassigned »F and
the carry will atill be one,

SLT The opponite of RES, SET 4,H will chienge the value of bit 4 of
H to ons. Any bit of any regirter may be set.

SLA Shift Left Arithmetic. The form ia SLA v, It is oimiler to RL r
fxcept that the rightmeost bit ir automntically replaced by zere. It nltera
a1l of the flage. Note that BLA A doen the mama thing as ARD A,A, except
that ADD A,A ina faster, 72

SRA Shift Right Arithmetio. Any register may be shifted right using
the format SRA r. The rightmast bit falls into the carry, but the left-
most bit remaina unaltered. Thus after a SRA instruction bit 6 will
always be the same as bit 7. The effect of SRA is to divide both positive
and negative numbera by two: FC (minua four) becomes FE (minus two).

what happens {f the number is odd?

SRL Shift Right Logical. Ae SLA except that the bits are shifted
right inetead of left, and the leftmoat bit becomes zero,

SUB Sometime written as SUB r, sometimes as SUR A,r, both mean the
same thing. The value of r is subtracted from the A register. Note that

unlike ADD, there i¢ no corresponding instruction SUB HL,a. If you wish

%o do this you must first of all reset the carry flag (usually by use of
AD 4) and then use SBC HL,s.

XOR XCR T alters all of the flags, resetting the carry to zero, and
the A recister alone. r is not altered. What happens ia that A is altered
bit by bit, in the same manner es AND and CR. If a bit is zero it tekes
on the value of the corresponding bit of r. If on the other hand a bit is
one then its new value is the complemsnt of the appropriate bit of r.
XCR A is very useful asince in one byte it zeroes both the accumulator and
the carry flag. Inoidently ao does SUB A,

73

1
Q

-.‘.

[)
Ol
...
QO
U
0

Now we more or lesa know what machine langusge is, it's about time

we learnad = bit more ahout how to handle ft. What we chill do now

is to write a new program - HEXLD3 - which will allow us to do five
things. 1) Input machine code. 2) Insert mechine code in between
previous routines, but without overwriting anything. 3) Delete machine
code, closing up the gap that it occupied. 4) List machine code. S)
SAVE machine code. The important point about this progrem ie that the
principle parts of it will themselves be in machine code, although all
of the surrounding fabric will be BASIC. To work it all you will need
to do is enter one of the following.

RON To List your stored mechine code.

RUN 100 To Write new machine code.

ROUN 200 To Insert new machine code.

RON 300 To Delete previous mechine cede,

RUN 400 To Save machine code.

GOTO 500 To Reload saved machine code (OLD RON only)

More to the point = you'll need HEXLD2 in order to help you load it.

The addresses used in thia chapter assume that the machine code is being
loaded into a REM statement in line one of a NEW ROM machine. If this is
80 you'll actually need 255 characters after the word KEM. However, you
don't have to use the same addresses as me if you don't want to. OLD ROM
folk are specifically advised NOT to use a REM statement, since the

machine code contains newline characters, To atore machine code at different
addreases to those I've used simply change the listed addresses to yours,

Let's create it one part at s time, First of all a special subroutine for
OLD ROM people - designed to AUTOMATICALLY print a character to the screen,
in much the same way that the NFW ROM PRINT routine doea. The routine will
also protect all of the registera, Study this listing:

FOR OLD ROM PEOPLE ONLY
BS

APRINT PUSH HL Store the value of HL.
n9 EXX Store the remaining registers.
F5 PUSH AP And the A regiater,
CIE006 CALL PRPOS Find print-position.
Fl POP AF Retrieve A.
CD2007 CALL PRINT Print cnaracter A.
b BXX Retrieve MC and IE.
El POP HL Retrieve HL.
c9 RET End of subroutina.

Note that HL needs to be stacked, smince CALL FRINT changes the value of HL'.
The next subroutine we'll need is a mechaniam for printing to the screen
the value of the A register in hexadecimal. This subroutine will INCLUDE
a subroutine-call to APRINT, at least for OLD ROM people. Naw ROM peaple
in fact already have an sutomatic print routine which protects all of
the registers, since there is ons in the ROM itself, It is not quite the
same as the PRINT routine, since it alao preserves the values of all the
registers - this is sometning that CALL PRINT will not do. CALL PRINT
will erase the values of B, C, D, B, H, and L. The addresa at which
APRINT begins in the NEW ROM is 0010, and so CALL 0010 would print a
character without changing any register. This is very useful indeed.

One of the 280 inatructions designed to speed things up a bit is RST. It
is in effect the same as CALL except that only one of eight addresses
may be called. It just so happens that 0010 is one of theae possible
addresses, RST is better than CALL for two reasons: 1) it is faster to
execute, and 2) it is only one byte in length. The code for RST 10 ie
D7. D7 then has precisely the same effect as CD1000, that is, to print
a character. OLD ROM users should note that although D7 still produces a
call to 0010, it will not print a character, since in the OLD ROM there
is no PRINT subroutine located at this point. RST ia short for RESTART.

76

F5 HPRINT PUSH AF Store A for later use.

ESFO AND FO This isolates the first digit.

1F RRA Move this first digit to

1rF RRA its proper position within

1F RRA the A register.

¥ RRA

cé1c AID A,1C Add tventy-eight to the character
code, making it a hex-digit,

7 RST 10 Print this hex-digit. OLD ROM
users should of courses replace
RST 10 by CALL AFRINT.

Fl POP AP Retrieve the original value of A,

B6OF AND OF Isolate the second digit.

cé1c ARD 1C Add twenty-eight.

D7 RST 10 Print it. OLD ROM users should
instead use CALL APRINT,

c9 RET,

By the way, #id you understend all those ANDs and RRAs? If you didn't
I1'11 explain exactly what's going on.

In binary, FO is 1111 0000. This means that when you apply AND to FO and
ancther number, then the first four binary digits of A will be unchanged,
and the second four binary digita will all become zero. Do you remember
how to change from binary to hex? You have to lock at it four bite at a
time, The first four representing the first digit, and the second four
the second digit. Thue all we have done is to change the second digit to
2€ro,

If A were 36 then it would become 30, If it were 99 it would become 90. If
it were D5 it would become DO, And o on. This is not what we want, We must
shift A four bits to the right,

HRA moves A one bit to the right, replacing bit 7 (the leftmost bit) by the
velue of the carry. In this case the carry is zero, since we have just done
an AND instyuction. The new value of the carry will be the previcus value
of bit 0 (the rightmost bit). This will mlso be zero since there are now
four zeroes at the right of A.

RRA then, repeated four times, will change A from 30 to 03, from 90 to 09,
and from DO to OD. All that remaine now is to add 28 (decimal) to thie
number and print it. We print it using the instruction RST 10.

Back to our new program., The BASIC part of the List routine will look 1like
this:

10 FRIKT "keyword LIST"

20 COSUB 600

30 RAND USR 16539

to obtain the keyword LIST in line 10, eithe

’ T type THEN LIST (NEW ROM onl
:nd delete the word THEN, or type the whole line ps 10 LIST q\(wte N
ackspace backspace FRINT quote newline.

600 LET A = 16533

610 PRINT "ADDRESS space™;

620 INPUT A8

630 PRINT A#

640 rg% A$1,16%CODE AS+COIE Ag(2)

77

650 POKE A,16#CODE +#(2NCODE A
(4)-476
660 CLEAR

670 RETURN

What about this USR routine at 16539 then? What will that do? And what about
this buainess of POKEing 16533 and 16534? What’a that all about? Well using
my addresses, 16539 is the start of a routine called HLIST, which we haven't
yet written. It is designed to actually LIST a machine code program in
hexadecimal (hence H-List). The address 16533 is the number I've used to
hold a “variable" called ADIRESS. That is to say, it is a place at which

ve can store a two-byte number. Any address may be used for this purpose
provided that BASIC will not change that two-byte number.

This program demanda four such “variables”, or two-byte memory locations.
They will be called BEGIN, ADDRESS, ADDZ, and LIMIT. They will be used by
the program as followst

BEGIN The sddress at which the subject-program begins.
ADDRESS The address we are currently looking at.

ADD2 The addreas beyond vhich we must not progress.
LIMIT The address at which the aubject-program ends.

I ought to explain here what ia meant by "subject-program". The program we
are writing is a replacement for HEXLD2. As such it is to be called HEXLD3.
This is the "object-program® - the one we are writing now. But the purpose
of HEXLD3 is to enable us to be able to oreate and examine machine code
programs. The program that HEXLD3 will be used to examine is called the
“subject-progran”. These distinctions are clearly necessary in order to
avoid confusion between the two different concepts. It ia of course possible
to use HEXLD3 to examine itself, in which case it becomes both the object
and the subject, but for the time being keep these two ideas separate in
your mind.

The addresses which I've used to store the "variables" BECIN, ADIRESS, ADD2,
and LIMIT are as followa:

Decimal Hex Explanation

16514 4082 The start of the subroutine HPRINT
16531 4093 The variable BEGIN

16533 4095 The variable ADIRESS

16535 4097 The variable ADD2

16537 4099 The variable LIMIT

16539 4098 The atart of the USR routine HLIST.

Lines €40 and 650 PCKE into the variable ADIRESS - Giving the address

at which out listing (input in hex as Ag) is to begin. This idea of using
part of the RAM in machine-code-area to storo numbers is a very useful
one, Yon can uee it in many different programa. The numbers will be szfe
there even after the program ends and you are in command mode. You can
type RUN or CLEAR snd they won't be wiped out. They will even SAVE and
TeLOAD.

Now for the subroutine HLIST (Short for Hexadecimal List). It is a very
very simple routine indeed, and should he no trouble for you to follow.

78

249940 HLIST LD HL,(LIMIT) Ensure that we don't progresa beyond
229740 LD (ADD2),HL the end of the subject-program,
LD D,H
5D LD E,L
249540 LD HL,(ADIRESS) Compare the current address with
0616 LD B,16 (OLD ROM ONLY) [inal address.
A1 NXTAD AND A
£D52 SBC HL,DE
19 ADD HL,DE
301F JR RC,DONE
1€ LD AH Print the highepart of the current
CDe240 CALL HPRINT addresa in hex.
LD A,L Print the low-part of the current
CcI8240 CALL HPRINT address in hex.
AF XOR A Reset A to zero.
D7 RST 10 Print a space.
1E LD A,{HL) Print the contenta of the current
€h8240 CALL HFRINT addreas in hex.
cB76 BIT 6,(HL) If this chayacter is unprintable
2004 JR N2,NOPRINT then do not print it.
AF XOR A Reset A to zero,
D7 BRST 10 Print a space,
T8 LD A,(HL) Load A with this character
D7 RST 10 and PRINT it.
3876 NOPRINT LD 4,76 Load A with a newline character.
07 RST 10 Print newline.
23 INC HL Look at the next addrees.
229540 LD (ADIRESS),HL Store the current addreas.
18DB JR NXTAD (NEW ROM ONLY)
égnn DIRZ MXTAD (OLD ROM ONLY)
DONE RSP 08 See
00 DEFE 00 below,

The above program will run as listed on a New HUR machine. OLD ROM users
should replace every RST 10 imstruction dy CALL APRINT as before, and are
reminded that the JR byte-count must be changed accordingly at two points
in the program.

There ara several things we can note about this program, Firstly, two new
instructions have been used - BIT 6,(HL) and RST 0B, Here's what they do.

BIT 6,(HL) tests the value of bit 6 of the address (HL). The reeult will
either be 1 (if bit 6 1s 1) or O (if bit 6 is 0). This result ia not
stored in any of the registers, but we can still check it with the next
line JR NZ,NOFRIRT, which says jump to NOFRINT if the last result (that
is bit € of (HL)) is not sero.

Why do we need to do this? Take a look at the character set. In particular
look at their character codes in hex, Rotice that all of the expandable
charactera lie between CO and FF (except for RND, INKEYA, and PI on the
NEW ROM - these are treated slightly differently by the ROM) and that all
of the characters between 40 and TF ere not printable at ell (again,
except for RND, INKEY¥, and PI on the NEW ROM. The machine has to meke a
special check for these.) (You could argue that the NEW ROM cursor (7TF)
was printable, but of course it looks different derending on whati mode

the machine 16 in.) In fact all of the printable characters are either
batween 00 and 3F, or between 80 and BF, and conversely every character
between 00 and 3P, or 80 and BF, is printable, What have all these in
common? The fact that BIT 6 of the character code is zero. In binary these
codes run between 0000 0000 anmd 0011 1111, and then from 1000 0000 to

1011 1111, So all we have to do to find out whether or not a character

in the set i{s printable, all we have to do is to look at BIT 6. The

above program won't attempt to print them unless BIT 6 is zero. Thie is
because the BST 10 routine won't expend the expandable characters, nor
vill it replace the others by question marks. It will crash thoughl

79

The other nev instruction ia RST 08. This will cause an immediate return
to BASIC, stopping the program with an error code. The byte immediately
after the RST 08 instruction tells it which error code to use. An error
code 1 needs the data 00, ®ince this byte has to be one less than the
report code. If we wanted to be really flash we could have used 1C and
got an error code of T!

Nov follow the program through carefully and see what it does. Note the
way we check whether or not the address ADD2 has besn reached (it is
stored in DE) - especially the use of AND A to reset the carry flag.

You can check that this program works by FOKEing the address at which
HPRINT starts into both BEGIN and ADIRESS, and by POKEing the address at
whioch HPRINT ends into LIMIT. Then, if you type RAND USR HLIST (this is
the location 16539 using my addresses) you should end up with a more or
less instant liating of the subroutine HPRINT.

Now if you simply type RUN and enter 4082 the program vill instantly list
out the start of thia program. In other words we are using it to examine
itself. Tyuing CONT or CONTINUE repeatedly will continue the listing until
the end of the program is reached, when you will get a report code of 9.

How for the second part of our program, HEXLD3. The BASIC part is to look
like thia:

100 PRINT "WRITE®

110 GOSUB 600

120 INPUT Af

130 PRINT Af;"two spaces™
140 RAND USR 16589

150 GOTO 120

This part caloulates the length of the string AB, vhich because of the
CLEAR Statement in subroutine 600 is the firet (and only) item in the
variable store,

OLD ROM OMLY:

240840 WRITR LD HL,(VARS)
ES PUSH HL
O6FF LD B,FF

23 ANUTHER INC HL

TE LD A,(HL)

04 INC B

3D InC A

28FA JR Z,ANUTHER
n POP HL

cB28 SRA B

This routine leaves the length of the string divided by two (8ince it
needs two characters to specify one byte of machine oode) in the B
register and leaves HL pointing to the byte immediately before the
start of the contenta of the atring. Notice how LD A,(HL)/1MC B/INC A/
JR Z is used to check for a character 1 (a quote mark, or end of string
character) as well as counting the number of characters so far (in B).
Can you also see how SRA 8 will divide B By two?

Strings are stored differently in the NRW ROM. ‘this actually makes things
easier, not harder! Look at the corresponding NEW ROM routine wvhich does
the same job.

NEW ROM ONLY:
16589 241040 WRATE LD HL,(VARS)
23 IRC HL
46 LD B, (BL)
23 INC HL
cB28 SRA B

80

This works because the NEW ROM works by atoring the lengtih of a string
immediately before the atring itself. It takea two bytes for this, but
notice that in both of our versions we are only using one dbyte for the
length, 8o don’t input more than 255 characters in one go.

Here's the rest of the routine.

28r4 JR 2,DUNE

EL5B9540 LD DE,(ADDRESS)

23 NEXTBYTE INC

™ LD A,(HL)

87 ATD A,A

87 ADD A4,A

87 ADD A,A

87 ADD A,A

23 INC HL

86 ADD A,(HL)

cé24 ADD A,24

12 LD (DE),A

13 INC IR

ED539540 1D (ADDRESS),DE
PUSH HL

249940 LD HL,(LIMIT)

ED52 SBC HL,IE

El POP HL

3004 JR NC,C

£ED539940 LD (LIMIT),IE

10E1 CHECK DINZ NEXTBYTE

c9 RET

You can learn several things from this routine. Firstly, notice that if you
input the empty atring the program will jump back to the RI® 08 instruction
in the previous seaction, This is so that you can end the program without
actually having to break out.

Fow look at the first few lines from CHRCK onvwards. What they do is this -
if the end of the program (the program that WRIT: is editing) is greater
than the current address, do nothing, otherwise make a note of the fact
that the program has got longer by altering our variable LIMIT.

You now have two segmenta of machine code which, if you've typed them in
properly, will work first go. Now dslete the WHOLE of HEXLD2 (except of
course for line 1) but be very careful not to attempt to list line one.
The first line now contains mors characters, when the keywords in the REM
are expanded, than will fit on the scresn. In this cirocumstance the ROM
will go into an infinite loop if it tries to list it - this is a design
fault - the ROM should not be capable of making infinite loops. You won't
be able to break out if it happens. To avoid it, type POKE 16403,10 (OLD)
or POKE 16419,10 (NEW). Then type in 1lines 10 to 30, then delete the rest
of the program one line at a time, loweat line number first. Now type in
the rest of the program and SAVE it before you do anything elae.

For NEW ROM users, it should be made clear that the REM statement will,
vhen keywords are expanded, be longer than will fit on the screen, thus
although the command LIST is acceptable (the result of which is that part
of line one is listed and an error 4 message displayed), if you LIST 10,
to ensure that line 10 is always at the top of the screen (sometimes this
doean't work - if not type POKE 16419,10 vhich always works) be warnad
never to delete line 10, If you do the ROM will go into an infinite loop
trying to reshuffle the lines so that it can 1ist them, In SLOW this ecan
be quite amuzing to watch, but it is always irritating because the only
way you can get out of it is by pulling the plug.

81

Now lo complete the tranaition from HFXLD? to HEXID3 let's rewrite Lhe
aection that will SAVE thinsa in upper memory. The BASIC:

oLD
400 NIM O{USH(ARRAY))

MM RON
400 DIM OP(USR AHRAY)
410 RANTONISE USR(STORE)

410 RAND USR STORE

420 SAVE 420 SAVE "HEXLD3®
S00 RARDOMISE USR(RETRIKVE) 500 RAND USR RETRIEVE
510 CLEAR 510 CLRAR

520 STOP 520 STOP

Ar you can aee there are three different parta of machine code. The firet,
in line 400, alters nothing, but returns a numerical value to IAS1(:, which
1a then used by RASIC to reserve the correct amount of space using & LIM
statemsnt. Let & look at that part first:

Uning my addreasen, AHRAY ia 16635, STORE ie 16651, and RETRIWE ia 16669.

2A9940 ARRAY LD HL, Lllﬂ'l‘;
1589340 LD IR, (BYCIN
A7 AND A
D52 SBC HL,DE
229740 LD (ADD2),HL
for the OLD KON only:s
CB2C SAA H
CB1D R L
for the NEW ROM only:
44 LD 8,R
4n b ¢,L
for boths
c9 RET

‘The first part is oovious. The beginning address is subtracted from the
end addreas.Again ve see AND A being used to zero the carry fleg so that
SBC glves the right answer. Now, for OLD ROM users, this number is divided
by two, bDecause arrays use two bytes per element. For NEM ROM users ve
move the answer {nto the BC register becauss this is what will return to
BASIC. Now for the machine code that accomspanies line 410. Use HUN 100
to load it in the first place.

You may be wondering vhy ADD2 was loaded with the number of bytes in
the code to be SAVED, Well ADD2 ie just a convenient place to store it,
eince it will be needed in line 410.

2A1040 STORE LD HL,(VARS)
110600 1D DE, 0006

19 ADD HL,IE

B EX DE,HL
209340 D un.imxn)
ED4BI740 LD B¢, (ADD2)
EDBO LDIR

[RET

201040 RETRIEVE LD RL,(VARS)
110600 LD D&,0006
19 ADD HL,DE
FI589340 A} ns.inmm)
ED4BIT40 LD BC,(ADDR2)
KDBO LDIR

c9 RET.

82

In case you're beginning to lose track, here's a quick round up of all
the addresses we've used so far:

Decimal ex Routin iable
18514 %ﬁz HPRINT

16531 4093 BECIN

16533 4095 ADIRESS

16535 4097 ADD2

16537 4099 LIMIT
16539 4098 HLIST
16589 40CD WRITE
16635 40PB ARRAY

16651 4108 STORE
16669 411D RETRIEVE
16687 412F next spare byte,

Briefly, STORE moves machine-code from upper memory and stores in an
array. RETRIEVE moves it back from the array to its previous position.
Both of the routines start off by working out the address of the firat
free byte in the array. The array ia the first item in the variable
store, but because the OLD and NEW ROMs think differently, we have to add
two to this location in the OLD ROM, and six on the NEW EOM. Can you
apot the different waya in which this ia done?

This is also the firat time we've used the instruction LDIR. What is does
is to automatically move a block of elemsnts from addreas (HL) to address
(DE), assuming that the number of elements contained in this block is BC.
This is of course precisely what we want to do. LDIR does alter the value
of each of the register paira BC, DE, and HL, but that doesn't concern
us e#ince the next thing we do is RET,

LDIR is very, very useful indeed, but you must remember which way round
it goes. It loads from (HL) into (IE). Have you ever pressed 'record'
instead of 'play' when trying to load programs from tape? Well that's
exactly what will happen to your machine code if you get I and HL the
vrong way round for LDIR - it will just be wiped out - and there's no
going back.

As long as you can see exactly what's happening you're OK, If you oan't
then get a plece of paper and write down the values of each register at
each atage. work through until you're convinced you know exactly whatte
happening all the way through.

Ve now have & BASIC program called HEXLD3 which contains a fair number of
machine code subroutines. As it stands it will both LIST and WRITE machine
code, and can also be used to SAVE any machine code or data which is
atored in spare RAM space high in memory. This is all that HEXLD2 did.
You now have the ability to enter your own machine code programs very
easily, but what you can't yet do is edit them if you make a mistake.

That is vhat the next section is for - it ia called INSERT, and will
insert whatever you input between the surrounding code, without over-
vriting it. The BASIC Part of the routine is this

200 PRINT "INSERT"

210 GOSUB 600

220 INPUT Af

230 PRINT A$:"two spaces®
240 RAND USR 16687

250 GUTO 220

83

And the machine code which goea with it (which NEW KOM users should write to
address 16687) is as follows:

QLD ROM HEM_ROM
240840 INSERT LD HL,(VARS) 2A1040 INSERT LD HL,(VARS)
E5 PUSE HL 23 INC AL
OLFFFF 1D BC,FFFP 4E LD C,(HL)
23 MRE e H 23 INC HL
= LD A,(HL) 46 LD B,(HL)
03 I IC
3D DEC A
28FA JR Z,MORE
R FOP HL

CB28 COPYUP SRA B

CB19 RR C

2002 JR NZ,NOTEMPTY

CF RST 08

08 DEFB 08

[+ NOTEMPTY PUSH BC

229940 LD HL, (LIMIT)

ADSB9540 LD IR, (ADDRESS)

A7 AND A

ED52 SEC HL,DE

23 INC AL

44 1D B,H

4D D C,L

= POP HL

RD589940 LD IE, (LIMIT)

19 ADD HL,DE

229940 LD (LIMIT),HL

EB X IE,HL

EDBS LIIR

CIOD40 CALL WRATE

c9 REY

Now exactly how this works is quite complicated, so think carefully. The

part between IRSERT and COPYUP finds the length of the atring Af, as you

ocan s8¢e it required a completely different method for each ROM. See WRITR
on this, since it ia very aimilar here.

Between COPYUP and NOTEMPTY the length of the string is divided by two,
and if it ie zero returns to BASIC with error code 9. This is the job of
the RST 08/IEFB 08 sequence. From then on we are concerned with moving
part of the progran being edited. Look at the diagram below.

EEFORE:

begin address 1imit

AFTER Knew A\ X
begin address 1init

A3 you can see, we need to load a complete block of elementa from cne point
to another, bdut unlike before the new and old positions overlap., This is a
slight problem, and we have to be very carsful how we load it, If we were to
sinply assign HL to ADIRESS(before) and DK with ADDRESS(after), and then use
LDIR a8 before (having assigned BC to the number of elements in the block
first) then since LDIR moves things one byte at s time the firast few elements
would end up in the middle of the block, only to be copied up for a second
time. The program would be completely corrupted.

84

¥We can get round this flaw by sneaking up on the problem sideways while it's
not looking. What we do is we block load it from the other end! This means
loading HL with LIMIT(before) and DE with LIMIT(after) and use LITR instead
of LDIR.

Having found the length of the new section, this length is pushed onto the
stack. BC is then loaded with the length of the block to be moved. See how
this is worked out. Then HL and DE are correctly asaigned, making use of the
fact that the length of the new section is at the top of the stack, and the
nev limit is stored in our "variable™ LIMIT.

After the block load is successfully carried out we call the WRITE subroutine
to fil11 the shaded area in the diagram with the contents of the input string.
thia will work because the above program does not change the velue of the
variable ADDHESS. WRITE will simply overwrite the shaded region, moving the
current address pointer to its new position. We then return to BASIC for the
next input.

To test the program, use WRITE to write “9DSRIPAOALA2A3A4A5" to the point
just beyond where our program currently ends. This will list "W

Now use INSERT. Give it the address of the inverse five, and input “00®
#201R"/"00", Here / means newline. When you list it you'll find four new
characters have besen insarted, Rotice that the routine allows you to input

a8 many characters as you like in one go, and that it allews you to press
newline as many times as you like. Newline on ita own (ie inputting the empty
string)will break out of the program,

The final section to add to our program is IELETE., Thie will look (in BASIC)
like this

300 FRINT “DELETE"
310 GOSUB 600

320 LET A 16535
330 GOSUB 610

340 RUN USk 16732

The first four linea load the initisl and final addresses into the variables
ADDRESS and ADD2. Line five calls the machine language routine that will do
the task for us,

Here's what the machine code has to do. Look at the diagram below., Here the
shaded region must be removed,

SEFCRE: /A

begin address ld:? liltlt
AFTER 1

begin addresa limit

This is quite simple - we just use LDIR quite straightforwardly. You might
think there would be some effort involved in calculating the new limit, but
not so. LDIR alters the value of HL and DR for us in quite an advantageous
vay - as we shall see.

249940 IELETE LD HL,(LIMIT)
ED5B9740 LD DE, (ADD2)
% PUSH IE

AT AND A

En52 SBC HL,DE

44 LD B,H

4D LD C,L

n POP HL

2 INC HL
ED5B9540 LD DE, (ADDRESS)
EDRO LDIR

1B DEC IR
ED539940 1D (LIMIT),DR
CF EST 08

08 TPFB 08

A8 LDIR moves from ons end of the bloocka being shifted to the other, HL and
DE move with it, so HL ends up to the right of the original block, amd DR
ends up to the right of the copy. Thus a simple IEC IE after the LDIR will
set it to exaotly the right place for our new limit. Load this routine to
address 410D (OLD)/415A (NEW), using INSERT. You should now have one or two
spare characters sfter the end of the program, Use DELETE to wipe them out

- this will of course teat whether or not you have typed in DELETE correctly.

Now SAVE this program permanently. Thia is the final version. All you have

to do in oxder to use it in future is to type RUN 100 and enter the address
of the variable BEGIN. (403C or 4093). Then input the address to which the

program you are about to writs will begin, then aimply newline on its own.

RUN 100 a second time to actually begin inputting a program.

TTTTTTTTTT

KKKKKKKK

(X IME NEN ¥ K)

NN rI///// ':|

\\\
////

e,

Now it's time to explore how we can make use of some of the other
subroutinea that are remarkably well-hidden within the ROM, Specifically
we'll cover two of these subroutines, which between them will enable
us to scan the keyboard and locate which, if any, of the keys on ihe
keyboard are being depressed. On the NEW ROM we can make use of these
subroutines just by calling them, but we can't on the OLD ROM because
they're simply not there. Por the benifit of the people with OLD ROMs 1
shall include a section at the end of this chapter explaining how these
programs may be made to work by actually inputting these subroutines
yourselves, This section will also be of interest to those of you with
NEW ROMs, since it will give you an insight into how the subroutines
actually work.

The first such subroutine is an amazing little keyboard scan, which
begins at addrese 02BB. Tt may be accessed mimply by calling that addrees,
ie CALL XSCAN, or CDBBO2 in hex., It doesn't actually produce a very
useable answer though, Let's see exactly what it does do.

It returna a value to the HL register pair. Actuslly it returns separate
and independent values - one to H and cne to L. Here's how the value of
L ie interpreted:

Imagine the keyboard (excluding SHIFT) divided up into eight horigontal
sections, eech contuining five keys (except for seotion zero which only
contains four, because SHIVT is ommitted). Notice how each seotion
has a oorresponding number between zero and seven. Now, if there is no
key depressed then L will return a value FF. However, if one or more

keys are depressed, then the appropriate BIT (of L) will be raset to szero.
In other words, if you are pressing Q, W, E, R, or T then bit 2 will be
reset - if you are pressing B, W, M, full-stop, or epace, then bit 7

will be reset, This means that L can return the following:

?m?

If no key ia depressed 1111111 l%s
If a section O key is depreased 11111110 FE
If a section 1 key is depressed 11111101 FD
If a section 2 key is depressed 11111011 ¥B
If a section 3 key is depreszed 11110111 P7
If a section 4 key is depressed 11101111 &F
If a seotion 5 key is depressed 11011111 IDF
If a section 6 key ia depreesed 10111111 B¢
If a section 7 key is depressed 01111111 7P

SECTION 3 SECTION 4

DHEEEHOEEDEO®E
MOWOOE) |
SEEOHE
NEXEOENMOO

SECTION & SECNON 7

Ae an exeroise see if you could work out what L would return if both
g snd P were depressed at the same time.

The valua returned by B is determined by a similar principle, but notice
how the keyboard is divided up here - not horizontally but vertically.
Notice also that the SHIFT key has @ section all to itself - section O.
row if you press key S for instance then H will return FB (in binary
11111011). We have already seen that L would give ¥B as well, so that
gl returns FEFB. Can you see why it is impoesible for this value to be
obtained from any other key?

S NOLJ3S
$ NOILIIS

Now let's see what would happen if you pressed SHIFT S. Both bits zero
and two would be reset giving, in binary, 11111010. In hex this is ¥4,
80 HL would return as FAFB - which is different to the value produced
without shift. We can see the precise effect of SHIFT from this table:

XITHOUD SHIFT ¥ITH SHIPT
BINARY ~ HEX N EEX
If no cey is depressed 11111111 FF 11111110 FE
If a section 1 key is depressed 11111101 FD 11111100 ¥C
If a section 2 key ia depressed 11111011 FB 11111010 ¥a
1f a section 3 key is depressed 11110111 F7 11110110 Fé
If & meotion 4 key is depreased 11101111 EF 11101110 EE
If a section 5 key is depressed 11011111 DF 11011110 IR

It should by now be ressonably clear how each individusl key, with or
vithout shift, produces its own unique code in the HL register pair. If
two keys sre both in the mame horizontal section they cannot possibly
both be in the same vertical section. Note that SHIFT on its own returns
2 value of FEFF which is not the same as no key depression at all,

The subroutine which I've called KSCAN does have one big disadvantage
though - 4t will completely wipe out the previocus values of all the
Tégisters! If you want to preserve them you'll have to make use of the
Stack as follows:

5
c5

»
CDBBO2
n
cl
Fl

FUSH AP
PUSH BC
PUSH IR
CALL KSCAN
POP IE
POP BC
FOP AF

Now we want to turn these rather obscure numbers into real character codes.
It just so happens that all of these ccdes are rather cleverly stored in
the ROM beginning at addresa OO7E. By "rather ocleverly” I mean in a most
convenient order, as follows: Pirat the straightforward charactera:

00TE

ZXCV ASDFC QWERT 12345 09876 POIUY newline LKJH space .MNB

(There are no spaces between the characters - they are printed here to
make the ordering more obvious.) Then the shift characters:

00A5

ll?/ STOP LPRINT SLOW FAST LLIST "" OR STEP <= <> EDIT AND THEN
TO cursor-left RUBOUT GRAPHICS cu
*}(# >» FUNCTION =4- um f,5<%

right up cursor-down

Can you, see how the ordering relates to which sections the key lies in?
We could quite easily write a subroutine now to convert from the strange
number we already have in HL to an addresa between OOTE and 0OCB (the
last item in the table - the m) but it turns out that we don't need to
because that nice man Uncle Clive has already done it for us with a
subroutine which I shall call FINDCHR beginning at address O7RD. The RCM
pecple probably have their own name for it but they keep it shrouded in
oystery. The subroutine performs the following tesk - given a value as
defined above, in the EC register, it will work out the address at vhich
the appropriate character is stored - the final result ending up in HL.

It doee have a problem though. If you're not pressing a key then surely
you shouldn't end up with a character to printl You'll have to prevent
this yourself. One way would be as follows, Krtice thoush how we move the
result from the first subroutine into the BC register before calling the

second.

ves BOCHR

There are several things to note about this example. Firstly tnat two
separate instructions, LD B,H and LD C,L,are needed to trensier HL to BC
8ince there is no single instruction LD BC,HL. Secondly that the ccndition
JR Z means if D ia 2ero, not A - LD doea not 2lter any of the flags. If
D is zero after being incremented then it must have bsen FF beforehand,
which meana that L must have been FF after it came out of the first
subroutine. This is the check that a key ie being pressed. A is loaded
with zero and if no key is pressed it remains zero, othervise it takes

on the code of whichever character you're touching on the keyboard.

90

There 18 here a slight ambiguity in that zero is aleo produced if you

press apace. You could use LD A,01 instead of LD A,00 since the character
whose code is one (E)) is not available from the keyboard., Now there is

no ambiguity since zero mesns epace and one means no character is being
pressed. If you have SLOW at your disposal you could omit LD A,00 eltogether
and use JR Z,START inatead of JF 2,NOCHR. Now the program will WAIT until

a key ia preesed before continuing. Without SIOW it will still wait but
vou'll have to suffer a blank screen in the meantime,

The A register now contains a value ocorresponding precisely to the function
INKEY$. In thia way real time gumes are just s8 feasable in machine code
as they are in BASIC.

another intereeting part of the ROM is the very last bit - the half of a K
that runs from 1BO0 to 1FFF. It's not a subroutine, it's a tabdble - a very
long table - actually the longest table in the ROM. It stores the dot
pattern of every aymbol used by the computer - that is all of the printable
characters, It takes eight bytea to store a single character symbol, so

for example, the characters A, B and C are represented, in binary, by

00000000 oo0000000C 00000000
00111100 01111100 00111100
01000010 01000010 01000010
01000010 01111100 01000000
01111110 01000010 01000000
01000010 01000010 01000010
01000010 01111100 00111100
00000000 00000000 00000000

Cen you pick the letters A, B ené C from the digite above? The pattern is
held by the positions of the "ones™ amongst the "zercea", When they finally
appear on your TV screen they look like this:

Suppose we now wished to reconctruct these letters in an enlarged form -
using a pixel (quarter-square) for each dot. This means that each character
we print should be a graphics character (space and inverse-space both count
as graphica characters) chosen so that the correct quarters are black.

There are two ways of doing this. One is to make Ue of the NEW ROM
character codes, in which the graphica are arranged in & very clever

order - unfortunately we would not be able to adapt this sytem to the

old ROM. The second is to include sixteen bytes of data within our program
representing the graphice symbols in any order we care to choose. let's
take a look et the first method firat,

Suppose the bottom right corner ia WHITE. If we give the other pixels
numbers 1, 2 and 4 then simply adding them up gives the required character
code. You can check this by comparing the diagram below with the character
8et {n the Sinclair manual,

1f the bottom right hand cormer is BLACK then we need to give the other
pixels the numbers -1, -2, and -4. To work out the code of any graphics
symbol here we start off with the number 135 (decimal) and subtract
appropriately the required number for each black pixel. Again you cen
check this by comparing the disgram below with the Sinclair Mznual.

Incidently it is worth pointing out here that many copies of tne Sinclair
Manual incorrectly give the character of 135 as B, This is a misprint -
it should of course be [@. Try typing PRINT CHR$ 135 to cheok. Character
seven is @ - the manusl gives this correctly.

4 white -4

The character code of the CLD ROM graphics aymbola are unfortunately
rather random, so there is no simple system for working out the code, given
which pixels should be black and which should be white. In order that the
program to follow should work on both ROMs we shall adopt a slightly
different method. Instezd of distinguishing two different cases (that ia
the colour of the bottom right.hand pixel) we shall treat every quarter-
square the same, and code them as follows:

We would then have to include in our progrem a DATA section which lists
the graphics symbols in the order space

Move RAMICP to address 4380 (this is a hex address) by typing PCKE 16388,128
POKE 16389,67 then NEW. Now load the following program to address 4380.

(In decimal this is 17280, meaning 1K users will atill be able to Tun it.)
As it stands thie program is best run in SLOW. We phall aee how to alter

it sc that it will run in FAST later.

00870483 DATA DEFM This ie the table of
02850681 TEFM graphics symbola in
01860582 DEFM the required order.
03840780 DEFM

CDBBO?2 START CALL KSCAN Wait for human to take
o] INC L finger off of key.
20FA JR NZ,START

92

WAIT

AP INNERLOOP

18a7

The program is now complete. Me“c sure vou ave in
progrem of f by typing RAMD URR 17296. DO _NOT type
is purely data and will not run. You should see a
Prees "C", and watch what heppens. Now press “A%,
Try experimenting with different keys to see what

when you run out of screen?

OUTERLOCP

Wait for new key to be
pressed.

Locate appropriate
cheracter code.

Multiply by eight, but
return to BASIC if a non-
printable character is
prassed .

Pind start of dot pattern.

Transfer two lines of dots
into D and E

Compute which graphics
character is to be
printed.

Get this character {rom
the table of graphice
symbole.

Print this symbol

Next print position.

End of current line.

N¥ext line begins,
Stert again.

SLOV mode snd start the
RAND USR 17280 since thia
completely blenk soreen.
Interesting isn't 1t?
happena - and what happens

You may have been confused by the use of the instruction EXX which wes used
four times in the above progrsm. Its function is very eesy to explain.
A8 you know, the registers B, C, D, E, H, L, and A can be very easily

83

manfmisted, dat thory nre elno neven othar repirtera, anlled 0, 0, 1Y,
Y, WY, LY, Aand A'. (Fronnunced A-drph or A-prime.) Thene are not sfo

nory to manipulate and ern in practice only he used fnr atorage purpoara,
The inntraction EXX 1eanre exchence B and D', C and C*, D and D', K and K¢,
H pnd W', I, and L', Thun all the registern except A lose their previoun
valunn but knke on the values of their alternative repintera. Likewiae the
Altemmetive rerinters take on the nriginsl vealuer of the usual regiatera.

The rcanon we need to do thin {a bacaune the KOM nubroutine IRINT deatroys
the previnun valuea of ¢, IE, and HL. We could have preserved them by
merhing them nnto the mthck, but FXX works just s well here and ir only
one instruction.

Lets take & clofor look ft the mbove progrem and rort out exactly what each
bit does. Virvat of 211 we find the right character code, vhich gets atored
in the A regiater. The inctruotion AND A reaets the carry flag to zero.
RJA will then multiply A by twn, Now we know thet this cheracter is con the
keybonrd and can be obtained in one touch, so it {8 not an inverne
characler. Folnting left then will move the leftmoat bit, which sust be

o zero, into the cnrry flsg. N.A a recond time will again multiply by

two (rince we know the carry is sero), hovever, if the chersoter im NOT
FRINTABLE (ruch ¢m newline or STOP) then bit 6 of the original value

will be & one. Thie will now be moved into carry. The instruation RET C
enoures that if this circumstance ever accurs the progrem will terminate.

Knowing then tnat the corry is still zero we can uas RLA once wore to
sultiply by two. Here however, bit 5, vhich a necemsiry part of the
character code, will be moved into the carry fleg. To move the ¢

djgit into D we wne two inetructions LD N,00 and kL D. D will then cnntain
either zero or one. LD E,A enrures that register-pair DE now contains
eight times the original valum of A.

The other interesting part is the first nine lines of the INNER-LOOP.

A ir lonrded with the first two bita of D and the firet two bita of E.

This pivea s number between zero snd fifteen which corresponds to the
required graphics symbol. It is NUT the ocharacter code, it ia the specinlly
depirned code we worked out earlier on. Notice how the NIXT bitm of D end
E are nov automatically in place at the extreme left,

Por those of you who do not have SIOW I suggeat replscing the lamt
instruction, JR START by RET. You could then have s surrounding BASIC
program aa followsp

10 RAMD ISR 17296

20 FAUSF. 410000

30 RN

THE SUBROVTINES

01]d ROM unerr will by now be feeling quite envious et NKW ROM reople for
having these subroutines at their dlsposal. Of course there is a keyborrd
acan in the OLD KCM, but it isn't a subroutine - ie it doeen't end in

RFT. Cne call to 1L and you're stuck there forever! What we'll have to

do 1a Tevrite them ournelves. We can do this by taking all of the important
bites from the aubroutinen in tha NEW RCM.

Firnt of all KSCAN. Thin is the required subroutine. Don't worry if there
are parta of {t you don't underatand - all will decome clear in due course.

94

21FFFF KSCAN LD HL,FFFF
O1lFEFE LD BC,FEFE
ED78 1N 4,(C)
P601 R 01
F6EO 100P CR EO

57 ID DA

F CPL

FEOL CP 01

9F SBC A,A
BO OR B

A5 AND L

133 ID L,A

i 1D AH

A2 AND D

67 LD H,A
CBOO RLC B
ED78 IR A,(C)
38ED JR 0,LOOP
1 RRA

CBl14 RL H

c9 RET

Row - 4f you enter this subroutine into RAM you can then replace every
CLBBO2 in the chapter by a call to the appropriate address in RAM. The
other subroutine you'll need to be able to emulete is FINDCHR. This may be
done as follows,

1600 FINDCER LD D,00
Ccu28 SRA B

9P SBC A, A
F626 OR 26
2B05 LD L,05

95 SUB L

85 LoopP ADD A,L

37 SCF

CB19 R C

38FA JR C,L0OP
oc INC C

co RET N2

48 LD C,B

2D DEC L
2E01 b 1,01
20F2 JR NZ,LOOP
217000 LD RL,XTABLE~1
5S¢ LD E,A

19 ADD HL,DE
c9 RET

The address 007D, referred to in my listing as KTABLE-1l, is for the NEW
ROM only. THE ADDRFSS OF KTABLE IN THE OLD ROM IS 006C, and so this line
8hould be changed to LD YL,006B., This is far essier to understand than

the first subroutine. The 4 and third lines are rather interesting.

If you remember BC should contain a code corresponding to one of the keys
at the start of the subroutine. Now bit zeroc of B is a one if SHIPT is
not pressed, and zero if shift is preased. SRA B will shift B to the
right, will set bit 7 to one (Do you ber the diff bet

:.nd SRL?), and vill set the oarry flag equal to the previous value of

it zero,

SBC A,A will first of all subtract A from A - effectively reseting it to
Zero - and will then subtract the carry flag. In other words, if SHIFT ls
Pressed A vill end up es 00, if SHIFT i8 not pressed A vill end up as FF.

96

The fourth line, OR 26, will ensure that A is 26 for a shifted character,
FP for a non-shifted character.

You should recall here tnat B contains information about which VERTICAL
section the key is in, and C about which RCRIZONTAL section. If you take

@ closer look at the order the characters are stored in the keyboard

table (KTABLE) which was ehown A few pages back you'll see that the
horizontal-section-number needs to be multiplied by five, and the verticel-
section-number added to it, in order to find a specific key in the table.
Tnis is what the next part does:

L ie loeded with 5 -~ the multiplying factor. Notice how tnhe next two lines
cancel each other out the firet time round the loop. This is one wey of
adding L nought times should we nead to. The next two lines are SCF and

RR C. This is not the mame thing as SRA C, since bit 7 could be zerc. (ie
if a horizontal-section-7 key is pressed.) Apart from shifting C to the
right it also mover one bit into the carry. If thia bit ie a one we haven't
found the right section yet and the loop is re-executed. Note that five is
added each time round the loop. Note also that if A starte off as FF it is
Just as eamy, if nct easier, to think of it as minus-one.

FNow that we're out of the loop, C should be all ones, that is, it should be
FP, so that INC C should thet it b zero, 8¢ what's this RET 82
inatructinn for? Of course this condition is simply to check that you're
not holding down two keys at once. What would C contain if you were?

LD C,B moves the verticel-section-data into the B resister, #o that the
same loop mey be used over again.

DEC L followed by LD L,1 looks confusing. Actually it's not. At the moment
1 io five, and so IEC 1 makes it four, which is NOT ZERC. 1D L,1 doesn't
alter the gero flag, so JR NZ,LOOP sends it back through the eame loop,
but this time checking the vertical sections, and only incrementing by one
insteed of five.

When it comes ocut of the loop IEC L will reduce to zero, o after reloading
L with one JR NZ will not be satisfied end the program will continue.

LD HL,KTABLE~1. Why minus one? Well if there was a "real key" in the position
where SAIFT is and you were preasing it then A would end up as zero. Since
there isn't the smallest value A cen end up a8 ia one, which happenr if you
hold down "2", hence LD WL,KTABLE-1 takes this into account.

LD B,A is effectively loading A into IB. Thie works because D ie alresdy
gero - cee the first line of the program. Then ADD AL,IE will find the
correct address. Notice that we could have replaced these two instructions
by ADD A,L followed by LD L,A. This has the advantage that the first
instruction (LD D,00) becomes unnecessary, and that IE is not at ell
altered by the subroutine. The ROM however uses the version aa listed,

KTABLE in the OLD ROM looks like thisg

006C 2XCV ASDFC QWERT 12345 09876 PCIUY newline LKJH space .MNB
0093 117/ ISR K0T AND THEN TO cursor-left RUBOUT ROME

curnor-right cursor-up cursor-down »)(g" edit =+- mn f.,2€ OR

yor the actual printing process itself, the instruction CALL PRINT for the
NEW ROM should be replaced by PUSH AF/CALL FRPOS/POP AF/CALL PRINT. In
thia is F5/CIE006/F1/CD2007.

The Character Table (CTABLE) which gives the dot patterns for the characters
is located in the OLD ROM st address OROO, rather than 1E00, Again it ia
stored at the very end of the ROM. All of the characters are slightly

different.

mne data for the table of graphics symbols in the character printing
program should run 00 07 06 03 05 82 08 84 04 88 02 85 83 86 87 80 if
the program is to be used with an OLD ROM. Replace the PAUSE 40000 BASIC
statement given in the following text by INPUT Af

GRAFFITTI
1t only requires a slight modification to the original version in order
to make 8 really excellent program, @ trating the { speed which

machine code offers over BASIC. In this program, GRAFFITTI, you touch a
xey and an enlarged veraion of the required symbol appears on the screen.
In this program the whole soreen is uced (even the bottom two lines) thus
allowing a total of forty-eight symbol on the Screen. To load it move
RAMIOP to any address not less than 4D00 and NEW (ie this can't be done
in 1K - at least not in this version). The program is as follows.

2A0C40 GRAFFITTI LD HL,(D-FILE) Set the print position
23 INC HL to the start of the screen.
220840 LD (DF-CC),HL

3680 START LD (HL),BO Print a cursor

CcnBBo2 PAUSE CALL KSCAN Wait for human to take
-] INC L finger off of key.
20FA JR RZ,PAUSE

CDBBO2 WAIT CALL KSCAN Wait for new key to
44 b B,H be pressed.

4D LT C,L

51 LD b,C

14 INC D

28F7 JR Z,WAIT

CDBDO7 CALL FINDCHR Locate the correct

T 1D 4, (HL) charecter code.

A7 AND A

17 RLA Multiply by eight, but
17 RLA return to BASIC if a
D8 RET C non-printable character
17 RLA ie preased.

1600 LD 1,00

CBl12 RL D

SF LD E,A

21001 LD HIL,CTARLE Find stert of dot

19 ADD HL,DE pattern.

0R04 1D C,04

0604 OUTERLCOP LD B,04

56 LD D, (HL) Tranafer two lines of
23 INC HL dots into D and B

5B LD E,(HL)

23

B5 PUSH HL

AF INNFRLOCP XOR A Compute which graphice
cB12 RL D character is to be

17 RLA printed.

CB12 RL D

17 RLA

CcB13 RL E

97

17

CB13

17
21-data-address

SECECE
- e .
O

A
~~
- +
aQ >

§5ﬁa
8

—~

EEEEEG
B

2
8

100P

CECELS
L2
B

CEEEY.

EES3E
ﬁoi
Bgd

1

(vars)
JJE

FEER
EERE
B

Cy

[%]
=

"ART

EE

Cet this anaracter fronm
the table of graphice
symbols.

Print this character
in required poeition.
Store new print
poaition.

Move print position
ready for next row
of symbols.

Move print position
ready for next enlarged
character.

Check for end of line.
Move print position to
left of soreen ready for

next enlarged character.

Check for end of screen.

This program is intended to be run on a 2X81 in the SLOW mode. See if
you can work out how to adapt it so that it will print inverae characters
instead of ordinary cnes. It may even be possible to offer a choicel

SR
AN

R

WY,
%
7

—
Y Z
A

x X W

./’_4—
U7~
Y,

uh

;;é!
K
Y

/

»-u-BR
3 .I /7,

774

8- 8
2 0 0 l(
o0 8 O

-

RN

» N

—A\

P

/&\.‘&}\\‘-\.‘}kﬁ}ﬁ\‘..‘&‘-\,“.‘\\‘}s}‘-\‘.\‘}}.\\}\;‘..\&\(‘.‘\?'

PTER ELE
f: No AN

N
X '\\\\\\{\\\\\\‘{\\\\§ 0
LU

NN R

\\

f:é#ﬁz;zz

AR RS

772227,

|

NS

AR AN RN

o/

—_T_TST TR, T,y eSS

(<
....\r}hm.\.\\\\\\\i . \

jm
AR NN Y7

=)
Inmap=>

-~
-

o >
02
Vi

<(pmig}

UGHTS

Now that we can enter and edit machine code, it's about time we started
using it for something useful, and hopefully interesting. Draughts is a
program we have to be very careful with, Bere's what it will look like
in BASIC:

1 INFUT A#

2 RAND/RANDOMISE USR(something)

As you can see, the vast, vast majority of it will be entirely in machine
code, The machine code will begin immediately after the BASIC program ends.
However, in order that we may edit it we shall temporarily store it a little
higher up in memory than that - in the fourth K.

Also, in order that ve may have the BASIC part of the program at the right
location it will be necessary to MOVE the machine code part of HEXLD}. New
ROM users should start typing POKE 16389,74, and then MEW, and then load
the program HEXLD3.

Mow, to move it, write the following program to the few spares characters at
the end of the REM statement:

010002 MOVE LD BC,0200

110044 LD DE,4A00

210040 LD HL,4000

EDBO LDIR

c9 RET Run this.

Now for the tedious bit, Every address used in the machine code part either
begins with 40 or 41. You-'ll have to go through the listing and change each
40 to a 4A, and each 41 to a 4B. (The changes are to be made in the copied
version, not the original version.) That done, change every address in the
BASIC parts that calls a USR routine, To make a change you must add 2560 to
each number. Now dalete line one by typing its line number. The program
ahould e8till work, but now you'll need to type RUN 400 in order to SAVE it.
Make sure that the variable BEGIN (Now at 4A3C or 4A93) contains a value of
4A00. New ROM users change line 500 to:

500 RAND USR (PERK 16400+256MPEEX 1640]*161) ~In this vay RETRIEVE is

called from within the veriables area, ie addrese (VARS)+Al.
Now type RUN 100 to start the WRITE routine and re-enter the board printing
routine. Again you'll need to load it to address 4C09, The listing is the
:::o as it was befors. Turn to chapter asven and simply Tetype the whole

nge

The instruction RAND USR 19477 should now print a picture of a draughta board
in the top left hand corner of the screen. Pry it and see. Now each part of
this program will be explained in great detail, sc dont worry if a program
this eize seems a daunting prospect. Right now we are only going to input
the first part. It starts off with some data.

4c97 PAFBOS05 TABLE LEFB FA FB 06 05

This represents the directions in which we are about to allow moves. The
numbera in the data are -6, =5, 6 and 5, which, in the board numbering system

the computer will use, are simply the numbers we add to one square to reach
another,

The first, and simplest thing to do, 18 to make a copy of the board as it
appears on the socreen. The copy ia called WKBOARD, for it is the part of
RAM on which the computer will do its working out. The address of WKBOARD
ias to be 403C. That's not a mieprint, it really does aay four zero three C.
For OLD ROM users this is just beyond the end of the BASIC part of the
program, but for NEW ROM users it is alap bang in the middle of the syatem

100

vyariablea. Is thia wise?

ve will in faot be overwriting the 33 byte area PRBUFF and part of the
caloulating store MEMHOT. This doesn't matter since we will not be using
LPRINT, not be attempting to use floating point calculations, and in faot
not using thie area at all. This will not cause a crash.

puring the copstruction of this program, OLD RUM users should use the address

B3C instead, since 403C is in mid-program. You can always change it when
the program is complete.

Here's the copying routine. You should load this to address 4CB4.

240C40 BOARLCOPY LD HL,(D-FILE) Make a copy of the board
110D00 LD I®,000D from the screen to the
19 ALD HL,IE working area.

113C40/4B LD IR,WKBOARD

062 LD B,2a

EDAO NSCOPY LDI

23 INC HL

1078 DINZ ,NSCOFY

c9 RET

Notice the way LDI was used instead of LDIR. This is a very useful way of
saving apace., What we are doing is incrementing HL each time round, o that
only the black squares are copied, not the white ones. Thia loop is repeated

21 (forty-two) times, since in addition to the squares on the board, one or

two characters from the border are also copled, Notice that although LDI
decrementa BC, it is C that is deoremented, not B, mo that the DJNZ instruction
will still count correotly.

OLD ROM users can easily check that the routine ia working by listing from
4B%C using HEXLD3, after the program is run. NEW ROM users can cheok by
replacing the RET instruotion to LD HL,WKBOARD/LD (ADIRESS),HL/JP HLIST.
You must not return to basic (NEW ROM users that is) since PRBUFF will be
viped out by doing so. You cen quite safely return after you've listed.

The next part of the program is just ss simple. If you take a look at the
board printing program, you'll see that the last thing printed is a row of
fourteen spaces. What thia is is a "window" in which our machine code prograa
can dieplay messages to the user, sc the next thing to do is to fill this
vindow with apaces in order to wipe out any error mesaage that may have been
there.

4CF5 0000C0 NEXTLINE six NOP's

4CP8 000000

4CFB 200c40 CLWIND LD HL,(D-FILE) Find start of window.
4CFE 117000 LD I8,0070

4D01 19 ADD HL,DE

4002 060E 1D B,0E Fill it with fourteen
4104 3600 WIPBOUT LD (HL),00 spaces.,

4106 23 INC HL

4007 10FB DJNZ WIPEOUT

4p09 c9 RET Return to BASIC.

Notice that we have actually overwritten the previous routine's RET instr-
uction, so that it will automatically continue into this one, The next part
is for NEW ROM users only. OLD ROM users please ignore it.

101

- N M <& wn v N @

102

The following will cause line one (that is BASIC 1line one) to be re-executed
as soon a8 the next RET instruction is recieved. Note that thia overwrites
the six NOPs in the previous section.

ACFS 21740 REXTLINE LD HL,FIRSTLINE
4CP8 222940 LD (BXPLIN),HL

This fools the ROM into thinking that the next line to be executed begins
at addresa 407D, which is the first byte of the program. 1t docesn't retum
to BASIC immediately however, it will continue with draughts until a HET
instruction is reached,

Now the program seriously starts. We assume that a move has been input as
A$, which is the first item in the variable store,

Here's how to input a move. Look at the diagram of the board, There
are sixty-four squares, but only thirty-two of them are playable, Each
square has a coordinate from 11 to 88, Notice that these are printed without
separation. The firat digit refers to the number down the left (and right)
hand aide of the board, and the second digit refers to the number along the
top or bottom of the board.

There are four different directions you may move in. These are called A (up~
left), B (up-right), C (down-right) and D(down-left), This is indicated on
the disgram. To input a move aimply type in the coordinates and a letter (A,
B C or D). There should be no spaces in this input, For instance, to move
from square 61 to squars 52 you should input “61B".

Now for a program to interpret this input. Follow this carefully:

4D09 241040 (NEW ROM) MOVE
220840 (OLD ROM) LD HL,(VARS)
23 INC HL
= LD A, (HL)
3D IEC A
B3] DEC A
3 IEC A
2001 JR NZ,ROTZERO
F CPL
4D14 e NOTZERO LD E,A

A small amount of additional explanation concerning the input here,wvhich applies
to OLD ROM users only. To input a simple move, such as from 61 to 52, you in
fact need to input "shift W space 61B“. A simple move must always be preceeded
by shift W apace, and this also applies to single jumps. Double jumps, triple
Jumps eto are a little different, and we shall cover them later. As I have
said, this is for OLD ROM users only.

The above routine initially loads A with the length of the input etring, and
then subtracts three, so that for an ordinary move A ends up as zero, for a
double jump A ends up as one, for a triple jump A ends up as two, and so on.
Then IP A is 00 it ia changed to FF. This is 8o that we can check up on
vhether or not a player has made a move, or a jump, later on in the game,

This quantity, which is ordinarily FF, is stored in the register E. We then
continue.

103

4D15 23 IWC HL The first character of the

23 INC HL coordinates is found.

& LD A,(8L)

47 LD B,A Thie number is multiplied

87 ADD A,A by eleven, since the board

Lig LD C,A on screen is eleven char-

a7 AID A,A acters acroas,

87 AID A,A

23 INC HL The position within the

BS PUSH HL string is stored.

80 ADD A,B

3] ADD A,C

86 ADD A,(HL) The next coordinate is added.

1P RRA Divide by two, since the
copy containa only the black
squares.

3805 JR C,NOERROR1 If the coordinate points to

a black square there is no
cheating.

In the above routine the first coordinate is multiplied by eleven, by making
use of registers B and C, and then the second coordinate is added. Note that
if you input "12" as your square then because of the 8inclair character codes
the progran thinks that the first ccordinate is actually 1D, snd that the
second coordinate is 1E. This actually leads to a result of 5D. Rotating
right gives ZR, together vith a oarry indicating that the player has not
oheated by giving a wvhite square instead of a black one, The next five bytes
deal with what happens if the player has cheated. These are

4025 n ERROR1 POP HL Restore the atack pointer.
CDAT4C CALL ERBOR Call to an error message
1 IEFM 1 subroutine,

The subroutine ERRCR, which requirea one byte of data (here the byte 1D, the
character code of “1%) looks like this:

4C93B 2E313124 IMOVE DEFM ILLE These are the words "ILLEGAL
20263100 DEFM GAL MOVE" ~ data to be printed.
32343824 TEFM MOVE

4CAT El ERROR POP HL Fetch the byte of data
T® LD A, (HL
240C40 LD L, (D-FILE) Find the start of the window.
117000 LD I%,0700
19 AID HL,DE
EB X DE,HL
219B4C LD RL,IMOVE Copy the words onto the
010C00 LD BC,000C acreen.
EDBO LDIR
13 INC DB Print the byte of data onto
12 LD (IE),A the acreen.
c9 RET Return to BASIC.

Notice what happens. The message "ILLECAL MOVE 1" appears on the screen,
and no piece is moved. The player is then required to re-input her move
which will then be checked in exactly the same way.

If no error is found (yet) the program continues.

4p2A C608 NOERROR1 ADD A,0E Find the position of the
square in WKBOARD.

104

OE is simply the required factor to exactly match A to the low part of the
address of the working~board square. For inatance, adding OB to 2B gives
3C, and 403C is the start of WKBOARD.

4D2C 6F LD L,A

2640/4B LD H,WKBOARD-high

4B LD C,(HL) Pind which piece is on
that square.

0680 LD B,80 Replace that square by a

70 LD sm.g.n black empty square.

4D33 3] LOOP EX (SP),HL Store the square position,

and retrieve the pointer
to the input string.

23 INC HL

227B40 LD (POINTER),HL Store this value.

TE LD A,(HL)

c671 AID A, 7 Find the direotion being

6F LD L,A moved from the TABLE.

264C LD H,TABLE~high

56 LD D,(HL)

El POP HL Retrieve square position.

78 1D A,B Check whether the player is

A2 AND D moving one of her own piecas,

2P CPL and in a legal direction.

Al AND C

FE27 CP 27

20TB JR NZ,ERROR1

A brief explanation of the last six lines here. A is loaded by 80, D is the
direction to be moved, which will be FA, FB, 05, or 06, AND D will therefore
produce 00 for a backward direction, and 80 for a forward direction. CPL
will change this to FF or TP. C is the piece to be moved. If it ias a black
king it will be 27, if it is & black piece it will be A7, so AND D will
produce a value of 27 if EITHER the pilece being moved is a king, OR if the
piece is moving forwards. If you try to move a piece backwards, or give a
square vhich does not contain one of your own pieces, than a value of 27
will ROT be produced. In this case the program will send an "ILLEGAL MOVE 1"
error message.

4p48 ™ LD A,L Find destination equare.
82 ADD A,D
(54 LD L,A
= LD A, (HL) Check the contents of that aq.
B8 CP B Is it an empty square?
2008 JR NZ,NEXT
™ ID AE 1f so, is this a single
3c INC A move?
2815 JR 2,CONTINUE
CDA74C CALL ERROR If not a single move, give
1E DEFM 2 *ILLEGAL MOVE 2" message.
4D57 BO NEXT OR B
FEBC CP BC Does square contain a comp-
2804 JR 2,NOERROR3 uter's piece?
CDA74C ERROR3 CALL ERROR Give meseage "ILLEGAL MOVE
1r DEFM 3 3" if not,
4160 70 NOERROR3 LD (HL),B Overwrite computer‘s piece
with a black empty square.
™ LD AL FPind next destination
82 ADD A,D square.
33 LD L,A

105

4n64 ™ CONTENT LD A,(HL) Pind the contenta of the
new square,
B8 CP B 1s thie square empty?
2074 JR NZ,ERROR} Give YILLEGAL MOVE 3® if not.
4D58 CONTINUE

At this stage the program will jump or move an the case may be (in other worde
it vill decide lor itcelf - you don‘t need a specisl input) and will so fer
check for three types of error. These are:

l) Attempting to move a piece that ies not your own, or moving one
of your own non-king pieces baokwards.

2) Attempting to make a non-jump move in the middle of a multiple
move sequence.

3) Attempling to move to a square which is non empty.

You may like to check all of these things. This ien't too difficult to do.
8imply write JP 4DDE to the end of the program and add the following routine.

4DDB 2A0C40 BDPRINT LD HL,(D-PILE)
110000 LD IR,000D
19 ADD nL,DR
EB EX DE,HL
213C40/48 LD HL,WKBOARD
0624 LD B,2A
EDAO Lo LDX
13 I
1078 Nz LDY
c9 REP

This will copy the computer's working-board back onto the screen so that you
can see vhat has happened. You can also alter the data for the board-print
routine, and so set up a bosrd i{n mid-game in order to teet eome of the

error checks if you want,

To make the progras run, add the following BAYIC program lines.

QLD _RON e RON
1 INPUT 1 INPOT

Ap
2 nmmns: USR(19683)

3R
; nnmoms: USR(39477)
RUN

AP

2 RAND USR 19683
910P

4 RAND G3R 19477

S RUN

The program is activated by the command RUN 4. Don't forget you can still
use HEXLD3 to list, but you must nov use RUN 10 to bring this into operation.
If you type RUN on its own sccidently you will get sn input prompt. Break

out jmmediatl
4 t wi

If you don't the resulta will be unprediotable. I don't
crash, btut just to be on the eafs oide....

And nov s check to determine vhether or not the human player has reached
the other wnd of the board. If so, this next rouuno v¥ill automatically

change her piece into a king.

4068 ™ CONTINUE LD A,L If the lov part of the
FEA0 cr 46 current address i{s lesa than
300C JR NC,NOKLNG 4Ohex then the other side
has been reached.
3 1D AB If this is not the lest
3 InC A move then give an “JLLEGAL
02 CP 02 MOVE 4" meaaage.
3804 JR C,MUERRCR4
CDAT4C CALL RMRROR
20 DEFM 4

OR27 NOERROR4 LD C,27 Make piece a king.

71 NOKING LD (HL),C Put back on board.
ES PUSH HL Store current position on
board.

Notice the new error check. If a player attempts to make a king in mid-move,
that is, if she jumps to the back row and intends to jump out again in the
same go, then an error will be detected and “ILLEGAL MOVE 4% printed to the
screen. This is because according to official rules a piece does not become
a king until after you remove your fingers from it. Of course in thia game
your fingera are never on the piece in the first place, but we presume that
this is vhat the rules are intended to mean.

Remember that E contains FF for a aingle jump, and Ol for a double jump. LD
A,B/INC A/CP 02 will only give an error if E is one or more. If E is 00,
(which if you've input a multiple jump it will eventually be) the move will
go ahead successfully.

4D7B 2A7TB40 LD HL,(POINTER) Retrieve the pomsition pointed

to in the input atring.

1 IEC E Decrease the number of moves
left in a multi-jump seq.

kel LD AE Check whether last move

E3 EX (SP),HL has been made.

17 RLA

30AB JR NC,LOOP The input pointer is replaced

at the top of the atack
ready for the next time
round the loop.
B POP HL
4085 C3DE4D JP BOPRINT Bxit.

Well, all of the possible error cheoks have bsen made, and the program
contains a loop which will allow for the inputting of multiple jumpse., Here's
how a multiple jump should be input. To jump from equare 63 firat in direotion
A, then in dirxection B, then finally in direction €, just input "63ABC" - it's
that aimple. OLD ROM users need to nots the following convention though:

OLD single moves or single jumps should be preceeded by ashift W space.
ROM double jumps should be preceeded by shift B space.
ONLY triple junps should be preceeded by shift R space.

4-ply jumps should be preceeded by shift D space.

And 80 on... The mequence is W, B, R, D, F, S, A, T, G. I doudt very much
whether you'll ever need a 4-ply jump though. Bven uaing a triple jump seems
rather unlikely.

The next thing that should happen is that the computer should make a move
in response, but we'll leave that to anuther chapter, since it has a bit of
decision making to do., But there ia one gqueation to be answered first. What
if it now has no pieces left to move? What if the player's last move removed
its last piece? This haa to be chacked for. If this is the case then the
player has won, and we must aomehov indicate this.

Here is the final check:

4p85 OEBC LD C,BC
4187 CDEC4C CALL GAMEOVER
4DBA C3DE4D JP BOPRINT

107

And the subroutine....

4CBC 213C40/4B GAMEOVER 1D HL,WKBOARD Look at first square.
0624 LD B,2A
= POSSIBLY 1D A,(HL) Find contents of square.
P680 OR 80 Make it an inverse graphic.
» CPC Is it what we're looking
c8 RET Z for? If so we're 0K and

can return to draughts.

23 INC HL Look at next square.
10F8 DJRZ POSSIBLY Try again.

4CC9 the next six bytes are for the new rom only. 0ld Rom users should

replace them with six NOPs (00).

219740 STOFPROG LD HL,STOPLINE
222940 LD (NXTLIN), HL

Fool the ROM into thinking
that line } is to be carried
out next.

Fow we reach the exciting bit. What happens if the player HAS won? I'm not
actually going to tell you - just input it and find out. To teat it you:ll
have to alter the data that sets up the initial board, and arrange it so that

you can take all of the computer's piecea.

ACCF 2A0C40 INVERT LD RL,(D-FILE)
066c LD B,6C
23 COVER INC HL
™ LD A, (L)
FE25 cP 25
3006 JR NC,NOINV
A7 AND A
2803 JR Z,NOINV
F680 OR 80
77 LD (HL),A
1012 ROINV DJINZ COVER
n POP HL
c9 RET

Notice how, in the last two lines the return addresa is removed from the stack,
80 that the next item on the stack is the return to BASIC address. The next

REP will of course do just that.

108

" N \ -
e

T 1 Dot

C ER TWEL
\ \) . r\\r;_\\\h
™ 8

O 0O R

=3

(LT
Imip=>
i

S

AR IIEITTOIRTITETTEEESSSSS ’ ‘.’

1B

- -,
=l

¢ (% s .
Y K\}}\\‘.\‘&}\}}\}\?‘X‘-\;‘-\.‘}Té‘-\.‘.\}ﬁ}\\\\‘-\.‘-\.‘%‘-‘l

7

R R R R

\ w7y ||

/

22

7

\

e,
—
¥/ 2/

(o=
A=
Y

Z
Y,

<
(&
Y

A .Y

//

gy
/.

77

MUSIC

Music from your TV speaker? Is it possible? More to the point - is it
possible on a ZX? The answer is yes!

As you know, your machine is deeigmed to work without sound. It does make
a kind of horrible buzzing noise, but hardly anything you'd want to make
musioc out of. The manual {tself tells us to turn the volume right down so
as to cut the noise out completely.

The little computer, on the other hand, has a mind of ita own. Completely
ignoring its own design specifications it thinks to itself "Anything s
bigger computer can do, I cen do better", and as a result of this
Tebellion you'll find that REAL NUSICAL NOTES can be produced with just
a tiny speck of machine code,

Those of you who have tried the music routines in Interface are undoubtedly
thinking to yourself "Huh! I've heard this so called 'music' - it's
Tubbish!®™ Well I assure you this is not the same thing. The reason? Well
one big advantage machine code does have over BASIC is precision - and

this program is in machine code, not BASIC. The mueic is musical. You

can even tune it if you have a tuning fork handy.

This is called CATHY'S PROGRAM, dedicated to someone who believes computers
should be artful, not just attack you with space invaders, The machine
code is beat stored in a REM statement. The addremses givea in the listing
assume you have a NEW ROM machine. If you have an OLD ROM machine all you
have to change is the addreeses (although you will have to supply two of
the subroutines yourself - mee chapter ten)

98897369 NOTES CDRF Thia data represents
00937EC05E - c¥pr - @ the varioua notea that
0038312824 - CDETFPF are available fronm the
0000362000 - - Cc*'D* - keyboard,
0QOO0F161E - = g ps
000A0C121A - CBAG
000000414C B
00383C4653 - C BAG
78 PAUSE LD A,B Sudbroutine causing a
3D HOLD DEC A delay of a precise
20FD JR NZ,ROLD length,

cann_ % RED

here CIEBO2 START CALL KSCAN weit until a key 1s
44 1D B,R pressed,
4D b C,L
51 1d »,C
14 INC D
26F7 JR NZ,START
CDEDO7 CALL FINDCHR Find which key is being
110440 LD DB, NOTES-TE preesed.
19 ATD BL,JE
46 LD 3,(HL) Select note.
AP XCR A
B8 CP B Check that this note is
28EB JR 2,START not a “"pause",
DEFF IN A,(FF) Play this note,
CLA940 CALL PAUSE
D3FF OUT (FF),A
CDA940 CALL PAUSE
18E0 JR START Go round loop again.

1f you ators the whole machine code routine in a single REM statement in
1ine one, then you only need one more line of BASIC to make the program
complete, This is line 2 RUN USR 16558, which calls the machine code
from the address labelled START. Delete any extra lines you may have,
and SAVE the program a couple of times before you RUN it.

You now have two octaves at your diaposal - the keyboard below shows
where the notee are. A fair number of tunes may be played quite
successfully.

Alvays run the program in the FAST mode - it's not that the speed makes
the notea sound different - it's simply that the program doesn't work AT
ALL when in SLOW.

The notes as listed in the program are roughly right, but exactly how they
sound vwill depend mainly on your televiaion set, (incidently you may have
to alter the tuning slightly to get the best sound quality,) so in case
you need to "re~tune® the notes, here's how you do its

The data at the start of the program (labelled NOTES) contains one byte

for each note. A zero indicates there is no note on that key. The data is
in the following order:

OOEEOEEEO0OO
OIEJCIEIEICEEIEIE0]
OEEOEEM0O0O0
IEIJEIEIEEMEIEIN]

data e note

38 689 T3 69 st'xx cv C DEF lower ootave
00 93 7K 00 5E ASDFG - ¢* 1" - F® lover octave
00 3B 31 28 24 QWERT - C D _E F upper octave
00 00 36 2¢ 00 12345 - = €™ - upper octave
00 00 OF 16 1E 098176 - = A" G* F* upper octave
00 OA OC 12 1A P OI UTY - € B A G upper octave
00 00 00 41 4C mL K JH - = = A% " 1ower octave
00 38 3C 46 53 ap., M N B - C B A G lower ootave

to alter the frequency of any note just change the byte of date that
represents it. To make a note higher you must decrease the number, and
to make it lower you must increase the number.

m

THE PROGRAM'S DISADVANTACES

(And how you can cure them)

The biggest disadvantage ia the lack of a RET instruction anywhere in
the program, which means that once you enter the program you cen never
leave, You can cure this by adding a few lines somewhere near the START
label. As an exercise, mee if you cen adjust the progrem mo that it
returna tn BASTC whenever the key SHIPT-ZERC (rubout) ie preesed. (HINT:
HL equals FCEP when it returns from KSCAN)

The second disadvantage is that if you press SHIFT while playing notea
some very random things seem to happen. See if you can make the shift
key inactive (except for breaking out as described above) by adding a
SET 0,R instruction somewhere in the yrogram.

7X Music is a fascinating subject, and it ie possible to store in data a
1ist of notes to be played, and how long each note is to be played - a
tune in other words. I'l1 leave that one to you though, because the only
Teal way to learn is by experiment. We'll leave the subject of music
altogether now and turn to something slightly different: pictures....

PICTURES

This is yet another program wvhich relies on the artistic ability of the
human operator. It is strictly for NEW ROM users ONLY, but it ia intended
to be run in the FAST mode. You will require at least four-K for thia.

The program stores in memory three or more different piotures, and cycles
through them one at a time, diaplaying each on the screen for as long as
you vant. A "picture® can be anything whatsoever - you can compose it out
of graphics symbols, letters, spaces, inverse asterisks -~ whatever.

The first thing you do is to reserve some memory in which to store these
plotures. If you have 4K type POKE 16368,162/POKE 16389,70/KEW for three
plotures, or POKE 16388,206/POKE 16389,73/NEW for two pictures. If you
have 16X you can find enough room for about twenty plctures. To work out
how far down you have to move RAMIOP with 16K just start off with 32768 and
subtract 793 for each picture,

l)!ov you're ready: Write the following machine code to a REM statement in
ine ones
2A0C40 STORE LD HL, (D-FIIR)

112646 LD DE,PICTUREL
011903 LD Bc,0319
EDBO LDIR

c9 RET

The address labslled PICTUREl refers to those people using 4K. For those same
People FICTUHE2 would be 49CE and FICTURE} would be ACE7. If only two pictures
will be used you should omit PICTURE1l, not PICTURE}. If you have 16K you have
more or less limitless freedom. In the interests of simplioity you could use
addresses 5000, 5400, 5800, 5C00, and so on.

112

ing 4K, or if you are
Now type POKE 16389,77 followed by CLS if you are us
using 16K but nxu:r POKEA 16389 with a number less than 7.

ints a pioture,
Now write a BASIC program (without deleting line one) which pr

The last line of thia program should bde RAKD USR 16514. 4K users may find
themselves running out of space. If thia is so you'll just have to give up
and make do with two pictures instead of three. .

{ your program
A useful fact to know is that if you make the first 1ine o
(first apart from the REM that 1s) FOXR 16418,0 then you can primt to all
twenty-four lines of the screen. Even PRINT AT 23,03 worksi

¥ow delete all the PRINT lines, DO NOT TYFE HEW. Change the address in the
machine coda to that of a different ploture, and vrite a mew BASIC program
printing a different picture, again ending in RAND USR 16514. Do this until
every plcture you wish to cycle through has been stored.

Now move RAMIUP back to the address desoribed in paragraph three
Type REW, Now you are ready....

Yor the first time in the bock we are going to make use of the PAUSE
facility. The instruction CALL PAUSE will diaplay the TV picture indefinately,
or until a key is pressed., To PAUSE for a specific number of TV frames it ia
necessary to LD (FRAMES) with the required number first. Enter this machine
language programt

0602 PICYURES LD B,number of pictures
21D646 LD HL,addresa of first picture
(5] NEXTPIC FPUSH BC

ED5B0C40 LD DE,(D-FILR)

011903 LD BC,0319

KDBO LDLR

BS PUSR HL

210001 1D HL,length of pause
223440 LD (FRAMES),HL

CD2902 CALL PAUSE

)43 FOP HL

cl FOP BC

1088 DJNZ NEXTPIC

c9 RET

This ia the complete program. See how it works - the firet picture is copied
into the display file using LDIR, and the PAUSE subroutine is called from the
ROM. Then vhen the PAUSE is over the next picture ia copied onto the screen,
and 8o on. The value of HL is not changed between each picture, since they
are atored in memory immediately after each other. If tAdy are not (for
instance if you are using easy toc remember addresses) ypi'll need to alter
the program slightly . HL should point to the start of a new picture each
time round the loop.

The BASIC program to go with this is

10 RARD USR pictures
20 RUN

In this way you can break out of the program at the end of the sequence.

Altermnatively you could replace the last RET instruction by JR PICTURES,

vhioh would eliminate the need for a second BASIC instruction. You can of
course alwvays break out during a PAUSE.

13

LIFE

In the last program in thia chapter we turn the tables slightly. We humans
have been artistic for long enough - nov it's time to let the computers
take their turn....

This program is called LIYE - it is supposed to represent the birth/growth/
death cycle of a colony of cells living on a square grid, It produces rather
fascinating results. Before your very eyes you see a constantly evolving
pattern - starting of{ totally random - which finishes sometimes with the
ultimate death of the cell colony, sometimes with a fixed and unmoving cell
structurs which has reached equilibrium, and sometimes with a continuous
cycle of patterns, called dynamic equilibrium. It really is amazing to watch.

LIFE was invented in 1970 by a man called John Conway of Cambridge Univeraity,
and it's rather surprizing that the Tate Gallery hasn't yet got & copy of

it. Although it is in fact about the growth of cells which follow hard and
fast mathematical rules it in reality becomes a rather effective pattern
generating algorithm.

The principle of LIFR is very aimple. A grid - usually square - is dotted
with approximately one quarter of its available squarea filled with cells,
These poaitiona are usually chosen entirely at random. This configuration
of the grid is called GENERATIOR ZERO.

Successive generations are then worked out by a fairly simple to underatand
principle, Each square on the grid has eight neighbouring squarea. These
squares either contain another cell or they are empty. Every cell with two
neighbouring cells; or with three neighbouring cells, will survive to the
next generation, but no other cella will survive. A nev cell is born in every
empty apace which has precisely three neighbouring cells, but no other cells
are born. With these fairly simple rules it is rather surprizing that the
gama should produce the rather impresaive results that it does.

In thia version of LIFE our grid is sixteen by sixteen, because of course
sixteen is a fairly easy number to work with in hexadecimal. Further, our
grid is rather stirangely constructed in a curved spacs continuum, meaning
that every square on the left hand edge is connected to the corresponding
square on the right hand edge, and vice versa, also every square on the top
edge is connected to the corresponding mquare on the bottom edge and vice
versa.

The program is beat run in SLOW, although of course it will run in FAST if
you add a PAUSE or INFUT atatement.

NEW ROM people are advised to store the machine code in a REM statement.
OLD ROM people are advised to store the machine code anywhere but a REM
statement, eince it containe characters 76h. The machine code containas
exactly one hundred and thirty nine bytes.

The surrcunding BASIC program is

2 RAND USR START

3 RAND USR NEXTGER

(4 PAUSE 25 or INPUT A$ - optional extra for PAST users)
S GOTO 3

vhere START and NEXTGEN are addresses in the

machine code program. In the following listing we assume that the firat
address is 4082, You oan quite easily change it if you wish.

14

EP010110
10FFFFFO

call here
QE10

0610
243240

TABLE

START
NEWROW
NEXT

NEXTGEN

COPY

VALID

73
59
32
3o
2z

w0
- o
-t
oo

8

SEED)

EEEEE
ny
BERAT=

-

FERERER
HEEEMEE

EEEEEEE

BESESSEE
THE

B
B

E BB
T
[- N~}

-

9567y

853
afel
=3
E

e
o
N~y
-

8
2

Data represtenting the displacements
of the neighbouring squares.

C counts the number of rows printed.
B counta the number of columns.
This next section generates a
random runber.

The nev random-number-seed is stored.

Decide which character to print, based
on choice of random number.

Print thia character.
Same for the next character in the row.

Print a nevline symbol at the end
of the row.
Same for next row.

GCeneration gero printed completely.
B counts the number of cell positions.
DE stoxes the start of the working-
area usaed to compute the next gen.

Stack the atart of the display-file.

Copy the current generation (but not
newlinea) to the working space.

Stack the start of the dump.

C Counts the rumber of neighbours a
particular cell has.

Skip over the next character in the
display file if it is a newline.

Store the position within the dump of
the cell being examined in HL, and
also stack it.

115

118240 LD DE,TABLE Point IE to table of displacementa.
1A

NEXDIS LD A,(DR) Find diaplacement.
FEOE CP OB If this "displacement” is OE we have
280B JR 2,COUNTED reached the end of the table.
13 INC IE Point DE to next item in table.
85 ADD A,L Find neighbouring cell-position.
6P LD L,A
B LD A,(HL) Is there a cell there?
FEB4 CP B4
20973 JR NZ,NEXDIS
oc INC C Increase count if so.
16r0 JR NEXDIS
El COUNTED POP HL Retrieve cell position.
19 LD A,C
PEO2 CP O Are there less than two neighbours?
380F JR C,NOCELL If so no cell appears.
FEO4 CP 04 Are there four or more?
300B JR NC,NOCELL If so no cell appears.
FEO3 CP 03 Are there precisely three?
2603 JR 2,CELL If a0, a cell does appear.
T LD A,(HL)
1806 JR PUT
3KB4 CELL LD A,B4
1802 JR FUT
3880 NOCELL LD A,80 A now contains the right character.
E3 FUT EX (SP),HL Retrieve print position.
77 LD (EL),A Print character,
23 INC HL Move print position along one.
E3 EX (SP),HL Retrieve cell-position.
23 INC HL Look at next cell-position.
E5 PUSH HL Stack this position.
™ 1D A,L Check the value of L to find out
A7 AND A whether or not we have printed the
20BF JR NZ,NEXTCELL last cell-poaition.
El POP HL Reatore the atack to its original
Bl POP HL state and return to BASIC
c9 RET

If you used the same addresses as in the listing then START is 16522 and
NEXTGEN is 16562. SAVE the program, Do not RUN it yet because if you do it
will crash! NEW ROM users MUST first of all type POKE 16383,67 followed by
NEW, and OLD ROM users should ensure that they have at least 2K of memory.
You will then have to reLOAD the progran {rom tape.

The first thing you should type is RAND/RANDOMISE. You may now type RUN.

An interestinz point about this program is that it is capable of producing
ita own random numbers. The part labelled NEXT does this - you should atudy
how this is achieved, and by all means use the same principle in your own
programs,

LIFE will print out a randomly constructed gensration zero in just ONBE SECOND
when in the SLOW mode, The successive generations will then be produced at
the staggering rate of three and a half generations per second! If you find
this is much too rapid you cen slow it down by adding a few more lines of
BASIC - I suggest LET X=O/LET X=X+1/FRINT AT 17,0;X with the last two being
inside the loop - this has the added advantage of telling you hov many
genarationa have been shown.

116

Finally you should follow the manner in which this program , unlike some
other LIFE programes, caloulates each new generation entirely on the basis of
the previous one. It does not work out the new firast raw and then calculate
the second row by counting the neighbours in the now-changed new first row,
the second row is determined by the previcus status of the first row, (this
is what the area of memory labelled % in the machine code listing is
for), thus each new generation ia correctly set up.

There are many other pattern gemerating programs, some much simpler, but none
with the elegance of LIFE. If you own 16K you might like to try writing a

24 by 24 LIFE, or even a 24 by 32 version - remember, in machine code there
is nothing to stop you printing on the very bottom two lines.

The biggest LIFE you could possibly hope to achieve is 48 by 64 using white
quarter-aquares for cells, but that would be quite a complicated program, If
you feel really enthusiastic you might like to have a bash at this monumental
task. I will let that decision rest with your sanity.

The next chapter completes the discussion on DRAUGHTS and leaves you with
the horrifying proapeot of completing the program....

17

TTTTTTTTTTTTTTT

DDDDDDDD

Q \ Q ‘iﬁﬁi,}) ! |

5 g\\X\X\\\@j ‘: .-..

m—— |

. ()
O
O
Q
b=y . .
2 O
o

IBAGETS

This is the section which decidea upon vhich is the “"best™ move the computer
can make, after the human's move.

You may have to follow this thinking we are about to embark upon very care-
fully. Here in brief is a systematic breakdown of the way in which the move
is chosen.

We scan the board, one (black) mquare at a time, and vhenever we find a
computer's piece we sit and think about it for a bit. To each move we find
poasible ve assign a numericsl value, such that the bigger the number, the
better we think the move is. It then follows that to select a move we merely
have to choose the one with the higheat possible value,

0f course this idea won't let the computer plan shead - it can only think one
move at a time. In order to construct this list of moves, and accompanying
numerical values we don't actually have to store every single move we find.
Having located a poesible move, and worked out its score, vhat happens ia
this:

If the score is LOWER than those on the 1ist, the move is ignored.
If the score is HQUAL to those on the list, it ia added to the end,

If the score is HIGHER than those on the list, then the list is abolished
and a new one started.

In this wvay the liat ie always as short as it can possibly be. When the final
decision time actually arrivea the computer now merely has to select one of
these moves at random. Next queation = vhere will the list be stored? Answer
The Stack. This simplifies things, but it does mean that we must keep a
Tecord of where the start of the list is. We shall atore thia at addrese
4078 (OLD ROM 4022) and call this quantity LBASE. You will notice that in

an earlier part of the program we used 407B/4022 to store a quantity called
POIRTER. Lon't worry = this is quite alright. POINTER is not used in the
previous section, and it's value does not need to be preserved. LBASE was
not used in the last section, and sgsin its value does not need to be preserved.
Using the same space twice for two differemt things is a space-saving trick
you should get to imow.

The decision making of the computer begins at addreas 4D4A. The first inetr—
uotion is LD (LBASR),SP. The start of the list is now preserved, We can play
around with the stack now as much as we like, as long as we remember to reatore
its value before we return to BASIC. The second and third instructions are

LD BC,0000 and PUSR BC, which will indicate that there is nothing at all in
the current list.

The checking loop thus looks like this. Notice that a nev variable SQCHK is
used, 1t is listed as residing at 4077, but OLD ROM owners should replace
this addresa by 401C)

4DBA ED73TB40 BOARDSCAN LD (LBASR),SP Initialise the liat.
010000 LD BC,0000
c5 PUSa HC
213C40 LD HL,WKBOARD Scan the board, one square
= XXTCHK LD A.fm.) at a time.

120

F680 OR 80

FEBC CP BC Have we found a computer's
plece?

227740 LD (SQCHK),BL

CA434E JP Z,EVALUATE

207740 KPCHKNG LD HL,(SQCHK)

2c I L Have we reached the end

™ LD A,L of the board yet?

FR66 CP 66

20BC JR KZ,NXTCHK Loop back if not,

As you can see, this particular bit is quite straightforward. You only need
to (temporarily) add a few extra instructions to avoid crashing. These are:

4E43 C3D54D EVALUATE JP 4DD5 These additional lines
4DA9 €3D54D CHOOSE JP 4105 are temporary only. They
4005 ED7BTB40 LD SP,(LBASE) will stop the program
4DD9 OEA7 LD C,A7 crashing, but will not
4DDB CDBCAC CALL GAMEOVER run it.

Can you see that loading SP with (LBASE) eliminates the need to POP everything
from the atack before returning, LDing SP will fool the machine into thinking
that the stack hasn't chenged since we went into the loop.

Now we need to think about what form we want the 1ist to take. Let's examine
the prodlem in reverse, What form would we like the list to take, in order
to make removing items from the stack easier.

The first item on the stack should be the rumber of steps involved in the
move - that is one for a single move/jump, two for a double jump, three for
a triple jump, and so on. The second item should be the numerical value which
the items in the liast have been assigned - the priority as we shall cell it.
Following these items of information we should have the list itself, starting
with the square to be moved from, followed by a eeguence of one or more
directions in which to be moved, Immediately after this the second item in
the 1ist in the same form, then the third, and so on...

You'll notice that each thing we nased on the stack will only need to be one
byte in length. The number of steps cannot possibly be more than 255. The
priority can be chosen however we like - we can always make it one byte if
we wish. The initial square can bte stored by only stacking the low part of
its address in WKBOARD. The directions to be moved can be stored in the same
manner as before -~ 05, 06, FA, or FB for plus or minus five or six. In order
to make this program as space efficient as we can it makes sense to do just
that,

To make a random decision Iat‘o assume there are B possidble choices. We want
therefore to oh a ber between 1 and B = or as we shall do between
0 and B~1. We shall do this by the following means:

4029 3A3440 CHOOSE LD A,(FRAMES)lON gelect a random mumber
REPEAT SUB B between O and B~l. This
30FD JR NC,REFEAT number to be stored in
80 ADD A,B the A register.
03D54D JP 4DDS

OLD ROM users should replace the address 4034 by 401E. The final JP 4DD5 is
merely a means of exiting the program.

Rrd

imagine tha 1iat is complete and we are about to remove one item from it.
The stack now looks like thiasz:

no. of priority | initial direction|initial direction) direct ion
steps aquare one square one
'lp 1base

1f we now use the instruction FOP BC, B will contain the priority, and C the
no, of steps, The priority is nov a redundant piece of information, since it
was only needed to construct the 1list in the first place. C however is very
important. In the diagram above C would be one, but it doesn't have to be.

The stack now looks like this - but let's generalise a bit more by assuming
there are two steps per move, not one:

initial direction direction|initial direction diraeuon direction
Bquare one tvo square one twvo

sp lbna1

If A is an indication of which of these moves we are to choose then it seems
logical that we must remove A of them from the stack. Then the required move
would be at the top of the mtack. Thus if A is sero we do nothing, otherwise
wvo must use some kind of loop., Can you eee¢ that POP HL followed by DEC SP
will remove one byte from the astack rather than two, and that INC SP can be
used to skip over ome of the bytes.

The required loop ia this:

4DBO (23 POP BC Find the number of steps
41 LD B,C Per move.
2808 JR 2,FIRSTOFF Do nothing if A ia zero.
33 RSQOFF INC SP Remove & total of A
33 NEXTOFF INC SP complete moves from the
10FD DJINZ KEXTOFF stack.
41 LD B,C
3D IEC A
20F8 JR N2,NSQOFP

The selectsd move is now at the top of the stack. To carry it out let's first
take a look at what the stack is now like:

initial direction direction
square one two seaee

to

To find the initial aquare the sequence is POP HL followed by LD H,WKBOARD-high.
You see "initial square” is the lov part of the address. By assigning H with
the high part we ensure that the register pair HL contains the absolute

address of the square from vhich we must move. R must be assigned after the

POP HL instruction though, since there is no real way we can manage to remove

L on its own. Finally the instruction LD B,C once more will ameign B with the
number of steps we have to make. The proceedure for carrying out these steps

is much eimpler than before since we don't have to check for cheating - we
shall write the program such that the computer cannot cheat,

4DBA El FIRSTOFF FOP HL Find the absolute addreas
2640 LD H,WKBOARD-high from which we must move.

122

To remove one direction at a time from the astack we shall use the sequence
DEC SP/POP IB. In this way E will be assigned with the required directionm.
D w{ll contain useless information.

ADEF 41 1D B,C
3B NEXTSTEP IEC SP Find which direction the
Dl POP B computer ia to move,
4B LD C,(HL) Get computer's piece.
3680 LD (HL),B0 Overwrite with black sq.
™ LD AL Pind destination square.
83 ADD AR
6F 1D L,A
™ LD A,(HL) Is this square empty?
FEBO CP 80
2805 JR Z,SQUARE If a0, move,
3680 LD (HL),80 If not, Jjump.
™ LD A,L
83 ADD A,E
6F LD L,A
n SQUARE LD (HL),C Put piece in position.
10EB DJNZ NEXTSTEP Same for next directiom.
You should now be at addresa 4ID5, at which is stored the sequence
AIDS ED7B7B40 LD SP,(LBASE)
OEA7 LD C,A7
CDBCAC CALL GAMBOVER
4DDE 2A0C40 BOPRINT LD HL,(D-FILE)
and 8o on down to
4TF0 c9 RET.
This means that ided the st is © 1 we oan actually see

this vhole mechanism working. What 1 want you to now is to write a short
routine to set up the stack ao that all of the possible opening moves are
stored. You should be able to do this all by yourself. I will tell you though
that the routine should be placed at addreas 4B43 {what will eventually be
the EVALUATE routine) and should be terminated by the instruction JP CHOOSE
(C3494D). One way of doing this bit would be LD HL,something/PUSH HL/LD HL,
aomething/PUSH HL/and eo on, but if you can think of a better way by all
means use it,

You may now RUN the draughts program by typing RUN 4. You will be asked for
an input - make your move as you have baem doing in the psst. How watch what
happens to the computer's side = one of the pieces should move! Break out of
the program, since as yet it can cnly decide upon the first move of the
game,

Now RUN it again - again by typing RUN 4. Does the computer make the same
move? If it does it's purely ooincidemnce, since choosing from the list is
done at random. Try again, end again, remembering to break out of the program
sach time and re-run. You ahould get a different result each time.

We'll leave the program at this stage and continue later on with the mechanism
of setting up the stack correctly in the first place, and actually deciding
which moves are better than others.

In the next chapter ve'll look at some complete (and short) gamea deaigned

to demonstrate what machine code can achieve in terms of spesd, and in very
few bytes compared with BASIC.

123

EEEEEEEEEEEEEEE

i il
Ao/ A\

2%

—_— -

..
O
N
— . O O
@ o F
s

.....

SPIRALS

In this fant moving real-tise graphics game (intended for use with SLOW)
you are placed st the atart of a aguare apirs)l and must reach the end of
it in tha minumum possible time. Your ecore ia constantly displayed - it
starts of at 99900 and decrements continuously, but you can't cheat by
breaking out early vith a high score - the progras won't allov that.Now
and again the score vill reach sero befare you reach the end of the spiral,
if that happena you obvicusly need more practicel

This fascinating and hizhly amuning game is unfortunately for NFN ROM users
with SLOM only. it will not work in FAST becaune although the program will
still consider itamelf %o be running perfectly smoothly, the average humsn
operator won't know what's going on becavase of the fact that the acreen in
front of them is completely black,

This is a fascinating game to vatch - witnessing the score decrease before
your very eyes ies surpriaingly effective. You can make the game as difficult
as you like by altering the initial value of the "timing” - held in EC. I've
given it 0400, but you could use 0800 for a slower game, 0200 for a faster
game, and 8o on.

There ia one difficulty duilt in though - if you hit a wall you don’t just
bounce of [, you mctually become embedded in it, and the only way you can
get out is to exactly reverse your direction.lt can be quite tricky,

Well good luck on your race - keep a record of the high scores (no cheating)
and see if you can master it,

The keys vill move you ms follows: Any key on the bottom row will move you
downvards (except for shift, which has no effect), sny key on the top row
moves you up, The middle two rows move you left and right, with the left-
hand ten keys (QVRRTASIFG) moving you to the left, and the ten righthand
keys (YUIOPRJKLn/1) moving you to the right. This syntem was adopted instead
of using the curmor controls 5, 6, 7, and 8 for tvo reasonas.

1) It is easier for people to understand and become familiar with.

2) I\ is easier to program, since we only need to test one register after
the keyboard scan inatead of two,

The progran lists as follows, and can be relocated to sny deaired location

by changing just one address. The program should be called from the point
labelled START,

El SFRINT POP HL This subroutine prints
T LD A(AL) out a picture of the board,
23 INC HL along with your initial
E5 PUSH HL score. 1t must howaver be
CP FF provided with a list of
ce RET 2 data terminated by ¥,
o7 RST 10
18v6 JR SPRINT
CD-sprint START CALL SPRINT Calls the subroutine, The
folloving is data for the
subroutine.
DEFB 60 60 60 80 B0 60 60 80 60 80 80 76
80 15 80 00 00 00 00 00 00 00 00 76
80 00 BO 00 60 80 80 80 80 00 80 76
80 00 80 00 80 00 00 00 BO 00 80 76
80 00 B0 OO 80 00 60 00 80 00 80 76
80 00 80 00 80 80 60 0O 80 00 80 76
80 00 80 00 00 0O 00 0O 80 00 B0 76
80 00 80 60 80 80 B0 60 80 00 60 76
80 00 00 00 00 00 00 00 00 00 00 76
ggooooaoaoaoeoooaoaoaou
38 34 3A 3700 38 28 34 37 24 00 33 34 3C 00 25 25 25 1c 1C PP

12

DECIMAL

POSITIVE

DELAY

NOTDOWR

NOTRIGRT

CHXMOVE

HL,IR
LD (POSITION),HL
LD HL,0000

EEELT
=8
B2

5 EfE
§-E

S2E§E B
T8

H°
)
E

°E
>r'§
=

N
=
g
H]

ZENEYEENENEENENEESE
[ags’s,; ”"m?g N :gg

- [-

35 E g

(LASTMOVE)

E98EEES
g

By &
Ba

33986
Nm>

g']
~3

This aection initialises the
two “variables™ used in our
program,

Decrement the score.

A timed delay. Altering the
initial value of BC changes
the apesed of the game.

Scan keyboard. L now contains
a value corresponding to the
direction required.

Find direction.

Is player embedded in wall?

If 80, is player reversing?

127

24TB40 MOVE A1) m.z(n)mrrmn) Reassign square with black

LD A,(BL or white space as required.
£680 AND 80
17 LD (HL),A
19 ADID HL.DE Pind new position.
™= 1D A,(HL) Drav black or white crosa
P615 R 15 aa appropriate.
” LD sm.).A
227840 LD (POSITION),HL
210000 LD HL,0000 Store direction moved if
17 RLA a wall has been hit.
3002 JR NC,NOTHIT
62 LD K,D
68 LD L,E
227940 ROTHIT LD (LASTMOVE),HL
2A0C40 LD HL,(D-FILR) Check to ses whether the
113600 1D Ix,0036 finishing equare has been
19 ADD HL,IR Teached,
EDSBTB40 LD IE,{POSITIOR)
ED52 SBC HL,IR
c8 RET 2
C3~loop JP loop

EREAKQUT

In this version of BREAKOUP, which incidently may only be run on a NEW ROM
in SLOW, you move the bat with any of the keys on the keyboard - thoas on
the left will move you to the left, and those on the right vill move you
to the right. The game is intended to be played only by those people with
3K or more, but it can be persuaded to run in less if the following few
linea of machine code are added to the program - these should preceed the
main programs

FD362200 EXTRA LD (IY+22),00

210003 LD HL,0300
AP SPACES XCR A

7 RST 10

Fa] DEC HL

T LD A,H

B OR L

2079 JR NZ,8PACES

The reason for this ia that the main BREAXOUT program assumes that the screen
is initially completely full - that is, that it contains twenty-four rows,
each consisting of thirty-two spaces followed by a newline. If your machine
has leas than 3iX on board them this will not ba so, because of the way that
the ROM sets up the screen. To rectify this we first LD (IY+422) with 00. IY
is alwvays 4000 at the start of any USR routine, so 1Y+22 is 4022, whioch is
the systema variable IF-SZ. This represents the number of rows in the bottom
half of the screen (the part we cannot primt to) - by telling the machine that
this nunber is zero it followe that the number of rows that we cannot print
to is alao sero, thus the vhole ecreen is at our disposal. HL counts the
number of spaces to be printed to ensure that we do not try to run off the
end of the screen.

BREAKOUT is a progrsm in four parts., These parts are 1). Initielise every-
thing. 2). Restart the game for each new ball. 3). Move the ball. 4). Move
the bat. We will go over each of thease steps in scrutinous detail.

Piretly to initialise everything. This involves a) printing the playing board,
b) defining the initial ball position, and c) setting the initial speed of the
game. To print the board: 128

20002200 TABLESTAKT LF¥'W 0020 0022

BOFFDEFF LEM FFEO FFDR

2A0C40 BREAKOUT LD HL,(D-FILE) Load all of the bricks into position.
118500 LD DE,0085

19 ADD HL,DE

018080 LD BC,8080 B is the number of briocks, C is a
23 NXBRK INC HL constant used quite frequently in
[3 LD A,(HL) this section.

FET6 cP 76

28FA JR Z,NXBRK

3608 LD (HL),08

10F6 DINZ NXBRK

2A0C40 LD HL,(D-FILR) Put top wall in position.

061E LD B,1B This part puts in the first thirty
23 NXBL INC HL blocks.

n LD (HL),C

10FC DJNZ NXBL

23 INC HL

369C LD (HL),S9C The current acore - zero - is entered.
23 INC HL

n Ld (HL),C The last block is set in place.
23 INC HL

23 INC HL

111F00 LD DE,001F DE is one more than the number of
0617 LD B,17 spaces between the walla.

7 SIDES LD (HL),C Both side walls are loaded into
19 ADD HL,DE position.

n LD (HL),C

2% INC HL

23 INC HL

10P9 DJNZ SIIFS

0620 LD 8,20 Now the base-line is drawn in.
361B BASE LD (HL),1B

23 INC HL

10¥B DJNZ BASE

You'll notice that in this version of the game I've ensured that a row of
full etops is printed below the very bottom of the screen. This provides a
convenient test for whether or not the ball haa hit the base. Finally, to
set the ball position and speed, the proceedure is:

11FCFE LD DE,FEFC This is the displacement from the
current prirt position to the ball's
starting point,

19 ADD ML,IE Looate this starting point.
223C40 LD (BALLINIT),HL Store it.
210009 LD HL,0900 This is the initial speed.
224640 LD (SFFED),HL Store it,

This ia actually all the initialisation we need. You'll notice several thinge

miasing - for example although tha ball is located it is not actually printed.

The bat 18 not mentioned at alll The reason is that the bat is redrawn every

time the game ia restarted, and so is the ball, Why bother to find the initial

position then? Well in this veraion, the ball starts off Iln a slightly diff-

:;ent position each time, Thir ensures that it is poassible to wipe out all of
e bricks.

The variable SPEED has a dual purpose. Firstly it determines the speed of the
game - that is, the spsed at which the bat and ball will move (the bat moves
at precisely twice the ball apeed), but secondly it determines when the game
is over. When SPFED decremente to zero (the lower the number, the faster the
game) we know that the game is over,

129

Seotion two of the game does the following tasks. a) change the initial ball

position,
b) Set the

whilst also noting the current ball pogition and printing the ball.
initial direction of movement of the ball to up/right. ¢) change

the speed of the game and check for end of game. d) print the bat, and at the
same time delete any previous bat symbol that may have been there. e) give
the human player a chance to recover from the last session, since presumably
she won't want one ball to leap into the game immediately the last one
vanishes. The section is this. Look at the manner in which the bat is

printed and the previous bat overwritten.

2A3C40 RESTART LD KL, (BALLINIT) Change the starting position of

23 INC HL the ball.

223C40 LD (BALLINIT),HL

224040 LD §BALLPOS),EL Start the ball here,

3634 LD (HL),34 Print the ball.

21E0FP LD HL,FFEQ Set the initial direction.

224440 LD (DIRECTION),HL

3M740 LD A,(SPEED)high Increase the speed

3D DEC A

[+:] RET 2 Return to BASIC if lives have run
324740 LD (SPEED)high,A out.

2A0C40 LD HL,(D-FLLE) Reprint the bat in its starting
118702 LD DR, 0287 position

19 ADD HL,DE

3600 LD (AL},00

3E03 LD 4,03 A contains the bat symbol.

23 INC HL

i LD (HL),A

23 INC HL

7 LD (HL),A

23 INC ML

7 A1) zm.).A

224240 LD (BATPOS),HL Store the initial bat position. (This
3 INC HL is the position of the centre of the
K LD (HL),A bat.

23 INC HL

) LD (AL),A

0618 LD B,18 Now erase the rest of the row, in
23 ERASE INC HL case a previous bat symbol remains
3600 LD (HL),00 there.

10PB DJINZ ERASE

210000 LD HL,0000 Set a very long delay, for the player
1803 JR TELAY to resover for the next ball.

The last two lines, which cause a short pause between sessionas, will become
clear vhen the start of the next section is given.

To move the ball we first of all go through a timed delay loop (controlled by
SPEED ~ the speed of the game) and then unprint the previous position of the
ball. The contents of the next square in the direction the ball is travelling
are examined, and ones of the following will happens

If a full stop has been reached then the ball has gone of{ the bottom of the
soreen - the game is restarted,

If either a space (ie nothing hit) or a brick is located, the ball is
reprinted, at this new position,

If anything other than a space is reached, the direction of movement of the
ball fe changed at random.

If the ball was not reprinted then find the contents of the next square in
this new direction and re-examine the situation.

If a brick was hit, the score is increased by 1.

130

Now, in order that we may choose a new random direction validly we require
a table of directions to choose from. These valid directions are 0020, 0022,
FFEO, and FFIE. You should store these numbers, low part first, at any
address in RAM, end call the start of this table TABLESTART. The program
wvhich will then achiave all of this is as follows:

2,640 1OOP

2B DELAY

¢

B

20FB

04

CB40

2054

204040 MOVEBALL

3600
ED5B4440
19

™

FB1B
28A6

1
223240
T

B606
Cétablestartlow
6F
26tablestarthigh
b

23

56

ED534440

El

B CARRY

3¢ DIGIT

-
~3
E

1D HL,(SPRED) Thia is a short delay loop which

IEC HL controls the speed of the game.

LD A,E

OR L

JR RZ,DELAY

INC B The ball is only moved every other
T 0, time round the loop, so that the

B

WZ ,MOVEBAT bat moves twice as fast as the ball.
HL, (BALLFOS} The current bsll position is found.
2'00 Erase the ball.

DE, (DIRECTION) Find the next position of the ball,

LD A,(HL) Pind the contente of this new
cP 1 position.
JR Z,RESTART Has the ball hit the base?
1D C,A Start next ball if so.
AND X7
JR Nz ,DONTMOVE Only reprint the ball if the new
LD ?ﬂu).“ position is either empty or containa
LD (BALLPOS),HL a brick.
OR C Retrieve previous oontents
JR 2 ,MOVEBAT Change direction if not a space.
PUSH HL
LD HL, (SERD) Generate nev direction at random,
LD D,
LD B,L
ADD HL,HL
ADD HL,HL
ADD HL,DE
ADD HL,HL
ATD HL,HL
AID HL,HL
ADD HL,IR
LD (SEED),HL
LD A,B Choose this direction from a
AND 06 table.
ADD A,TABLESTARTlow
LD L,A
LD H,TABLESTARThigh
LD E,(HL)
INC HL
LD D,(HL)
LD (DIRECTION),DE
POP HL
LD A,C If the contents of the square is
CP 08 not a brick, then move sgain.
JR NZ,MOVEBALL
LD HL,(D-FILE) Having eatablished that a brick has
LD DE,O01F been hit, the score is increased by
ADD HL,IE one,
LD A,(HL)
CP 80
JR NZ,DICIT
A1) An9c
IRC A
CP A6
JR NZ,INCREASED
xl-&(ﬂla),%
HL
JR CARRY 131
LD (HL).A

An interesting point to watch for is the way in which the score is increased.
Compare the mechanism to that used in SPIRALS to decrease the score. There
are one or two differences between this and the last. Pirstly of course we
are here using INVERSE digita instead of ordinary digits, though this
difference is rather trivisl. Secondly the BREAKOUT score increases insead
of decreases. Thirdly, the SPIRALS score would terminate at zero, wheras

the BREAKOUT score can increase indefinately.

To move the bat, first of all the keyboard is scanned, and if a left-hand
key is pressed the bat is moved to the left, provided of course there ia not
a wall in the vay, and if a right-hand key is pressed then the bat is moved
to the right, if posasible. Note that if a left and right key are pressed
simultanecusly the bat should not move at all. In our program auch a
ciroumatance would cause the bat to move first to the left, and then to the
right.

Study this, the final part of the program, and watch the way the bat is
actually moved. Remember that the variable BATPOS stores the position of
the middle of the bdat.

c5 MOVEBAT PUSH BC Preserve the value of B.
CDBEBO2 CALL KSCAN Scan the keyboard.

a POP BC

™ LD A,L

2!5 CPL

F PUSH AP Stack contains a value correspond
R60P ARD OF the key pressed. pondiog
287 JR Z,NOTLEFT If the player moves left....
224240 LD HL,(BATPOS) Locate the bat,

23 DEC HL

2B IEC HL

2B TEC RL

] LD A,(HL) Ia there a wall to our lefi?
FESO CP 80 If 8o, don't move,

2829 JR 2,CYCLEL

3603 LD (HL),03 Extend the bat to the left,
23 INC HL

23 INC HL

224240 LD (BATPOS),HL Store nev bat position.

3 INC HL

23 INC HL

23 INC

3600 LD (HL),00 Decrease bat to the right.
Pl NOTLEFT POP A¥

E6FO

AND FO
JR 2,CYCLE2 If the player moves right....

Stere riaw bat poaftion.
Decrease bat to the left.
8ama for next time round.

132

Y

.

Y
oy

%

[
N

58888
. -(I [Ve
o O 8 0 @ 8@

[N]
[

e —
ZA
Y %

7’)’ y

3
>

—

Ziymig).
QL

-
-

7 -

o

T OSSR

issE;

NN

o Y

IBAUGHTS

The story so far... Once upon 3 time a human being input a move to a 2X
computer. The computer checked this move to make sure that no cheating was
goling on, and cast a wicked apell on the poor human If it vas which mcant
that the vhole move had to be typed in all over again. The move was made.
The computer started to search through the board for pleces that it could
move. Having found A piece, but not knowing whether or not it could move,
it then miraculoualy found itself at an address called EVALUATE. Where do
ve go from here?

Let's start off by saylng that a neutral move - that ia a move vhich achieves
nothing, but alao losee nothing - has a "priority® of 80, (hex).

The fimt point worth noting is that if a plece {s in imminent danger of being
csptured then it atands to reason that we ought to move it out of the way -
unless mosething more important orops up. Secondly, if a piece is preventing
another piece from being captured, then we should be lesa likely to move it.
Both of these conditions apply regardless of which direction we consider
moving the piece, It atands to reason then that we should work out this

part of the priority firat, before we start analysing each of the different
directions. We must therefore work out a numerical value that corresponds

to the square that we are looking at. This valus will then be added to 80,
after wvhich each direction in turn will be analymed.

EVALUATE will therefore start off
4¥A3 C?'IJD EVALUATE CALL SQUAREVAL
c680

ADD A,80
522140 LD (INITIAL),A

The last instruction atores the value we've found for use later on in the
game. On the OLD ROM the addresa of INITIAL should be changed to 4019. Now
let's take a clnser look at the subroutine SQUARFVAL. It will assign a value
a8 follows ~ atarting vith zero, if & piece is in denger it will add five,
or meven for a king. If it {s protecting a plece it will esubtract five, or
seven for a king. Further, the subroutine, as with all subroutinea from naw
on, must not be allowed to alter the values of any reglater except A. One
vay of doing thiz le to begin the subroutine

4DF1 c5 SQUAREVAL PUSH RC
5 PUSH IR
ES PUSH HL

Here ia the complete subroutine. Follow it through carefully. It should be
sufficlently annotated for you to make senase of exactly what it's doing.

c5 SQUAREVAL PUSK BC Store the current value of the
5 PUSH IR reginstera on the stack, to de

PUSH HL retrieved at the end of the sudroutine,
0600 LD B,00 B is being used as a flag here., The

first time yound the loop it will be
zero, the second time round it will be one. Watch the checks on B
carefully, The loop will check for protection the firet time round, but
for danger the second time round.
11974C STARTOFF LD DE,TABLE IR is a pointer, vhich points to the
table of directions of movement.

1A NOWT LD A,{DE)

14 LD C,A C now contains such a direction.

D62R 508 2R

202A JR 2,BXIT If thim "direction” in 2F we hsve pasned

the end of the table. We nhould exit
with value rero.
1c INC R Move pointer to next direction in table,

134

EXIT

SE5E
e géfr
I>opwa

5855y

%
. §
%
5

LD A,L
sus €

1D L,A
LD A,(HL)

cP 80
JR RZ,NOWT
1D A,D
FOP HL
POP DE

SUB D

POP IE
POP BC
RET

L contains the lov part of the current
square. We retrieve it without altering
the stack, and reassign R to tne high
part of this address.

Find square to be looked at in this
direction. Watch how B affeots what
happens.

Watch how A is constructed here. If

8 human's piece is present A will end
up as 27 UNLESS that piece is a non~
king which can't move toward us. Then
i1t will produce A7. No other piece can
generate the reault 27,

Look at next aquare toward us. If B is
gero we are looking at a possible piece
being protected. If B is one we are
looking at ourselves.

This ia another way of checking for

a computer's piece rgardleas of whether
or not it is a king, but watch the
carry flag.

Now notice the clever way we decide
on 5 for a piece, or 7 for a king.

A now containa 5 or 7 as needed.
The loop is now ended.

This is what happens if B vas gzero.
The value 5, 7, or O ia atored on the
stack behind HL.

This is what happens if B was one.
D now contains the current value
0, 5, or 7.

The square behind us is located,

The tenta of this sq are
examined.

If it is not a blank square ve are
not in danger.

The current value ias retrieved.

D now contains the previous value

0, 5, or 7,

The final equare-value is calculated.
The remaining registers are removed
from the stack.

End of subroutine.

135

This works because if you take a look at the diagram below you'll see very
clearly the conditions under which we define a piece as being “in danger®
or protecting. Compare carefully what the subroutine does both times round,
with each of the diagrams.

human‘s
piece
FROTECTING
computer's human's
plece plece
square square
being being
valued valued
us us
blank IN DANGER
Square

Now for the rest of that decision making routine EVALUTE. It contains a
deliberate mistake - see if you can find it! (The program will still run
perfectly amoothly even with the mistake still in.) If you can't sus it out
on your own I'l1 tell you later on.

This routine is designed to compute a numerical value - a "priority® - for
any individual move. Baving done so it will compare this priority with those
moves stored on the stack. If the new priority is less, it will forget this
move and go on to explore a new one., If the nev move is equal in priority
it will be stored on the stack, If the nev priority is more than those on the
stack then the liat will be abolished, and a new list started.

The registers in the routine have the following jobss

A- 8 general purpose working register,

B~ counts the numbder of items in the list. You may remamber the CHOOSE routine
earlier on relied on B containing this number of items,

C~ a general purpose working register.

DB~ a pointer which looks at the table of allowable directions of movement.

H- the direction being moved.

L= the low part of the address of the current square.

The routine begine at address 4E43:

CDF14D EVALUATE CALL SQUARI.VAL Check for danger and/or protection
C680 ADD 8 at current square.
322140 LD (INITIAL),A

136

11974C LD DE,TABLE Set pointer to start of tabls.
4D

L C,L Remember low part of the addreas of

the current sgquare for later use.

69 MXTMRND LD L,C Retrieve this value,

2640 LD R,40 Aseign high part of this address.

1A NXTDIR LD A,(DE) Select direction of movement.

1c INC E Move table pointer.

CBTE BIT 7,(HL) Check whether or not we are looking
at a king.

2604 JR Z,ANYDIR If so ve can move in any direction.

CB7P BIT 7,A Check whether current direction is
forward or backward.

20¥6 JR NZ,NXTDIR If backward, pick a new direction.

FE2E ANYDIR CP 2B I1f this direction is 2E then we have

CAAO4D JP 2 ,KPCHKNG covered all four directions.

c5 PUSH BC Temporarily stack B = the number of
items in the list of movea.

a7 LD B,A Store current direction temporarily.

) ADD A,C Find the address of the destination

6F LD L,A square in this direction.

1E LD A, (HL) Find the contents of this square.

60 LD H,B The direction being moved is now
stored in H, as required.

cl FOP BC The number of choices of moves on the
stack - B - ia recovered.

FESO CP 80 Is this destination square ampty?

2083 TEST JR NZ, NXTMRND If not, pick a new direction to examine.

ED537940 LD (SCANSQR),IE Temporarily store the vslue of IE.

Note that while we need to temporarily store IE somewhere, we must not atmck
it, since we are ahortly about to use the stack to examine our 1ist, OLD ROM
owners should interpret the address (SCANSQR) as 4020.

CIF14D CALlL SQUAREVAL Check for danger and/or protection at
deatination aquare.

This is necessary because a move into danger is bad, and moving to protect
another piece is good. Notice that by deaign the aubroutine SQUAREVAL will
not change tha value of any register except A. One unfortunate flaw in the
subroutine means that moving a king into danger will only generate the value
five, rather than seven. Can you see why? Follow the subtroutine through if
you can't. Pinally you should note that SQUAREVAL only requires L to be
assigned initially, not HL. This is deliberate.

57 NEWFRI LD D,A Negate this quantity, since we do

342140 LD A, (INITIAL) not want to move into danger, and we

92 SUB D do want to move to protect another

57 1D D,A plece. Add in the original square-
value and store the result in D,

1p01 LD E,01 The number one is the number of stepe

69 LD L,C involved in thie move.

We now have D containing the computed priority of this move, and E containing
the number of steps in this move,

B3 EX (SP),HL We nov have H containing the priority

of the 1ist, and L containing the no.
of steps for each move on the list.

137

19 BQUAL
04 NEWITEM

EE SEEE§E

g
By
B8

CE
[

T
=
g

5 &
<]

Compaxe these two sets of quantities.
Restore HL and the atack-top

I1f computed priority is lees, then
do nothing.

Otherwise begin naw list.

Zero items on list so far.

Stack the priority and mo. of stepa.
Restore HL and the stack-top.

Increase no. of items in liat,

Now H contains the direction moved, and L the low part of the initial square,
The top of the atack therefore now looks like this:

initial
square

dimotiom no. of

one

ateps

wioritygl

for

This is not quite what we want - we want it to look like thiss

no. of
steps

priority

initial
square

direction
one

1;»

So we now want to Bwop the firat and second bytes at the top of the stack
with the third and fourth bytes. We want to do this without altering the
position of the stack pointer, and without altering any of the registers.,
The following will achieve this = follow it through carefully -

IRC SP

INC SP
X (SP),HL
DEC SP

DEC SP

EX (SP),HL

Note that even HL remains unchanged by this method. EVALUATE needs only
tvo more inatructions to complete it, Theae are

ED5B7940 FORGETIT LD DE,(SCANSQR)
1880 JR NXTMRND

Move the atack pointer to the

initial square. (final position)

store initial square and direction 1.
Move the stack pointer back where it
ocame from.

Store the number of steps and priority.

Restore the previous values of D

and E, and do the same for next
direction.

As 1t stands the program will not teat whether or not a computer's piece hes
reached the bhack Tov (and thus bacome a king). This is not a programming
error, this is quite deliberate. The reason is that this ia something I'd
like you to do for yourself. Study the way in which the check on a human's
piece is made - the low part of the destination address is compared with
the low part of the address of the boundry between the back row and the
second row - and make a similar test. You should find thia a very simple
addition to the program.

138

The EVALUATE routine is now complete. The whole program is now a closed
structure - there are no holes in it now, no RET statements temporarily
taking the place of sudbroutines that aren't there. If you nov RUN the program
(by typing RUN 4) it will actually make movesl Of course it won't do much
else, but you should now be able to see how far we've progressed.

Oh - there is of course that deliberate mistake to think about. If you didn't
notice it in the listing you probably noticed it by playing it. The problem
is that the computer won't jump., As you can imagine this leads to a very poor
game on its part.

The mistake is in the line labelled TEST. It currently says JR NZ,NXTMRND,
which means that if a square in any particular direction is simply not empty
then it will try a different direction. The line should read JR NZ,WHAT,
vhere WHAT is a routine (which we haven't yet vritteni vhich is designed

to decide wvhether the destination square contains a human's piece, whether
a jump is possible - even whether or not a multiple jump is possidle - amd
to evaluate the priority of whatever it finds.

Here is one such subroutine. It is not the only possible one, but a suggestion
of one means of doing it. This particular version will cope only with single

jumps, not with multiple jumpa: The routine begins at 4E93:

ED537940 WHAT LD (SCANSQR),DE Temporarily store the value of IR
51 LD D,A Store the contents of the aquare
wve are nov looking at in D.
ESTF AWD TP Is it a human's piece?
FR27 CP 27
2806 JR 2,FOUND
ED5HB7940 LD DB, (SCANSQR) If not, retrieve the original value
1899 JR NXTMRND of DB and resume the search.
3E81 FOUND LD A,81 Assign A with either five or seven
CBY2 RL D depending on whether or not we have
3F CCP found a king.
17 RLA
17 RLA
b LD D,A Store thie in D.
by LD E,H Store the current direction in E.
I LD A,L Find the next equare in this direotion.
84 ADD AR
6F LD L,A
2640 LD H,WKBOARD-1low
™= LD A,(HL) Pind the contents of this square.
63 LD H,B Reatore H to its previous value.
FRBO CP 80 Is thia square empty?
2807 JR 2,JUMP
ED537940 LD D¥,(SCARSQR) If not, reatore the original value
C34F4E JP NXTMRND of DE and resume the search.
CDF14D JUMP CALL SQUAREVAL Check for danger and/or protection
at destination square.
92 SUB D Take contents of square into acocount.
1842 JR NEWFRI Check this nev priority to see if it's

worth stacking.

A8 you can see, the principle for finding & single jump i{s relatively
straightforvard. With this routine in place the computer will now play an

adequate game of draughts,
multiple jumps, the computer will not.

but although the human player is allowed to make
This addition I leave you to write

yourself. I will, however give you & couple of hints.

139

Firat of all, the regiasters all have specific uses. All that is, except for
A and C. These are as follows:

B -~ The number of choices of move availabdle.

D - The priority of the current move.

E = The number of stepe in the ourrent move,

H = The direction being moved this step.

L - The low part of the address of the current square (within WKBOARD)

1 suggeat giving C a use too - it should be used to store which step of a
multiple-step move we are currently examining. In other words, on the second
step C will be two, on the third atep C will be three, and 8o on. It ia
fairly easy to preserve the values of all of the registers by making proper
use of the stack.,

Nesting the subroutines and loops properly, so that the same routine is used
to check for a third move as is used to check for a second move, is not as
difficult as you might think - it merely requires a bit of positive thinking.
It also has the advantage that, in theory, the computer can actually make
twelve-fold jumps with no extra programming. The looping is not the biggest
problem,

There are two problems which will face you. These aret

1) Having stored C-1 steps of the current move on the stack, how do we store
step C? (ie how do we insert it into the middle of the stack)

2) Having established that the current move now standa at C stepe, and can
be increased no more, one of the following must happen: If C is less than
B then the current move is abolishedj if C is equal to E, the atack is
left unchanged; if C is greater than E then the whole list of movea on
the stack except the current move is abolished.

Let's take a look at the first problem first. Assuming C-1 eteps are stacked,
the situation we now have ie this:

E | priority | (nitial dir. an—; Zau-. initial dir, d:h? \dir. {
square 1 2/ C-1 | sguare 1 28 _ B

8p

We wish to insert "direction C" between "direction C-1" and the initial
square of the second move, The following subroutine will do just that, but
follow it through very carefully because its mechaniem is quite intricate.

c5 ADDASTEP PUSH BC The number of bytes at the top of the
D5 PUSH IR stack which need to be shifted down
E5 FUSH HL is C plus two, but once BC, DE, and HL
3R08 LD A,08 have been pushed onto the stack the
81 ADD A,C actual number is C plus eight.

210000 LD HL,0000

44 LD B,E

4F LD C,A This number is stored in BC.

39 ADD HL,SP HL points to the top of the stack.

54 LD D,H

5D Lb E,L

1B IEC DE DE points to one byte below thia.
EDBO LDIR Part of the stack ia moved down.

38 DEC SP The stack pointer is moved also.

El FOP HL

T LD A,H

12 LD (IR),A The current direction is put in place.
Dl POP DE

cl POP BC The regiesters are retrieved.

oc INC C C is increased to indicate that wve

are now at the next astep.

140

You'll notice that the sequence LD HL,0000/ADD HL,SP ie necessary because
there is no such instruction as LD HL,SP (even though LD SP,HL is allowed),
LDIR is used to shift the required part of the stack down one byte. The
exact number of bytes to be shifted must first be very carefully calculated,
and stored in BC in order that LDIR will work properly. Coincidently LDIR
vill leave DE finally pointing to juat the right address for us to store

the current direction. Since HL is at the top of the atack we may remove

it, and load the current direction (H) into position, via A, before we remove
DE and BC.Thus the stack pointer is still where we want it, and none of the
values of any register (except A) have bean changed.

The stack now looks like thia:

E| priority | initial dir. dir.P Ldir. dir, | initial dir. dir.
square 1 2 { __\c-1 [square 1 E

8p
Pinally, C is incremented because we are now ready to examine the next step.

The two proceedures involved in the second problem may be solved by careful
study of the above process. To abolish the current move is simple - DE is
ropped, the atack pointer is then incremented by the exaot number of bytes,
and DE is pushed back again, The second proceedure, that of abolishing the
whole list except for the current move may be achieved by loading HL with
the position within the stack of "direction C", IE with the contents of the
variable LBASE, and then using LDIR, however, you'll have to do some think-
ing in order to work out BC (the number of bytes to be moved) and the new
poaition of the etack pointer. If you understand how ADDASTEP works it will
not be all that difficult to do.

With this problem to solve, I will leave you, It's not imposaible I assure
you. Pinally, conaider the length of this program so far - our addresses
8till begin with 4E, and we are allowed to go as far as AFFF (although we
need some left over for the screen and the stack). 1K draughts ia quite,
quite possible, With thought you may even be able to shorten it further.

DOWNJLOADING

Although the program ie only 1K it is ourrently atored in the fourth K.
To download it into the first K the proceedure is this.

Change every address beginning with 4C to the corresponding address which
begins 40, Do the same for 4D, changing it to 41, change 4B to 42, and 4F
to 43.

Delete all lines of BASIC except the following:

QLD ROM NEW_ROM

1 RANDOMISE USR(printboard) 1 INPUT AZ

2 INPUT A® 2 RAND USR game

3 RANDOMISE USR(game)

4 GOTO 2 (USE ANY FIVE DIGIT NUMEER FOR NOW)

Reserve enough space for the machine code using a series of REM atatements
from l1ine 5 onwards. On the OLD ROM a REM statement with 46 characters after
the word REM occupies exactly fifty bytes. On the NEW ROM a REM statement
with 44 characters after the word REM coccupies fifty byteas. The machine
code will eventually overwrite not only the characters after the word REM,
but the word REM itself and even the line numbers.

141

OLD UMy type POKK 16463,-1
NEW RGM1 type TOKE 1693Y,-1
All of your RFMs should disapprar from the listing.

Now,uning a machine code program, which you should otore nomevhere in the

third X, copy ®rll of the draughte program from address 4C97 onwards, down
to 4097 onvards.

OLD ROMs copy the board printing routine to the point immediately after the
draughts program proper finishes.

NEM ROM: TO NOT copy the board printing routine at all, Instead, leave it at
4C09, and replace the inatruction RET by the followingt machine code program.

217040 LD HL,FIRSYLINE Fool the HOM into thinking that the

222940 LD (NXTLIN),HL first line of program is about to

c30703% JP SAVE bea executed, then jump to the SAVE
routine,

Start your casmette recorder up, 8o that {t ia recording, not playing, and
Lype as a divect rommand RARD USH 19487. This should be done in the FAST mnde.
The program will then do the following tamks. 1) Print the playing board,

2) Specify that line one is about to be executed, and 3) SAVE the program,
and the current diaplay file (with the board pre-aet-up) and the fact that
line one im ahout to be executed, When you re-load from tape you will be in
mid-program, with the firat move (yours) about to be made,

The label "printhoard” for the OLD ROM refers to the addrers at which the
board printing routine is to be placed. The label "game™ refers to the
sddreea 16612,

For the OLD RON, the addreas WKBOARD mhould be changed to that of the
board printing routine throughout. In this way the name space is effectively

used twice. Por the NEW ROM, the address WKBOARD should be left unchanged
at 40%C,

142

EEEEEEEEEEEEEE

/& j¢
‘ }///I///////'/W.

o O
Q
@it
Q
o\)%
ole
TTTTTT o1

WLEZZ21

There are three "levels™ at whioh we may disassemble, each slightly more
sophisticated than the previcus. The first two levels are not all that
satisfactory, but they are very easy to program.

The first "level™ we have already achieved - the USR routine HLIST vhich we
eaw earlier in the book will do this for us, That is, given an address such
as 0808 it will produce an output like this:

ogo8 57
0809
080A 4B
080B 39 T
080c 40

and so on. This is not really disassembly, although you can of course look
these bytes up in the tables at the back of the book, but it's quite a time
consuming task, and you're alaso very likely to get lost halfway through, The
second "level™ ia not much better, but again is quite easy to program. What
I1'm talking about is an output something like this:

Q808 57

0809 ED4B3940
080D 79

080E FE?1

and 80 on. As you can see, each instruction has its component bytes listed
out to exactly the right length, This produces a very pleasing display,
and there ia 1little or no chance of you "getting loat" when actually looking
these bytea up in tables. The third "level"™ is the one we are actually
aiming at - the one everybody wanta. What we'd really like is an output like
thia:

0808 LD D,A

0809 LD BC,(4039)

080D LD A,C

080E CP 21

and so on. This can be quite easy to program - simply make the computer look
up the appropriate wordas from a table instead of doing it ourselves - however
thia would take up rather a large amount of space just to store the table.
Around 4K in fact. The method I will describe to you will allow such a
program to fit in just 1K, but be warned; it's rather difficult. There is
actually a "fourth level® of disassembly, which I won't even attempt to
touch, but you may like to think about, Imagine an output like this:

PRINT LD D,A
Lb BC,(S-POSK)

AI
CP 21
JR Z,EXIT
As I've said, I'm not even going to touch this one, The only extra it involves
is storing yet another table, this time containing all of the labels used, Let's
80 back a bit now to something relatively simple, Let's consider a mlightly
improved version of HLIST which veaches the "second level® of disassembly, and
vorka out the length of each inatruction before printing it.

144

All we need is a table containing just two pieces of information for each
byte. These are a) the number of bytes in an instruction beginning with
this byte, and b) the number of bytes in an instruction beginning with ID
or FD followed by this byte., As you know, some confusion may arise ovey
those instructions beginning with CB or ED, but we don't actually need any
tables or anything to cope with these provided we remember the following
rulees

All instructions beginning CB are two bytes in length.
All instructions beginning DDCB or FICB are four bytes in length.

All inatructions beginning ED are two bytes in length, except for

LD BC,(pa), LD DE,(pq), LD SP,(pq), LD (m),EC, LD (pq),DE, and LD (pq),SP.
The byte immdiately after KD for these six instructions is 4B, 5B, 7B,

43, 53, or 73. In binary, all of these numbers have the form Ole— =011,
No other instructions have this form,

There are no instructions beginning DDED or FDED.

Thus we need a table containing a very small amount of information relating
to each byte. Firstly, those instructions which do not begin DD, ED, or FD
can only be one, two, or three bytes in length. This means that to stoxe
the required information we only need two bits. Secondly those instructions
which begin ID or FD can only be two, three, or four bytea in length, 20
ignoring the DD or FD itself this leaves one, two, or three bytes. Again

we need only two bits. This makes four bits altogether, and we can thus
represent the appropriate lengtha for each byte by a single hexadecimal
digit. Qur program then will make use of the following tadble, called LENS.
It should be stored auch that each element of the table has the same high
part of its addrees:

LERS DEFB 5F 55 55 A5 55 55 55 AS
AF 55 55 AS AS 55 55 A5
AF F5 55 A5 A5 F5 55 A5
AF F5 99 E5 A5 F5 95 A5
55 55 55.95 55 55 55 95
53 55 55 95 95 55 55 95
55 55 55 95 55 55 55 95
99 99 99 59 55 55 55 95
55 55 55 95 55 59 55 95
55 55 55 95 55 55 55 95
55 55 55 95 55 55 55 95
55 55 55 95 55 55 55 95
55 FF F5 A5 55 FE FP A5

55 FA P5 A5 55 FA F5 A5
55 F5 F5 A5 55 F5 FA A5
55 F5 F5 A5 55 F5 F5 A5

As you can see, there are sixteen rows, and sixteen hex digits in each row,
Those instruotion beginning with DD or FD which do not exist, such as DDOO,
have simply been assigned the appropriate number of bytes as if the DD/PB
were not there.

The following program will "disassemble™ to a string of bytes of the right
length, It assumes that the table LENS exists, and it assumes that a
subroutine HPRINT exists which printa the contents of the A register in
hexadecimal vithout corrupting the other registers. This subroutine was in
fact given earlier on in the book.

145

2B START
23 NEXT
3E76

CDhprint
™
Chhprint
AP

7
OE0O

TE BYTE
FEDD

2804

FEFD

2007

Chhprint DDFD
23

oc

18F0

FEED NORM
2014

Chhprint

23

B6C3

0601 ONE
Chhprint THREE
23
e
10F9
1802
) NOTED
CBZP

FS

C6lens-low

33

261ena-high
Fl

oD DIG2
B603 OK

23 RXBYT

DEC HL

INC HL

LD A,76
RST 10

LD A,H
CALL HPRINT
LD A,L
CZLL HPRINT
XOR A

RST 10

LD C,00

LD A,{HL)
CP DD

JR 2,DDFD
CP FD

JR Nz,NORM
CALL HPRINT
IN HL

INC C

JR BYTE

CP ED

JR NZ,NOTED
CALL HPRINT
INC HL

LD A,(HL)
AND C3

CP 43

JR NZ,CNE
LD B,03

JR THREE
1D B,01
CALL HPRINT

PUSH AF

LD LA

HL is just the address from which
we are disassembling.

Print a newline.
Print H in hex.
Print L in hex.

Print a space.

C is just a flag to let us know
whether or not an inatruction
begins with ID or FD.

Obtain the byte to bea disasaembled.
Noea it begin with either ID or PD?

1f mso, print "DD" or "FD" and look
at the next byte.

Change the flag C accordingly.
Continue with next byte,

Doea the instruction begin ED?

If so, print "ED" and look at the next

byte.

Is it of the binary form Ol—— «0117
B counts the number of bytes to be
printed after the byte ED,

Print the next B bytes.

Continue with next byte.
Temporarily store HL.
Divide A by two.

Store the carry flag.

Find the reqired position in the table.

Retrieve the carry flag.

Use the carry flag to decide on which

digit from the table will be used.

Use C to decide which two bits
to use.

Put this number in B to use as

a count.

Retrieve theaddress of the byte to
be disasmembled.

print B bytes in hex.

Continue with next byte.
146

Now we ascend to the "third level" - REAL disassembly in other words. However,
1 am not going to write the program for you thia time round - you'll have

to do it by yourself., I will explain precisely what it is you have to do

in order to make a 1K disassembler, but the actual program itself must be
your creation.

The following is an algorithm which will enable you to diesasemble the hex
codes into assembly, that is to change, for example, 69 to LD L,C, or from
CB7E to BIT 7,(HL). One way would be to list s vast table - such as I have
included in the appendices - but while alright for human beinga it lacks
the elegance of a well thought out computer program, The data alone would
occupy around 4K. Thia algorithm will enable you to write your own machine
language program cccupying Bignificantly less - two or even one K all told
depending on how efficient your program is.

In this algorithm, the following conventions will be used:

r(0) means B, r{1) means C, r§2) means D, r(3) means R, r(4) means H,
r(5) means L, r(é) means X, r(7) means A.

8(0) means BC, (1) means DE, e(2) meuns Y, 8(3) means SP.

q(0) means BC, q(1) means IR, q(2) means Y, q(3) means AF.

147

néo\ means O, n(1) means 1} n(2g means 2, n(3) meana 3, n(4) means 4,
n(5) means 5, n(f) means 6; n(7) means 7.

0(03 means NZ, c%lg meane 2, oEQg means NC, c(3) meana C, c(4) means PO,
¢(5) means PE, c(6) means P, c(7) means M,

x(0) meana ADD A,, x(1) means ADC A,, x(2) means SUB, x(3) means SEC A,,
%(4) means AND, x(5) means XGR, x(&) means OR, x{7) means CP.

Define two variables, CLASS and INDEX, and initially let both of them
equal zero.

Write the byte being disassembled in binary, and split it into three parts;
¥, G, and H. P consists of bits 7 and 6, G of bits 5, 4, and 3, and H of
bits 2, 1, and O, Thus to disassemble the byte 69 (binary 0110 1001) just
aplit it into three parts thus: 01/101/001. In this particular case F is
one, G is five, and B is one.

Next, split G into two parts; J and Kj with J consisting of bits 2 and 1,
and K just bit O, If G then were binary 101 as above then aplit it like
this: 10/1. In this case we would define J to be two, and K to be one.

Set aside an area of memory called DIS. This is to contain a STRING of
unknown length, How you store this atring is up to you. There are two
different methods you could use - either terminate the data with an end-
of-data character %my character will do, FF is as good as any), or
begin the area DIS with one byte representing the number of characters
of data there are in the atring. (You only need one byte since DIS will
never be more than 255 characters in length.) DIS should initially be
an gnpty string, (ie containing no characters at all,)

The algorithm begins here.....

If the byte is 76 then complete dissasembled instruction is HALT.
If the byte is CB then lat CLASS equal one and start again.
If the byte im ED then let CLASS equal two and start again.
If the byte is DD then let INDEX equal one and start again.
If the byte is FD then let INNEX equal two and start again.
If P equals gero then....
If H equals zeroc then....
If G greater than three then let DIS equal JR c{G-4),V.
If G less than four choose the Gth item in thia lists
NOP/EX AF,AF'/DINZ V/IR V
If H equala one then...
If K 48 zero then let DIS equal LD s(J),VV
If K {8 one then let DIS equal ADD Y,s(J)
If H equals two then...
Let DIS equal LD plus the Gth item in this lists
(BC) ,A/A,(BC)/(1E),A/A, (DR)/(VV) . Y/ Y, (VW) /(¥¥) ,a/A, (W),
If H equals three then...
If K is zero then let DIS equal INC s(J)
If K is one then let DIS equal DEC a(J)
If H equals foux then let DIS equal IKC ricg
If H equals five then let DIS equal DEC r(G
If H equals six then let DIS equal LD r(G),V
If B equals seven then choose the Gth {tem from this list:
RLCA/RRCA/RLA/RRA/DAA/CPL/SCE/CCF.

1
2
3
4
5
6

148

If P equals one then let DIS equal LD r(G),r(H).
If P equala two then let DIS equal x(G) r(H).
If F equals three then....
1f H equals O then let DIS equal RET ¢(G)
If H equals one then...
If K is zero then let DIS equal POP q(J)
If X is one then choocase the Jih item from thia lists
RET/RXX/JP (Y)/LD SP,Y.
If H equale two then let DIS equal JP c(G),VV
If H equals three then choose the Gth item from this lists
JP VV/-/OUT (V),o/IN 4,(V)/EX (SP),Y/EX DE,HL/DI/KI.
If H equals four then let DIS equal CALL ¢(G),VV
If H equals five then...
If K is zero then let DIS equal PUSH q(J).
IF K is one then let DIS equal CALL VV.
If H equals aix then let DIS equal x(G) V.
If H equals seven then let DIS equal RST plus the Gth item in
this 1ist: 00/08/10/18/20/28/30/38.

1f CLASS equals one then the following applies:
If F equals zero then choose the Gth item from this list: RLC/RRC/RL/RR/

SLA/SRA/-/SRL and then sdd r(H).

If P equals one then let DIS equal BIT nscg.rﬁﬂg.
If F equals two then let DIS equal RES n(G),r(H).
If F equals three then let DIS equal SET n(G),r(H).

If CLASS equala two then the following applies:
F cannot possibly equal zero.

If F equals one then....
If H equals zero then let DIS equal IN r(G),(C).
If H equals one then let DIS equal OUT (C),r(G).
If H equala two then,,.
If K equals zero then let DIS equal SBC HL,s(J).
If X equals one then lat DIS equal ADC HL,a(J).
If H equals three then,,.
If K equalse zero then let DIS equal LD (VV),s(J).
If K aquala one then let DIS equal LD s(J),(VV).
If H equala four then let DIS equal NEG.
If H equals five then,..
If X equals zero then let DIS equal RETN.
If X equals one then let DIS equal RETI.
If H equals aix then choose the Gth item from this list:
IM O/=/IM Y/IM 2/=/~/=/-.
If H aquals seven then chocse the Gth item from this lists
DI, R,A/LD A,I/LD A,R/RRD/RLD/=/=.
If P equals two then choocse the Hth item from this 1list: LD/CP/IR/OT/-/-/-/-
and then add the Gth item from this 1ist: I/D/IR/IR/-/-/-/-.
P carmot posaibly be three.

To compute the final output:
If INDEX equals zero replace every Y by HL.

1f INDEX equals one replace svery Y by IX
If INIEX equals two replace every Y by IY

If INDEX equals zero replace every X by (HL)

If INDEX equals one replace every X by (IX#d) where d is defined by the next
byte but one after the byte DD.

If INDEX equala two replace every X by (IY+d) where d is defired by the next
byte but one after the byte FD.

(This does not apply if the X is preceeded by 1)

Replace every V by the next byte in sequence (of those being disassembled).

DIS now contains the correctly disassembled instruction. This should now be
printad to the screen, 149

It is possible to write a machine language program which disassembles
things by using this algorithm. In fact it is possible to write such
a program in Jjust 1K. Surprizing as this may sound I should add that
although it is possible, the program itself is rather complicated, and
involves a completely new programming technigue.

What I will do is to not actually write the program for you, but to give
you hints and suggestions as to how it may be done. The program revolves
around eight different subroutines, which are linked together by one
MASTER subroutine which calls them all up in any required order. This

ia achieved as followa.

Somewhere in the program there should be a table called SUSTAB which
contains eight different addresses - these are the addresses of the eight
subroutines which control the program. The register-pair HL' (note the
dash) will be pointing to a seguence of data which tells the MASTER
subroutine which order it must call the others in, The data in this
sequence is terminated by an item in which bit 7 ia one, The data consists
8imply of numbers zero to meven. Zero calls subroutine zero, one calls
subroutine one, and so on., Thus thie number zero to seven determines
exactly which subroutine the MASTER routine {s to call.

So any item of data in this sequence looks, in binary, like this: O—= -nmn
for most items, or l--= -nnn for the lggt item. (The part written nnn meana
the appropriate number zero to seven as described.) Now some of these eight
subroutinea will need to be supplied with DATA, which by coincidence will
also need to be a number between zero and seven - if this number in binary
ie ddd then it makes sense to save space by storing this number amonget
some of the unused bits of the subroutine-call, thus making it look, in
binary, like this: O-dd dnnn or 1-dd dnnn, We have now made use of every
bit except bit 6. This isn't needed, so for sake of argument lets alwaya
make it zero. Any item of data in the sequence can then be 00dd dnnn, but
the laat byte must dbe 1044 dnnn,

I hope that didn't confuse you, To make things clear, suppose HL' pointa to
an address at which ia stored the sequence of data 00 01 22 83, This means
that first of all subroutine zero is to be called, then subroutine one, then
subroutina two (which will use the data binary 100 somewhere), then finally
;nbrout:m three. I say "finally” because bit 7 ia set which means we are
inished.

The master subroutine which will achieve this is as follows:
D9 EXX

T’ LD A, (HL) Find byte of data, and increment

23 INC HL pointer.

0 EXX

SF LD E,A Store this byte, in case bits 5, 4,
and 3 contain data to be used in the
appropriate subroutine.

B607 AND 07 Isolate bita 2, 1, and O.

17 RLA Multiply by two.

4F LD C,A Store this number in the BC register

0600 LD B,00 pair.

21 retumn LD HL,RETURR Specify the return address from each

E5 PUSR HL of the eight subroutines.

21 mastrads LD HL,MASTRADS Point HL to the start of the table
vhich atores the eight subroutine
call addresses.

09 ADD HL,BC Point HL to the required address.

4R LD C,(HL) Store this address in the BC register

23 INC HL pair.

46 LD B, (HL)

c5 PUSH BRC Call this subroutine.

c9 RET

™ RETURN LD 4,B If Bit 7 was not zero then continue

17 RLA with the next byte of data.

30E8 JR KC,MASTER

You can learn a lot from studying this MASTER-SUBROUTINE. Can you see how the
appropriate subroutine (one of eight) is called? First of all the label
RETURN is pushed onto the stack. Thia means that if each of the eight routines
enda with a RET instruction then control will jump to the label RETURN - just
as if the subroutine had be accessed normally. To call the subroutine itself,
the address of which was in the register-pair BC, we used PUSH BC followed by
RET. Think carefully about how this works. The required address is pushed onto
the stack, above the address RETURN. Then a RET instruction is executed. RET
has the effeot of popping the first number from the stack (the subroutine
address) and jumping to that address. The first address left on the stack is
now the address RETURN, which enablea control to return correctly. All of this
is necessary because there is no such instruction as CALL (BC) - in BASIC the
statement GOSUB VARIABLE is allowed, but not in mechine code. Another way we
could have achieved the same aa PUSH BC/RET is by using the sequence LD H,B/
LD L,C/JP (HL). Can you see why this doea the same thing?

You may be wondering how the appropriate address came to be in HL' in the
first place. There are two means by which this will be determined. Note

that all of the plternative registers have specific jobs. These are:
BC' The address of the byte to be disassembdled.

D' The variable INDEX.

E' The variable CLASS,

HL' Pointa to subroutine data.

The byte to be disassembled is located and atored in the D regiater by the
means EXX/LD A,(BC)/INC BC/RXX/LD D,A, From this the quantities I called
P, G, and H may later be discovered, Somewhere in the program there should
be a table called TABLE containing twelve different addresases. HL' is
simply read from this table, The twelve addresses correapond to the cases
CLASS equals 2ero and F equals 0, 1, 2, or 3; CLASS equals one and F
equals 0, 1, 2, or 33 and CLASS equals two and F equals 0, 1, 2, or 3.

The other way in which HL' may be determined is if subroutine mero is
oalled. Subroutine zero is called by the data~dbyte 00. This will be
immediately followed by eight different addresses corresponding to the
cases H equals zero, up to H equals seven, Subroutine zero has the task
of locating the appropriate address from thia list and storing it in the
register-pair HL',

One subroutine you will need, (but not one of the eight central ones,) is

a subroutine to add a single character to the end of the atring DIS. Ueing
the convention that the string begins at address DIS and is terminated by
the byte FF, tha string may be emptiad by the sequence LD HL,DIS/LD (HL),FF.
To add a character (held in the A register) the subroutine is

c5 ADDDIS PUSH BC Stors the registers BC and HL eo

ES PUSH HL that they won't be altered by the
subroutine,

0601 LD B,01 This i{s so that CPIR wont atop
because of BC,

2ldie LD HL,DIS Find the start of the string.

F5 PUSH AF Temporarily stack A.

3EFF LD A,FF

EDB1 CPIR Find the end of the string.

77 LD (HL),A Insert a new end-of-atring maxker.

2B DEC HL

r POP AF Retrieve A.

7 LD (HL),A Add this character.

El POP HL Retrieve the remaining registers.

c1 POP BC

c9 RET End of subroutine.

151

The eight subroutines ynu will need for this dieasrembly progrnm sre an
foilowmt

SUBROUTINE O - SPLIT

Thia is the nubroutine called by the byte 00. It is alwoys the first subroutine
called, if it is used at all., The byte 00 should he followed eight new addresaes
within the diesnaembler prosram. Located at theae addressea are eight different
aequencen of data, which correapond to the cares Il equala zero, H equalas one,
and 50 on up to R equala neven. One of these moquences is nelected (according
;: H) :M the data used to decide which nf the eipht aubroutines should then

used.

UBROUTINE 1} - L
The byte O1 (or 81 If it {s the last subroutine-call in sequence) is falloved

by a seriea of characters, such as N O and P, which represent part or all of
the dieassembled instruction. The last charaoter shauld have one of the unused
bits (6 or 7) set, to indicate the fact that it is the last character. The
subroutine ahould use one bit of data, with the meaning that if it la oalled
by the byte 09 (or 89) then the literal data following should have a space
inserted after the last character. Thia literal data is to be added to the
end of the data storage area called DIS.

S UT, =_LIST.

Means aelect the Gih item from the following liat. The subroutine needs data
%o mpecify how many items there are in the folloving 1ist, If there are four
items the data 011 (3) ia required, if there are eight items, the data 111

(7) is required, and no on, the data alvayas being one lesa than the number
of ftems in the 1ist, For example the byte 3A (in binary 0/0/111/010 -
meaning call subroutine 2 and provide 1L with the data 111) means select

the Gth item from the following 1ist of eight. The 1ist could, for inatance,
be R, L, C, inverne A, R, R, C, invevrse A, R, L, inverss A, R, R, inverse
A:Dy A, inverse A, C, P, inverse L, S, C, inverse F, C, C, inverse F. I've
used 'inverse' to indicate the last character in an individual item. You
don't have to do thia - you can use any means you chaose as long as it works.
Thua If G (That is bits 5, 4, and 3 of the inmtruction boing dlsasmembled)
were 3, the literal DAA would be added to the end of DIS. The next byte to
be interpreted as data will be the byte after the inverse F,

SUBROUTINE 3 - LIST-R
Means select the Hih item in the following list. Its explanstion ia exactly
the same s that of subroutine 2.

SUBROUTINE 4 - SELECT-C

Again, three bita of data are required. Interpret as follows, If the
data in 000 select r(G), if the data is 001 select a(C), if the data is
010 aelect q(G), if the data ls Ol1 aelect n{G), if the data is 100
nelect ¢(C), and If the data ia 110 aelect x(C). The Ltem melected is
to be added to the end of DIS,

SUBROUTINE 5 - SELFCT-H
Aa subroutine 4, except that R is used inatead of C.

SUBRQUTIRR 6 - SKIP
Resetn bit 5 of E (the data-byte), and if the previcus value of bit 5 was

one skips over n bytes of data. The numbder n ia determined by the imediately
following byte. If bit 5 wan zero this immediately following byte (which 1is
only there to specify n) is ignored, and the next byte after is then inter-
preted as the next item of data.

8u NE] - K

Replace bit 3 nf E by bit 4, replace bit 4 by bit 5, and reset bii 5. Effect~
ively this is the same as IJT G equal J. Then if the praviocun value of bit 3
vas one » N bytes are skipped over, as in subroutine aix, This subroutins can
be interpretnd as IP K equals xero TIIFN.... otherviae IF X equals one then....

152

Buman opernor——'l

|Be

address of byte to be

the byte to be disassembled

D

isassembled

address in table]

e [

the addrass of the start of the
disassembly data

1
B k"""
|
\/._M‘
e ———

the data itaelf

A

address in sub tine
table

subroutine call address | ~]

JINY

points to an
address in
memory

points to an
sddresa in
memory

pointa to an
addrees in
memory

points to an
addreas in
memory

With these eight subroutines, which you will have to write yourself,

you can disassemble every instruction. I will give you an example.
Suppose CLASS is zexo, and F is three. The firat byte it has to interpret
should be 00, This alters the value of HL' according to the quantity H,
that is, bita 2, 1, and O of the byte being disassembled. Suppose now
that K is one. HL' ahould now be pointing to the following sequence of
data, listed here along with its meaning.

datg Dbipaxy Beaning

07 05 0000 0111 KSKIP 5

09 35 34 BS 0000 1001 LITERAL POP (space)
94 1001 0100 SELECT-G+q (EXIT)
9A 1001 1010 LIST-C-4 Tm'r)

37 2A B9 RET

2a 3D BD EXX

ZF 35 00 16 3B 91 JP (Y)

31 29 00 38 35 1A BE LD SP,Y

To represent strings of data here you can see I've used just the character
codes, with the final character inversed to show that it is the last
character. In other worde EXX is written as 2A 3D BD rather than just

2A 3D 3D. It is of course very important to know where one string ends
and the next begina.

If you follow through which subroutines have been called by the data and
what they are supposed to do you'll amee that in a total of only twenty-
Beven bytes we have said IF K equals zero then LET DIS equal POP a(J),

IF K equala one then LET DIS equal the Jth item from this list: RET/
EXX/JP (Y)/LD SP,Y. If this proceedure is continued for every inatruction,
following the algorithm I gave sarlier in the chapter, you'll find that
the data required for disassembly ia now significantly LESS then 1K.

The entire disassembly program consists of i{nitialising the variables CLASS
and INIEX, assigning BC' (usually input by the human operator), finding the
address HL' from tables, and then going into the master-routine. On exiting
this it must then replace all V'a, X's and Y'a as defined earlier in this
chapter, and then PRINP the result computed and go on to the next byte to
be disassembled and treat it in the same way. The reat of the program
consista of the eight subroutines, the table of addresses, and the data
required for disassembly. The whole of this will occupy rather less than
1K.

However simple, or difficult, I may Have made this program sound, you will
undoubtedly find writing it a challenge. The vast majority of the program
is data, and each address in every table must point to exactly the right
byte. If you get any of it wrong it will be very difficult to trace.

You can improve the program too. I haven't used bit 6 of the data - you may
be able to think of a use for it, for example it could indicate that a comma
needs to be inserted, the choice is yours,

Like draughts, this program is sc vast that even though the machine code
listing itself will fit into 1K, you will need mores than 1K in order for

the machine code to be put there. Any editing program, BASIC or machine code,
will take you above the 1XK.

Good 1luck.

154

EEEEEEEEEEEEEEEE

; }///r//////,/”. ¢
N 1t

ARITHMETIC
SSSSSSSSSSS

(KR NEN W K J

\\\\BhwzzzzzZ il

2l
-

lllll

ARITRMEYIC SUROVTINES

Thie chapter is divided into two sectiona - one for the OLD, and one for
the NEW RCM. We'll tackle the OLD ROM first because {t's eacier.

Numbers sre rejgesented in two bytes, and se such is it possible to
atore them ir register pamirs BC, DK, snd HL. Firet of all we shall take
a look at the five major #rithmetic routines.

1). Addition. The eddress to c21l is ODIE, or mere intellegebly, CAIL ADD.
The subroutine nddrs topether the number etored in DE and the numher rtored
in HL. The result is then placed in HL. Thir m2y bc demenstrated by the
folloving programt

113900 ADDIEMO LD DE,0039

211100 LD HL,0011
CD3ROD CALL ADD
[} RET

Here DE ip loaded with the number fifty-seven, and HL with aseventcen. On
return tn BASIC the reanlt s*ored in AL should bde fifty-sever plua seventecen,
80 the command PRINT USR(adddemo) should generate the number seventy-four.

2). Subtraction. Just the seme — DE {a subtrected from HIL and the result
stored in HL. The address is 0D39, Thus to prove it:

113900 SUBDEMO LD DE,0039

211100 LD HL,0011
€h390D CALL SUB
(] RET

3). Multiplication. Up until now we have igncred mltiplication completely,
since thera 18 no simple instruction which will miltiply two numbers
together, However, thanks to Uncle C, the RCM will do it for us. Simply
CALL MULT, which is stored at sddress OD44, snd as if by magic B will be
multiplied by HL, the result ar usual being stored in HL. Wetch out for
what happens to BC and TE thousrh! They're not unaltered.

4). Division. As yon'd by now expect, the instruction CALI DIV will divide
HL by DE (ignoring eny remainder of course, since we are dealing in
integera). The address of DIV ia ODYO

5). Powers. Is raising one number to the power of another going to be any
more difficult? No of course not, With elegant simplicity the instruction
CALL POWER (at ODOC) will do just that, reising HL tc the power of DB,

and putting the answer away in HI, using repeatea multiplication to compute
the answer.

One very important functior is the RANDOM NUMEBER GENERATOR. This is held
at location OBED, To generate a random numbar bhetwsen one end six, (aay
to simulate the roll of a die,) simply load HL with six and CALL RND. This
is of course the asame thing as RND(6). The number in the brackets ehould
be placed in HL, and the final answer will end up in HL.

See 1f you can work out what this progrem does. What we're interested in
is the number that it returna to RASIC.

211400 START 1D HL,0014

CDEDOB CALL RND
110400 1D DE,000A
CD440D CALL MULT
116400 LD DE,0064
19 ADD HL,I&
c9 RET

let's see if you pot it right. HL is loaded with 14 and RRD is called,so
HL is repleced by r new value, RND(20). (Note that 14 (hex) is 20 (dec).)

OA is stored in IFE, and the two are then
rultiplied together. We then have 10wRND{20). Finally 64 (hex) is edded,
giving 10sRVD(20)4100.

we could use this routine in a games program. Suppose we needed to Jump
to a rendom deatination. We could use the by now famous Tim Hartnell
method of GOTO 1ORND(20)+100. Alternatively, if the above machine code
vere in a REM statement, msay at address 16427, we could instead simply
say GOTO USR(16427). Thia would do exactly the same job, except just a
1ittle bit faster,

we'll leave the OLD RCM now. and turn to the rather more complex field
of arithmetic on the NEW ROM,

NEW ROM ARITHMETIC

The first and most important point to note is that NEW ROM numbers are
stored as five bytea, not two, and so they can't fit into e regiater-
pair as they stand, Nor are the numbera in simple form, for while it

is true that zero is, am you'd exvect, 00 00 00 00 00, it is pot true
that one is OC 00 00 00 01! In fact one is represented by 81 00 GO 00 00,
Here 18 .a 1ist cf the Sinclair representation of the firet few integera.

Decimal 8inclaiz Form
0 00 00 00 00
1 81 00 00 00 00
2 &2 00 00 00 00
3 B2 40 00 00 00
4 8% 00 00 00 00
5 82 20 00 00 00
[83 40 00 00 00
7 83 60 00 00 00
8 84 00 00 00 00
9 &84 10 00 00 00
10 84 20 00 00 OO0

end 80 on. There is a kind of pattern, but it's not instantly
reccgniseble. Take a look at the negative numbers:

Decimal Sinclair Form
A1 81 80 00 00 00
-2 82 80 00 00 00
=3 82 €O 00 00 00
-4 83 80 00 00 00
-5 83 A0 00 00 00
-6 83 CO 00 N0 00
-7 83 EO 00 00 00
-8 84 80 00 00 00
-9 84 90 00 00 00
~10 84 A0 00 00 00

As you can see, you can lnstantly change a mumber from positive to
negative just by adding 80 to the second dbyte., This doesn't apply to
Zero by the way - sero is represented uninuely to help apeed the ROM
up a little.

Knowing how the Sinclair Porm ie built up will slightly help your under-
Bstanding of the ROM, so I will give here a brief explanation of how to
t:rn decimal numbers into Sinclair numbers, It only takes a fev simple
eteps,

167

STEP CNE: If the number is zero, then its Sinclair repreeentation is
00 00 00 00 00.

STEP TWO: Ignoring the sign of the number, write it in binary (but
without any leading uroeu). For example:

7 1
=10 1010
-4.25 100,01
0.325 0.011

Notice that the binary form has a BINARY point, not a DECIMAL point!
100.01 meens one 4 plus no 2's plus no 1's (here we reach the binary point)
plus no halves plus one quarter. The next colurmm would have beon an eighth.

STEP THREE {s to work out a quentity called the EXPCNERT. This ie done as
follows: If the psrt of the number o the left of the binary point is not
2ero then the exponent ie the number of digits to the left of the point.
If the part of the number to the left of the point is zero and the first
digit after the point {2 one then the exponent is zero. If the part of the
number to the left of the point is zero and the {irat digit after the
point is zero, then count the number of zeroes between the point and the
first 1 - the exponent is minus this number. The first byte of the Sinclair
representation 1s 80 plus this exponent.

cimal Binary Exponent Pirst byte ot Sinclair Torm
111 fL“u

~10 1o 4 84
- 4.2% 100,01 2 83
n.325 0.011 -1 ™

STEP FCUR: Now we can ignore the binary point altogether - that is what
the exponent is for - to tell the computer where the point is suprosed to
€0+ So ignoring the point, write the binary form starting with the first 1
and then add sufficient zeroes to the right to make the whole thing
thirty-two binary digite (bita) in length.

7 1110 0000 0000 0000 0000 0000 0000 0000
=10 1010 0000 0000 0000 G000 0000 0000 0G00
-4.25 1000 1000 0NOC 0000 0000 0000 0000 0000

0.325 1100 0000 ONOO QOGO 0000 OO0 0000 0000

STEP FIVE. It is here that we remember the sign of the original number.
If the originsl number was negative then do nothing. If the original
number was positive then replace the first one by a zero., Thua:

7 0110 0000 000G 0000 0000 0000 0000 0NOO
-10 1010 0000 0000 0000 Q000 0G00 0000 0000
=-4.25 1000 1000 0000 0000 0000 00GO 0000 0000

0.325 0100 0000 0000 0000 0000 0000 000Q Q000

STEP SIX -~ Now juat change these pumbers straight into hex, like ec,
making sure you remember to put the exponent byte at the etart:

7 83 60 00 00 00
-10 84 40 00 00 00
=4.25 83 88 00 00 00
0.325 TP 40 00 00 00

158

This is the foim in which the ROM will be warking. The largest exponent
you may have is ¥F, =0 the largest positive number that can be stored is
FF TP FF FF FF. This turns out to be 1.7014118838. (If you can't
understand the "E" notztion the E means "with the decimal point shifted
(in the abeve came) 38 places to the right™ In other words the number
170,141,180, 000,000, 000,000, 000,000,000,000,000,000, which is a pretty
vast nuantity. It can still only store ten decimnl places accurntely
though. The smalleet positive number you can have (apart from zero) is
01 OC 00 00 00, which happens to represent 2.9387359E-39. To you and me
that's 0,000,000,000,000,000,000,000,000,000,000,000,000,002,938,735,9
which 1'd =ay wae pretty microscopic.

You can check all of this with the following BASIC program.

10 LET A0
20 LET BaPFFX 16400+25€aPEFX 16401
30 FCR I*1 0 5

40 INPUT A
50 POKE B4T,16wCODE AeCCIE A%(2)-476
£0 NEXT I

70 PRINT A

The program sets up A veriable A, and then overwrites its previous
contents by POKEing intc the variables srea, one byte at a time. (That's
a letter T in line 50, not a number 1). If you run {t and input "g2"/
n40n /00" /700" /700" (where / resns newline) you'll find the number three
printed. And so on.

An interestingz little quirk is that if you input "0O"/"80%/n00"/m00n/n00™
(in theory thia is minus-zero) the machine actually prints =C.6B-56
The letter C in mid-number, and an exponent of =563 Don't panicl This
doesn't really happen in the ROM, We nade it happen by POKEing something
that deeen’'t make sense, The RCM doee behave alightly more sensidly then
human beings.

HOW 10 USE TTOATING POINT NUMBFRS PHOPERLY

Having seen that a five byte number is too big to store in the registere
the next question is undoudbtedly ™Well where does it astore them then?"
Ansver - it atorea them in an arca of RiM called the CALCULATCR STACK.
vhich worke very much like the crdinary stack except for two points. 1)
It can store both floating point numbers end atrings, and 2) it is the
right way up, not vpride down like the machine stack.

To push a number stored in the BC regieter onto the calculator atack all
you need to do is call up a subroutine in the RCM. CALL STACKBC, as I've
c211ed it,will chenge AC into five byte form as described above and then
push this number onto the top of the celculator stack. You can do the
same for a rumber stored in A (le a number between O and 255) by calling
STACKA. The addresses to call are: 1519 (STACKA) and 151C (STACKBC)

CALL STACKA 0D1915
CALL STACKBC CD1015

Incidently the firet two instructions in the STACKA routine are LD C,A
snd LD B,00. It then le=ps straight into STACKDC!

Conversely, to retrieve @ number from the calculator stack we can CALL

UNSTACK (address OEAT), which removes a number from the celculzter
stack and stores it in the BC register.

159

Arithmetic is quite straightforwvard. The addressea arey

ADD 1754 addition
SUB 1748 subtraction
WOLT 17cS multiplication
mv 1881 division
They vork like this¢ The five-byte b tored at an specified

by HL (this means the mumber is stored in locations (II'L) ()9, (m.)fz.
(l'l.)o}.nd (HL)+4) 1e sdded to, mltiplied by, divided by, or has &
it. The is stored at an
sddress specified by Dt. After the caloulation the result is stored
in the five bytes beginning at sddress HL.

To mltiply together the two numbers at the top of the calculator stack
ons method would be as followet

241040 LD HL,(STKERD)
11¥EFF 1D IE,FFFB
19 AID EL,DB
5 PUSH HL
221040 LD (STXEND),HL
19 ADD HL,DE
n POP DB
€e517 CALL MULT

Can you follow exactly what is going on? HL is loaded with the ccntents

of the system variable STKEND -~ whioh gives the address of the first byte

after the end of the calculator stack. DE ie loaded with minuas five, thus

HL is decreased by five. This new value is loaded back into STKEND because
we start off with two items on the stack and want to end up with only one.
This is the addrees of one of the numbers to be multiplied, If you follow

the liating through carefully you'll ses that IR ends up vith this value.

Pirst though HL is decreased by five sgain, to find the start of the other
number to be multiplied.

To check that it really doee work, run this program.

3B06 START LD A,06

CD1915 CALL FTACKA

3x07 LD A,07

CD1915 CALL STACKA

211040 LY HL,({STKEND)

11FEFF LD IE,

19 ADD RL,DE
PUSE RL

221040 LD (STXEND),HL

19 ADD HL,I®

n POP IR

cDes517 CALL MUL?

CDA708 CALL UNSTACK
RET

Run it by typing PRINT USR start, what do you get?

But surely there must de easier ways to multiply aix by seven. After all,
the above program does look very complicated, and not something you'd
easily remember. Well it'a here that we really do start making full use
of the RCM, The follovwing program does exactly the same job, and I shall
shortly explain whys

LD 4,06
€D1915 CALL STACKA
3807 LD A,07
cDINS CALL STACKA
|] RST 28
04 TRFB 04
34 DEFB 34
CDATOR CALL UNSTACK

c9 RET

In the NEW ROM, RST 28 means "porform floating point arithmetic." The
data that follows tells it precisely what calculations it's supposed to
do, The byte 04 means multiply - all of the shuffling around of the
caleculator stack ia done gutomaticzlly. The byte 34 1s used after a
PST 28 instruction to indicate that there is no more data tc come, and
the next machine code instruction should follow.

The RST 28 deta codes are ADD: OF, SUB; 03, MULT: 04, and DIV: 05. Don't
foryet you'll need » byte 34 as well though, to end the data.

You may be wondering what happens if the number on the top of the calculator
stack is not an integer between O and £553%5 (thc maximum value any two

byte register can hold). Well my first answer would be "Try it for yourself
and find out," Write a program that adds 8001 to 800l1. Write a program

that divides eight by three, then a program that divides seven by three.
Write a program that subtracts five from zero, and another that subtracta

a thousand from zero. But for those of you who are impatient I'11 tell

you anyway.

If the number at the top of the calculator stack is greater than 65535
then attempting to ™unstack” it into BC will result in the progrsm
returning to BASIC ~ returning to cormend mode in fact - etopping with
error code B (which means out of range)

If thé number ie a decimal then it will be rounded up or down (not just
INTed) to the nearsst whole number. If the decimel part is less than 0.5
it will be rounded down, and if the decimel pert is greater than or equal
to 0.5 it will be rounded up.

If the number is negative then error B will result, causing an jomediate
return to BASIC and stopping the program, if there is one.

RST 28 allowa you to do much, much more than just aimple arithmetic. All
of the functions of the ZX81 are available to you. The data code for any
particular function 18 just the character code of that function minus AB,
For instance, the charecter code of SIN is C7. C7 minus AB is 1C. (If
you don't believe me we'll do it in decimsl - 199 minus 171 is 28,) This
means we can find the SIN of the number at the top of the caloulator
stack using the sequence:

EF RST 28
1c DEFB 1C gsnt)
34 IEFB 34 (Exit).

To multiply two numbers (at the top of the calculator stack) togetner
and then find the square root of the result we can use the sequence

EF RST 28

04 DEFB 04 Em'r)
25 DEF8 25 (SQR)
34 TEFB 34 (EQT)

If you're not absolutely convinced yet, run this program, which multiplies
five by twenty, and then takes the square root.

3E05 LD A,05
1915 CALL STACKA
3E14 LD A,14
€D1915 CALL STACKA

161

EF RST 28

04 DEFB 04 (MULT)
25 DEFB 25 (SQR)
34 DEFB 34 (EXIT)
CDATOE CALL UNSTACK
c9 RET

You'll notice that this is the first time we've used more than one code in

the RST 28 data. In fact you can use as many aas you like, provided you end
the 1iat with 34,

To save you working it out for yourselves here is a list of the available
functions that we are ready to use, together with their appropriate RST
28 code:

FUNCTION COIE FUNCTIOR COIE
ccoe 19 P 23
VAL 1A INT 24
LEN 1B 2
SIN 1c 3?,} 2%
€os 1 ABS 27
TAN 1E PEEK 28
ASN F USR 29
ACS 20 STRY 24
ATN 21 CHRg 2B
IN 22 NP ¢

Some of the entries in that 1ist may surprize you. For instance we have

the use of USR. This ie very confusing - being allowed to use USR in the
middle of a USR routine - but it's not really. Here's how it works. You've
worked your way through a lot of RST 28 data, done a lot of caleulstion,
and now you come across the code 29. What happens next is that the number
at the top of the stack should be an integer between O and 65535 - or else
you'll get an error B. This address im treated a2 a Bubroutine and CALlLed.
Thie subroutine will run exactly as you'd expect it to, When it's over (ie
when a RET inetruction ia reached) the machine will go back to interpreting
the RST 28 data from the next byte. USR will of course leave 2 new value

at the top of the atack - the value held by BC at the end of the subroutine.

PEEX works in the same way, finding en eddrees, PEEKing there, then pushing
the result to the calculator stack.

All of the functions when used in this way will remove the number currently
at the top of the calculetor stack and replace it by a new one, For inatance
If the number at the top of the stack is 3.5 and the function INT is

called, the 3.5 will be removed and replaced by a new value, 3.

The string functions CODR, VAL, ~nd LEN, also CRP# 2nd STRE need 1 ema)]

amount of explaining. You ree, as well as storing number=s, the calculator
atack can also store strings, so if you start off with the number 2000 on
the top of this stack, and you then call STRE (By using code 2A in a RST

28 instruction) then the item at the top of the calculator stack will now
be the string "2000", You can demonatrate this with the following:

01D007 LD BC,07DO
€DIc15 CALL STACKEC
EP RST 28

2 DEFB 2A (STRE)
19 DEFB 19 (eomg
34 DEF3 34 (EXIT
CDA70B CALL UNSTACK
c9 RET

This should produce the result of CODE STRF 2000, Does it?
162

USING THE CAICULATOR'S MEWRY

1If you take s quick glance at the menual you'll mee that one of the
pystem varishlee, MEMBOT, is thirty bytes long. This is the calculator’s
memory area. A quick calculation involving dividing by five, if you're
up to it, shows that this leaves encugh room to store six different

five byte numbers. The six different aress of memory way each be used

by RST 28 to store, or retrieve, numbera (but numbers only) from the top
of the calculator stack. There are twelve different codes to achieve
this = these are

[-4] stores rumber in memory location 0
Cl stores number in memory location 1
c2 stores number in memory location 2
c3 storss numder in memory location 3
c4 stores number in memory location 4
c5 stores number in memory location 5
B0 racalls number from memory location O
El recalls number from memory locdtion 1
B2 reoalls number from memory location 2
E3 recalls number from memory location 3
B4 recalls number from memory location 4
E5 recalls number from memory location S5

Storing a number copies it from the top of the stack, and recalling a
number simply places it at the end of the stack - it doesn't overwrite
the previous top item,

let's see how we can use this. Suppose we want to find SIN X+COS X. We
must use the following technigue. Assume that X is at the top of the
ataok.

RST 28
TEFB CO (STOREY
DEFB 1C (SIN))
IEFB EO (RCALIP)
TFFB 1D cos;
DEFB OF (AID
DEFB 34 (EXIT)

2QEB58H

Note that the SIN routine changea X into SIN X. when
we again recall X there are novw two items on the stack: SIN X and X.
The CCS routine changee X into COS X, 8o that the two items on the atack,
are now SIN X, and CCS X. The ADD routine will replace both of these by
one single number - the anawer we want - SIN X plus CCS X.

We have now performed a fairly complex trigonometric function in just
eight bytes!

Let's see how we can remove a floating point number from the stack
without restricting ourselves to integers lesa than €5536., The way the
ROM does it is like thisg

2A1C40 LD HL, (STKEND)
2B IEC HL

46 LD B,(HL)

pa:] DEC AL

4B 1d ¢, (HL)

2B EC AL

56 LD D, (HL)

163

n we n

SR Ly B, ()

™ DI L

i 1D A, (L)
271040 1D (STKEND) HL

An yeu con probobly ree for yournelf, a five hyte number is removed (rom
the stack nnd rtored in the replatern A, E, D, C, and B. (In that order.)
Yo can CALL this routine from nddreen 13¥4,

If the firot item in the varinble ntore in X then having popped SIN X plua
OCS X from the ptack you can then atere the renult beck in X as followa

2A1040 1D WL, (VARS)
22 ING HL

i I (HL),A
23 e

7 b (HL),E
23 INC WL

72 Lb (HL),D
23

T Lo (W),c
23 INC AL
70 LD (HL),B
c9 RET

Yon cen nees that it tnkes more bytes to store the anaver than it does to
fird {4 in the firat placel

Let'a rce what else we can do with RST 28, We oen use the lcgical functions
ARD nnd OR (that in RASIC AND mnd BASIC OR). Both of these are avoilable
from RST 2R, having; byte coden 08 and 07 respectively. Almo you can SWOP
the two numbera at the top of the atack. Code 01 will do thia,

The follawine oequence will raise one number to the powor of snother. Can
you Aee why? After RST 28; 01 22 04 23 M.

164

N\
PPPPPPPPPP

7/ jl
o, g
LS 21N

| b

.

O
. O):
-
O of ¢
- O

TR)
i

These appendices are designed to give you easy and quick reference to
mogt of the things you'd want to look up.

A detailed list of the precise effect of each 280 instruction may be
found in chapter eight. This should be treated as a separate appendix.
The appendices are as followst

APPENDIX ONE - A listing of the program REXLD3

APPENDIR (WO ~ The system variables

APPENDIX CHREE - A conversion table from HEX to ASSEMBLY

APPENDIX FOUR - A conversion table from ASSEMBLY to HEX, including the
effect of each instruction on the flags

APPENDIX FIVE - The 2X character set

166

s
C
u
ug
> -
] W +
— i
=z LWl ¢
- - -
o 0 Y owoe
(T 0 : PR o o 8w
% o 0L o b womd » 0 a
3 Low sg o oofo b % O
y B UM ouUDKOI of 0
H 9 PN 0 A 0 O&HdA G o
A 8 S ouey mul&&oumumxmn&n oCwa S
: 0T DTTAG: OTTRRe SonrotuE O TTe o
e L R
Beacmoneanecrorior B @ B E ~@mow - sssasiseiiilects 1 ouls Sty o I8
2N ONn40m00080NAOKO0ACE0CI8ARN DN ANOHNAENEE WONOSLH KOS ...
ﬂ‘!S%‘“EBﬂ“EESQA1294"E‘°C402Q‘ESQQDﬁES‘4E:EGQC€“155§‘C1 WWRmmmmmmmwmmmmmmLMWD“WM““L“!“WMN”%R
SrNOYNONQOTOOOLL DN ¢Y; OrO2TOOALLEAINYNON DATOVANLGHADIDON 190
AR S E T T b NHaNNRE AUNGAAn VNS AANINOUNeBINS NS ITe . B I oD

44...49:.24:..44144..c44.¢.24¢¢4¢¢‘4..4¢4¢..4,:44..44.144¢44uu 2aaasa¢44sssaeeoemﬁﬂsu

oAy B oum Y« B~ vm AR vR v % -~u@ B Ruw--%-- M A Wu-nrr SR "]

na0n Qe i aen ANNO40QIONHOHNNTNOANNOQONTHEHD 2000800 80NNTOEOUNVLDOAE YL KT
W””““ml%S9AEQG‘EBEGMEBQCIECM%“RNSWRESEQ4‘¢021410012294!‘9&!3C21410W1859¢E‘948%081&2424C2¢12001Cﬂ
0123456739ﬂBCDEF0133‘!87BQGBGD!P01936857BORBCD!FG183‘897BQﬁﬂcDEF01&3‘ﬁb?&9RDCD!P01834BB7GGHBCDEF
P e T T N O L] h v

GQQQQQSQOQGQSSGSSSSQJ

4 piy P i plpi i
¥ * L, tricdiele feied

0non & o 40 VB ol B <o 4 AR A < > rofl N ww~ o~ QO R e
1D ns07DEQOFCDiﬁDDROP7!DQ¢BBOAF7E7ES7385@BBF¢ﬁ00363908608303!777
“uﬂﬂﬂﬂ"WmWMuwmmwwM“%wntmtmwwﬂww&WRQ‘RES1317CB¢708‘RD?CO‘C?QQRD?DQ?DRQQ410Q1314242C25FE56497030
Lal SalLl 45679995008F0lﬂa4567GQRBGDEF01&34567BORDCDEF
aa4BG7BQRBCDeF0123456709HBCDEPQHﬂMMWMMMMMMM%MWMBa“nBBB&BaBBBOBCCQcccccCCOQCCCCDDDDDDDDDDWDDDDD
MMM‘44¢444A4464‘44444‘&4“64444644444&444“‘4&4&‘644¢¢4A‘L44444¢4¢44M444‘4“44¢444¢444‘4“¢¢44

APPENDIX TWO

OLD ROM SYSTEM VARIABLES:
Deci Hex Name
16384 4000 ERH.NR
16385 40071 FLAGS
16386 4002 PPC
16388 4004 E.ADDR
16390 4006 i.PPC
16392 4008 VARS
16394 400A E.LINE
16396 400C D.FILE
16398 400F DF.EA
16400 4010 DF.END
16402 4012 DF.SZ
16403 4013 S,70PF
16405 4015 X.PIR
16407 4017 CLDPPC
16409 4019 FLAGX
16410 401A T.ADDR
16412 401C SEED
16414 401F FRANES
16416 4020 V.ADDR
16418 4022 ACC
16420 4024 S.POSK
16422 4026 CR.ADD

NBW_ROM MEMORY ORGANISATION

4000 aystem variables
07D progran

D.FILE) screen

VARS) variables
E.LINE) edit line
STKBOT) calculator stack
STKEND) spare
Sp machine atack
mR.SP; GOSUB stack
RAMIOP) reserved area

M ORGANISA'

NB4_ROM SYSTEM VARIABLES:
Decimal Hex Name
16384 4000 ERR,NR
16385 4001 FLAGS
16386 4002 ERR,SP
16388 4004 RAMTOP
16390 4006 MODE
16391 4007 PPC
16393 4009 VERSN
16394 400A E.FPC
16396 400C D,FILE
16398 400E DF.CC
16400 4010 VARS
16402 4012 DEST
16404 4014 B.LINE
16406 4016 CH.ADD
16408 4018 X.PTR
16410 401A STKBOT
16412 401C STKEND
16414 401E BFRG
16415 401F MM
16417 4021 SPARE)
16418 4022 DF.S2
16419 4023 S, TOP
16421 4025 LAST.K
16423 4027 DB.ST
16424 4028 MARGIN
16425 4029 NXTLIN
16427 402B OLDPPC
16429 402D FLAGX
16430 402E STRLEN
16432 4030 T.ADDR
16434 4032 SEED
16436 4034 TFRAMFS
16438 4036 COORDS
16440 4038 PR.CC
16441 4039 S.POSN
16443 403B CDFLAG
16444 403C PHBUFF
16477 405D MEMBOT
16507 4078 SPARE2

4000 system variables
4028 prograa

VARS) variablea
s.l.mi edit line

D.PILE) screen
DF.END) sapare
SP machine stack

168

OLD |NEW |NO.
SYSTEM |[ROM |ROM |OF
VAR, ADDR |ADDR | BYPES | PURPOSE
ACC 4022 |- 2 Value of last expression
BERG - 401E |1 Used by floating point calculator
CDFLAG |- 403B |1 Flags relating to FAST/SLOV mode
CH.ADD [4026 (4016 |2 Address of the next character to interpret
COORDS |- 4036 | 2 Coordinates of last point PLOTted
D.FILE [400C |400C |2 Address of start of diaplay file
DB.ST |- 4027 | Debounce atatus of keyboard
DEST - 4012 |2 Addrees of variable being asaigned
DF.CC |- 400E | 2 Address of print position within display file
DF.EA |400E |- 2 Addreass of start of lower part of screen
DF.END |4010 |- 2 Address of end of display file
DF.SZ |4012 |4022 |2 Number of lines in lower part of acreen
E.ADDR [4004 |- 2 Address of cursor in edit line
E.LINE |400A [4014 |2 Address of etart of edit line
E.PPC |4006 |400A |2 Line number of line with cursor
ERR.NR |4000 14000 |1 Current report code minus one
ERR.SP |~ 4002 |2 Address of top of GOSUB stack
FLAGS |4001 {4001 |1 Various flags
FLAGX |4019 |402D |1 Various flags
FRAMES [401E |4034 |2 Updated once for every TV frame displayed
LASP.K |- 4025 |2 Keyboard scan taken after the last TV {rame
MARGIN |- 4028 |1 Number of blank lines above or below picture
MEM - 401F |2 Address of start of calculators memory area
MBEMBOI |- 405D |1E Area which may be used for calculator memory
MODE - 4006 |1 Curraent cursor mode
NXTLIN |- 4029 |2 Address of next program line to be executed
OLDPPC |4017 4028 |2 Line number to which CONT/CONTINUE jumps
PPC 4002 [4007 |2 Line number of line being executed
PR.CC |- 4038 |1 Address of LPRINT position (High part assumed 40)
PRBUFF |- 403C | 21h Buffer to store LPRIN[output
RAMIOP |- 4004 |2 Address of reserved area (not wiped out by NEW)
S.POSN |4024 |4039 |2 Coordinates of print position
S.TOP |4013 [4023 |2 Line number of line at top of screen
SEED 401C |4032 |2 Seed for random number generator
SPARE! [~ 4021 |1 One spare byte
| SPARE2 |- 4078 |2 Two spare bytes
SrKBOT |- 401A |2 Address of calculator stack
SPKEND |- 401T |2 Address of end of calculator stack
STRLEN |- 402EF |2 Information concerning assigning of strings
‘T.ADDR |401A |4030 |2 Address of next item in syntax table
V.ADDR {4020 |~ 2 Addreas of variable name to be assigned
VARS 4008 (4010 |2 Address of start of variables area
VERSN |- 4009 |1 First system variable to be SAVEd
X.PPR |4015 |4018 |2 Address of character preceeding syntax error marker

169

APPENDIX THREE

5
&
8

MEEHOWR»ODONONEWND - O

ORDINARY 0 1 2 3
0 XOP LD BC,mn LD (BC),A INC BC
1 DINZ e LD DE,um Ld (DE),A INC DB
2 JR NZ,e LD HL,mn LD (pq),HL INC HL
3 JR NC,e LD SP,mn Lb (pg),A INC SP
4q LD B,B LD B,C LD B,D 1D B,E
5 LD D,B LD b,C LD D,D LD D,E
6 LD H,B LD H,C LD H,D LD H,E
7 Ld (KL),B LD (HL),C LD (HL),D LD (HL),E
8 ADD A,B ADD A,C ADD A,D ADD A,E
9 SUB B SUB C SUB SUB E
A AND B AND C AND D AND B
B OR B OR C OR D OR E
c RET NZ POP BC JP NZ,pq Jp
D RET NC POP DE JP NC,pq ouT n;.A
E RET PO POP HL JP POypq EX (SP),HL
P RET P POP AP JP P,pq DI
4 5 3 7
0 IRC B DEC B LD Byn RLCA
1 ™C D DEC D LD D,n RLA
2 INC H DEC H LD Hyn DAA
3 INC (HL) DEC (HL) LD (HL),n SCP
4 B,H LD B,L 1D B,(HL LD B,A
5 LD D,H 1D D,L LD D,(HL LD D,A
[3 LD H,H LD H,L LD H,(HL LD H,A
7 o (HL),A LD (HL),L HALT 1D (HL),A
8 ADD A,H ADD A,L ADD A,(HL) ADD A,A
9 SUB H SUB L SUB EHL SUB A
A AND H ARD L AND (HL AND A
B OR H ORL OR (HL) OR A
c CALL Nz,pq PUSH BC ADD A,n RST 00
D CALL NC,pq PUSH DE SUB n RST 10
E CALL PO,pq PUSH HL AND n RST 20
P CALL P,pq PUSH AF ORn RST 30
0 1 2 4

5 6 7
RLCB RLCC RLCD RCE RLWCH RLCL RLC (HL) RLCA
RL B RL C RL D BL E RL H RL L RL (HL) RL A
SLAB SLAC SLAD SLAE SLAH SLAL SLA (HL) SLAA

HL) BIT 0,A
BIT 2,B BIT 2,C BIT 2,D BIT 2,E BIT 2,H BIr 2,L BIT 2,(HL) BIT 2,A
BIT 4,B BIT 4,C BIT 4,D BIT 4,E BIT 4,H BIT 4,L BIT 4,(HL) BIT 4,A
BIT 6,B BIT 6,C BIT 6,0 BIT 6,E BIT 6,H BIT 6,L BIT 6,(HL) BI! 6,A
RES 0,B RES 0,C RES 0,D RES O,E RES O,H RES O,L RES 0,(HL) RES 0,A
RES 2,B RES 2,C RES 2,0 RES 2,E RES 2,H RES 2,L RES 2,(HL) BES 2,A
RES 4,B RES 4,C RES 4,D RES 4,E RES 4,H RES 4,L RES 4,(HL) RES 4,4
RES 6,B RES 6,C RES 6,D RES 6,E RES 6,H RES 6, RES 6,(HL) RES 6,A
SEr 0,B SET 0,C SET 0,D SET O,E SE? O,H SET O,L SET 0,(HL) SET 0,A
SET 2,B SET 2,C SEr 2,D SET 2,E SFKT 2,H SBr 2,L SET 2,(HL) SEl 2,A
SET 4,B SET 4,C SET 4,D SET 4,E SET 4,H SEP 4,L SET 4,(HL) SEF 4,A
SET 6,B SET 6,C SET 6,0 SET 6,FE SEl 6,H 3ET 6,L SET 6,(HL) SET 6,A

170

ORDINARY

[}

MEUOE PO OOV WA -

HEHE OG> VOENAVNEWN =0

AFTER CB

MO OO~ AN B NN = O

8 9 A
EX AF,AF' ADD HL,BC LD A.snc
JR e ADD HL,DE LD A,(DE,
JR Z,e ADD HE,HL LD HL,(pq)
JR Cue ADD AL.SP LD A,{m)
1D C,B LD ¢,C LD ¢,D
LD E,B Lb E,C LD E,D
LD 1,B LD L,C LD L,D
LD A,B LD A,C LD A,D
ADC A,B ADC A,C ADC A,D
SBC A,B SBC A,C SBC A,D
XOR B ¥OR C XOR D
CP B CPC CP D
RET Z RET JP 2,pq
REP C EXX JP C,pq
RET PE JP (HL) JP PE,pq
RET M LD SP,HL JP M,pq
c D E
INC C DEC C LD C,n
INC E DEC E LD E,n
NG L DEC L LD L,n
INC A DEC A LD A,n
LD C,K 1D C,L 1D ¢,(HL
1D E,N LD E,L LD E,(HL
1D L, LD L,L LD L,(HL
LD A,H LD A,L LD A,(HL
ADC A, X ADC A,L ADC. A, (HL
SBC A,H SBC A,L SBC A, (HL
XOR H XOR L XOR (HL)
CP A CPL cP (HL)
CALL 2,pq CALL pq ADC A,n
CALL C,pq ® SBC A,n
CALL PE,ya ® XOR n
CALL M,pq @ CPn
9 A B
RRCC RRCD RRCE RRCH
RR C RR D RR B BR H
SRAC SRAD SRAE SRAH
SRLC SRLD SRLE SRLE
BIT 1,C BIT 1,D BIT 1,E BIT 1,H
BIT 3,C BIT 3,0 BIT 3,E BIT 3,H
BIT 5, BIT 5,D BIT 5,E BI? 5,R
BIT 7,C BIT 7,0 BITT,E BIT 7,H
RES 1,C RES 1,0 RES 1,E RES 1,H
RES 3,C RES 3,D RES 3,E RES 3,H
RES 5,C RES 5,D RES 5,E BES 5,H
RES 7,C RES 7,0 RES 7,E RES 7,H
SET 1,C SEP 1,D SET 1,E SET 1,H
SEP 3,6 SET 3,D SET 3,E SET 3,H
SET 5,C SET 5,D SET 5,E SET 5,H
SEP 7,C SET 7,0 SET 7,E SET 7,H

m

BEEE"
LEEE

S5EEEE
’:Erryp
-mvwmmtdm

8
™ b

DE,HL

Huz®g
>
z

RST 18
RST 28
RST 38

SRA L SRR 2&1.

SRL L SRL
BIT 1,L BIT1,
BIT 3,L BIT 3,
BIT 5,L BIT 5,
BIT 7,L BIT 7,
RES 1,1 RES 1,
RES 3,L RES 3,
RES 5,L RES 5,
RES 7,L RES 7,
SET 1,L SET 1,
SE? 3,L SET 3,
SET 5,L SET 5,
SET 7,L SET 7,

E
RRC L RRC (HL)

GEEEEEEEEEEE

F

RRC A
RR A
SRA A
SRL A
BIT 1,A
BIT 3,4
BIT 5,4
BIT 7,A
RES 1,A
RES 3,A
RES 5,A
RES 7,A
SET 1,A
SET 3,A
SET 5,A
SED T,A

WEHOOE >0 OIOVBWN 2O

AFTER DD

0 1 2 3 4 5
0 - - - - - -
1 - - - - - -
2 - LD IX,on LD (pa),IX INC IX - -
3 - - - - INC (IX+d) DEC (IXs
4 - - - - - -
2 - - - - - -
7 LD (IX+d),B LD (IX+d),C LD (IX+d),D LD (IX+d),E LD (IXd),H LD (IX4d
8 - - - - - -
9 - - - - - -
A - - - - - -
B - - - - - -
c - - - - - -
D - - - - - -
E - POP IX - EX (SP).IX = PUSH IX
F - - - - - -
AFTER DD
6 7 8 9 A B cC D &
- - - ADD IX,BC = - - - -
- - - ADD IX,DE - - - - -
- - - ADD IX,IX LD IX,(pg) DEC IX ~ -~ =
LD (IX+d),n - - ADD IX,SP - - - - -
LD B,(Ix+d) = - - - - - = LDC,(IX+d
LD D,(IX+4d) = - - - - - - 1D E(IXd
LD Hy(IX+d) - - - - - - - LD L,(IXd
- LD (TX+d)y,A = = - - - = LbA,(IX+d
lu)n Ay (IX+d) - - - - - = = ADC A,(DX+d)
Dod) - - - - - - = SBC (T¥ed
Iad - - - - - - - %0R {(DX+d
OR (I"‘“’) - - - - -)
- - - - - . - -
- - - Jp () - X DE,IX - - -
- - - LDSP,IX - - - - -
AFTER ED
8 9 A B c D E F
0 - - - - - - - -
1 - - - - - - - -
2 - - - - - - - -
3 - - - - - - - -
4 m c,(c) our (C),c ALC HL,BC LD BC, pqg - RETI - LD R,A
5 N E,(C) our (C),E ADC HL,DE LD DE,(pa) - =~ IM 2 LD A,R
6 N L,(C) ouT (C),L ADC HL,HL = - - - RLD
7 IN A,(C) OUT (C),A ADC HL,SP LD SP,(pq) - = - -
8 - - - - - - - -
9 - - - - - = - -
A LDD CFD IND oU'TD - - - -
B LDDR CPDR INDR OTDR - - - -
c - - - - - - - -
D - - - - - - - -
E - - - - - - - -
b3 - - - - - - - -

172

5
B
3

PEHOOQAEVOIAVNE WO B OO WM OO~ NN NN = O

HEOOW» OO~ AVMEWN =0

0 1 2 3 4 5
- LD IY,mn LD (pq),IY INC IY - -
- - - - INC (IY+d) DEC (I¥+d)
LD (IY+d),B LD (IY+d),C LD (IY4d),D LD (IY+d),E LD (IY¥+d),H LD (1Ysd),L
- POP TY - X (SP),IY =~ PUSH 1Y
7 8 9 A B cC D E F
- - ADD 1¥,BC - - - - - -
- - ADD IY,DE - - - - - -
- - ADD IY,IY LD IY,(pq) DECIY - = =~ -
Ted)yn - - ADD IY,SP =~ - - - - -
IYed) - - - - - - - ¢, IYM; -
IY+d - - - - - = = LD E)(IY4d) =
IY+d) - - - - - - - 1bI, l'h-dg -
- LD (TY+d),A - - - - - = LD A(I¥4d) -
ADD A,(I¥+4d) - - - - - - = ADC A,(IY+d) -
- - - - - - = SBC (IY4d) -
- - - - - - = XOR (IYed) -
- - - - - - = CP (Ifsd) -
- - - - ® - - - -
- - Jp(Iy) - EX DE,IY - = - -
- - LD SP,IY - - - - - -
0 1 2 3 4 5 6 7
N B,(C) ovOT (C),B SBC HL,BC LD 2pq JBC NEC REIN IMO LD I,A
IN D,{C) ouT (C),D SBC HL,DE LD (pq),DE - - M1 LDA,I
™ H,(C) oUT (C),H SBC HL,HL - - - - RRD
- - SBC HL,SP - - - - -
LDI cP1 IND oUrT - - - -
LDIR CPIR INIR OTIR - - - -

173

AFTER DDCBdd AFTER FDCBdd
6 6 E
0 ALC (IX+d) RRC (IX+d) RLC (IY+d) RRC (IY+d)
1 RL (1X+d) RR (IX+d) RL (IY+d) RR (IY+d)
2 su (Ixed) SRA (IX+d SLA (I¥+d) SRA IYM;
3 SRL (IXed - SRL (IY+d
4 BIT 0,(IXed) BIT 1,(IXed) BIT O,(I¥+d) BIT 1,(T¥+d
5 BIT 2,(IX+d) BIT 3,(IX+d) BIT 2,(T¥+d) BIT 3,(IY+d
6 BIT 4,(IX+d) BIT 5,(IX+d) BIT 4,(IY+d) BIT 5,(I¥+d
7 BIT 6,(IX+d) BIT 7,(IXed) BIT 6,{I¥+d) BIT 7,(IV¥+d
8 RES 0,(IX+d) RES 1,(IX+d) RES 0,(IY+d) RES 1,(TY+d
9 RES 2,(IX+d) RES 3,(IX+d) REB 2,(IV4d) RES 3,(I¥+d
A RES 4,(IX+d) RES 5,(IX¢d) RES 4,(IY+d) RES 5,(I¥+d
B RES 6,(IX+d) RES 7,(IX+d) RES 6,(IV4d) RES T,(IY+d
¢ SET 0,(IX+d) SEP 1,(1X+d) SBT O,(IY+d) SET 1,(I¥+d
D SET 2,(IX+d) SEP 3,(IXed) SET 2,(IY¥+d) SET 3,(IV+d
E SET 4,(IXed) SET 5,(IX+d) SET 4,(IY+d) SET 5,(IV+d
F ms(md) SET 7.(1x+¢) SET 6,(IY+d) SET 7,(IV+d+
INSTRUCTIONS INSTRUCI IONS FLAGS
Opoode Hexcode SZ-H-PNC Opcode Hexcode S Z-H-PNC
ADC A,r tablel QO6-86-000 HALT 76 A e
ADC HL,s table2 @@-€@-800
ADD A,xr tablel @@-@-80@ MO ED46 —memm---
ADD HL,a table 2 w==@--0@ m1 E56 L
ADD IX,s teble?2 ---@--0@ M2 EDSE - m -
ADD IY,s table2 ~--@8--0@ mgr ::::{.; 00-0-60 -
AND r t -1 s L] EE R R
ablet @@-1-Q00 N Ai(n) Dbun STIToooso
BIT b -1 - INr,(C) table! @@-@-@0 -
, v tablel ?@-1-@00 I sz Al
CALL e e amm=- IND ?xX=-1-71-
m‘;‘,‘maﬁ’, e e m e e = (2 v 14fB b zero)
CCP 3p ceexa=080 INIR EDB2 ?1=-7=71-
(the H flag becomes the previous 1R0R EBA T1-7-%1-
value of the C flag) JP ;g C3qqpp === = ===~
CPr table! @6 -0-0160 JPc,pq table 3 = === -=-=-
CPL EDAY @x-6-x1- JP(HL) B mem e e
CPD EDA9 @x-@-x1- JP (IX) DDEY B
CPIR EDB1 8x-@-x1- Jp (1Y) B cmmmmaaa
CPDR EDB9 @x=-@-x1-~ JR e 18ee - - -—-—-
(2 becomes 1 if BC becomes zero, JRcee table 3 = === ===
P/V bacomes 1 if A w (HI-1))
CPL 2F P I LD (BC),A 02 e
LD A,(BC) 0A R
DAA 27 0-0-@-@ LD (DE),A 12 PR
DEC ¢ table! 08-@-0@1- LD A,(DE) 1A ce e
DEC 8 table 2 - = - = = = = =
DI 3 R e LD I,A ED47 R EEERE
IJNZ e 10ee cececcecaaa LD R,A ED4F em e e ===
LD A, ED57 00-0-x0-
EI FB B LD A,R EDSF ©@-0=-x0-
EX AF,AF' 08 cec e~ (P/V ie set to interrupt storage
EX DE,HL [ag)
EX (SP),HL E3 B
EX (SP),IX DDE} == == === LD SP,HL F9 cac o e~
EX (SP),IY FDE} === ---- LD SP,IX DDFY —————-- -
EXX] L LD SP,IY FDF —e e e

174

INSTRUCTIONS FLAGS
Opcode Hexcode S Z2-H-PNC
LD oy table 1 = = = = = = = =
ID s,un _ table 2 === == - =
mk.im;wmw R
1D s, table 2 = - 2 = - ===
LDim.ABqupv P
Pq),0 table 2 - = = = o - ==
LDI EDAO ---O-XO-
LDD EDAS -=-=0-x0-
(P/V becomes O if nc becomes 0)
LDIR EDBO -==0~-00-
LDDR FDB8 -==0-00-
NEG ED44 @0-0-010
NOP 00 B
OR r table 1 @0 -
our ng.nnsnn ---
orr (C),r table 1 = = = -
oUrI EDA3 ?xX- -
oUrD 72x-?7-71~
(2 becomes 1 if B becomes zero)
OPIR EDB3 P1e?=71=
OPDR EDBB ?P1--%1-
POP AP b2} AXXXAXXXX

(Flags are determined by the
byte at the top of the -tack)

POP 8 table 2
PUBH AF F5
PUSH s table 2
RES b,r table 1
REP c9

RET ¢ table 3
REIN EMS
REr'I ED4D
RLA 17

RL r table 1
RLCA 7

®1ri1 11
@11
X-E]
(RN
@110 001
cot 1
@1 111

INSTRUCTIONS
Opcode Hexcoda
RES b,r table 1
RED

REP ¢ table 3
REPN ED45
RETI ED4D
RLCA o7
RRCA OP

RLA 17

RRA 1P

RILC r tadble 1
RRC table 1
RL r table 1
RRr table 1
RRD EDG7
RLD ED6F
RST 00 (4]

RST 08 CF

RST 10 7

RST 18 DF

RST 20 314

RST 28 EF

RST 30 b4

RST 38 FP

SBC A,r table 1
SBC HL,s table 2
SCF 37

SEP b,r table 1
SLA T table 1
SRA ¢ table 1
SRL r table 1
SUB r table 1
XOR r table 1

;

L
&)
1

=
el
£
(]

[-X- 2 X -1-X-]

e 99991 16
- X -X-X-NEN-X-

RN
© 0001 08®

00 0000 0000

[I I I
[I I |

oo ©OO0O0Q0 O0O0O

40001 0=
© 99681 -8

o

176

TARALE CNE

r [¢ b P m L (Hr) A (1Xed) (IVA) n
ADD A,x |80 Bl 82 83 A{ 85 86 87 TDB6dd FDBGAd Cénn
ADC A,xr |ER 89 RA A&D AT 8D AE &P IDEFAd FDEF4d CEnn
AND T A0 A1 A2 A3} Ad A5 A6 AT DDA6dd PDabdd Efnn
BIT O,r |CBAD CAM1 CRM2 CRA3 CRA4 CR45 CB46 CBAT TICBAA4E FDCOHMAA6 -
DIT 1,r |CGMA CTM9 CHMA CRAR CRAC CBAD CBAR CRAF DDCRAA4E FDCDAd4R -
RIT 2,r | CRS0 CR5Y £052 CR53 C954 CBSS CB56 0BST DDCBAASE FDCAIASS -
BIT 3,v |CRSB CBS9 CRSA CRSB CBSC CASD CRSE CNSP TDCBAASE FNCRIASE -
BIT 4,r |CACO CBAL 0BF2 CPEY CPA4 CNES CBEE CBAT DDCBIA66 FDCBAAES -
HIT S,r |CRB CREY CAEA CPEB CBAC CRFD CBGE CAAP DICBAAGE FICRIEE =
T €,r |CA70 GHTY CBT2 CBTY CBT4 CATS CR76 CR77 DICEAAT6 FINBAAT6 -
BIT 7,x |CA7R GBT9 CB7A CHIB CDX: CRTD CBTE CBTF DICBAd7F. FDCBIATR -
CFr BA R) BA KB R BD B E TDDBEAd FDEFAd FBmn
wCr 05 O0p 15 1 25 2p 35 3D DID35Ad FDISAd -
1N r,(C) [FT40 ¥DAB EUSO ED58 FT60 RDE8 - KDI8 =~ - -
m r 04 OC 14 1 2?24 2 34 3¢ DD34dd FD3AAd -
LD R,r 40 41 42 43 A4 A5 46 47 DDAGAd FDA6Ad Oénn
IDC,r 4B 49 4A AR AT AD AR AF DDAEAd FDMEdd NEmn
LDD,r |50 %1 5 53 S4 55 S6 57 IbS6dd PP56dd 16nn
LPE,r |58 59 SA SR SC SP SE 5P DD5F4d ¥DSF4d 1Enn
DU,y |60 61 62 63 64 €5 66 67 DORGAd FDE6Ad 26nn
DLy |68 63 60 €B 6 €D €E €F DDERAd FDEEG 2Enn
D(m)rf70 1 72 13 M 15 - 1M - - 36na
IDAr |78 79 74 78 ¢ T TE TP IDDTHAd FDTRAG 3IFan
LD DD70 DD71 DD72 DDT3 DD74 DDT5 - DOYT - - DD36
(IXed),r |dd dd dd 44 dad dd a4 ddnn
D ¥D70 FDTL FUT2 FOT3 FD74 FD?5 - FDT7 - - FD36
(IY#d),r |d4 dd dd 48 dd ad a4 ddnn
R r BO Bl 82 B} B4 BS B6 B7 DOB6dA PDBEdd Ffnn
our (C),r| D41 EM9 ENS1 ENSY FD6L EDEY = ENTY - - -
RL r
RES O,r |CBRO GBR1 CAG2 CRB3 CRG4 CR8S CBB6 CBAT DICPAdBS FICBAARE -
HES 1,r |CRB3 CRB9 CBBA C7HAB CBAC CRAD CBBE CBBF DDCBAGBE. FIDCIAASE -
RES 2,r |CAO0 CB9L CR92 CB93 CR94 CBYS CRY6 CBIT DNCBAd96 FICBAAYE -
RES 3,r | CR9B CH99 CRIA CB9B CBIC CRSD CHIE CBYF DDCDAIYF. FICBAASE -
RES 4,r | CBAO CBAl CBA2 CRA3 CBA4 GBAS CBAG CBAT DDCBAdA6 FDCBAAAS -
RFS 5,r | CBAB CBA9 CBAA (:AB CABC CHAD CRAE CBAP NDCBAJAE FICBAdAE -
RFS A,r | CBBO CRBY CBR2 CRB3 CABA CRBS CAK6 CADT NNCAABA FICAIEDG -
R¥S 7,r |CDBA CBGY CBRA CBBB CBEC CRAD CBEE CHE* DNCBABE FICHAABE -

r B ¢ D E & L (HL) A (1x44) (1Y+d) n
RIC T CBOO CBOl CBO2 CBO3 CBO4 CBOS CBO6 CBO7 DDCB4d06 FDCBAAO6 -
RRC T CBOB CBO9 CBOA CBOB CBOC CEOD CBOE CBOP DDCBAdOE FICBAOR -
RL r CB10 CBl11 CB12 CE13 CB14 CB15 CB16 CB17 DDCBAd16 FDCBAdl6 -
RR T CB18 CB19 CBlA CB1B CBIC CB1D CBIE CBIF DICBJd1E FICBAdIE -
SEP O,r | CBCO CBCl CBC2 CBC3 CBC4 CBCS CBC6 CBC7 DDCBAAdCE FDCBAACE -
SET 1,r | CBC8 CBCY CBCA CBCB CBCC CBCD CECE CBCF DDCBAdCF FDCRAACE =
SEP 2,r | CHDO CHDl CBD2 CHD3 CED4 CEDS CED6 CRD7 DDCBAdD6 FICBAADE -
SET 3,r | CBD8 CSD9 CHDA CEDB CENC CEDD CEIR CRBIF IDCBAGDE FDCBAAIE -
SET 4,r | CBEO CBF1 CHE2 CBE3 CRE4 CEES CBE6 CBE7 DDCBAAR6 FDCBAAR6 -~
SET S,r | CBES CEE9 CBEA CEER CEEC CEED CEEE CEEP IDCBAAEE FDCBA4EE -
SET €,r | CBFO CEFl CHP2 CHF3 CEF4 CEFS CHF6 CBF7 DDCBAAPE FDCBAAPS =
SET 7,r | CHF8 CEF9 CHFA CHFB CEFC CHFD CEFE CEFF DDCBA4FE FICBAJIE -
SUBA,r |90 91 92 93 94 95 96 97 DD96dd FDY6Ad pbnn
SECAr |98 99 94 9B 9 90 9E OGF DDYRAd FI9BAA DEnn
SIA T CB20 CB21 CB22 CB23 CB24 CB25 CB26 CB27 DDCBAd26 FICBAA26 =
SRA T CB28 CB29 CB2A CBZB CR2C CBZD CB2E CBZF DDCBAd2E FICBAdZE -
SRL T CB38 CB39 CB3A CB3B CB3C CB3D CB3E CBIF IDCBAA3E FDCBAA3E -
XOR T A8 A9 AL AP AC AD AE AF IDARAd FDAEdd EBn

TABLE TWO
8 B = HL SP X 1Y
AXC HL,s |ED4A ED5A EDEA ED7A - -
ATD HL,s |09 19 29 39 - -
AID IX,s |DDO9 D19 - D39 29 -
AID IY,s |FDO9 FD19 - ¥D39 - FD29
IEC 2 OB 1B 2B 38 DD2B FD2B
ING & 03 13 23 33 D23 FI23

LD s,mn |Olnnmm 1lnnmm 2lnnmm 31lnnem ID2lnnam FD2lonmm

LD ED4Bqqpp EDSBqgpp 2Anqpp EDTBqqpp ID2Aqqpp FD2Aqqpp
D T e Svre EDisesry Mz2eapy FO22acrs

POP & Cl n El - m FIEl

PUSH & c5 5 BS - TIRS FIRS

SBC HL,s |ED42 ED52 BD62 EDT2 - -

TABLE THRERE

c 7 3 C c 0 =3 P N
CALL c,pq|CAqqpp CCqqPP D4qapp DCqqpp Edqqpp BECaqpp F4qapp FCqapp
JP o,pq |C2qapp CAqqPp D2qqpp DAqqpp l‘qu» m«m quqvp ﬂun
JR o,e ® 28es 30ee 38ee

RET ¢ co ca 0 D8 0 s 0 ¥e

177

APPENDIX FIVE

0 h 2 3 5
0 space " -l
[1]
1 - + - = >
§ > < = { - »
H 4 5 6 7 8 9 A B
4 b} [3 i 8 9 A B
3 X L M N [P Q R
K L M N Q P Q R__
4 ? ? ? ? ? ? ? ?
RND Pl KEYg |2 ? ? ? ?
5 ? ? ? ? ? ? ? ?
bd hd 1 e 2 ? ? ?
6 ? ? ? ? ? ? ? ?
2 ? ? ? ? ? ? e
7 up down left right HOME EDI? NEVLINE |RUBOUT
up down left right GRPHCS | EDIT NEWLINE | RUBOUT
8 a . |
g]
9
EY
’ .
c ? ? ? ? T ? ? ?
"o AT TAB 7 CODE VAL LEN SIN
D ? ? ? ? " THEN T0 i
SQR SGN ABS PEEX USR STRY CHRE NOT
E AND OR ~ = < > LIST RETURN
STEP LPRINT |LLIST STOP SLowW FAST NBW SCROLL
F ? ? ? ? ? ? ? ?
LIST LET PAUSE NEXT POXE PRINT PLOT RON

PFirst row - OLD ROM characters
Second row - NEW ROM characters

178

> "

]

o o

I O

1A

O O]

?
number | cursor
INPUT RANDOMISE
INPUT LOAD
RETURN | COFY

?

POKE
CLEAR REM
CLEAR

GOSUB

£=

FOR

FOR

GO SUB | LOAD

cLs UNPLOT
179

MT

SAVE

REM

?
IF

FNCTION |?

?

TAN

DIM

DIM

CONTNUE |[IF
RAND

K/L
008
CONT
STOP
SAVE

?

3

BASIC:

A _PAREWELL PROSRAM

(XEW ROM users only!)

This prosram locke particularly effective when run in the
SLOW mode. I'm not telling you what it does - feed it in
and find out....

1 REM one hundred and sixty one characters
2 RAND USR 16514

MACHINE CODE: (To be written to address 4082 - decimal 16514):

LD HL,40B9 O1FFO001 DEFB 01 FF 00 O1
LD A.fm.) 0100FFFF DEFB 01 00 FF FF
INC HL FEO50C4E DEFB FE 05 OC 4E
RRA 7C54004E DEFB 7C 54 00 4E
PUSH AP TCS55SB4AR DEFB 7C 55 B4 AE
RST 10 B2B2B1B1 DEFB B2 B2 B1 B1
FOP AF B1B1B1B1 DEFB B1 B1 Bl B1
JR NC,F8 B1B1BOB4 DEFB B1 Bt BO B4
LD B,80 B5B5B3B3 DEFB B5 BS B3 B3
DEC A B3B3BSB3 DEFB B3 B3 B5 B3
JR N2,FD B3B5B3B3 DEFB B3 B5 B3 B3
BINZ FB BSB3B3B3 DEFB B5 B3 B3 B3
LD BC,0A24 B3BOBOBO DEFB B3 B0 BO BO
PUSH BC BOB1B1B1 DEFB BO B1 B1 B1
PUSH HL BOB1BOB1 DEFB BO B1 BO B1
CALL OBBé BIAER3B3 DEFB B1 AE B3 B3
POP BC BSAFBOBO DEFB BS AP BO BO
LD A,(BC) B1AEB1BO DEFB B1 AE B1 BO
1D L,A B1B3B3B3 DEFB B1 B3 B3 B3
LD H,40 B3BOBOB1 DEFE, B3 B0 BO B1
LD E,(HL) B1B3B3B3 DEFB B B3 B3 B3
INC L B1B1BOBO DEFB B1 B1 BO BO
1D D,(ML) AEB2B1B2 DEFB AE B2 Bt B2
POP HL B1B2B1B2 DEFB B1 B2 B B2
RET 2 B2B2B4B5 DEFB B2 B2 B4 B5
ADD HL,DE BSBSB4BS DEFB BS5 B5 B4 B5
PUSH BC B5B4B5B5 DEFB BS B4 BS BS
LD C,L B4B5B5B4 DEFB B4 B5 B5 B4
LD B,R B5BSAERT DEFB 35 B5 AE B7
POP HL FFP DEFB FF

INC HL

JR B

180

MAOMERING
MAGHINEHGODE
ONRIOUR

ZX 81

‘ORI (R

The ZX-81 computer from Sinclair Research, Ltd,, is an exciting
new breakthrough in personal computing. About the size of this
book, it uses your television set to display programs and any
cassette recorder to save programs. Though it can be used for
games, for home recordkeeping, and for business functions, it is
not '‘for' any of these uses. Because it is the least expensive,
most complete, and most powerful computer of its size on the
market, it Is an ideal '‘first computer” to introduce adults and
children to the world of computing.

This comprehensive, yet easy-to-understand handbook leads
the programmer dently from the BASIC language into ZX-81
machine code, permitting much faster execution of programs
and more efficient use of memory. Discover the internal secrets
of the ZX-81 machine, and extend your programming capabilities!

Other books from Reston on the ZX-81:

The ZX-81 Pocket Book by Trevor Toms

49 Explosive Games for The ZX-81 by Tim Hartnell

Making the Most of Your ZX-81 by Tim Hartnell
Information about ZX-81 may be obtained from the National ZX
Users Group, 599 Adamsdale Rd., N. Attleboro, Mass. 02760.

RESTON PUBLISHING COMPANY, INC.
A Prentice-Hall Company 0-8359-4261-9
Reston. Virdinia

