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MDET – Exact Integer Determinants and Permanents 

© 2019 Valentín Albillo 

 

Abstract 

MDET is a small subprogram written in 2005 for the HP-71B pocket computer to evaluate determinants and permanents for real or 

complex NxN matrices. Unlike other methods where floating-point divisions are involved, if the elements are moderately-sized integers 

the integer results will be exact, even for singular or very ill-conditioned matrices. Two worked examples are included. 
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1. Introduction 

MDET is a short (5 lines) BASIC subprogram that I wrote in 2005 for the HP-71B pocket computer to evaluate 

determinants and permanents for real or complex NxN matrices from 2x2 upwards. Unlike other methods where 

floating-point divisions are involved, if the dimension N is small (say N<10) and elements are moderately-sized 

integers (so that no intermediate overflows are produced while doing the computation), then the also integer 

results will be exact, even for singular or very ill-conditioned matrices, as only integer multiplications and 

additions/subtractions are performed and no divisions of any type (integer or floating-point).  
 

MDET uses a recursive general expansion by minors procedure and works for any dimensions from 2x2 upwards, 

though it’s only reasonably efficient for low-order N because computation time grows like N!. For that reason, 

maximum recommended N is around 7x7, which already entails ~5000 additions and ~30000 multiplications. Its 

principal advantages over the usual LU-decomposition methods are: 
 

 It produces exact integer results for integer matrices (provided there are no intermediate overflows) 

 It can compute both determinants and permanents (which the Math ROM doesn’t implement and also 

can’t be computed using a classical LU-decomposition either) 

 It can work with real or complex matrices (the Math ROM doesn’t compute complex determinants) 
 

The code can be greatly optimized, e.g.: it should avoid creating the minor and making the recursive call if the 

element is 0. Then, instead of always expanding minors by the 1
st
 row, it should find the row/column which has 

the most zero values and do the minor expansion by it, which would save much time. Finally, it should use the 

exact formula for the 3x3 case to avoid recursive calls for extra speed. However, this version is intended as an 

academic example for proof-of-concept purposes rather than production, so that’s left as an exercise to the reader. 

 

2. Program Listing 
 

  100  SUB MDET(A(,),D)  @ N=UBND(A,1)  @ F=2*FLAG(0)-1  

  110  IF N=2 THEN D=A(1,1)*A(2,2)+F*A(1,2)*A(2,1) @ END 

  120  D=0 @  IF TYPE(A)<6 THEN  REAL E,B(N-1,N-1)  ELSE COMPLEX E,B(N-1,N-1)  

  130  FOR K=1 TO N @ FOR I=2 TO N @ C=1 @ FOR J=1 TO N @ IF J#K THEN B(I-1,C)=A(I,J) @ C=C+1 

  140  NEXT J @ NEXT I @ CALL MDET(B,E) @ D=D+F^(K+1)*A(1,K)*E @ NEXT K @ END SUB 

 

 The line numbering is arbitrary, use whatever suits you as MDET doesn’t use any line numbers internally. 

 MDET requires that the matrix passed to it has been declared while OPTION BASE 1 was (and still is) in effect. 

 MDET accepts two parameters, both passed by reference: the NxN matrix and one scalar variable where the value 

of the determinant or permanent will be returned. Both must be of the same type, real or complex. 

 Flag 0, which is global, specifies whether the determinant (flag 0 clear) or the permanent (flag 0 set) is returned. 

 If you don’t have the Math ROM you can’t work with complex matrices but you can do real matrices as long as you 

delete the boxed parts in the listing above and further pass the dimension N to MDET as a 3rd parameter. i.e.: edit 

the declaration and the recursive call to  SUB MDET(A(,),D,N) and  CALL MDET(B,E,N-1), respectively. 



2 

 

3. Usage Instructions 

To use MDET: 

 first of all clear or set flag 0 to specify computation of the determinant or permanent, respectively. 

 from the keyboard or your own program, call MDET passing as parameters (both by reference) the 

matrix and the scalar variable where the computed value will be returned (both must be of the same 

type, real or complex), like this: 

CALL MDET(M,D) 

 Upon return from the subprogram, D will hold the computed value for the determinant or permanent. 

The matrix itself remains undisturbed. 

 

4. Examples 

The following examples can be useful to check that the program is correctly entered and to understand its usage. 

(both require the Math ROM to be plugged-in as they use some of its keywords for convenience and small size.) 

 

4.1 Example 1 

Compute the exact determinants for the following 7x7 real matrix A and 3x3 complex matrix B:  

A = 

 

 
 
 
 

  58 71 67 36 35 19 60 
 50 71 71 56 45 20 52 
 64 40 84 50 51 43 69 
 31 28 41 54 31 18 33 
 45 23 46 38 50 43 50 
 41 10 28 17 33 41 46 
 66 72 71 38 40 27 69  

 
 
 
 

  ,   B =  
1 + 2𝑖 2 + 3𝑖 3 + 𝑖 

−1 +  2𝑖 2 − 𝑖 −1 − 𝑖 
3𝑖 −2 2 + 2𝑖 

  

 

Instead of doing it right from the keyboard (perfectly possible) we use the following “driver” program, which 

declares and populates the matrices, calls MDET to compute their determinants and outputs the results: 
 

10  DESTROY ALL @ OPTION BASE 1 @ CFLAG 0 

20  DATA 58,71,67,36,35,19,60,50,71,71,56,45,20,52,64,40,84,50,51,43,69,31,28  

30  DATA 41,54,31,18,33,45,23,46,38,50,43,50,41,10,28,17,33,41,46,66,72,71,38  

40  DATA 40,27,69,(1,2),(2,3),(3,1),(-1,2),(2,-1),(-1,-1),(0,3),(-2,0),(2,2) 

50  REAL     A(7,7),D1 @ READ A @ CALL MDET(A,D1) @ DISP "Det(A) =";D1  

60  COMPLEX B(3,3),D2 @ READ B @ CALL MDET(B,D2) @ DISP "Det(B) =";D2  

 

[RUN] Det(A) = 1       

   Det(B) = (44,-6)  i.e.:  44 – 6i 

 

For comparison purposes, let’s compute again the determinant of A, this time using the assembly-language DET 

keyword from the Math ROM, which internally uses 15-digits for extra accuracy: 
 

DET(A) [ENTER]  .97095056196  (not good, the exact result is 1, as computed above by MDET) 

 

Thus, despite the 15-digit internal precision the determinant returned by DET is correct to only ~2 digits and it’s a 

floating-point value instead of an integer as it should, so this demonstrates an important advantage of MDET: it 

produces exact integer values for integer matrices (as long as no intermediate products or sums exceed 12 digits), 

which DET might not, and in this example actually does not. This can happen with any LU-based algorithm, not 

just DET, and with matrices of any dimension, even 2x2. We can’t check the LU complex result for matrix B 

because DET doesn’t work with complex matrices, yet another limitation. 
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The 7x7 particular matrix used in this example is my 7x7 integer-element "Albillo Matrix #1", as discussed in 

my "HP Article VA016 - Mean Matrices". See the article for more details on this and other hugely more 

difficult Albillo Matrices, some of which require in excess of 20-30 digits or more to be computed correctly 

using LU-decomposition algorithms, despite being of low dimensions and with rather small integer elements. 

 

4.2 Example 2 

A teacher gives a test to N students and wants to let them grade each other’s tests, but obviously no students can 

be allowed to grade their own tests. Write a program which accepts as input the number of students and outputs 

in how many ways the teacher may distribute the tests among the students for grading, subject to said restriction. 
 

 

Without the restriction, the number of ways would be the permutations of N tests, i.e.: N!, but with that 

restriction in place this is called a derangement, and the number of such derangements of a set of size N is given 

by the permanent of this NxN matrix: 

Number of ways = Permanent of 

 

 
 

0 1 1 . . 1
1 0 1 . . 1
1 1 0 . . 1
. . . . . . . . . .
1 1 1 . . 0 

 
 

 

 

This program inputs N, creates the associated matrix, calls MDET to compute the permanent and outputs it: 

 

10  DESTROY ALL @ OPTION BASE 1 @ INPUT “N=”;N @ DIM A(N,N),B(N,N) 

20  MAT A=CON @ MAT B=IDN @ MAT A=A-B @ SFLAG 0 @ CALL MDET(A,D) @ DISP “# ways =”;D  

  

Let’s run it with 5, 6 and 7 students: 

 

 [RUN] N=    5   [R/S]   # ways = 44 

[RUN] N=    6   [R/S]   # ways = 265 

[RUN] N=    7   [R/S]   # ways = 1854 

       

 

Notes 

1. MDET doesn’t work for 1x1 matrices, calling it with such a matrix will result in a runtime error. 

2. For dimensions greater than 7x7 or so the running time might be excesive so it would be preferable to perform instead the 

classical LU decomposition for speed. However, the accuracy for integer matrices would degrade and for singular or very 

ill-conditioned ones it could be unacceptable. Also, the LU approach doesn’t work at all for permanents, though there are 

faster ways to compute them than MDET’s expansion by minors (but still not polynomial-time in general.) 
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