AMORT - Loan Amortization Schedule

© 2019 Valentín Albillo

Abstract

AMORT is a program written in 1979 for the HP-34C programmable calculator to generate either a complete amortization schedule showing each period of a fully amortized loan or a partial schedule between two given periods. One worked example is included.

Keywords: amortization, loan, schedule, partial, programmable calculator, RPN, HP-34C, HP-92 Investor, financial calculator

1. Introduction

$A M O R T$ is a short (70 steps) RPN program that I wrote in 1979 for the HP-34C calculator (will also run as-is or with minor modifications in many $R P N$ models), which generates a complete amortization schedule showing each period in a fully amortized loan, displaying the amount paid in interest, paid to principal, and the remaining balance. Last, it displays the remaining balance on the loan and the total amounts paid to principal and interest.

It can also display a partial schedule between two given periods or even for just one. It essentially duplicates the Loan Amortization Schedule functionality of Hewlett-Packard's HP-92 Investor financial desktop calculator.

2. Program Listing

01	\triangle LBL A	15	STO	0	29	PSE	43	$\mathrm{R} \uparrow$	57	y^{x}	- 70 steps
02	STO 3	16	STO	6	30	FIX 2	44	PSE	58	STO 5	- uses registers $R_{0}-R_{6}, R_{I}$
03	$\mathrm{R} \downarrow$	17	-LBL	0	31	RCL 2	45	ISG	59	1	
04	STO 2	18	RCL	I	32	$R \uparrow$	46	GTO 0 -	60	STO- 4	- all PSE instructions may be
05	R \downarrow	19	INT		33	$\mathrm{R} \uparrow$	47	RCL 6	61	-	replaced by $\boldsymbol{R} / \mathbf{S}$ instructions
06	STO 1	20	STO	4	34	PSE	48	PSE	62	RCL 1	or print statements. See Note 2
07	RTN	21	GSB	1 -	35	STO+ 6	49	RCL 0	63	\div	
08	\triangle LBL B	22	ENTE		36	$X \leftrightarrow Y$	50	RTN	64	RCL 2	- the symbols \bullet and are purely
09	EEX	23	GSB	1 -	37	$\mathrm{R} \downarrow$	51	- LBL 1	65	x	cosmetic, to indicate branching
10	3	24	-		38	-	52	RCL 1	66	RCL 3	
11	\div	25	RCL	2	39	PSE	53	1	67	+	
12	+	26	+		40	STO+ 0	54	+	68	RCL 5	
13	STO I	27	RCL	I	41	$X \leftrightarrow Y$	55	RCL 4	69	\div	
14	0	28	FIX	0	42	LSTX	56	CHS	70	RTN	

3. Usage Instructions

1) Input i\% (annual interest rate), PMT (annual mortgage payment) and $\mathbf{P V}$ (amount of loan):

$\mathbf{i \%}$ ENTER \uparrow PMT ENTER \uparrow PV A $i \%$

2) Input $\mathbf{P} 1\left(1^{s t}\right.$ period of the schedule) and $\mathbf{P} \mathbf{2}$ (last period of schedule) and start the amortization schedule:

P1 ENTER ${ }_{\text {F }}$ P2 \quad B \quad... the amortization schedule starts and outputs the following:
For each period $\mathbf{P}_{\mathbf{k}}$ from $\mathbf{P 1}$ to $\mathbf{P 2}: \quad \boldsymbol{P}_{\boldsymbol{k}} \quad$ Period
INT Interest amount
PRN Amount paid to principal
BAL Remaining balance
Finally, it outputs: Σ INT Total amount paid to principal
$\Sigma \boldsymbol{P R N}$ Total amount paid to interest

Notes: - all values must be positive; the interest rate $\mathbf{i} \%$ must be entered thus: $\mathbf{9 \%}$ as $\mathbf{0 . 0 9}, \mathbf{1 4 8 \%}$ as $\mathbf{1 . 4 8}$, etc.

- for a single period, just input $\mathbf{P 2}=\mathbf{P} 1$ (the totals $\Sigma I N T$ and $\Sigma P R N$ are then redundant).
- to produce the schedule for other periods, there's no need to re-input $\mathbf{i} \%, \mathbf{P M T}$ and $\mathbf{P V}$ if they don't change because they're kept unaltered by the program. Else, repeat step 1 above to input the new values.

4. Examples

The following example, adapted from a typical HP-92 Investor brochure, can be useful to check that the program is correctly entered and to better understand its usage.

4.1 Example 1

An investor receives a loan of $\$ 100,000$ for 20 years at 9% annual interest, which results in an annual mortgage payment of $\$ 10,954.65$. Generate an amortization schedule for the first 3 years, then for the $15^{\text {th }}$ year.

0.09	(i\%)	ENTER \uparrow	10954.6	(PMT)	ENTER \uparrow	100000 (PV)	A 0.09 (i\%)
1	(P1)	ENTER \uparrow	3 (P2)	B	1	P	Period 1
					9000.00	INT	Interest amount
					1954.65	PRN	Principal amount
					98045.35	BAL	Remaining balance
					2	P	Period 2
					8824.08	INT	Interest amount
					2130.57	PRN	Principal amount
					95914.78	BAL	Remaining balance
					3	P	Period 3
					8632.33	INT	Interest amount
					2322.32	PRN	Principal amount
					93592.46	$B A L$	Remaining balance
					26456.41	$\Sigma I N T$	Total amount paid to interest
					6407.54	Σ PRN	Total amount paid to principal
15	(P1)	ENTER \uparrow	$(P 2=P 1)$	B	15	P	Period 15
					4422.74	INT	Interest amount
					6531.91	PRN	Principal amount
					42609.69	$B A L$	Remaining balance
					4422.74	$\Sigma I N T$	Total amount paid to interest (redundant)
					6531.91	$\Sigma P R N$	Total amount paid to principal (redundant)

Notes

1. This program essentially duplicates the HP-92 Investor's AMORT functionality, albeit perhaps less accurately.
2. The PSE instructions at steps $29,34,39,44,48$ may be duplicated to make the output stay longer on the display or better still, they might be replaced by \mathbf{R} / \mathbf{S} to make the program stop at each output and have ample time to write it down, then simply press R/S to continue. If using a printing model, the PSE instructions might be replaced by printing statements.

References

Hewlett-Packard (1988). HP-92 Investor financial desktop calculator brochure.

Copyrights

Copyright for this paper and its contents is retained by the author. Permission to use it for non-profit purposes is granted as long as the contents aren't modified in any way and the copyright is acknowledged.

