SUMALT - Summation of Infinite Alternating Series

© 2019 Valentín Albillo

Abstract

SUMALT is a program written in 1979 for the HP-34C programmable calculator to quickly and accurately find the sum of infinite alternating series, even divergent ones (Euler sum). Three worked examples are included.

Keywords: sum, infinite alternating series, Euler Transformation, Euler sum, differences, programmable calculator, RPN, HP-34C

1. Introduction

SUMALT is a short (84 steps) RPN program that I wrote in 1979 for the $H P-34 C$ calculator (will also run as-is or with minor modifications in many $R P N$ models, such as the $H P-11 C$) which, given an infinite alternating series (i.e.: consecutive terms alternate signs) whose general term is defined by the user, it will compute its sum very quickly using the Euler Transformation up to $7^{\text {th }}$-order differences.

The program computes the sum S of a general infinite series:

$$
\boldsymbol{S}=y(0)-y(1)+y(2)-y(3)+\ldots=\sum_{i=0}^{\infty}(-1)^{i} y(i) \quad i=0,1,2, \ldots
$$

and it's most useful when the series converges very slowly to its limit sum, as for instance the series:

$$
S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots=\operatorname{Ln} 2
$$

Adding up to about 2000 terms would give only 3 correct places; getting 7 places would need millions of terms and it would take very long, increasing the accumulated error. On the other hand, this program will give the sum correct to 10 places in less than 1 min . It uses the Euler Transformation, replacing the original series by this one:

$$
S=\frac{1}{2} y(0)-\frac{1}{4} \Delta y(0)+\frac{1}{8} \Delta^{2} y(0)-\ldots
$$

where the $\Delta^{n} y(0)$ are the $\mathrm{n}^{\text {th }}$-order differences of $y(i)$, and the program will use up to $7^{\text {th }}$-order differences. This procedure is particularly effective for very slowly converging series and is applied not to the original series itself but to the result of subtracting the sum of its first \boldsymbol{n} terms, where \boldsymbol{n} is selected by the user.

The procedure goes like this: first, the user defines the series' general term under label \mathbf{B} (35 steps max.) , and then the program computes \boldsymbol{S}^{\prime}, which is the sum of the first \boldsymbol{n} terms (\boldsymbol{n} is user-specified), and forms a differences table, computing differences up the the $\boldsymbol{d}^{\text {th }}$ order $(1 \leq \boldsymbol{d} \leq 7)$:

```
\(y(n+1)\)
    \(\Delta y(n+1)\)
\(y(n+2) \quad \Delta^{2} y(n+1)\)
    \(\Delta y(n+2) \quad \ldots \quad \Delta^{3} y(n+1) \quad \ldots\)
\(y(n+3)\)
```

Now Euler Transformation is applied, which gives:

$$
S^{\prime}=\frac{1}{2} y(n+1)-\frac{1}{4} \Delta y(\mathrm{n}+1)+\frac{1}{8} \Delta^{2} y(\mathrm{n}+1)-\ldots
$$

and the original sum \boldsymbol{S} is then: $\quad \boldsymbol{S}=\boldsymbol{S}^{\prime}+\boldsymbol{S}^{\prime \prime}$.

2. Program Listing

01	4 LBL A	18	ISG	35	STO (i)	52	STO . 2	69	RCL (i)	- 84 steps
02	CF 0	19	FIX 4	36	ISG	53	- LBL 0	70	RCL 8	- uses registers $R_{0-} R_{.2}, R_{I}$
03	STO . 1	20	RCL . 0	37	FIX 4	54	RCL (i)	71	\div	- uses flag 0
04	$\mathrm{X} \leftrightarrow \mathrm{Y}$	21	RCL I	38	1	55	ISG	72	STO+ 9	
05	STO . 0	22	$\mathrm{X}<=\mathrm{Y}$	39	STO+ 8	56	FIX 4	73	2	- define the general term under
06	1	23	GTO 1 -	40	RCL . 1	57	STO- (i)	74	CHS	\triangle LBL B , 35 steps max.
07	STO 8	24	STO 8	41	RCL I	58	RCL . 1	75	STOx 8	
08	0	25	2	42	$\mathrm{X}<=\mathrm{Y}$	59	RCL I	76	ISG	- you can use register R.3 and up
09	STO 9	26	\div	43	GTO 2 -	60	$\mathrm{X} \neq \mathrm{Y}$	77	FIX 4	in your definition
10	STO I	27	FRAC	44	2	61	GTO 0 -	78	RCL . 1	
11	- LBL 1	28	$\mathrm{X} \neq 0$	45	F? 0	62	RCL . 2	79	RCL I	
12	GSB B	29	SF 0	46	CHS	63	STO I	80	$\mathrm{X}<=\mathrm{Y}$	- the symbols * and \downarrow are purely
13	RCL 8	30	CLX	47	STO 8	64	$\mathrm{X}=0$	81	GTO 4 -	cosmetic, to indicate branching
14	STO- 8	31	STO I	48	ABS	65	GTO 4 -	82	RCL 9	
15	STO-8	32	-LBL 2	49	-LBL 6	66	1	83	RTN	
16	x	33	RCL 8	50	-	67	GTO 6 -		\triangle LBL B	
17	STO+ 9	34	GSB B	51	STO I	68	$\bullet \underline{\text { LBL } 4}$			

3. Usage Instructions

Step 1: In PRGM Mode, define under 84 LBL B the sequence of steps (35 maximum) which defines the series' general term, $\boldsymbol{y}(\boldsymbol{i})$, where \boldsymbol{i} is in stack register X, and end it with RTN. The very first term corresponds to $\boldsymbol{i}=\mathbf{0}$. Do not define a sign for each term, it's assumed that it alternates between + and - .

Also, before keying in the general term's definition do not forget to delete the previous definition from program memory, if there's one, except for $84 \boxed{4 B L}$ B itself.

Step 2: In RUN Mode, enter the number of terms to sum initially, \boldsymbol{n} (integer ≥ 0), and the maximum order of differences to compute, $\boldsymbol{d} \quad$ (integer, $1 \leq \boldsymbol{d} \leq 7$):
\boldsymbol{n} ENTER $\boldsymbol{A}_{\uparrow} \boldsymbol{d} \quad \mathrm{A} \quad \boldsymbol{S}$ (sum of the series)

To try different values for \boldsymbol{n} and/or \boldsymbol{d}, repeat Step 2 above. To sum another series, go to Step 1 above.

Notes: $\quad-$ the values $\boldsymbol{n}=7$ and $\boldsymbol{d}=7$ are recommended for accuracy and speed, but \boldsymbol{n} can be >7, say $\boldsymbol{n}=10$

- both accuracy and running time depend on \boldsymbol{n} and \boldsymbol{d}
- Euler Transformation is most effective with very slowly convergent series, even divergent series can be treated this way and the formal result obtained is then called Euler Sum of the divergent series.

4. Examples

The following examples can be useful to check that the program is correctly entered and to understand its usage.

4.1 Example 1

Sum the infinite alternating series $S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\ldots$

First of all, we define the general term, which is $y(i)=\frac{1}{i+1}: \quad i=0,1,2, \ldots$

In RUN Mode, GTO B, switch to PRGM Mode and press $\mathbf{1}+1 / \mathbf{x} \mathbf{R T N}$, then switch back to RUN Mode.

We'll sum the first 10 terms $(\boldsymbol{n}=10)$, and compute up to $7^{\text {th }}$-order differences $(\boldsymbol{d}=7)$:
EIX 910 ENTER 7 A 0.693147182 (the exact value is Ln $2=\mathbf{0 . 6 9 3 1 4 7 1 8 1}$ so we got ~ 9 correct places)

4.2 Example 2

Evaluate $\quad \boldsymbol{S}=\frac{1}{2} \int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \frac{d \theta d k}{\sqrt{1-k^{2} \operatorname{Sin}^{2}(\theta)}}=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\ldots=\sum_{i=0}^{\infty}(-1)^{i} \frac{1}{(2 i+1)^{2}}$

First, we define the general term, $y(i)=\frac{1}{(2 i+1)^{2}}: \quad$ (we assume there are no program steps defined after $84 \square L B L B$)
In RUN Mode, GTO B, switch to PRGM Mode and press: $\mathbf{2} \mathbf{x} \mathbf{1}+\mathrm{X}^{2} \mathbf{1 / X} \mathbf{R T N}$, then switch back to RUN Mode.
We'll sum the first 8 terms $(\boldsymbol{n}=8)$, and compute up to $7^{\text {th }}$-order differences $(\boldsymbol{d}=7)$:
ENTER 7 A 0.915965595 (the exact value is $\mathbf{0 . 9 1 5 9 6 5 5 9 4}$, so we got ~ 9 correct places again)

4.3 Example 3

Evaluate the Euler Sum of the divergent series $S=1-2+3-4+5-\ldots=\sum_{i=0}^{\infty}(-1)^{i}(\mathrm{i}+1)$

We define the general term, $y(i)=i+1: \quad$ (we assume there are no program steps defined after $84 \rightarrow L B L B$)
In RUN Mode, GTO B, switch to PRGM Mode and press: $\mathbf{1} \boldsymbol{+}$ RTN , then switch back to RUN Mode.
We'll sum no initial terms $(\boldsymbol{n}=0)$, and compute only the $1^{\text {st }}$-order differences $(\boldsymbol{d}=1)$:

0 ENTER 1 A 0.250000000

This is a divergent series so it has no sum, but consider the function $y(x)$ and its Taylor Series Expansion:

$$
y(x)=\frac{1}{(x+1)^{2}}=1-2 x+3 x^{2}-4 x^{3}+\ldots
$$

The expansion is valid only for $\operatorname{Abs}(x)<1$ but if we let $x=1$ anyway both members become:

$$
\frac{1}{(1+1)^{2}}=\frac{1}{4}=0.25=1-2+3-4+\ldots
$$

Notes

1. This program is included in Hewlett-Packard's Solution Book "HP-34C Matemática Avanzada" (Spanish)
2. The program runs as-is in the HP-11C and it's featured in my first article "HP Article VA001-Long Live the HP-11C"

References

Francis Scheid (1988). Schaum's Outline of Theory and Problems of Numerical Analysis, 2nd Edition. Valentín Albillo (1979). HP Article VA001 - Long Live the HP-11C

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is granted as long as the contents aren't modified in any way and the copyright is acknowledged.

