
1

DICE – Dice Rolling with Graphics

© 2019 Valentín Albillo

Abstract

DICE is a program written in 1980 for the HP-41C programmable calculator to simulate randomly throwing two dice, which are

printed graphically followed by their sum. A subroutine can be globally called to accumulate the graphics for any single die face. Both

standard and synthetic programming versions are included.

Keywords: Dice, simulation, program, graphics, printer, programmable calculator, RPN, HP-41C, synthetic programming

1. Introduction

DICE is an RPN program I wrote in 1980 for the HP-41C programmable calculator (will also run as-is in the

HP-41CV/CX), to simulate any number of random throws of two dice, which are printed graphically (followed

by their sum) using a compatible attached printer.

DICE calls a globally addressable subroutine “$”, which accepts as input an integer from 1 to 6 in the display

(stack X register) and accumulates in the printer buffer the graphics for the corresponding die face having that

number of pips. The graphic is just accumulated but not printed, so that the caller program can add more

graphics or text to the printer buffer before printing the whole contents by executing PRBUF, ADV or any other

operation which causes the buffer to be printed. If “$” is called right from the keyboard, the user can afterwards

press the ADV button on the printer (or execute the same command form the calculator’s keyboard) to print the

graphics for the die face. Additionally, a much shorter and faster version of “$” using synthetic programming is

also included, see below.

The random value for each die is produced using a simple but fast and effective pseudo-random number

generator which requires the user to first store a seed in register R01 before calling the DICE program (no seed is

needed when calling the subroutine “$”). This seed must be a positive value (see Note 1 for other restrictions),

and the user needs to store it just once per session, no matter how many dice throws are generated afterwards

1.1 Synthetic programming version of “$”

In addition to the normal version of “$”, which uses just the standard function set available right out of the box,

a much shorter an faster version is also listed, which uses synthetic programming techniques. A discussion of

synthetic programming if well out of scope for the present paper but you can consult the References (the second

one in particular) for full information on it, how to create synthetic lines and free utilities to help creating them.

The net result is that by including 7 synthetic lines the subroutine “$” is much shorter (30 steps, 84 bytes vs. 58

steps, 112 bytes, almost a 50% reduction) and also much faster than the normal version. This synthetic version

uses the techniques pointed out in PPC V7 N6 pp27-28 (see References) to create the synthetic text lines. The

required BLDSPEC string is previously written down using the techniques described in V7 N5 p56 so that every

7 columns of dots are accumulated into the printer buffer as a BLDSPEC character by the byte-saving procedure

of first creating a string representing the desired dot-pattern for the character (partial graphics for each die face),

then the synthetic instruction RCL M is used to retrieve the data from the Alpha register, followed by executing

ACSPEC to accumulate the special character (first 7 columns of the die representation). The remaining two

columns are always the same for all six faces so they’re simply accumulated using ACCOL.

To wit, this is a fine example of the power and convenience of using synthetic functions: the resulting version is

much shorter and faster than the conventional one using standard functions and all are advantages, no caveats, no

negative collateral effects at all. Using synthetic functions is a great way to improve programs, often drastically,

and also of accomplishing tasks impossible to achieve with just standar programming. It’s just a matter of

understanding the straightforward concepts involved and to get and use the proper, freely available tools.

2

2. Program Listing

2.1 Standard programming version of both DICE and “$”

 01 ♦LBL “DICE” 20 PRBUF 01 ♦LBL “$” 20 81 39 73

 02 ADV 21 RTN ► 02 XEQ 07 ► 21 RTN ► 40 XEQ 00 ►

 03 XEQ 00 ► 22 ♦LBL 00 03 SF 12 22 ♦LBL 03 41 85

 04 STO 00 23 RCL 01 04 65 23 69 42 RTN ►

 05 XEQ “$” ► 24 R-D 05 ACCOL 24 XEQ 00 ► 43 ♦LBL 06

 06 6 25 FRC 06 XEQ IND Z ► 25 73 44 85

 07 SKPCOL 26 STO 01 07 ACCOL 26 XEQ 00 ► 45 XEQ 00 ►

 08 XEQ 00 ► 27 6 08 65 27 81 46 X<>Y

 09 ST+ 00 28 * 09 ACCOL 28 RTN ► 47 XEQ 00 ►

 10 XEQ “$” ► 29 1 10 ♦LBL 07 29 ♦LBL 04 48 X<>Y

 11 6 30 + 11 CF 12 30 85 49 RTN ►

 12 SKPCOL 31 INT 12 127 31 XEQ 00 ► 50 ♦LBL 01

 13 61 32 END 13 ACCOL 32 ACCOL 51 ACCOL

 14 ACCHR 14 RTN ► 33 ACCOL 52 ACCOL

 15 RCL 00 15 ♦LBL 02 34 X<>Y 53 73

 16 CF 28 16 69 35 RTN ► 54 ♦LBL 00

 17 CF 29 17 XEQ 00 ► 36 ♦LBL 05 55 ACCOL

 18 FIX 0 18 ACCOL 37 85 56 X<>Y

 19 ACX 19 ACCOL 38 XEQ 00 ► 57 ACCOL

 58 END

 - this version of global subroutine “$” uses just standard programming techniques, no synthetic lines required.

- 32 steps (60 bytes) + 58 steps (112 bytes), will fit in a basic HP-41C with no memory modules, printer required

- clears flags 28 and 29 and sets display mode FIX 0.

- to get * press x , to get “text” press ALPHA

- the symbols ♦ and ► are purely cosmetic, to visually indicate branching, don’t try to key them in.

2.2 Synthetic programming version of “$”

 01 ♦LBL “$” 16 ♦LBL 02 Notes on the synthetic text lines used:

 02 SF 12 17 see side notes

 03 see side notes 18 RTN ► - Line 03 is: F2 11 FE

 04 XEQ IND X ► 19 ♦LBL 03 - Line 14 is: F6 7F 0C 18 32 60 C1

 05 RCL M 20 see side notes - Line 17 is: F6 7F 0C 58 30 60 D1

 06 ACSPEC 21 RTN ► - Line 20 is: F6 7F 0C 58 32 60 D1

 07 65 22 ♦LBL 04 - Line 23 is: F6 7F 0D 58 30 60 D5

 08 ACCOL 23 see side notes - Line 26 is: F6 7F 0D 58 32 60 D5

 09 127 24 RTN ► - Line 29 is: F6 7F 0D 58 35 60 D5

 10 ACCOL 25 ♦LBL 05

 11 CF 12 26 see side notes

 12 RTN ► 27 RTN ►

 13 ♦LBL 01 28 ♦LBL 06

 14 see side notes 29 see side notes

 15 RTN ► 30 END

- this version of global subroutine “$” uses synthetic programming techniques.

- 30 steps (84 bytes), will fit on a single side of a magnetic card.

- sets flag 12 on entry and clears it before returning.

3

3. Usage Instructions

See the following examples to understand how to use both the program “DICE” and the subroutine “$”.

4. Examples

The following examples can be useful to check that the program is correctly entered and to understand its usage:

4.1 Example 1

Using 0.5301 as a seed, produce three consecutive dice throws.

0.5301 STO 01 (store the seed for the RNG just once per session, no matter how many throws are generated afterwards)

 XEQ “DICE” →

 XEQ “DICE” → (pressing R/S could have been used instead of repeating XEQ “DICE”)

 XEQ “DICE” → (ditto)

4.2 Example 2

Print all individual die faces from 1 to 6 pips. (we must press the printer’s ADV button after each to cause printing)

1 XEQ “$” ADV → 2 XEQ “$” ADV →

3 XEQ “$” ADV → 4 XEQ “$” ADV →

5 XEQ “$” ADV → 6 XEQ “$” ADV →

Notes

1. Don’t use 0 or negative seeds and also avoid PI and its multiples or fractions, as well as very large numbers.

2. This program was submitted to PPC Technical Notes and it was published in the September 1980 issue (PPCTN V1N2 p64).

References

Valentin Albillo Dice Rolling – With Graphics (PPC Technical Notes, V1 N2 p64, Sep 1980)

W.C. Wickes (1980) Synthetic Programming on the HP-41C

W.C. Wickes (1980) Understanding BLDSPEC (PPC V7 N5 p56, June 1980)

Jake Schwartz (1980) Full Wand BLDSPEC Control (PPC V7 N6 pp27-28, Jul/Aug 1980)

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

