
1

SPIGOT – Producing Digits of π one at a time

© 2019 Valentín Albillo

Abstract

SPIGOT is a proof-of-concept BASIC program written in 1996 for the SHARP PC-1350/1360 pocket computers and compatibles to

produce digits of π one at a time using a so-called spigot algorithm.

Keywords: spigot algorithm, Pi, π, one digit at a time, SHARP PC-1350/1360, pocket computer, BASIC

1. Introduction

SPIGOT is a very short (7 lines, 279 bytes) BASIC program that I wrote in 1996 for the SHARP PC-1350/1360

pocket computers and compatibles as a proof-of-concept example of implementing a spigot algorithm to produce

digits of π one at a time. It will also run in most any BASIC version with minimal changes (see Note 2 below).

The algorithm produces N of digits of π one by one using just integer arithmetic on reasonably small integer

values. None of the previous digits are needed once computed and no floating-point operations are needed at all

whether single-precision or high-precision.

On the other hand, the number N of digits needs to be specified in advance (so it’s not possible to add more

digits to the previously produced ones without having to restart the whole computation) and an array with some

10N/3 integer elements must be dimensioned to generate N digits, which is significantly more memory than

needed by other multiprecision algorithms and also much slower. Thus, this algorithm and the resulting program

featured here aren’t intended to be competitive and are best considered as a proof-of-concept example.

The spigot algorithm is explained in detail in the reference given below. Basically, we start from the series:

𝜋

2
=

i!

 2i + 1 ‼
= 1 +

1

3
+

1 . 2

3 . 5
+

1 . 2 . 3

3 . 5 . 7
+ … = 1 +

1

3
 1 +

2

5
 1 +

3

7
 1 +

4

9
 1 +⋯

∞

i=0

which can be considered a mixed-radix base (1/3, 2/5, 3/7, 4/9, ...) representation for π/2, so the digits of π

itself in this base would all be 2. The workings of the algorithm can be seen in the table below, taken from the

reference. The array is initialized with the digits of π in the mixed-radix base (all 2) and then the operations

described in the leftmost column are performed, starting from the rightmost column and going left, column by

column and row by row, from top to bottom, producing one digit of π per row (3, 1, 4, 1). We needed [10*4/3] =

13 columns (array elements) to get 4 digits.

2

2. Program Listing

1: “A” CLEAR: INPUT N: L=INT(10*N/3): DIM A(255): Z$=”000000”,T$=”999999”: WAIT 0

2: FOR I=1 TO L: A(I)=2: NEXT I: M=0, P=0: FOR J=1 TO N: Q=0, K=2*L+1

3: FOR I=L TO 1 STEP -1: K=K-2, X=10*A(I)+Q*I, Q=INT(X/K), A(I)=X-Q*K: NEXT I

4: Y =INT(Q/10), A(1)=Q-10*Y, Q=Y: IF Q=9 THEN LET M=M+1: GOTO 7

5: IF Q=10 THEN PRINT STR$(P+1);LEFT$(Z$,M);: P=0, M=0: GOTO 7

6: PRINT STR$ P;LEFT$(T$,M);: P=Q, M=0

7: NEXT J: PRINT STR$ P: BEEP 2

3. Usage Instructions

See the worked example to understand how to use the program.

4. Examples

The following example can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example

Produce the first 24 digits of π, then the first 76 digits.

In RUN Mode, proceed as follows:

 DEF A ?_ 24 ENTER 0 314159265358979323846264 (all digits are Ok, ~7’)

 DEF A ?_ 76 ENTER 0 31415926535897932384626433832795028841

97169399375105820974944592307816406286 (all Ok, ~63’)

Notes

1. The BASIC version of the SHARP PC-1350/1360 has a max. limit of 255 for indexing array elements, so the maximum

number of digits produced is limited to [255*3/10] = 76 digits. Other BASIC versions may not have this limitation.

2. This program will run in most any BASIC version by simply removing SHARP-specific statements: “A”, CLEAR, and

WAIT. Also, the DIM A(255) may be generalized to DIM(L) if the BASIC version allows for dinamic (re)dimensioning.

Further, all variables used in the program (including the A array) can be declared as integer for maximum speed.

3. Any digit-producing algorithm for normal numbers (which π probably is) has the (unlikely) problem that the last digit(s)

may be incorrect if there’s a terminating string of 9’s, and even with no 9s the very last digit might be wrong. See 50d below.

4. Some timings (SHARP PC-1350): 20d in 4’30” (last 5: 32384), 40d in 18’ (84197), 50d in 28’ (93750), 76d in 63’ (06286)

References

S. Rabinowitz and S. Wagonrancis (1995). A Spigot Algorithm for the Digits of π.

The American Mathematical Monthly, Vol. 102, No. 3

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

