
1

PAK3LEX – Packing Long Integers

© 2019 Valentín Albillo

Abstract

PAK3LEX is a small assembly-language LEX file written in 1991 for the HP-71B pocket computer to pack long integers in the range

from 0 to 16,777,215 into 3-character strings and, conversely, to unpack a 3-character string into the equivalent long integer value.

Keywords: pack, unpack, long integers, LEX file, assembly language, Hewlett-Packard, HP-71B, pocket computer

1. Introduction

PAK3LEX is a small (90 bytes) assembly-language LEX (Language Extension) file that I wrote in 1991 for the

HP-71B pocket computer which adds two new BASIC keywords (both are functions) to pack long integers in the

range from 0 to 16,777,215 (2
24

-1) into 3-character strings and, conversely, to unpack a 3-character string into

the original, equivalent long integer value. To be efficient, the pack/unpack procedure must run as fast as

possible, as the arrays involved are usually quite big and thus many elements will have to be processed. This is

accomplished by implementing it in assembly language for maximum speed, in the form of the two new

keywords PAK and UNPAK provided by this LEX file.

The HP-71B BASIC language dialect allows the user to define INTEGER variables and arrays, but they limit the

range to integer values from -99,999 to +99,999 and use 9.5 bytes for a simple variable and 3 bytes per element

(plus 9.5 bytes overhead) for arrays. Using instead REAL variables/arrays expands the integer range from

-999,999,999,999 to +999,999,999,999 and the memory requirements are the same for a simple variable but 8

bytes per element (again, plus 9.5 bytes overhead) for arrays, which is much more expensive for large arrays.

If the user just needs to store many long integer values in the range from 0 to 16,777,215 this can be done much

cheaper in terms of RAM by using the new keyword PAK to convert each integer value into a 3-character string

which occupies just 3 bytes and can be stored as part of a long string (maximum savings) or as an element of a

string array. This means savings of up to 5 bytes per element vs. using a REAL array or alternatively, using 3

bytes per element but with a maximum value up to 16,777,215 vs. 99,999 when using an INTEGER array. The

element can be converted back from its packed 3-character string representation to the original long integer value

by using the new keyword UNPAK.

2. Program Listing

This following source listing should be entered into a TEXT file, possibly using the ASCII Text Editor available

in the Hewlett-Packard’s HP-71B FORTH/Assembler ROM. The text file should then be assembled using the

Assembler in said ROM, which will generate the PAK3LEX file in memory. The resulting LEX file should be 90

bytes long once assembled.

Alternatively, you may use any other suitable text editors or HP-71B cross-assemblers (such as those written for

execution on a PC) and then send the resulting LEX file to the HP-71B via HP-IL or by reading it from mass

storage (disk or tape). Consult your particular assembler's documentation for the required procedures.

Once PAK3LEX is in memory, its two keywords are available for inmediate use either from the command line

(but not in CALC mode) or in programs. Don't forget to turn off and on the machine to register the new LEX file

with the HP-71B's operating system.

2

 LEX 'PAK3LEX' name of the lex file: PAK3LEX

 ID #54 LEX id: 54

 MSG 0 no error messages

 POLL 0 no poll handling

EXPR EQU #0F23C resumes expression evaluation

FLOAT EQU #1B322 converts a decimal integer to floating point

HXDCW EQU #0ECB4 converts a hexadecimal integer to decimal

RJUST EQU #12AE2 converts a floating point to decimal integer

DCHXW EQU #0ECDC converts a decimal integer to hexadecimal

FNRTN1 EQU #0F216 returns the value of the function to the system

POP1N EQU #0BD1C extracts a floating point from the stack

POP1S EQU #0BD38 extracts a string from the stack

 ENTRY DTH 1
st
 keyword: entry in DTH

 CHAR #F 1
st
 keyword: is a function

 ENTRY HTD 2
nd
 keyword: entry in HTD

 CHAR #F 2
nd
 keyword: another function

 KEY 'PAK$' 1
st
 keyword: PAK$(N)

 TOKEN 1 token 1 in this lexfile

 KEY 'UNPAK' 2
nd
 keyword: UNPAK(S$)

 TOKEN 2 token 2 in this lexfile

 ENDTXT end of tables

 NIBHEX 811 PAK$(N): string function, 1 numeric parameter

DTH GOSBVL POP1N get parameter (floating point) from the stack

 GOSBVL RJUST convert it to a decimal integer

 C=A W copy it to C

 GOSBVL DCHXW convert it to hexadecimal integer

 P= 5 point to the 6th hex digit

 D1=D1- 6 send digits 1st-6th to the stack

 DAT1=C WP

 C=0 W preparing the header: 6-nibble string

 P= 0

 LCHEX 60F

 SETDEC

 D1=D1- 16 send header to the stack

 DAT1=C W

 GOVLNG EXPR return to system

 NIBHEX 411 UNPAK(S$): numeric function, 1 string parameter

HTD SETHEX

 GOSBVL POP1S extract string header from the stack

 C=0 W extract string (6 nibbles) from the stack

 P= 5

 C=DAT1 WP its 6 nibbles are placed in C

 D1=D1+ 6

 GOSBVL HXDCW convert those 6 hex digits to decimal

 GOSBVL FLOAT convert this decimal integer to floating point

 C=A W

 GOVLNG FNRTN1 return to system

 END

3

3. Usage Instructions

Once PAK3LEX is in memory its two BASIC keywords are available and can be used from the command line

(but not in CALC mode) or in programs, using this syntax:

 Packing: PAK$(<numeric expression>) string function with one numeric parameter

where the numeric expression must evaluate to an integer-valued real in the range 0 to

16,777,215. The result will be a 3-character string. See Note 1.

 Unpacking: UNPAK(<string expression>) numeric function with one string parameter

where the string expression must evaluate to a 3-character string. The result will be an

integer-valued real in the range 0 to 16,777,215. See Note 1.

4. Examples

The following example can be useful to check that the LEX file is correctly loaded in memory:

4.1 Example 1

From the command line, pack and then unpack the integer value 4276803. (> is the command-line prompt):

 >PAK$(4276803) END LINE → ABC

 >UNPAK(“ABC”) END LINE → 4276803

Notes

1. Very important: In order to be as short and fast as possible this LEX file does not do any kind of error checking,. Therefore

it is mandatory and you must absolutely make sure that:

 for PAK, the numeric expression passed to it must evaluate to an integer-valued real in the range 0 to 16,777,215.

 for UNPAK, the string expression passed to it must evaluate to a string exactly 3 characters long, no more, no less.

Failure to comply with these requirements risks unpredictable and possibly dangerous behaviour (i.e: corrupting memory

and/or the file system in RAM, freezing and/or having to reset the machine).

2. This LEX file can be very easily modified to cater for other ranges. For instance, it’s trivial to modify it to pack/unpack

long integers in the range 0 to 4,294,967,295 (or alternatively -2,147,483,647 to +2,147,483,647) in just 4 bytes using

4-character strings (thus saving 4 bytes [50%] over storing them in a REAL array).

3. It’s also possible to modify it to cater for non-integer values. For instance, I once created a modified version of this LEX

file to pack fixed-point values in the range -82.00000 to +84.77215, i.e.: non-integer numbers with up to 5 decimal places, in

just 3 bytes. This can be useful, e.g.: to store many readings from a digital voltmeter connected to the HP-71B via HP-IL, for

later processing. Using this modified LEX file each reading takes just 3 bytes, even though it has 7-digit, 5-decimal accuracy,

and the packing/unpacking procedure runs at the same speed as the all-integer case.

References

Hewlett-Packard HP 82441A Forth/Assembler ROM Owner’s Manual for the HP-71

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

