MM – Finding Extrema of Functions

© 2019 Valentín Albillo

Abstract

MM is a program written in 1980 for the HP-41C to find extrema (maxima and/or minima) of an arbitrary user-supplied function \(y = f(x) \) by calling program RF (Root Finder) internally as part of the computation. Two worked examples are included.

Keywords: extrema, maxima, minima, RF, Root Finder, programmable calculator, RFN, HP-41C, HP-41CV, HP-41CX, HP42S

1. Introduction

MM is a very short (28 steps) RPN program that I wrote in 1980 for the HP-41C programmable calculator (will also run as-is in the HP-41C/CX and the HP42S), which will try to find extrema (maxima and/or minima) of an user-supplied function \(y = f(x) \) by calling the RFP program (Root Finder Programmable, part of RF Root Finder) to find a root of the function’s derivative, which will correspond to the location of the extrema.

The procedure is as follows: given a function \(y = f(x) \) and an initial guess for the location of the maximum or minimum, the program calls RFP to find a root of the derivative, which is computed by a separate (included herein) program DY (Derivative of Y) which calls the user-specified function and returns the value of \(y'(x) \).

The program does not recognize inflection ("saddle") points, it will report them as maxima or minima. Also, the accuracy depends on the FIX n or SCI n display setting and usually it won’t be higher than about 6-7 correct places due to limitations in the accuracy achievable while computing the derivative (cancellations).

MM was written with the explicit intent of demonstrating how RF could be used as a subroutine by other programs, which would become much shorter and easier to write. RF was submitted (and rejected) for inclusion in the PPC ROM, so MM would have been able to make a direct ROM call, saving worthy RAM memory.

2. Program Listing

```
01 "LBL "MM" 08 PROMPT 15 STO 00 22 "±: " - 28 steps
02 "NAME?" 09 "DY" 16 RDN 23 ARCL 02
03 AON 10 ASTO 00 17 XEQ IND 10 ▶ 24 " ± " - requires at least SIZE 014
04 STOP 11 XEQ "RF" ▶ 18 "MIN" 25 ARCL Y
05 AOFF 12 FS? 00 19 RCL 00 26 AVIEW
06 ASTO 10 13 RTN 20 X<Y? 27 X<>Y - to key in "V" use Append
07 "X0?" 14 R↑ 21 "MAX" 28 END
```

```
01 "LBL "DY" 05 ST+ 12 09 STO 13 13 RCL 12 - 16 steps
02 STO 11 06 ST- 11 10 RCL 11 14 ST/ 13 - requires at least SIZE 014
03 EQ 4 07 + 11 XEQ IND 10 ▶ 15 RCL 13 - the function’s name is in R10
04 STO 12 08 XEQ IND 10 ▶ 12 ST- 13 16 END
```

For completeness’ sake, this is the listing of program RF / RFP (see References for the paper documenting it):

```
01 "LBL "RF" 08 PROMPT 15 RCL 02 22 RCL 02 29 SIGN 36 GTO 01 ▶
02 "NAME?" 09 "LBL "RFP" 16 1 23 XEQ IND 00 30 / 37 DSE 03
03 AON 10 CF 00 17 D-R 24 X=0? 31 D-R 38 GTO 00 ▶
04 FROMPT 11 STO 02 18 D-R 25 GTO 01 ▶ 32 D-R 39 SF 00
05 AOFF 12 50 19 + 26 ST- 01 33 ST- 02 40 "LBL 01
06 ASTO 00 13 STO 03 20 XEQ IND 00 27 RCL 01 34 RND 41 RCL 02
07 "X0?" 14 "LBL 00" 21 STO 01 28 X=0? 35 X=0? 42 END
```
3. Usage Instructions

Step 1: Write a program to define \(f(x)\). It must be a separate program under its own global label (6 char. max.), must assume that the argument \(x\) is in stack register \(X\) upon being called, and must compute and leave the value of \(f(x)\) in stack register \(X\). It may use registers \(R_{04}-R_{09}\) and \(R_{14}\) onwards, and must not use flag \(00\).

The accuracy depends on the display setting, \(\text{FIX } n / \text{SCI } n\). The greater \(n\), the better the accuracy and the longer the time required to achieve it, though usually the computed extremum will be accurate to just 6-7 correct places.

Step 2: Set the display setting (\(\text{FIX/SCI 2-4 recommended}\) and run the program:

\[
\text{FIX } n \quad \text{or} \quad \text{SCI } n \quad \text{XEQ “MM” \quad NAME?}
\]

\((\text{enter name of the function}) \quad \text{R/S} \quad \text{X0?} \quad \text{(enter guess of location, } x_0) \quad \text{R/S} \quad \text{MIN: } x, y \quad \text{or} \quad \text{MAX: } x, y
\]

where \(x\) is the location of the \(\text{MIN/MAX}\), and \(y = f(x)\)

Notes: - once computed and displayed, \(x\) is in \(R_{02}\) and \(y\) is in the display (stack register \(X\)).
- if the function doesn’t have extrema or the procedure does not converge to one, it will automatically stop after 50 iterations and flag \(00\) will be set. To try another guess go to Step 2 above. For another function, go to Step 1.

4. Examples

The following examples can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example 1

Find the minimum of: \(y = x^2 - 4x + 8\)

In PRGM Mode, enter the following 9-step program to define \(f(x)\):

\[
\begin{align*}
01 & \text{LBL “EX1”} & 02 & \text{X} \uparrow 2 & 03 & \text{LASTX} & 04 & 4 & 05 & \ast & 06 & \text{RCL} & 07 & 8 & 08 & + & 09 & \text{END}
\end{align*}
\]

In RUN Mode,

\[
\begin{align*}
\text{FIX 2} & \quad \text{XEQ “MM” \quad NAME?} \\
\text{“EX1”} & \quad \text{R/S} \quad \text{X0?} \\
0 & \quad \text{R/S} \quad \text{MIN: } 2.00, \quad 4.00 \quad \text{so there’s a minimum at point (2, 4).}
\end{align*}
\]

4.2 Example 2

To get from point \(A\) to point \(B\) (see figure below) some travellers must take both a boat, whose speed is 100 km/h, and a plane, whose speed is 300 km/h. Given that the distance from \(A\) to \(C\) is 500 km and the distance from \(B\) to \(C\) is 1000 km, to what point \(D\) in the coast should they travel by boat (and there take the plane to \(B\)) in order to minimize the total travel time from \(A\) to \(B\)?

\[
\text{(for convenience, use distances/speeds divided by 100)}
\]

- boat time:

\[
\frac{AD}{1} = \sqrt{AC^2 + CD^2} = \sqrt{5^2 + (10 - x)^2} = \sqrt{x^2 - 20x + 125}
\]

- plane time:

\[
\frac{DB}{3} = \frac{x}{3}
\]

- total time:

\[
\sqrt{x^2 - 20x + 125} + \frac{x}{3}
\]
We need to minimize total time, so: \[f(x) = \sqrt{x^2} - 20x + 125 + \frac{x}{3}, \] which is defined like this:

01	LBL “EX2”	04	LASTX	07	-	10	SQRT	13	/
02	STO 04	05	20	08	125	11	RCL 04	14	+
03	X \^ 2	06	*	09	+	12	3	15	END

and now, to compute the minimum (using for initial guess the midpoint of \(BC = 5(00 \text{ km}) \)):

In RUN Mode, \(\text{FIX 3} \) \(\text{XEQ “MM” NAME?} \) \(\text{“EX2” R/S X0?} \) \(5 \) \(\text{R/S MIN: 8.232, 8.047} \)

so point \(D \) is at \(823.2 \text{ km of } B \) \((176.8 \text{ km from } C) \) and the minimum time will be \(8.047 \text{ h} = 8 \text{ h } 2' 49'' \)

Notes

1. To see the results more accurately once computed, simply set \(\text{FIX 6, say, which will show the value of the extremum (y) in the display, and then VIEW 02 will show the corresponding location of the extremum (x) without disturbing the stack.} \)

2. As the accuracy of the extremum location calculated by \(RFP \) depends on the display setting, too low a \(\text{FIX or SCI setting may result in a location not accurate enough, which in its turn may result in mislabeling a maximum as a minimum or vice versa. In that case, increase the display setting (from \(\text{FIX 2 to FIX 3, say} \) and try again.} \)

3. Also, the program uses a fast, simple approach to identify whether the computed extremum is a maximum or a minimum, which involves evaluating \(f(x) \) for a value very near the computed location and comparing both values. This may fail if severe cancellation occurs, and a possible remedy is given in Note 2 above.

4. The correct way to identify the extremum requires considering the value of the \(2^{nd} \) derivative, \(f''(x) \), at the extremum but the \(1^{st}-\)derivative computation program \(DY \) can’t be nested so this would require yet another program to compute the \(2^{nd} \) derivative, at least three additional evaluations of \(f(x) \), accuracy would worsen, and this being just a demonstration program for uses of \(RFP \) the additional complexity is not warranted.

5. The program (\(RF, RFP \)) which \(MM \) calls was duly submitted for inclusion in the \(PPC \text{ ROM but it wasn’t accepted.} \)

References

Francis Scheid (1988). \(\text{Schaum’s Outline of Theory and Problems of Numerical Analysis, 2}^{nd} \text{ Edition.} \)

Valentín Albillo (1980). \(\text{HP Program VA411 - HP-41C Finding Roots of Equations.} \)

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is granted as long as the contents aren’t modified in any way and the copyright is acknowledged.