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RF – Finding Real Roots of Equations 

© 2019 Valentín Albillo 

 

Abstract 

RF is a program written in 1980 for the HP-41C to find real roots of an arbitrary user-supplied equation f(x)=0 using Newton’s 

method and a user-given initial guess. Interactive and non-interactive versions provided. Five worked examples are included. 
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1. Introduction 

RF is a short (42 steps) RPN program that I wrote in 1980 for the HP-41C programmable calculator (will also 

run as-is in the HP-41CV/CX and the HP42S), which will try to find a real root of an user-supplied equation 

f(x)=0 using Newton’s method and some user-provided initial guess. 

 

The procedure is as follows: given an equation f(x)=0 and an initial guess for the root, x0, Newton’s method 

produces a hopefully improved guess x1, computed this way: 

𝑥1 = 𝑥0 − 𝑓(𝑥0)/𝑓 ′(𝑥0) 

where f ’(x) is the derivative of f(x), which is numerically approximated like this: 

𝑓′  𝑥  ~ 
𝑓 𝑥 + ℎ − 𝑓(𝑥)

ℎ
 

where h is a suitably small value (~0.0003 is used here). The process is iterated with x1 replacing x0 to produce a 

further improved guess x2 and so on until it either converges to the root or else 50 iterations elapse without 

achieving convergence. This 50-iteration max. limit prevents endless loops and guarantees termination. 

 

2. Program Listing 

 

01 ♦LBL “RF”   12   50   23  XEQ IND 00 34  RND       - 42 steps, 75 bytes 

02  “NAME?”   13  STO 03  24  X=0?   35  X=0?       - requires at least SIZE 004  

03  AON    14 ♦LBL 00  25  GTO 01 ►  36  GTO 01 ►       - uses flag 00 and Alpha register 

04  PROMPT   15  RCL 02  26  ST- 01  37  DSE 03      - does not alter angular mode 

05  AOFF    16   1   27  RCL 01  38  GTO 00 ►      or display settings 

06  ASTO 00   17  D-R   28  X=0?   39  SF 00 

07  “X0?”    18  D-R   29  SIGN   40 ♦LBL 01      - to get  /  press the [] key 

08  PROMPT   19   +   30   /   41  RCL 02      - the symbols ♦ and ► are purely 

09 ♦LBL “RFP”   20  XEQ IND 00 31  D-R   42  END        cosmetic, to indicate branching 

10  CF 00    21  STO 01  32  D-R    

11  STO 02   22  RCL 02  33  ST- 02   

 

3. Usage Instructions 

The program can be used both interactively and programmatically, as follows: 

 

1) Interactively:  in RUN mode, set the precision you need (see below) and call “RF” (Root Finder). The 

program will prompt for the name of the program which defines f(x) and for the initial guess x0. Once 
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provided, the program will proceed to compute the root and the result will be: 

 

- if the process converges, the root will be in the display (stack register X) and flag 00 will be clear. 

 

- if the process does not converge after 50 iterations, the latest guess (x50 ) will be in the display and 

flag 00 will be set to indicate nonconvergence. In that case you can then either rerun the program 

using a different initial guess x0 , or else decide that no real root exists. 

 

2) Programmatically:  your program must set the precision needed (see below) and call “RFP” (Root 

Finder Programmable), which assumes that the name of the program which defines f(x) is stored in 

register R00 and the initial guess x0 is in stack register X , so your program must place them there before 

making the call. Upon returning, your program must check the outcome by testing flag 00: 

 

- if flag 00 is clear, a root was found and it will be in stack register X (and also in R02). 

 

- if flag 00 is set, the process didn’t converge and no root was found. You’ll find the latest guess, 

x50 , in stack register X. Your program must then decide what to do next (i.e.: reporting the failure 

to the user, try another initial guess and call “RFP” again, call “RFP” once more to perform 

additional iterations continuing from x50 (which is already in X), try another approach, etc.) 
 

Apart from being called programmatically, “RFP” can also be useful when searching for roots 

(multiple, elusive) after the very first attempt, as the name of f(x) is already stored so just simply key 

in your new initial guess and call “RFP”, thus avoiding all the prompts. See Example 1 below. 

 

In both cases you need to write a program to define f(x), the equation to solve. It must be an independent 

program under its own global label, must assume that the argument x is in stack register X upon being called, 

and must compute and leave the corresponding value of f(x) in stack register X.  

The accuracy depends on the display setting, FIX n. The greater n, the better the accuracy and the longer the 

time required to achieve it, though most times the computed root will be more accurate than specified. As a 

useful rule of thumb, if you need just 2 or 3 places, set FIX 2. Conversely, if you need full accuray set FIX 7. 

 

4. Examples 

The following examples can be useful to check that the program is correctly entered and to understand its usage. 

 

4.1 Example 1 

Find two nearby roots of the transcendental equation:  e
x
 - 5x

 
+ 3 = 0 

 

In PRGM Mode, enter the following 9-step program to define f(x): 

 

01 ♦LBL “FX1”  05   * 09  END 

02  E↑X   06   -  

03  LASTX   07   3 

04   5   08   +   

 

In RUN Mode, first set FIX 7 for maximum accuracy and then first call the interactive version of Root Finder (RF) 

with initial guess 1, then call the non-prompting one (RFP) with guess 2 to find the second nearby root: 

FIX 7 

XEQ “RF”   NAME? “FX1” [R/S]  X0?   1  [R/S]   1.4688293    (1
st
 root, internally accurate to 9 places) 

2   XEQ “RFP”   1.7437520   (2
nd

 root, also internally accurate to 9 places; calling RFP saves the unneeded prompts) 
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4.2 Example 2 

Find a double root of the quadratic equation:  x
2
 - 4x

 
+ 4 = 0 

 

In PRGM Mode, enter the following 9-step program to define f(x): 

 

01 ♦LBL “FX2”  05   * 09  END 

02  X↑2   06   -  

03  LASTX   07   4 

04   4   08   + 

 

In RUN Mode, still using FIX 7 for maximum accuracy, call the interactive version of Root Finder with initial 

guess 1 to find the double root: 

 

XEQ “RF”   NAME? “FX2” [R/S]  X0?   1  [R/S]   1.9999908    (double root, accurate to 6 places) 

Double roots can usually be found to only 5-6 places in 10-digit machines, but f(1.9999908) is 0 to 10 places. 

 

4.3 Example 3 

Find a real root of the quadratic equation:  x
2 

+ 1 = 0 

 

In PRGM Mode, enter the following 5-step program to define f(x): 

 

01 ♦LBL “FX3”  04   + 

02  X↑2   05   END  

03   1    

    

In RUN Mode, still using FIX 7 for maximum accuracy, call the interactive version of Root Finder with initial 

guess 0 to attempt to find a real root: 

 

XEQ “RF”   NAME? “FX3” [R/S]  X0?   0  [R/S]   -3.3380759   and flag 00 is set.  

 

This means that the process did not converge after 50 iterations, so no root was found, flag 00 was set and the 

latest guess (-3.3380759) was returned. Actually, this equation has no real roots. 

 

4.4 Example 4 

Find a root of the equation  e
x
 - 2 = 0 , using 90 as the (very bad) initial guess, to illustrate what happens: 

 

In PRGM Mode, enter the following 5-step program to define f(x): 

 

01 ♦LBL “FX4”    04   - 

02  E↑X     05   END    

03   2  

    

In RUN Mode, still using FIX 7 for maximum accuracy, call the interactive version of Root Finder with the (very 

poor) initial guess 90 to attempt to find the root: 
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XEQ “RF”   NAME? “FX4” [R/S]  X0?  90 [R/S]   40.0080372   and flag 00 is set.  

 

This means that the process did not converge after 50 iterations, so no root was found, flag 00 was set and the 

latest guess (40.0080372) was returned, but there is a root and the reason it wasn’t found is because the initial 

guess (90) is very far from the root and the exponential function is nearly vertical at those values. However, with 

the (also very poor) latest guess still in the display, calling now “RFP” (the non-prompting version) succeeds: 

 

XEQ “RFP”    0.6931472   and flag 00 is clear  so the root (correct to 10 digits) was indeed found this time. 

   

4.5 Example 5 

Write a program to compute for x ≥ 1 the function  y = LambertW(x), which is defined implicitly as:  ye
y
 = x  

 

In PRGM Mode, enter the following programs which define LambertW and the equation to solve, respectively : 

 

01 ♦LBL “LAMBW”    08  FS?C 00 01 ♦LBL “YEY”  LAMBW simply stores x in R04, the name of the equation 

02  STO 04  09  AVIEW  02  ENTER↑  in R00 (“YEY”), places the initial guess (Ln(x) does fine)  

03  “YEY”   10  END  03  E↑X   in stack register X, then calls RFP (the non-prompting  

04  ASTO 00     04   *   version) to compute the root, y. Upon returning, it checks 

05  LN      05  RCL 04  whether no root was found (flag 00 is set), in which case it  

06  XEQ “RFP”     06   -   shows the message “NOT FOUND”; else, it simply stops with  

07  “NOT FOUND”    07  END   the value of the root (y) in the display (i.e.: stack register X). 

 

In RUN Mode, using FIX 7 for maximum accuracy, compute LambertW  for x = 1, 2, 3, 10000: 

 

1  XEQ "LAMBW"    0.5671433  to check: [ENTER] [ex] [x]   1.0000000 

2        XEQ "LAMBW"    0.8526055  to check: [ENTER] [ex] [x]   2.0000000 

3        XEQ "LAMBW"    1.0499089  to check: [ENTER] [ex] [x]   3.0000000 

10000 XEQ "LAMBW"    7.2318460  to check: [ENTER] [ex] [x]  10,000.0000 

 

 

Notes 

1. If a real root exists Newton’s method usually converges quadratically to it, i.e. once the convergence starts the number of 

correct digits doubles after each iteration, unless the root’s multiplicity is >1 in which case the convergence reduces to linear. 

2. Once a root is found, displayed, and execution stops, it’s also stored in R02 so that it can be reused in further calculations. 

3. If evaluating the derivative f ’(x) ever results in 0, a division by 0 error would ensue, but the program avoids it by using the 

value 1 instead so that no error arises and the search moves on to another place. This usually happens at a minimum of f(x). 

4. If you can use synthetic instructions, you may replace registers R01, R02 and R03 by registers M, N, and O respectively (i.e.: 

STO 01 becomes STO M and so on), and insert step 42 CLA just before END to clear the Alpha register before the program ends. 

After this, program length will be 43 steps (83 bytes) and min. SIZE 001, thus saving 3 registers for other uses at no cost. 

5. This program (RF, RFP) was duly submitted for inclusion in the PPC ROM but it wasn’t accepted. 
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