
1

OTHELLO – An Othello Game Playing Program

© 2019 Valentín Albillo

Abstract

OTHELLO is a program written in 2002 for the SHARP PC-1350/1360 pocket computers to play Othello (aka Reversi) vs. the user. It

displays the playing board in the graphics screen, uses a graphic cursor to select moves and includes menus and full prompting.

Keywords: OTHELLO, Reversi, game, graphic board, SHARP PC-1350/1360, pocket computer, BASIC

1. Introduction

OTHELLO is a medium-sized (112 lines) BASIC program that I wrote in 2002 for the SHARP PC-1350/1360

pocket computers and compatibles to play Othello (also known as Reversi) vs. the user. It displays the playing

board in the graphics screen, allows selection of moves via either a graphic cursor or entering coordinates and

includes menus and full prompting.

The program will check your moves for legality and will perform the tally and announce the winner when the

game ends. It uses a simple strategy (either fixed or randomized) and will easily defeat a beginner but it’s more

intended to work as a non-trivial demo of the PC-1350/1360 programming features and graphics capabilities.

The SHARP PC-1360 is a 1987 pocket computer featuring a SC61860 CMOS CPU @ 768 Khz powered by two

CR-2032 cells, 138 Kb ROM and up to 64 Kb of RAM (2 slots for battery-backed 2 Kb-to-32 Kb RAM cards), a

4x24-char LCD display (150x32 fully addressable pixels) and 11-pin serial/15-pin printer connectors to interact

with peripherals (mass storage, printers, plotters, etc.), in a small, light package (18.2x7.2x1.6 cm, 220 g.).

On the software side, it’s got an extended version of BASIC with graphics and I/O commands. The PC-1350

pictured above is very similar but with only one slot for RAM cards and lacking some extended commands.

2

2. Game Rules

Othello is played on an 8x8 board. There are two standard openings, the Diagonal Opening and the Parallel

Opening, as seen in the figure below:

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · ■ □ · · · · · · □ □ · · ·

· · · □ ■ · · · · · · ■ ■ · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · ·

Diagonal Opening Parallel Opening

The program plays the white pieces (□) and the user plays the black pieces (■). To play a move, the player

places one of his pieces in an empty location (represented by a dot) taking into account that:

 it must be adjacent to an enemy piece (either horizontally, vertically or diagonally)

 at least one enemy piece must be enclosed between the just placed piece and another piece of the same

color, in any direction (horizontal, vertical or diagonal)

 all enemy pieces enclosed between them are flipped over and become of the capturer’s color

 no empty locations can be enclosed, only a row of consecutive enemy pieces in any direction

 if more than one row is enclosed at the same time, all are flipped over

 the player can capture only when putting a new piece on the board, enemy pieces which are left

enclosed because of other factors aren’t captured

The following example will help to make it clear:

In this position, if White plays at 14 (row 1, col. 4) Black’s pieces at 12

and 13 would be enclosed between the just played pìece and White’s

piece at 11 so they’d be flipped over and become White’s. At the same

time, Black pieces at 15, 16 and 17 would also be enclosed between the

just played piece and White’s piece at 18, so they’d be flipped over too

and would become White’s as well. Thus, five currently black pieces

would become white.

On the other hand, if in this board position Black plays at 63 it would

flip the nine white pieces at 62, 53, 43, 33, 23, 64, 65, 66 and 67

because there’s another black piece at the end of each row of white

pieces and none contain empty locations between the pieces.

3

3. Program Listing

Important note:

When entering the listing that follows, all text strings in messages and prompts must be keyed in exactly as

shown, else serious misalignments and display misformatting may occur. For instance:

 "Cannot pass.Select" (no space between "pass", "." and "Select")

 "I have no move.Pass" (no space between "move", "." and "Pass")

 "Setting up board..." (no space between "board" and "...", and exactly three dots)

 the statement PRINT "I play";S;", flip";N has one space between "," and "flip"

 the similar statement PRINT "You play";S;",flip";N has no space between "," and "flip"

In short, key all text strings exactly as shown. If misformatting occurs, you probably inserted o supressed a

necessary space, comma, or dot. Check !

 Also, the colon (:) after the line number must not be keyed in, it’s automatically shown when listing lines.

3.1 Commented Program Listing

Specify no delay for PRINT, erase and initialize assorted variables, and call a subroutine to display the Options

Menu and let the user toggle the available options as desired:

 1: REM *** OTHELLO - (c) Valentin Albillo, 2002

 5: "A" WAIT 0: CLEAR: Z=0, U=1, V=1, T=1, W=0, J=59*2: GOSUB 310

Upon return from the Options Menu, show the program's banner and let the user know that main initialization

will take place based on the selected options:

 10: CLS: CURSOR 6: PRINT "* OTHELLO by VA *": USING "###"

 15: LINE (36,0)-(149,7),X,BF: GOSUB 140: PRINT "Initializing ..."

Main initialization. Dimension and initialize the board array, the move offsets array, the strategy string array, and

the small-font graphics numerals string array. If the user selected strategy randomization, calls a subroutine to do

the randomization:

 20: RESTORE: DIM B(99), M(7), C$(1)*60, D$(9)*8: C$(0)="": IF W GOSUB 400: GOTO 30

 25: FOR I=1 TO 60: READ X: C$(0)=C$(0)+CHR$ X: NEXT I

 30: FOR I=0 TO 7: READ M(I): NEXT I: FOR I=0 TO 9: READ D$(I): NEXT I

Sets up and draws the initial board and starting position, initializes the tally counters and either asks the user for

a move or goes on to compute the program's move, depending on who plays first. If the user selected the option

of cursor entry, calls a subroutine to allow that, else directly asks for the coordinates of the user's move, then

goes to check them for legality:

 35: GOSUB 240: P=2, Q=2: GOSUB 225: F=0, G=0: IF V=0 GOTO 145

 40: GOSUB 140: IF T PRINT "Select your move": GOSUB 445: GOTO 50

 45: S=0: INPUT "Move (11-88, 0)?";S: S=ABS INT S: GOTO 390

The user entered some move, go check it for legality:

 50: IF S GOTO 80

4

The user didn't enter a move but selected to pass so a subroutine is called to check if the pass is legal (i.e.: if the

user has no legal move indeed). If the user has any legal move, then passing is illegal, in which case if the user

selected cursor entry a message is shown and the graphic cursor is placed at the first legal move found; if the

user selected coordinates entry, a message is shown indicating the coordinates of the first legal move detected. In

both cases the user will be required to enter another move:

 55: GOSUB 280: IF N=0 GOTO 70

 60: IF T GOSUB 140: WAIT J: PRINT "Cannot pass.Select": WAIT 0: H=S: GOSUB 455: GOTO 50

 65: GOSUB 140: WAIT J: PRINT "No, you can play";S: WAIT 0: GOTO 40

The user has no legal move so passing is legal. If previously the program had also passed, then neither player can

play and the game is ended so it goes to a routine which shows a message to that effect, announces the winner

and ends the game:

 70: IF F GOTO 185

Else, flags that the user has just passed and go on to compute the machine's move:

 75: F=1: GOTO 145

Checks the user's move for legality. If it isn't legal, goes to show a warning and request again a legal move. If it

is, acknowledge the move and show the number of flipped pieces, then call a subroutine to update the scores and

check for termination and if it returns (i.e.: the game's not yet finished), go to compute the program's move:

 80: GOSUB 140: PRINT "Checking your move": A=1, R=0: GOSUB 95: IF N=0 GOTO 235

 85: GOSUB 140: WAIT J: PRINT "You play";S;",flip";N: WAIT 0

 90: Q=Q+1, F=0: GOSUB 195: GOTO 145

Subroutine to check is a move is legal. If it is, the move is made for real, the board is updated and the number of

flipped pieces is returned, unless we were just finding any legal move for the user to see if passing is legal, in

which case the found move is discarded and it just returns the number of pieces which would be flipped:

 95: N=0: IF ABS B(S) RETURN

 100: FOR I=0 TO 7: M=M(I), H=S+M: IF B(H)<>A GOTO 130

 105: H=H+M: IF B(H)=A GOTO 105

 110: IF B(H)<>-A GOTO 130

 115: H=H-M: IF H=S GOTO 130

 120: N=N+1: IF R LET I=7: NEXT I: RETURN

 125: B(H)=-A: GOSUB 430: PSET (X-1,Y-2),X: GOTO 115

 130: NEXT I: IF N LET A=-A, B(S)=A, H=S: GOSUB 435: A=-A

 135: RETURN

Subroutine to clear the message line and reset the text cursor to the first position (note that there must be exactly

19 spaces between the quotes):

 140: CURSOR 77: PRINT " ";: CURSOR 77: BEEP Z: RETURN

Computes the program's move using the strategy stored in C$(0):

 145: GOSUB 140: PRINT "My turn. Thinking..": K=1+12*(G<4)

 150: S=ASC MID$(C$(0),K,1): IF ABS B(S) GOSUB 270: GOTO 175

 155: A=-1, R=0: GOSUB 95: IF N=0 GOTO 170

5

A legal move has been found. The board and scores are updated and a check for termination is performed. If not

yet finished, goes to ask the user for a move:

 160: GOSUB 140: WAIT J: PRINT "I play";S;", flip";N: WAIT 0

 165: P=P+1, F=0: GOSUB 195: GOSUB 270: GOTO 40

 170: K=K+1

 175: IF K<=LEN C$(0) GOTO 150

No legal move has been found so the program announces it passes. If the user also had no legal move, the

program announces neither can play and goes to finish the game and announce the winner. Else it goes to ask the

user for a move:

 180: GOSUB 140: WAIT J: PRINT "I have no move.Pass": WAIT 0: BEEP 2*Z

 185: IF F GOSUB 140: WAIT J: PRINT "Neither can play!": WAIT 0: GOTO 200

 190: F=1: GOTO 40

Subroutine to update the scores and move number, and check for termination. If the game is indeed finished, it

doesn't return but announces the winner (or a tie) and ends the program:

 195: P=P-A*N, Q=Q+A*N, G=G+1: GOSUB 225: IF P+Q<>64 AND P*Q<>0 RETURN

 200: GOSUB 140: WAIT

 205: IF P>Q PRINT "* I WIN *"

 210: IF P=Q PRINT "It is a tie!"

 215: IF P<Q PRINT "You win ..."

 220: CLS: CLEAR: END

Subroutine to update the scores' labels in the display:

 225: GCURSOR (61,15): GPRINT D$(Q/10)+D$(Q-10*INT(Q/10))

 230: GCURSOR (61,22): GPRINT D$(P/10)+D$(P-10*INT(P/10)): RETURN

Shows an "Illegal move" warning to the user and goes to ask the user for a legal move

 235: GOSUB 140: WAIT J: PRINT "Illegal move!": WAIT 0: BEEP 2*Z: GOTO 40

Subroutine to set up the initial board. Draws all empty locations, places and draws the black and white pieces at

their initial positions, and the small-font graphic labels "You:", "Me:" :

 240: GOSUB 140: PRINT "Setting up board...";

 245: FOR X=3 TO 31 STEP 4: FOR Y=2 TO 30 STEP 4: PSET (X,Y): NEXT Y: NEXT X

 250: M=45, N=55, B(44)=-1, B(54)=1, A=-1, H=44: GOSUB 435: IF U LET M=55, N=45

 255: B(M)=-1, B(N)=1, H=M: GOSUB 435: A=1, H=54: GOSUB 435: H=N: GOSUB 435

 260: GCURSOR (36,15): GPRINT "1C701C00705070007040700028282800787878780028"

 265: GCURSOR (38,22): GPRINT "7C1830187C007C545C0028282800784848780028": RETURN

Subroutine for strategy bookkeeping:

 270: L=LEN C$(0)-K, C$(1)=LEFT$(C$(0),K-1), C$(0)=RIGHT$(C$(0),L)

 275: C$(0)=C$(1)+C$(0): RETURN

Subroutine to check if the user's pass is legal. It tries to quickly find any legal move for the user. Upon finding

one, it returns with the number of pieces it would flip, which will be 0 only if it can't find any legal move:

 280: GOSUB 140: PRINT "Checking your pass": K=1

 285: S=ASC MID$(C$(0),K,1): IF ABS B(S) GOSUB 270: GOTO 300

 290: A=1, R=1: GOSUB 95: IF N RETURN

6

 295: K=K+1

 300: IF K<=LEN C$(0) GOTO 285

 305: RETURN

Subroutine to build anew and show the Options Menu:

 310: CLS: PRINT "# OTHELLO - Options Menu": LINE (0,0)-(149,7),X,BF

 315: CURSOR 24: A$="N": IF Z LET A$="Y"

 320: PRINT "1>Sounds :";A$;: A$="N": IF T LET A$="Y"

 325: PRINT " 2>Cursor :";A$: A$="P": IF U LET A$="D"

 330: PRINT "3>Opening:";A$;: A$="N": IF V LET A$="Y"

 335: PRINT " 4>You 1st:";A$: A$="N": IF W LET A$="Y"

 340: PRINT "5>Random :";A$;

Ask the user the number (1-5) of the option to toggle. If none selected, return (note that there must be exactly 11

spaces between the quotes):

 345: CURSOR 85: PRINT " ": CURSOR 85: INPUT "Option ?";A$: GOTO 355

 350: RETURN

Toggle the selected option and redisplay the updated menu:

 355: CURSOR 85: PAUSE "Changing..";

 360: IF A$="1" LET Z=1-Z: GOTO 315

 365: IF A$="2" LET T=1-T: GOTO 315

 370: IF A$="3" LET U=1-U: GOTO 315

 375: IF A$="4" LET V=1-V: GOTO 315

 380: IF A$="5" LET W=1-W: GOTO 315

The user entered an illegal option number, show a warning and ask again:

 385: CURSOR 85: PAUSE "Must be 1-5": GOTO 345

Extract the X, Y coordinates from the user input and check if they are legal (1-8):

 390: IF S LET X=INT(S/10), Y=S-10*X: IF X<1 OR X>8 OR Y<1 OR Y>8 GOTO 235

 395: GOTO 50

Subroutine to randomize the strategy array. The resulting randomized strategy is left in C$(0):

 400: GOSUB 140: PRINT "Randomizing ...": FOR I=1 TO 60: READ B(I): NEXT I

 405: RANDOM: N=4, X=12: GOSUB 420: X=56: GOSUB 420: N=8, X=4

 410: GOSUB 420: X=16: GOSUB 420: GOSUB 420: GOSUB 420: GOSUB 420: GOSUB 420

 415: FOR I=1 TO 60: C$(0)=C$(0)+CHR$ B(I), B(I)=0: NEXT I: RETURN

Subroutine to randomly exchange N specific entries in the strategy array:

 420: FOR I=1 TO N: P=RND N+X, Q=RND N+X, M=B(P), B(P)=B(Q), B(Q)=M: NEXT I: X=X+N: RETURN

Subroutine to draw or erase the graphic cursor:

 425: LINE (X,Y)-(X+4,Y+4),X,B: RETURN

Subroutine to extract the X,Y coordinates from variable H:

7

 430: Y=INT(H/10)*4, X=4*H-10*Y: RETURN

Subroutine to draw either a white piece (□) or a black piece (■):

 435: GOSUB 430: IF A=1 LINE (X,Y-1)-(X-2,Y-3),X,BF: RETURN

 440: LINE (X,Y-1)-(X-2,Y-3),BF: RETURN

Subroutine to accept a move entered via the graphic cursor. First, select the first empty location as the initial

position for the graphic cursor (not necessarily legal to move to):

 445: FOR I=1 TO 8: FOR K=1 TO 8: H=10*I+K: IF B(H)=0 LET K=8, I=8

 450: NEXT K: NEXT I

Draw the graphic cursor at the chosen position and wait for the user to press the direction keys in order to move

it to the desired location:

 455: GOSUB 430: X=X-3, Y=Y-4

 460: GOSUB 425

 465: A$=INKEY$: IF A$="" GOTO 465

Check if the direction key pressed is legal (0-9). If not, do nothing and go wait for another key.

 470: W=ASC A$-48: IF W<0 OR W>9 GOTO 465

Update the graphic cursor and if the user pressed '0' (no move, pass) return immediately:

 475: GOSUB 425: IF W=0 LET S=0: RETURN

If the user pressed '5' (done, play here), compute the selected location from the cursor’s coordinates and return:

 480: IF W=5 LET S=INT(Y/4)*10+INT(X/4)+11: RETURN

The user pressed a direction key (1-4, 6-9), call the appropriate subroutine to update the X, Y coordinates of the

graphic cursor and go to redraw it and wait for another direction key to be pressed:

 490: GOSUB W+490: GOTO 460

Subroutines to update the X,Y coordinates of the cursor, depending on the direction key pressed:

 491: X=X-4*(X>3)

 492: Y=Y+4*(Y<25): RETURN

 493: X=X+4*(X<26), Y=Y+4*(Y<25): RETURN

 494: X=X-4*(X>3): RETURN

 496: X=X+4*(X<26): RETURN

 497: X=X-4*(X>3)

 498: Y=Y-4*(Y>3): RETURN

 499: X=X+4*(X<26), Y=Y-4*(Y>3): RETURN

Data for the initial (non-randomized) strategy:

 900: DATA 81,88,11,18,83,86,61,68,31,38,13,16,63,66,33,36,84,85,51,58

 905: DATA 41,48,14,15,64,65,53,56,43,46,34,35,74,75,52,57,42,47,24,25

8

 910: DATA 73,76,62,67,32,37,23,26,82,87,71,78,21,28,12,17,72,77,22,27

Data for the move offsets array:

 915: DATA 1,9,10,11,-1,-9,-10,-11

Data for the small graphic numbers used in the score ("0","1",..."9"):

 920: DATA "7C447C00","487C4000","74545C00","44547C00","1C107C00"

 925: DATA "5C547400","7C547400","04741C00","7C547C00","5C547C00"

4. Variables Used

The program uses the variables listed and described in the following table:

Variables Description

A flags User Moves vs. Program Moves, also User Pieces vs. Program Pieces

B(99) board array (100 board positions, including out-of-board borders)

C$(1)*60 strategy array (60 possible moves, plus 60 scratch elements)

D$(9)*8 binary definition for small-font graphic numerals ("0" to "9")

F flags if the previous move was a pass

G scratch for move counting

H scratch for move checking, also general purpose scratch

I index for loops

J delay for messages (default = 2 seconds)

K index for strategy, also scratch for strategy bookkeeping

L scratch for strategy bookkeeping

M scratch for move offset, also general purpose scratch

M(7) move offsets array (8 possible directions)

N number of flipped pieces, also general purpose scratch

P tally user’s pieces, also used as scratch when initializing

Q tally program's pieces, also used as scratch when initializing

R flags checking and performing move vs. only checking move (test pass legality)

S scratch for move entry, also general purpose scratch

T toggle menu option Cursor entry vs. Coordinates entry

U toggle menu option Parallel opening vs. Diagonal opening

V toggle menu option You move 1st vs. Program moves 1st

W toggle menu option Randomized strategy vs. Static strategy, also scratch

X X coordinate, also scratch for data initialization

Y Y coordinate

Z toggle menu option Sound vs. Silent

9

5. Usage Instructions

In RUN Mode, proceed as follows to play a game. Press: DEF A → the Options Menu appears ...

OTHELLO – Options Menu

1>Sounds :N 2>Cursor :Y

3>Opening:D 4>You 1st:Y

5>Random :N Option ?_

... with the following options:

1. Sounds: If Y then a beep will signal all messages. Default is N for no sounds.

2. Cursor: If Y then your moves are entered by moving a graphic cursor over the location to move to.

 If N then you’ll be prompted to enter the coords of the location to move to. Default is Y.

3. Opening: if D then your pieces are initially placed diagonally to each other.

If P then they’re placed in parallel. Default is D, diagonal opening.

4. You 1st: If Y you move first. If N the program makes the first move. Defaul is Y, you move first.

5. Random: if Y the program’s strategy is somewhat randomized to avoid repeating games exactly.

If N the same game is repeated if you play the same moves. Default is N.

 If you want to change some option (1 to 5), press:

 1 - 5 ENTER → Changing.., {the menu is updated to reflect the change} → Option ?_

(if you press something other than 1 - 5 then “Changing..” appears and “Must be 1-5” is displayed for 1

sec., then “Option ?_” is displayed again)

 If you want to change some other options, press 1 - 5 ENTER again. Once done with the changes press:

 ENTER → “Initializing ...” → “Setting up board...”

and the playing board is displayed.

 If you selected the program to play first, it will immediately do so after displaying the board, like this:

· · · · · · · · *OTHELLO by VA*

· · · · · · · ·

· · · · · · · ·

· · · ■ □ · · · You= ■: 02

· · · □ ■ · · ·

· · · · · · · · Me = □: 02

· · · · · · · ·

· · · · · · · · My turn. Thinking..

10

→ “My turn. Thinking..” → “I play 65, flip 1” → “Select your move”

 If you selected to play first, it will prompt for your move after displaying the board, like this:

͏ · · · · · · · *OTHELLO by VA*

· · · · · · · ·

· · · · · · · ·

· · · ■ □ · · · You= ■: 02

· · · □ ■ · · ·

· · · · · · · · Me = □: 02

· · · · · · · ·

· · · · · · · · Select your move

and the graphic cursor (͏) is at location 11 (these are the coordinates for row 8, column 1). You can use the

numeric pad keys to move the cursor around and play your move:

 NW N ▲ NE

 7 8 9

 ◄ W 4 5 6 E ►

 1 2 3

 SW S ▼ SE

 If you can’t play a legal move press 0 to indicate that you pass, in which case the program will display

“Checking your pass” and if it finds any legal move for you it will display “Cannot pass.Select” and

the cursor will be placed at a location where you can actually play a legal move (any legal move, not

necessarily good or bad). You can then play that move by pressing 5 or else move the cursor to another

legal location.

If the pass is indeed warranted (indeed no legal moves for you) then the program will display “My turn.

Thinking..” and will then proceed to compute its move or, if previously to your pass the program had

also passed then none of the players can play a legal move, the game is ended and the program will

proceed to do the tally and declare the winner (“* I WIN *”, “You win ...” or “It is a tie!”).

To select the current cursor’s location to play your move simply press 5. The program will display “Checking

your move” and will check your move for legality.

 if illegal, it will display: ”Illegal move!” → “Select your move” , and you’ll have to select another

move or else pass (see above).

 if legal, it will display your move’s coordinates and how many pieces flipped. e.g.: “You play 46, flip 1”

then the board and scores are updated and the program computes and displays its move (if it has any legal

move):

 → “My turn. Thinking..” → “I play 56, flip 2”

11

 If the program has no legal moves it will display “"I have no move.Pass"” and will ask for your move

except if in your previous move you had passed too, in which case the game is ended and the program

will proceed to do the tally and declare the winner (or a tie).

The game proceeds in this fashion until either the board is full or neither player can play a legal move. Either

way, the game is ended and the program will proceed to do the tally and declare the winner or a tie.

 If the Cursor option is set to N, then the “Select your move” prompt is replaced by “Move (11-88,0)?_”

· · · · · · · · *OTHELLO by VA*

· · · · · · · ·

· · · · · · · ·

· · · ■ □ · · · You= ■: 02

· · · □ ■ · · ·

· · · · · · · · Me = □: 02

· · · · · · · ·

· · · · · · · · Move (11-88, 0)?_

and you must key in the row and column coordinates of the location where you want to move to, then proceed to

press ENTER to actually play the move.

 The coordinates go from 1 (leftmost column) to 8 (rightmost column) for the columns, and likewise

from 1 (upper row) to 8 (bottom row) for the rows, e.g.: the upper-left location is entered as 11 (i.e.: row

1, column 1) and the lower-right location is entered as 88 (row 8, column 8).

You can also enter 0 to indicate you can’t play a legal move and so you must pass. The pass is checked

for legality and if illegal (you actually do have some legal move) it will display the message “No,you

can play XY” where XY are the coordinates of some legal move for you, and you’ll have to enter either

the suggested move or another legal one.

 Your move is checked for legality and everything proceeds as described above for cursor entry.

6. Examples

The following sample game can be useful to check that the program is correctly entered.

6.1 Sample game

In RUN Mode, proceed as follows to play the sample game. First of all, you must change some options:

 DEF A { the Options Menu is displayed}

2 ENTER {change option to Cursor: N to input moves using row/col coordinates}

 4 ENTER {change option to You 1st: N to have the program make the first move}

The remaining options should remain at their default values, namely: Sounds: N, Opening: D, Random: N

12

Now exit the Options Menu and the program will initialize everything and proceed to play the first move:

 ENTER → “Initializing ...” → “Setting up board...” → “My turn. Thinking..”

These are the coordinates of the sample game’s moves made by both the user and the program, in (user’s move,

program’s move) format, with some pertinent comments:

(--, 65) {the program moves first, at location 65, i.e.: row 6, column 5}

(46,33),(64,63),(43,66),(72,53),(67,81),(42,68),(75,36),(35,84),(86,51),(31,56)

(27,18),(57,85),(83,58),(76,41),(61,34),(62,74),(24,13),(25,16),(26,52),(32,47)

(23,14),(15,73),(17,37),(38,48),(78,82),(71,87),(12,11),

(0,21) {the user has no legal move and passes, 0, then the program moves at location 21}

(77,88),(22,28) {the game’s ended and the program adjudicates the winner based on the final score}

□ □ □ □ □ □ □ □ *OTHELLO by VA*

□ □ □ □ □ □ □ □

□ ■ ■ ■ ■ ■ □ □

□ ■ □ ■ ■ □ □ □ You= ■: 17

□ □ ■ □ □ ■ □ □

□ ■ □ □ □ □ ■ □ Me = □: 47

□ ■ ■ ■ ■ ■ □ □

□ □ □ □ □ □ □ □ * I WIN *

Notes

1. The program uses a very simple positional strategy, either fixed or randomized. The fixed strategy will always play the

same moves if you do as well so the same game would be repeated, while the randomized one will ensure different games

each time. The sample game above should be run with option Random: N to duplicate the given moves and check that the

program is correctly loaded but for actual play using the randomized strategy (Random: Y) is recommended.

2. The computing time for the program’s moves is ~ 15-20 sec. at most on a physical machine (not an emulator) for the first

moves but decreases appreciably as the game progresses and the board gets fuller, taking just a few seconds near the end.

3. Depending on the model used and the available RAM an optional RAM card might be needed to run this program.

References

Martin Gardner New Mathematical Diversions

Valentin Albillo (1980) Othello – A Computer Game for the 41C (PPC Technical Notes V1N2 pp.44-50)

Valentin Albillo (1981) Reversi - Hewlett-Packard HP-41C User’s Library program #11019

Valentin Albillo (2005) HP Article VA019 - 25 years of Othello

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

