
1

MINV – NxN Matrix Inversion

© 2020 Valentín Albillo

Abstract

MINV is a program written in 1980 for the HP-41C programmable calculator and compatibles to quickly invert a real NxN matrix

using an interchange method. One worked example included.

Keywords: matrix inversion, interchange method, RPN, programmable calculator, HP-41C, HP-41CV, HP-41CX

1. Introduction

MINV is a 170-step RPN program that I wrote in 1980 for the HP-41C programmable calculator (will also run

as-is in the HP-41CV/CX) to compute the inverse of a real NxN matrix, where N ranges from 1 up to 16, using a

non-gaussian interchange method. It has been optimized to be short (40 program registers) without loss of

convenience, and fast (inverting a 16x16 matrix on the original, physical HP-41C takes about 36’.) It does use

synthetic programming
1
 to help accomplish both goals.

The program is written so that zero pivots will cause no trouble, they’re skipped and the following pivot is tested.

The locations of all zero pivots are remembered and their corresponding interchanges are performed later, which

avoids most problems when dealing with unconvenient matrices without having to manually rearrange them.

There is one bad case, however, when all the pivots in the main diagonal are zero, in which case the program

stops showing a program-generated error message. This is a rare case but can happen.

The method used is an interchange method: consider the system A . x = b, which has the same matrix A we’re

trying to invert. The vectors b and x have N components each. The method interchanges a component of b with a

component of x at a time. After N independent interchanges have been performed, the roles of b and x are

reversed and the system becomes A
-1

. b = x, where A
-1

 is the inverse of A. The algorithm in pseudo-code is:

FOR k = 1 to N

LET akk = 1/akk

LET aik = aik.akk , i = 1,2, ..., N, i ≠ k

LET akj = -akj.akk , j = 1,2, ..., N, j ≠ k

LET aij = aij-aik.akj.akk , i = 1,2, ..., N, i ≠ k , j = 1, 2, ..., N, j ≠ k

NEXT k

A special procedure takes place if akk = 0 : k is incremented by 1 and flagged so that it will be remembered as a

pending interchange to be performed later. After a successful interchange is accomplished a search takes place

for the minimum k which is still pending. If no such k is found, the work is completed. If no interchange is

successful an error condition is generated. That only happens if all remaining pivots in the diagonal are zero.

All inputs and outputs are labeled and there’s a warning to prevent a memory allocation error (SIZE) .

1
 Synthetic instructions using status registers M, N, O and d are used to save three storage registers (so that 4x4 matrices can

be inverted on a bare-bones HP-41C) and to restore the status of all flags upon finishing. The program uses flags 00 through

N-1 but this is not apparent to the user because the status of all flags is saved at the beginning of program execution and

restored afterwards before the program stops. This is accomplished by using synthetic instructions STO d and RCL d, and thus

the user has all flags available except flag 19, which is used by the program to keep track of input/output but it’s not restored

at the end of program execution. Specifically, the program uses the following synthetic instructions: STO/RCL d, STO/RCL M,

STO N, ST+ N, ST- N, STO O, ST+ O, RCL IND N and RCL IND O.

2

2. Program Listing

 01 ♦LBL “MI”

02 FIX 0

03 CF 29

04 CF 19

05 “N=?”

06 PROMPT

07 STO 05

08 X↑2
09 6
10 +

11 SF 25

12 RCL IND X

13 FS?C 25

14 GTO 99 ►

15 1

16 +

17 “SIZE ”

18 ARCL X

19 PROMPT

20 ♦LBL 99

21 7

22 S TO 04
23 RCL 05
24 1 E3

25 /

26 1

27 +

28 STO 00

29 STO 02

30 STO 03

31 ♦LBL 10

32 FIX 0

33 “A”

34 ARCL 02

35 “├,”

36 ARCL 03

37 “├=”

38 FIX 4

39 FS? 19

40 ARCL IND 04

41 FC? 19

42 “├?”

43 PROMPT

44 FC? 19

45 STO IND 04

46 ISG 04

47 X<>Y

48 ISG 03

49 GTO 10 ►

50 RCL 00

51 STO 03

52 ISG 02

53 GTO 10 ►

54 FS?C 19

55 RTN

56 1.001

57 -

58 STO 00

59 STO 01

60 RCL d

61 STO M

62 0

63 STO d

64 ♦LBL 91

65 FS? IND 01

66 GTO 90 ►

67 RCL 01

68 RCL 01

 69 RCL 05

 70 *

 71 +

 72 7

 73 STO 06

 74 STO O

 75 +

 76 RCL IND X

 77 X=0?

 78 GTO 90 ►

 79 1/X

 80 STO IND Y

 81 STO 04

 82 X<>Y

 83 RCL 01

 84 ST+ O

 85 -

 86 RCL 00

 87 STO 03

 88 STO 02

 89 +

 90 STO N

 91 ♦LBL 04

 92 RCL 02

 93 RCL 01

 94 X=Y?

 95 GTO 07 ►

 96 RCL 03

 97 X=Y?

 98 GTO 06 ►

 99 RCL IND N

100 RCL IND O

101 *

102 RCL 04

103 *

104 ST- IND 06

105 ♦LBL 06

106 1

107 ST+ 06

108 ST+ N

109 ISG 03

110 GTO 04 ►

111 RCL 05

112 ST- N

113 ♦LBL 02

114 ST+ O

115 RCL 00

116 STO 03

117 ISG 02

118 GTO 04 ►

119 GTO 14 ►

120 ♦LBL 07

121 RCL 05

122 ST+ 06

123 GTO 02 ►

124 ♦LBL 14

125 STO 06

126 RCL 05

127 ST* 06

128 RCL 01

129 ST+ 06

130 *

131 +

132 7

133 ST+ 06

134 +

135 STO 02

136 ♦LBL 00

137 RCL 01

138 RCL 03

139 X=Y?

140 GTO 00 ►

141 RCL 04

142 ST* IND 06

143 CHS

144 ST* IND 02

145 ♦LBL 00

146 RCL 05

147 ST+ 06

148 ISG 02

149 X<>Y

150 ISG 03

151 GTO 00 ►

152 SF IND 01

153 RCL 00

154 STO 01

155 ♦LBL 13

156 FC? IND 01

157 GTO 91 ►

158 ISG 01

159 GTO 13 ►

160 RCL M

161 STO d

162 SF 19

163 GTO 99 ►

164 ♦LBL 90

165 ISG 01

166 GTO 91 ►

167 RCL M

168 STO d

169 “ERROR”

170 PROMPT

171 .END.

-170 program steps

 (40 prog. regs.)

- uses R00 – R07 as

 auxiliary registers,

 plus the ones used

 to store the matrix

- uses status registers

 M, N, O

- uses flags 00-19

- sets FIX 4

The symbols ♦ and ► are purely cosmetic, to indicate branching ; ├ is the Append alpha function

2.1 Program characteristics

 This program is 170-step long (40 program registers if you let the final end of program memory.END.

act as the end of this program) and requires SIZE N
2
+7 to invert an NxN matrix.

 This program is way faster than the “MATRIX” program in the MATH 1A ROM module. Comparative times are:

NxN 1x1 3x3 5x5 10x10 15x15 16x16

MATRIX 10” 56” 2’ 49” 15’ 32” (45’) (54’)

MINV 4” 20” 1’ 16” 9’ 12” 30’ 36’

The times in parentheses are extrapolations, as the “MATRIX” program is limited to ≤ 14x14 matrices.

 The maximum matrix size depends on the number of RAM modules plugged in, as follows:

modules 0 1 2 3 4

NxN up to 4x4 up to 8x8 up to 12x12 up to 14x14 up to 16x16

3

3. Usage Instructions

To find the inverse matrix of a real NxN matrix A, follow these instructions:

In RUN Mode, execute the program:

 XEQ “MI” → N=? { asks for the size of the matrix }

N R/S → Ai, j=? { asks in turn for each of the matrix elements, left to right, top to bottom }

aij R/S → ...

aNN R/S → ... { the program will now invert the matrix. The flag annunciators will turn on as

 the associated interchanges are performed. Once all interchanges are over the

 inverse matrix elements are ouput ... }

 → A11=(first element of the inverse matrix)

 R/S → A12=(second element)

 ...

 R/S → ANN=(last element)

 R/S → program ends

To invert another matrix, repeat the procedure above; to invert back the just inverted matrix, press R/S .

Notes:

 if after introducing N a message SIZE nnn does show up this means the current register allocation is

insufficient to run the program so simply execute SIZE nnn as directed and then press R/S to

resume. In general, if the matrix dimension is NxN, a minimum of N2+7 registers are required.

 the inverted matrix replaces the original one in the storage registers; to reinvert the inverse matrix (to

check accuracy, for instance) simply press R/S and once the inversion procedure is completed you

should get the original matrix back (ignoring suitably small rounding errors); if not, the original matrix

might be ill-conditioned or nearly singular. A singular matrix has determinant 0 and no inverse.

 if all pivots are zero along the main diagonal, the program stops with ERROR in the display (after

restoring all flags). This might indicate that the matrix is singular, but not necessarily. However, this

happens very rarely.

 the program isn’t adapted to run with a printer attached, as it uses PROMPT instead of AVIEW, so

pressing R/S is necessary in order to output the elements of the inverse. This may be easily

changed in the program listing above if desired but remember that the printer slows down execution

speed significantly while computing the inverse (let alone while actually printing.)

 flag 19 is used (but not restored) to control input/output so don’t turn off the calculator while I/O is

taking place.

 The storage and status registers are used as follows:

Register 00 01 02 03 04 05 06 07 ... N
2
+6 M N O

Contents 0.00{N-1} k i j pivot N aux. a11 ... aNN flags aux. aux.

4

4. Examples

The following example can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example

Invert the following 4x4 matrix.

A =

 2 2 3 2
 2 2 3 1
 11 5 4 6
 2 1 1 −9

 XEQ “MI” → N=?

 4 R/S → A1,1=? 2 R/S → A1,2=? 2 R/S → A1,3=? 3 R/S → A1,4=? 2

 R/S → A2,1=? 2 R/S → A2,2=? 2 R/S → A2,3=? 3 R/S → A2,4=? 1

 R/S → A3,1=? 11 R/S → A3,2=? 5 R/S → A3,3=? 4 R/S → A3,4=? 6

 R/S → A4,1=? 2 R/S → A4,2=? 1 R/S → A4,3=? 1 R/S → A4,4=? -9

 R/S → ...

Now the program starts to compute the inverse. Watch the flag annunciators: the 0 annunciator is on, as the first

pivot is a11 = 2 ≠ 0, so the first interchange is done. However, the next annunciator that turns on is the 2

annunciator. This is because the next pivot, a22 , is 0, so it’s skipped and the next pivot is considered, namely a33,

which is not 0 and the interchange is performed.

After that, a22 is checked again but it’s still 0 so it’s skipped once more and next a44 is tried, which isn’t 0 and

the interchange takes place. Finally, a22 is checked for the third time and now it happens to be non-zero so the

last pending interchange is performed and, as no pending interchanges remain, the work is done, the flags are

restored and the elements of the inverse matrix are output:

 ... → A1,1=70.0000 R/S → A1,2=-71.0000 R/S → A1,3=-1.0000 R/S → A1,4=7.0000

 R/S → A2,1=-252.0000 R/S → A2,2=255.0000 R/S → A2,3=4.0000 R/S → A2,4=-25.0000

 R/S → A3,1=121.0000 R/S → A3,2=-122.0000 R/S → A3,3=-2.0000 R/S → A3,4=12.0000

 R/S → A4,1=1.0000 R/S → A4,2=-1.0000 R/S → A4,3=0.0000 R/S → A4,4=2.0000E-11

so (negligible rounding errors aside) the exact inverse is:

A
-1

 =

 70 −71 −1 7
 −252 255 4 −25
 121 −122 −2 12
 1 −1 0 0

 , running time was 41 seconds.

Notes

1.Just for fun, the running time in seconds to invert an NxN matrix is approximately: t = 3.37- 0.08 N + 0.33 N
2
 + 0.52N

3
.

2.This program was published in PPC Technical Notes V1N2 pp4-7 (September 1980).

References

Francis Scheid (1988). Schaum’s Outline of Theory and Problems of Numerical Analysis, 2
nd

 Edition.

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

