
1

SYSDIFEQ – Systems of First-order Differential Equations

© 2019 Valentín Albillo

Abstract

SYSDIFEQ is a program written in 1980 for the HP-41C programmable calculator to obtain an approximate numerical solution for a

system of N simultaneous first-order differential equations using a fourth-order Runge-Kutta method. Two worked examples included.

Keywords: numerical solution, first-order differential equations, system, Runge-Kutta, programmable calculator, HP-41C, HP42S

1. Introduction

SYSDIFEQ is a 137-step RPN program that I wrote in 1980 for the HP-41C programmable calculator (will also

run in the HP-41CV/CX and the HP42S with trivial or no changes, see Note 1), to obtain an approximate

numerical solution (using a 4
th

-order Runge-Kutta method) for a system of N simultaneous first-order

differential equations of the general form:

y1’ = f1 (x, y1, y2, ..., yn)

y2’ = f2 (x, y1, y2, ..., yn)

 with the initial conditions: x = x0, y1 = y1 (x0), ... , yn = yn (x0)

yn’ = fn (x, y1, y2, ..., yn)

where the fi are user-defined functions of the variables x, y1, y2, ..., yn and y1, y2, ..., yn are functions of x.

We seek to compute the values yi (x0 + h), where h is an arbitrary increment of the independent variable x and

the index i = 1, 2, ..., n. The input consists of:

a) the equations: yi’ = fi (x, y1, y2, ..., yn)

b) the increment: h (generally small)

c) the initial values: yi (x0)

and the output is yi (x0 + h) , yi (x0 + 2h), ... , for i = 1, 2, ..., n.

To this purpose, the 4
th

-order Runge-Kutta method of Gill is applied as shown in the following pseudocode:

for j = 1 to 4

 for i = 0 to n

 ki, j = fi (y0, j-1, y1, j-1, ..., yn, j-1) where the constants are:

 next i

 for i = 0 to n a1 = c1 = c4 = 1/2

 yi, j = yi, j-1 + h (aj (ki, j - bj qi, j-1)) a2 = c2 = 1 – 1/√2, a3 = c3 = 1+1/√2

 qi, j = qi, j-1 + 3 (aj (ki, j - bj qi, j-1)) – cj ki, j a4=1/6, b1 = 2b2 = 2b3 = b4 = 2

 next i

next j

output yi for i = 0 to n

This procedure is repeated as often as desired to yield yi (x0 + h) , yi (x0 + 2h) , ...

The notation y0 = x is used for notational convenience and to simplify the form of the process.

Initially qi,0 = 0, yi,0 = yi (x0), thereafter qi,0 (xi) = qi,4 (xi-1)

2

1.1 N-th order differential equations

A single differential equation of orden n:

y
(n)

 = f (x, y, y’, y’’, ... , y
(n-1)

) , subject to initial conditions x = x0, y = y0, y’ = y’0, ..., y
(n-1) =

y0
(n-1)

can be reduced to a system of n first-order differential equations and solved using this program.

For example, consider the 3
rd

-order differential equation:

 y’’’ = 6y’’ + 7y’ – 8y – 4x + 7, subject to initial conditions x0=1, y(1) = 2, y’(1) = 3, y’’(1) = 4

and substitute: y = y1, y’ = y2, y’’= y3 and thus y’’’ = y3’ , so the equation may be written as:

 y3’ = 6y3 + 7y2 – 8y1 – 4x + 7

 y2’ = y3 subject to initial conditions x0=1, y1(1) = 2, y2(1) = 3, y3(1) = 4

 y1’ = y2

which is a system of 3 first-order differential equations that can be solved using this program.

Using four memory modules, in theory equations up to the 80
th

 order might be solved because after the last one

all the others take only 5 bytes each to define.

1.2 Program characteristics

This program (labeled as “RK” for Runge-Kutta) is 32-register, 224 bytes long so it exactly fits into a single

magnetic card as long as it doesn’t have a final END instruction, let the final .END. of program memory do the

task (else it won’t fit into a single card, a second card would be required.)

The program solves a system of N first-order differential equations, where N depends on the available memory:

Number of modules Number of equations Average size eq.

none 2 18 bytes

1 6 63 bytes

2 10 74 bytes

3 15 72 bytes

4 20 71 bytes

4 30 41 bytes

4 40 25 bytes

Of course, the more equations in the system the more bytes it will probably take to define each. The program is

also fast, the loops are designed to run as fast as possible by duplicating indirect addresses. Computing times

depend mostly on the number and complexity of the functions you define but the following times are typical:

Number of equations 1 2 3 5

Time per point 12 sec. 22 sec. 32 sec. 62 sec.

3

2. Program Listing

01 ♦LBL “RK” 29 STO 09 57 ISG 14 85 STO 15 113 ST+ 04

02 CLRG 30 STO 00 58 GTO 01 ► 86 RCL 10 114 ISG 13

03 FIX 0 31 ENTER↑ 59 “INC=?” 87 STO 14 115 GTO 11 ►

04 CF 29 32 SQRT 60 PROMPT 88 ♦LBL 13 116 SF 29

05 SF 21 33 LASTX 61 STO 12 89 RCL IND 15 117 GTO 11 ►

06 “N=?” 34 + 62 ♦LBL 14 90 RCL IND 13 118 ♦LBL 10

07 PROMPT 35 STO 01 63 .002 91 / 119 RCL 10

08 STO 04 36 / 64 STO 13 92 3 120 0
09 3 37 STO 02 65 6 93 FS? 29 121 ADV
10 * 38 RCL 04 66 STO 04 94 ST* Y 122 ♦LBL 02

11 22 39 ST- 05 67 STO 03 95 RCL IND 16 123 “Y”

12 + 40 20 68 ♦LBL 11 96 RCL IND 04 124 FIX 0

13 STO 05 41 + 69 RCL 10 97 * 125 ARCL X

14 SF 25 42 ST+ 11 70 STO 14 98 RCL IND 15 126 ├“=”

15 ARCL IND X 43 1 E3 71 RCL 11 99 - 127 FIX 7

16 1 44 / 72 STO 15 100 RCL IND 13 128 ARCL IND Y

17 STO 11 45 20 73 RCL 05 101 / 129 AVIEW

18 STO 07 46 + 74 STO 16 102 ST- IND 14 130 ISG X

19 STO 08 47 STO 14 75 ♦LBL 12 103 * 131 X<>Y

20 + 48 STO 10 76 XEQ IND 14 ► 104 + 132 ISG Y

21 FS?C 25 49 ♦LBL 01 77 RCL 12 105 ST- IND 16 133 GTO 02 ►

22 GTO 00 ► 50 “Y” 78 * 106 1 134 GTO 14 ►
23 “SIZE” 51 ARCL 12 79 STO IND 15 107 ST+ 15 135 ♦LBL 20
24 ARCL X 52 ├“=?” 80 ISG 15 108 ST+ 16 136 1

25 PROMPT 53 PROMPT 81 X<>Y 109 ISG 14 137 RTN

26 ♦LBL 00 54 STO IND 14 82 ISG 14 110 GTO 13 ► 138 .END.

27 2 55 ISG 12 83 GTO 12 ► 111 FS?C 29

28 STO 06 56 X<>Y 84 RCL 11 112 GTO 10 ►

The symbols ♦ and ► are purely cosmetic, to indicate branching; ├ is the Append alpha function

2.1 Contents of the storage registers

Register Contents Register Contents Register Contents

00 a1 = 2 10 add.f,y 20 y0 = x

01 a2 = 3.41+ 11 add.k

02 a3 = 0.58+ 12 h N+20 yn

03 a4 = 6 13 add.a N+21 k0

04 N, add.b 14 add.f,y var.

05 add q = 2N+22 15 add k var. 2N+21 kn

06 b1 = 2 16 add q var. 2N+22 q0

07 b2 = 1 17 free

08 b3 = 1 18 free 3N+22 qn

09 b4 = 2 19 free

4

3. Usage Instructions

To solve a system of N first-order differential equations perform the following Steps:

Step 1: in RUN Mode: GTO .138 → { switch to PRGM Mode }.

If there are definitions left from previously solved systems, execute:

 DEL 999 → { you should see: 137 RTN }

Step 2: still in PRGM Mode, define the equations. Every equation fi must be defined under a numerical

label whose number is i+20. This is: f1 must be defined under LBL 21, f7 under LBL 27, f14

under LBL 34, and so on. Each definition must be terminated with a RTN instruction.

 To define each equation, yi can be found stored in register Ri+20 and the convention y0 = x is

used. This is: x (= y0) can be found in R20, y1 in R21, ..., y14 in R34 , and so on.

 You may use R17, R18 and R19 as scratch registers if you wish but do not disturb the contents of any

other registers from register R00 up to R3N+22 , both included. See Examples.

Step 3: once the equations have been defined in program memory, switch back to RUN Mode and execute the

program, as follows:

 XEQ “RK” → N=? { asks for the number of equations in the system}

 N R/S → Y0=? { remember the convention y0 = x0 , so it’s asking for x0 }

x0 R/S → Y1=? { asks for y1 (x0) }

y1 R/S → Y2=? { asks for y2 (x0) }

yn R/S → INC=? { asks for the increment [step] h }

Note: the increment (step) h should be adequately small. The smaller is h, the greater is the accuracy and

number of stages required to reach a given value of x (and so the longer it will take and the more rounding

errors will accumulate). The error per stage is approximately proportional to h
5
 so as a rule of thumb h=0.1

should give about 5 correct places at the end of 10 stages or so.

h R/S → { computation begins }

After some time, the values of yi (x0 + h) will be output. If there’s a printer attached and On, all

values will be printed and spaced and computation will proceed to the following stage automatically.

Otherwise, simply press R/S after each displayed value to see the next one or resume the

procedure, like this:

→ Y0=its value { remember, y0 = x0 , so this is x = x0 + h in this stage}

 R/S → Y1=its value { outputs y1 (x0 + h) }

 R/S → Y2=its value { outputs y2 (x0 + h) }

 R/S → YN=its value { outputs yn (x0 + h), the last value in this stage }

 R/S → Y0=its value { proceeds to compute the next stage, yi (x0 + 2h) }

and so on. To stop the procedure at any time, press R/S . For another system, go to Step 1.

5

Notes:

 if after introducing N a message SIZE nnn does show up this means the current register allocation is

insufficient to run the program, so simply execute SIZE nnn and then press R/S to resume.

In general, if your system has N equations, a minimum SIZE of 3N+23 registers is required.

 do not disturb the stack while the output is taking place. If you want to simply view (not write down)

each value, without having to press R/S each time to continue (you have no printer attached), then

at any moment stop the computation by pressing R/S and execute CF 21 , then R/S again to

resume. Subsequent values will be displayed without stopping program execution.

 if you want to change the spacing (step) h during the process, wait for the program to stop or output

something, then stop (if not yet halted) and input the new h like this:

new value of h STO 12 R↓ R/S .

 the procedure will resume from where it left but this time using the new h.

 to change the number of decimals in the output, change line 127 FIX 7 to the desired display setting.

4. Examples

The following examples can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example 1

Solve the system:

y1’ = sin x – y2 x0 = 0.230253487

y2’ = e
x
 + y3 with initial conditions: y1 = -0.258919089

y3’ = 1 – y1 – y2 y2 = 1.487143417

 y3 = 0.973608574

using a step h = -0.102342187.

Define the equations: in RUN Mode, GTO .138 , switch to PRGM Mode, DEL 999 → see: 137 RTN

Enter the definitions below, and then switch to RUN Mode, execute PACK , RAD and run the program:

138 ♦LBL 21 144 ♦LBL 22 150 ♦LBL 23 XEQ ”RK” → N=?

139 RCL 20 145 RCL 20 151 1 3 R/S → Y0=?

140 SIN 146 E↑X 152 RCL 21 0.230253487 R/S → Y1=?

141 RCL 22 147 RCL 23 153 - -0.258919089 R/S → Y2=?

142 - 148 + 154 RCL 22 1.487143417 R/S → Y3=?

143 RTN 149 RTN 155 - 0.973608574 R/S → INC=?

 156 RTN -0.102342187 R/S → computing proceeds and then ...

6

... the output begins → Y0=0.1279113 { remember, y0 = x0 , so this is x = x0 + h in this first stage}

 R/S → Y1=-0.1364522 { outputs y1 (x0 + h) }

 R/S → Y2=1.2640152 { outputs y2 (x0 + h) }

 R/S → Y3=0.9918304 { outputs y3 (x0 + h), the last value in this stage }

 R/S → Y0=0.0255691 { this is x = x0 + 2h in this second stage}

 R/S → Y1=-0.0258989 { outputs y1 (x0 + 2h) }

 R/S → Y2=1.0514656 { outputs y2 (x0 + 2h) }

 R/S → Y3=0.9996729 { outputs y3 (x0 + 2h), the last value in this stage, and so on ... }

To check the accuracy obtained, the exact solution is:

 y1 = 1 - e
x
 y1 (x0 + h) = -0.136452195

 y2 = e
x
 + sin x thus: y2 (x0 + h) = 1.264014981 , so we got 7-8 correct places

 y3 = cos x y3 (x0 + h) = 0.991830497

4.2 Example 2

Solve the system:

y1’ = y1 – y2 + e
x
 – y4 – x x0 = 0

y2’ = y1 – sin x + e
x
 y1 = 1

y3’ = cos x – y3 – y4 – x with initial conditions: y2 = 1

y4’ = y3 – e
 - x

 – 1 y3 = 2

y5’ = (y5 + sin x – y4)
2

y4 = y5 = 0

Using a step h = 0.1, find the values of y1 .. y5 for x = 1.

Define the equations: in RUN Mode, GTO .138 , switch to PRGM Mode, DEL 999 → see: 137 RTN

Enter the 5 definitions below, and then switch to RUN Mode, execute PACK , RAD and run the program:

[*] The example assumes there were less than 38 registers allocated so it prompts

 for the user to allocate them right now, before resuming.

138 ♦LBL 21 150 ♦LBL 22 159 ♦LBL 23 169 ♦LBL 24 178 ♦LBL 25 XEQ ”RK” → N=?

139 RCL 21 151 RCL 21 160 RCL 20 170 RCL 23 179 RCL 25 5 R/S → SIZE 38
[*]

140 RCL 22 152 RCL 20 161 COS 171 RCL 20 180 RCL 20 SIZE 38 R/S → Y0=?

141 - 153 SIN 162 RCL 23 172 CHS 181 SIN 0 R/S → Y1=?

142 RCL 20 154 - 163 - 173 E↑X 182 + 1 R/S → Y2=?

143 E↑X 155 RCL 20 164 RCL 24 174 - 183 RCL 24 1 R/S → Y3=?

144 + 156 E↑X 165 - 175 1 184 - 2 R/S → Y4=?

145 RCL 24 157 + 166 RCL 20 176 - 185 X↑2 0 R/S → Y5=?

146 - 158 RTN 167 - 177 RTN 186 RTN 0 R/S → INC=?

147 RCL 20 168 RTN 0.1 R/S → computation

148 - proceeds

149 RTN and then ...

7

... the output begins → Y0=0.1 { remember, y0 = x0 , so this is x = x0 + h = 0.1 in this first stage}

 R/S → Y1=1.0948375 { outputs y1 (0.1) }

 R/S → Y2=1.2050044 { outputs y2 (0.1) }

 R/S → Y3=1.8998416 { outputs y3 (0.1) }

 R/S → Y4=-0.0001665 { outputs y4 (0.1) }

 R/S → Y5=0.0003345 { outputs y5 (0.1), the last value in this stage }

 R/S → ... { proceeds to compute the next stage, yi (0.2) }

After 10 such stages you should get:

 x = 1.0000000

 y1 = 1.3817719 y1 = sin x + cos x

 y2 = 3.5597527 and the exact solution is: y2 = sin x + e
x
 so we got 5-6 correct places

 y3 = 0.9081817 y3 = cos x + e
- x

 y4 = -0.1585284 y4 = sin x – x

 y5 = 0.5573977 y5 = tan x – x

Notes

1.This program will also run in the HP42S but as it has a wider numeric range and greater precision (12-digit instead of
10-digit), the results might differ slightly. Consult the HP42S Owner’s Manual for other minor differences (e.g.: naming).

2.This program was published in PPC Melbourne Chapter Technical Notes V1N2 pp23-28 (September 1980). However,
there’s a missing minus sign (“–“) between e

x
 and y4 in the definition of the first equation of the second example.

3. It was also published in PPC Calculator Journal V8N1 pp17-19 (Jan./Feb. 1981). However, there’s also a missing minus
sign (“–“) between e

x
 and y4 in the definition of the first equation of the second example.

References

Francis Scheid (1988). Schaum’s Outline of Theory and Problems of Numerical Analysis, 2
nd

 Edition.

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

