DBLINT – Double Integrals

© 2019 Valentín Albillo

Abstract

DBLINT is a program written in 1979 for the HP-34C programmable calculator to compute the numeric value of a definite double integral of a user-specified f(x,y) between given limits. Four worked examples are included.

Keywords: double integral, definite integration, Gauss-Legendre quadrature, programmable calculator, RPN, HP-34C

1. Introduction

DBLINT is a short (67 steps) RPN program that I wrote in 1979 for the HP-34C calculator (will also run with minor modifications in some RPN models, such as the HP-15C) which can compute the numeric value of a definite double integral of a user-defined function f(x, y) between specified limits of integration.

The built-in integration functionality already allows for easy computation of arbitrary (definite) integrals like:

$$I = \int_a^b f(x) \ dx$$

But this functionality can't be nested, so it can't be used to compute the integral of a function whose definition includes the computation of another integral. Computing double integrals like this is not possible out-of-the-box:

$$I = \int_{x_0}^{x_m} \int_{y_0}^{y_n} f(x, y) \ dy \ dx = \int_{x_0}^{x_m} \left(\int_{y_0}^{y_n} f(x, y) \ dy \right) \ dx$$

To overcome this limitation, this program uses the built-in integration functionality to compute the *inner* integral together with a Gaussian quadrature method to compute the *outer* one, namely the fast 3-point Gauss-Legendre quadrature formula applied over a given number of subintervals. The method is as follows: we want to compute:

$$I = \int_a^b g(x) \cdot dx$$
, where $g(x) = \int_{y_0}^{y_n} f(x, y) dy$, which itself is computed via \int_y^x

but first of all the change of variable x = (b+a)/2 + (b-a)t/2, dx = (b-a)/2.dt transforms the interval (a, b)into the interval (-1, 1). The 3-point Gauss-Legendre quadrature formula then gives:

$$\int_{-1}^{1} g(x) dx = \frac{8}{9} g(0) + \frac{5}{9} \left(g(\sqrt{3/5}) + g(-\sqrt{3/5}) \right)$$

which is exact for polynomial g(x) up to the 5th degree and a 5th-order approximation otherwise, using just 3 evaluations per subinterval. This is far better than Simpson's Rule, which only gives 3rd-order accuracy.

2. Program Listing

01 ♦LBL A	15 RCL 6	29 +	43 STO+ 2	57 6	- 67 steps
02 STO 3	16 RCL 6	30 GSB 1 ▶	44 RCL 0	$58 \sqrt{x}$	- uses registers R_0 - R_8 , R_I
03 R↓	17 RCL 7	31 STO 2	45 STOx 2	59 x	- uses labels A,B,0,1,2
04 STO 4	18 STO+ 6	32 RCL 1	46 9	60 RTN	
05 R↓	19 +	33 GSB 0 ▶	47 STO÷ 2	61 ◆ <u>LBL 1</u>	- define the function to integrate
06 X↔Y	20 STO 0	34 -	48 RCL 2	62 STO 5	under ♦LBL B
07 STO 6	21 X ↔ Y	35 GSB 1 ▶	49 STO+ 8	63 RCL 4	
08 -	22 STO- 0	36 STO+ 2	50 DSE	64 RCL 3	- FIX 4 or SCI 4 recommended
09 RCL 1	23 +	37 5	51 GTO 2 ▶	65 ∫ B	- RAD mode recommended
10 ÷	24 2	38 STOx 2	52 RCL 8	66 RTN	
11 STO 7	25 STO÷ 0	39 RCL 1	53 RTN	67 ♦LBL B	
12 RCL 8	26 ÷	40 GSB 1 ▶	54 ♦ <u>LBL 0</u>		- the symbols ◆ and ▶ are purely
13 STO- 8	27 STO 1	41 8	55 RCL 0		cosmetic, to indicate branching
14 ♦LBL 2	28 GSB 0 ▶	42 x	56 .		

3. Usage Instructions

Step 1: In PRGM Mode, key in under 67 •LBL B the sequence of steps which defines the function to integrate f(x, y), where x is in register R_5 and y is in stack register X, and end it with RTN.

Also, before keying in the function's definition do not forget to *delete* any previous definition from program memory, if there's one, except for 67 **LBL B** itself.

- Step 2: In RUN Mode, store the number of subintervals m: m
- Step 3: Compute the integral: x_0 ENTER x_m ENTER y_0 ENTER y_n A value of integral
 - To try different limits with the same f(x, y), repeat Step 2 above.
 - To integrate another f(x, y), go to Step 1 above but don't forget to delete the previous f(x, y) first.

Note: The accuracy of the result depends on both the display mode **FIX d** or **SCI d** selected and the number m of subintervals chosen. It is strongly recommended to use d = 4 or less and m = 1 or 2. These choices will usually give about 4 correct places in moderate run times. If more accuracy is needed, first increase m and as a last resort set **FIX 6** or **SCI 6**. Keep in mind that going from m = 1 to 2 more than *duplicates* the running time, while going from **FIX 4** to **FIX 6** increases the running time by a factor of 2-3. See the **Examples**.

4. Examples

The following examples can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example 1

Evaluate
$$I = \int_0^1 \int_1^2 (x^2 + y^2) \, dy \, dx$$

First of all, we define the function to integrate, f(x,y):

In **PRGM** Mode, enter under 67 **FIBL B** this 6-step program to define the function f(x,y) to be integrated:

In RUN Mode, we'll specify just one subinterval and FIX 4: FIX 4 1 STO I

Finally, enter the limits of integration and compute the integral:

0 ENTER
$$\uparrow$$
 1 ENTER \uparrow 2 A 2.6667 FIX 7 2.6666666 (exact is 8/3 so we got 8 correct places)

4.2 Example 2

Evaluate
$$I = \int_3^4 \int_1^2 \frac{dy \ dx}{(x+y)^2}$$

First, we define the function to integrate, f(x,y):

In **PRGM** Mode, enter under 67 **FIBL B** this 6-step program to define the function f(x,y) to be integrated:

In RUN Mode, we'll specify just one subinterval and FIX 4: FIX 4 1 STO I

Next, enter the limits of integration and compute the integral:

3 ENTER; 4 ENTER; 1 ENTER; 2 A
$$0.0408$$
 FIX 6 0.040821 (exact is $Ln(25/24)$ so we got 6 places)

4.3 Example 3

Evaluate
$$I = \int_{-2.3}^{1.6} \int_{3.9}^{6.1} (e^{-x^2} + x^3 - y^3 x^2 + 7) \tan^{-1}(x - 2) \sin(y + 3) dy dx$$

First, we define the function to integrate, f(x,y):

In **PRGM** Mode, enter under 67 ***LBL B** this 27-step program to define the function f(x,y) to be integrated:

67 ♦LBL B	72 -	77 CHS	82 +	87 x	92 x
68 STO 9	73 RCL 5	78 e ^x	83 RCL 5	88 RCL 9	93 RTN
69 3 70 y	$74 x^2$	79 X ↔ Y	84 2	89 3	
70 y ^x	75 x	80 -	85 -	90 +	
71 RCL 5	76 LSTx	81 7	86 TAN ⁻¹	91 SIN	

In RUN Mode, we'll specify RAD mode, 2 subintervals and SCI 4: RAD SCI 4 2 STO I

Now, enter the limits of integration and compute the integral:

-2.3 ENTER
$$\uparrow$$
 1.6 ENTER \uparrow 3.9 ENTER \uparrow 6.1 A 1.3213e03 FIX 2 1321.27 (all 6 places are correct)

Note: This is a particularly difficult example. First, f(x,y) takes 6 sec. to evaluate, which greatly increases run time. Second, the interval of integration is quite wide, which affects accuracy. Still, we *got* 6 *correct places* in reasonable time.

4.4 Example 4

Evaluate
$$I = \int_0^\infty \int_1^\infty e^{-x^2 - y^2} dy dx$$

First of all, we define the function to integrate, f(x,y):

In **PRGM** Mode, enter under 67 **FIBL B** this 8-step program to define the function f(x,y) to be integrated:

In RUN Mode, we'll specify 3 subintervals and FIX 4: FIX 4 3 STO I

Last, enter the limits of integration (replacing ∞ by 4, as f(4,4) < 1.27e-14), and compute the integral:

0 ENTER 4 ENTER 0 ENTER 4 A 0.7853 (exact is
$$\pi/4$$
 so we got 4 correct places despite the finite interval)

Notes

- 1. This program is included in Hewlett-Packard's Solution Book "HP-34C Matemática Avanzada" (Spanish)
- 2. This program is featured in my article "HP Article VA023 Long Live the HP-34C"

References

Francis Scheid (1988). Schaum's Outline of Theory and Problems of Numerical Analysis, 2nd Edition.

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is granted as long as the contents aren't modified in any way and the copyright is acknowledged.