MM - Finding Extrema of Functions

© 2019 Valentín Albillo

Abstract

MM is a program written in 1980 for the HP-41C to find extrema (maxima and/or minima) of an arbitrary user-supplied function y=f(x) by calling program RF (Root Finder) internally as part of the computation. Two worked examples are included.

Keywords: extrema, maxima, minima, RF, Root Finder, programmable calculator, RPN, HP-41C, HP-41CV, HP-41CX, HP42S

1. Introduction

MM is a very short (28 steps) RPN program that I wrote in 1980 for the HP-41C programmable calculator (will also run *as-is* in the HP-41CV/CX and the HP42S), which will try to find extrema (maxima and/or minima) of an user-supplied function y = f(x) by calling the **RFP** program (Root Finder Programmable, part of **RF** Root Finder) to find a root of the function's derivative, which will correspond to the location of the extrema.

The procedure is as follows: given a function y = f(x) and an initial guess for the location of the maximum or minimum, the program calls *RFP* to find a root of the derivative, which is computed by a separate (included herein) program *DY* (*Derivative of Y*) which calls the user-specified function and returns the value of y'(x).

The program does not recognize *inflection* (*"saddle"*) points, it will report them as *maxima* or *minima*. Also, the accuracy depends on the **FIX n** or **SCI n** display setting and usually it won't be higher than about 6-7 correct places due to limitations in the accuracy achievable while computing the derivative (cancellations).

MM was written with the explicit intent of demonstrating how *RF* could be used as a subroutine by other programs, which would become much shorter and easier to write. *RF* was submitted (and rejected) for inclusion in the *PPC ROM*, so *MM* would have been able to make a direct *ROM* call, saving worthy *RAM* memory.

01 •LBL "MM" 02 "NAME?" 03 AON 04 STOP 05 AOFF 06 ASTO 10 07 "X0?"	08 PROMPT 09 "DY" 10 ASTO 00 11 XEQ "RFP" ► 12 FS? 00 13 RTN 14 R↑	15 STO 00 16 RDN 17 XEQ IND 10 ► 18 "MIN" 19 RCL 00 20 X <y? 21 "MAX"</y? 	22 " H : " 23 ARCL 02 24 " H , " 25 ARCL Y 26 AVIEW 27 X<>Y 28 END	- 28 steps - requires at least SIZE 014 - uses flag 00 and Alpha register - y(x) may use R ₀₄ -R ₀₉ and R ₁₄ -R _{nn} - to key in "⊢" use Append
01 • LBL "DY" 02 STO 11 03 8E-4 04 STO 12	05 ST+ 12 06 ST- 11 07 + 08 XEQ IND 10 ►	09 STO 13 10 RCL 11 11 XEQ IND 10 ► 12 ST- 13	13 RCL 12 14 ST/ 13 15 RCL 13 16 END	- 16 steps - requires at least SIZE 014 - the function's name is in R ₁₀

2. Program Listing

For completeness' sake, this is the listing of program *RF* / *RFP* (see *References* for the paper documenting it):

01	♦LBL "RF"	08 PROMPT	15	RCL 02	22	RCL 02	29	SIGN	36 GTO 01 🕨
02	"NAME?"	09 ◆LBL "R	?P″ 16	1	23	XEQ IND 00	30	/	37 DSE 03
03	AON	<i>10</i> CF 00	17	D-R	24	X=0?	31	D-R	38 GTO 00 🕨
04	PROMPT	<i>11</i> STO 02	18	D-R	25	GTO 01 🕨	32	D-R	<i>39</i> SF 00
05	AOFF	<i>12</i> 50	19	+	26	ST- 01	33	ST- 02	40 ♦ <u>LBL 01</u>
06	ASTO 00	<i>13</i> STO 03	20	XEQ IND	00 27	RCL 01	34	RND	41 RCL 02
07	"X0?"	14 ♦LBL 00	21	STO 01	28	X=0?	35	X=0?	42 END

3. Usage Instructions

Step 1: Write a program to define f(x). It must be a separate program under its own global label (6 char. max.), must assume that the argument x is in stack register X upon being called, and must compute and leave the value of f(x) in stack register X. It may use registers R_{04} - R_{09} and R_{14} onwards, and must not use flag 00.

The *accuracy* depends on the display setting, **FIX n** / **SCI n**. The greater **n**, the better the accuracy and the longer the time required to achieve it, though usually the computed extremum will be accurate to just 6-7 correct places.

Step 2: Set the display setting (FIX/SCI 2-4 recommended) and run the program:

FIX n or SCI n	XEQ "MM"	NAME?
(enter name of the function)	R/S	X0?
(enter guess of location, x_0)	R/S	MIN: x, y or MAX: x, y
		where x is the location of the MIN/MAX, and $y = f(x)$

Notes: - once computed and displayed, x is in R_{02} and y is in the display (stack register X).

- if the function doesn't have extrema or the procedure does not converge to one, it will automatically stop after 50 iterations and *flag 00* will be *set*. To try another guess go to *Step 2* above. For another function, go to *Step 1*.

4. Examples

The following examples can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example 1

Find the minimum of: $y = x^2 - 4x + 8$

In **PRGM** Mode, enter the following 9-step program to define f(x):

01 ♦	LBL	"EX1"	02	X↑2	03	LASTX	04	4	05	5 *	06	-	07	8	08	+	09	END
1																		
In RUN M	ode,	l	4X 2	XEÇ	"М.	M″ NAM	IE?											
			EX1"	R/S		X0?												
			0	R/S		MIN	: 2.0	0,	4.00	so t	here's d	ı m	inimum	at j	point (2	, 4)		

4.2 Example 2

A

To get from point A to point B (see figure below) some travellers must take both a boat, whose speed is 100 km/h, and a plane, whose speed is 300 km/h. Given that the distance from A to C is 500 km and the distance from B to C is 1000 km, to what point D in the coast should they travel by boat (and there take the plane to B) in order to minimize the total travel time from A to B?

(for convenience, use distances/speeds divided by 100)

We need to minimize *total time*, so: $f(x) = \sqrt{x^2 - 20x + 125} + \frac{x}{3}$, which is defined like this:

01	♦LBL "EX2″	04	LASTX	07	-	10	SQRT	13	/
02	STO 04	05	20	08	125	11	RCL 04	14	+
03	X↑2	06	*	09	+	12	3	15	END

and now, to compute the minimum (using for initial guess the midpoint of BC = 5(00 km):

In RUN Mode,	FIX 3	XEQ "MM"	NAME?	
	"EX2"	R/S	X0?	
	5	R/S	MIN: 8.232,	8.042

so point **D** is at 823.2 km of **B** (176.8 km from **C**) and the minimum time will be 8.047 h = 8h 2' 49''

Notes

1. To see the results more accurately once computed, simply set **FIX 6**, say, which will show the *value* of the extremum (y) in the display, and then **VIEW 02** will show the corresponding *location* of the extremum (x) without disturbing the stack.

2. As the accuracy of the extremum location calculated by RFP depends on the display setting, too low a **FIX** or **SCI** setting may result in a location not accurate enough, which in its turn may result in mislabeling a *maximum* as a *minimum* or vice versa. In that case, increase the display setting (from **FIX 2** to **FIX 3**, say) and try again.

3. Also, the program uses a fast, simple approach to identify whether the computed extremum is a maximum or a minimum, which involves evaluating f(x) for a value very near the computed location and comparing both values. This may fail if severe cancellation occurs, and a possible remedy is given *in Note 2* above.

4. The correct way to identify the extremum requires considering the value of the 2^{nd} derivative, f''(x), at the extremum but the 1^{st} -derivative computation program **DY** can't be nested so this would require yet another program to compute the 2^{nd} derivative, at least three additional evaluations of f(x), accuracy would worsen, and this being just a demonstration program for uses of *RFP* the additional complexity is not warranted.

5. The program (RF, RFP) which MM calls was duly submitted for inclusion in the PPC ROM but it wasn't accepted.

References

Francis Scheid (1988).	Schaum's Outline of Theory and Problems of Numerical Analysis, 2 nd Edition.
Valentín Albillo (1980).	HP Program VA411 - HP-41C Finding Roots of Equations.

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is granted as long as the contents aren't modified in any way and the copyright is acknowledged.