

Notes on the back story of this letter:

 I sent this 9-page letter to John McGechie on Sept, 27 (1980) to thank him and the members

of the PPC Melbourne Chapter for their extremely warm welcome and enthusiastic reception of my

materials, which I began to submit to them as well after growing fed up with Richard Nelson's

continuous disregard and complete silence. In stark contrast, the Australian people were warm and

appreciative and, most importantly, they did communicate with me very extensively and on a regular

basis, while Mr. Nelson never ever sent a single word on anything, be they my submittals, questions,

comments, proposals, news, requests, whatever. Melbourne's PPC was heaven in comparison.

 The letter continues with comments re the PPC Jul/Aug issue's materials (which included

some Mr. Nelson grabbed directly from Melbourne's Technical Notes) and on his alleged disapproval

of TN publishing materials previously submitted to him (even if he chose not to publish them, talk

about dog in the manger !), as well as comments on the materials selected (or not) for the PPC ROM.

Additionally, I also comment on the article I sent to PPC which was censored because of PRIVATE,

and possible "culprit party" for that censorship.

 After some comments on two Solutions Books written by me and my friend Fernando del Rey

which HP Spain intended to publish locally, I include and detail my own attempt to improve on John's

b2 routine (using my approach discussed in a previous letter) which indeed did result in working code

but John's original approach was still better.

 Finally, I include the following materials: (1) RP, an HP-41C program to automatically find

all roots of a polynomial equation of arbitrary degree (limited only by available memory) with real

and/or complex coefficients, in a completely global fashion (i.e., no initial approximations required)

and callable as a subroutine from other programs (I had previously sent RP to Mr. Nelson for

publication in PPC CJ but just in case he would silently ignore it as usual, I didn't want to have its

publication indefinitely delayed); (2) an HP-41C fast implementation of an N-level RPN stack

including all the usual functions, with N limited only by available memory, and (3) an autolearning

HP-41C game, "Even Wins", which plays better and better the more you play against it.

 Last, I mention my programs to be submitted next to the Melbourne Chapter, including

least-squares N-variable linear regression or Nth-degree polynomial regression, NxN-matrix 2-level

RPN stack with the usual matrix operations, plus Checkers and Chess 5x5 coming soon.

 Valentin Albillo, 14-02-2022

John McGechie

Philosophy Department Valentin Albillo
Monash University Padre Rubio, 61- 29 C
Clayton, Victoria Madrid 29
AUSTRALIA , 3168 SPAIN

Sept, 27

Dear Johns

First, notice I follow your suggestionss: a
small envelope, and the letter is entirely written as if it we-

re to be submitted to PPC: one side printing, 14 cm wide (the
edges ‘have been chopped off, to reduce weight). Your letter da-
ted 17th arrived just today: I was beginning to bslieve you had
forgotten me, you see. Glad to hear all my letters arriveds by
the way, the letter containing PPC Technical Notes did also -
arrived in an envelope opened along one edge, it should be a =
new fashion ! Very happy to hear my material is of any use to—
some of you. I whishto thank you, each and everyone of you,for
accepting me as a member of your Chapter, I°1ll try to do my best

at this distance (over 20,000 Km!) to deserve such an honore I
specially whish to thank Brnie Gibbs and Richard Kuhoutek (right
spelling?) for typing some of my programs: from now on, I will
either type the programs in this format 14 cm wide, or send the
best quality photocopies I could afford, so as to avoid any sub~-
sequent retyping.

Some comments about Jul/Aug issue of PPC: I no-
tice the pages full of reports of the Melbourne Chapter, it is

wonderful to see theome all good news being shared with the whole
membership. In fact, Richard todk some material from PFC TN,the
AN routine for example. I don‘t see why you suspect Richard does
not approve your publishing material previously sent to him, he
seems to publish even things not submitted to him ! On the other
hand, Richard should be happy of having so much material contri-
buteds you should know by now that every number of PPC journal
reflects the knowledges and discoveries of several months ago,
8o quite a lot of published material is obsolete by the time of
its publication. PRC TN seemg to have avoided this problem, pu-
blishing the hottest news, so I don’t see why Richard. would ha-
ve nothing to objects for instance, I sent him the Othello pro-
gram several months in advance, about two months before I sent
it to you, however, it seems that it will be published in PFC TN
and not in PPC CJ; if Richard has the material, but does not ma-
ke use of it, why would he object others publishing it ?

Another comments The columm R PROGRESS in V7
N6 P32 (jul/Aug iss) features a proposal for the contents of -
the Synthetic Programming Group for the Custom ROM. It includes
3 of my routiness the Byte Counter, Display Test, and Flag re-
set. I feel two others should be included as well, namely the
Clear Assignments (it is shorter than the versions published ,
although I have yet to test overall performance of those other
versions),and the sigma finder, (also curtain finder, etc),but
this is irrelevant. What is certainly inadmissible is that your
routines AN & little b2 Wwere not included in the list 11!

Nows I feel that you must do something ! Those
routines are most useful. In fact, after having your AN, I have
never used DECODE: your routine is so much shorter and faster,
that it should be preferred. I don‘t object to DECCDE being in=-
cluded in the ROM, it has to, but your routine AN is a must.
The same is valid for your b2s it is far more convenient than
the B2 routine from Wickes included in that liste. Your b2 is
faster (B2 uses DECODE as subroutine) and more convenient to

use, because it does not require the decimal address of the fé_g)
register in which the NNN is to be stored, but rather a simp
program pointer address, easily obtained via RCL b, I‘ve tried
to program a little b2 in the other way I told you in a previous
letter, but to no purpose, yours is better. See my attempt later.

Resuning, please, do something ! Your routines are
so useful that the ROM will be enhanced if they are included,I’ll
write to PPC asking for them. Also, another miss is the B3 routi
ne published in (I think) the May issue of PPC, or a similar one.
It seems obvious that a routine to set or clear any flag is nee-
ded, and I can’t see why the B3 is not in the list.

Another comments my "Universzl Byte jumper!" was -
finally published in the Jul/Aug issue, and the point (5) was
deleted, as expected (the method of brezking PRIVATE using just
STO b, RCL b)e However, Richard forgot (?) to also suppress the
header, in which I mentioned the possibility of breaking PRIVATE
that way, and several PRC members got my address (I can’t figu-
re out how!) and wrote me asking for the method.Most noticeably,
Mr. A.C. Collinson, who works for HP in the United Kingdom. I
was told by some HP psople that Richard and HP made an agreemeni
in the sense that PPC would not publish any information concer—
ning PRIVATE. I really don“t believe it, but , do you think that

it is possible ? Anyway, I think the easiest method to break
PRIVATE is using the Wickes” Byte jumper, though I°ve not tried
it yet. Are you going to publish methods to boreak PRIVATE in

PRCIN ?
Concerning the bodks "HP=34C Advanced Math" & '"HP-

41c Agvanced Math", I°1l send you a copy as soon as I can get
them. I have a copy of each, but it is easy to get HP to give
me another two. They are the same format as the rest of the So-
lution Bodks for the 41c. Remember they are written in Spanish.
The book for the 41c will include bar codes (my copy does not
include bar codes, but it is a pre-production copys future co-
pies will include bar codes, possibly printed in Spain ! I'm
working in a program for the HP=85 to print barcodes via a pe-
ripheral plotter, and it works). Can you suggest a way to send
them safely, so they will arrive to your hands in a good condi-
tion ? Large envelope ? flat box ? Any ideas ?

Here is my attempt to improve your b2:

IBL'"b2" Oy - IBL 01 INT
CLA Q01 "RREN"®" SO M HMS
() M 16 RCL ¢ down 16
"123456" MOD R up "eewmTLY %
N LASTX ASTO ¢ RCL M RCL M
7 %2 STO IND Z FRC +

% Oy 10 END
X() ¥ + STO ¢ =
XEQ 01 192 RTN x) M

it works the same as yours, NNN in ¥ and Rb in X, but it is
90 bytes, 44 lines, while yours is 36 lines, 89 bytes. Besides,
yours is faster. So I was wrong, and your method is better.
Pirst text is F501690CO0BF. The 2nd is F6TFOO00000001

I have heen working in several programs. I°ve put
aside synthetics (momentarily, don’t fear!), and set the task
of writing some programs. Of course, those programs could use -
synthetic functions, but, as they are written to be published
later by HP, synthetics are out of the question. Here included

are several programss

1) Roots of polynomial equations s this program solves an equa-
tion of any degree, with real and/or complex cosfficients.The
program finds all its n roots, real or complex. No initial -
approximations are requireds only input are the coefficients

N
and the degree. Qutput are all n roots. The program can solve
equations of degrees 1 thru 132. It fits and runs in a basic ma-
chine (up to 5th degree without modules, up to 36th degree using
just one module).The roots are also stored, and are output once
all of them have been computed. As they are stored, it may be -
used as a subroutine, simple delete tha input-output parte An =
example of a program requiring root finding of polynomials is =
filter design program. This one is optmized to run as fast as -~
possible and not take more than 300 bytes (298, in fact). Hope
yvou (and other members as well) will like it. It is typed 14 cm
wide, so it must be easy to use without retyping. Notice the -

IBL 03 subroutines it performs the multiplication of two complex
numbers using just the stack, and no P-R or R-P conversion, 1o
save time; it should be useful in any program requiring multi -
plication of complex numbers.

2) n-th level RPN stack s this program simulates a RPN stack of
n registers, where n is chosen by the user. It includes CL,
+y=y%,/ENTER,LASTX ,PI,RCL,Rdown,X()Y,etc. (of course, STC is
the normal STQ). The stack may be of any number of levels,
not just the 4-level stack built-in. It should be good for
all those peopls who want 5-level stack, etc. This one is -
the answer to their problems, isn’it ?

3) Even wins , a games it is a much optimized version of a game
I saw written in BASIC. It seemed good, so I todk the work
of translating it to RPN. See the rules in the enclosed lis-
ting. The game is most remarkable, because the computer (41c)
starts knowing just the rules of the game, but it learns as
it plays, and soon plays hetter than the user (similar to
hexapawn programs published here and there, only this game is
much more complex, and its strategy is not at all trivial).
After 20 games in a row, the program is very hard to defeat.
The better you play, the faster it learms to play well. The
learning strategy is simple, but quite good.

This would suffice by nows it it already too much for such a -
small envelope ! It almost does not fit !

By the way, here are some programs I am working on just nows

N-variables least-squares linear regressifén: given any number
of data points, finds the coefficients of the least-squares
linear resressién of n variables. Can also find the n-th degree
least-squares polynomial to fit the data. This is, not just 1li-
near regressibn, or cuadratic regression, but n-th degree regres
sion! Any member interested in Statistics will love this one,
The program is alreadywritten, I°11l send it in my next letter.

NxN matrix operationss simulates a 2-level RPN stack of NxN ma-
trices, so allowing chaining of operations. Includes input,out-
puty+,—,%,inverse, etc. Allows easy handling of NxN matrices.
Such things as 3M3-2M24+8T where M is a given 10x10 (say) matrix
or P~1.Q.P, where P,Q are 8x8 matrices, are trivial. Almost fi-
nished, only a little debugging is still needed.

I‘m also writing a program that plays checkers
against the user, and still another that plays chess in a 5x5
board (Each side has the king, a queen, a rock, a bishop,a knight
and 5 pawns) and includes all standard chess rules, except cast-
ling and capture '"en passant". I already have the complete flow-
chart, and am in the phase of actually writing 41c code for it.

That’s all. Please, sent me information about
the "42-c" and the TI machine, and, if possible, a brochure of
the Sharp handheld computer. Waiting for your newss

Yours

ROOTS OF POLYNOMIAL EQUATIONS - R/C COEFFICIENTS

This program finds all n roots, real and/or
complex, of any given equation of degree ns

n n=1 2
P(z) = cz +0C,.z +ese 402 +cCz +C=0

where the coefficients, c; are of the general forms c; = aj +bii

this is, they are complex coefficients., Of course, the particu -

lar case of real coefficients is included, simply all bi are O.

The program finds automatically all n roots

of the equation., The roots are of the general forms zj = uj +vii

if the root is real, v = 0 .

No initial approximations are needed, simply

enter the coefficients and go have a cup of coffee. All roots -

will be computed to 10-digit accuracy, and stored as well. The

roots are displayed after you press R/S, so you”ll have all nee-—

ded time to write them down.

CHARACTERISTICS
The program is 177 lines, 298 bytes long. It -

requires a minimum size 2n+11 to solve an equation of degree ne.

If you have no modules, you can solve up to a 4th degree equa -

tion (if you use the .END., and supress the alpha label, up to

5th degree is posible). Having modules, the following appliess

1 module - up to 36th degree
n modules—up to (32n+4) deg.

so, the rangs is 1(=n(=132 . Roots are stored, so this program
may be used as a subroutine of another main program requiring

the zeros of a polynomial (filters, perhaps) by simply supressing

the input-output routines. See listing for details.

The execution time is quite fast, but for lar

ge n, it should be long. Bach time flag O is set (watch indica-
tor), a root has been found, and the search for another root be-

ins. The program first calculates the n-th root, then the -

ffi—1)th one, up to the 1st one. If you want to review which root

is being computed at a given moment, simply R/S, VIEW 00, will
display the number of the root being calculated. Then R/S to re-
sume the computation.

The program uses Newton‘s method to find each

root, starting from a program’s selected initial approximations

z =2z =¥z)/P(z.) , where the subscripts denote the next
n+1 n n n S

approximation,

P(Z) = cnzn"’cn_‘]zn-1+.oo+c1z+co

P*(z)= ncnzn'1+(n-1)cn_1zn'2+...+2022+c1

Once a root has been found, deflation is used (bty means of
Homer’s schems) to remove the root from the equation, so it is
reduced by one degree, and the search for another root begins.

As the degree decreases hy one (or two if coefficients are real
and the root is complex) every time a root has been found, the
following root takes usually less time to compute.

Every iteration includes about n+2 complex

multiplications and 1 complex division (not to mention +,-=).
IBL 03 performs the multiplication of two complex numbers c4,C2)

leaving the result in X,Y, and uses only the stack. It does not

use R-P or P-R, so as to be as fast as possibls.

HOW TO USE ; the equation is cpz™ + oy1277T+ecedcyz + 05 = O
where Ck=ai+bi

~get SIZE 2n+11 minimum, where n is the degree, of course.
-XEQ "RP" + N? , key in the degree of the equation
n R/S 9An=? , key in An (real part of o)

a8, R/S » Bn=? , key in Bn (imag.part of c,)

b, R/S ¥ An-1=? , keep on introducing all coefficients...
ace 3 Bf=? , enter the last coefficient
by B/S ¥ the compytation begins , every time a root is found,

you’ll see the O indicator tum on. After a while,
all roots are computed and stored, the output takes
places

(veep) > ROCT 1 9 U=real part of z4
R/S ¥ V=imag part of z4

R/S Y ROOT 2 » U=real part of z,
R/S ¥ V=imag part of z»

oo e s o e ooveoede o0 o ee

< ROOT n # U=real part of zn
R/S » V=imag part of z,
R/S » 0.00n-1

~for another equation, go back to the beginning.
-remember, z. = U+ Vi i . If the root is real, v, is either O

or very close to 0, say ZE~9 or so.

if your equation has only real coefficients, enter all b; as O

HARNINGS s —convergence is not guaranteed. It may be possible -
for the program to never find a root.However, I ha—-

ve been unable to find such a case: all tested cases up to date
were solved successfullye. Convergence is quadratics once a good
approximation is found, the number of exact digits doubles on

every iteration.
~miltiple roots will take much longer to compute,and

the accuracy will get worse. For instance:

x2 + 4x + 4 = O gives (2 min.26 sec), zq =2.0000005-0.0000004
(double root, zy=z5==2) ' Zy =1.9999995+0.00000041

2343x%+3241=0 (7 min.48 sec) , zy= =1,0004717~3.9996900E=8 1
zo= =0.9997642+0.0004079 i

(triple root, zq=zp=z3==1) z3= —0.9997641-0.0004079 i

EXAMPIES s 1) Find all roots of the following equations

(2+81) 26+(3+01) 294(=1+21) 24+(04+21) 23+ =3=31) 224(1421) z#+{ =2431)=0

9the degree is 6, so SIZE 23

n
o
u

> XEQ "RP" 3 N? , 6 R/S > A6=? , 2R/S »B6=? , 8 R/S » A5=?
3R/S +B5=? , OR/S 9+ AM=?, =1 R/S 3 B4=? , 2 R/S + A3=?
OR/S +B3? , 2R/S % A2=? , =3 R/S » B2=? , =3 R/S & A1=?
1R/S+B1=? , 2R/S »A¢=? , -2 R/S 3BF=?, 3R/S >
computation takes place. After 8 min. you get:

2 ROOT 1 & U==0.9724260 , R/S » V= 0.3032192 , R/S &
» ROOT 2 & U==0.0715576 4 R/S 3 V= 1.1235559 , R/S >
3 ROOT 3 9 U= 0.0323977 , R/S ¥ V=—=0.8883400 , R/S 3
> ROOT 4 + U= 0.5688927 , R/S ¥ V= 0.5464170 , R/S >
» ROOT 5 + U= 0.8266036 , R/S > V==0.3541840 , R/S 3
3 ROOT 6 & U=—0.4721457 , R/S 3 V==0.37T7269 , R/S 9 0.0050000

2) Solve 5x0 —ax? -3x4 4823 4822 =2x 47 = 0
ydegree 6, SIZE 23, as before
9 XEQ "RP" 3 N? , 6 R/S 9 A6=? , 5 R/S »3B6=? , O R/S 9 AS5=?
-4 B/S ¥ B5=? , O R/S » A4=? , =3 R/S 3 B4=? , O R/S > A3=?
8R/S> B3=? , OR/S HA2=? , 8 R/S 9B2=? , O R/S 3 A1=?
-2R/S ¥ B1=? , O R/S > A=? , 7 R/S +Bg=? , O R/S >

after just 5 minutes, you get:

3 ROOT 1 ¥ U= 1.1936146 , R/S < V==0.8739372 , R/S
> ROCT 2 & U= 1.1936146 , R/S > V= 0.8739372 , R/S >
< ROOT 3 9 U= 0.1940332 , R/S » V=0.6858876 , R/S
3 ROOT 4 » U= 0.1940332 , R/S » V= 0.6858876 , R/S >
» ROOT 5 9 U==0.9876477 , R/S > V==0.5325453 , R/S =+
» ROOT 6 9 U==0.9876477 , R/S ¥ V= 0.5325453 , R/S 3 0.0050000

Happy programming, folks 1!

VALENTIN ALBILLO (4747)

ROOTS OF POLYNOMIAL EQUATIONS - R/C COEFFICIENTS

01 IBL'RP"
02 FIX O
O3 CF 29
04 ”N?"

05 PROMPT
06 STO 00
07 STO 03
08 9.008
09 +

10 STO 01
11 3T0 05
12 RCL 00
13 ST+ X
14 10
15 +

16 STO 02
17 STO 06
18 IBL 05
19 HAH

20 ARCL 03
29 "p=2n

22 PRQVPT
23 STO IND 05
24 II'B"

25 ARCL 03
26 n',g?n

27 PROMPT
28 STO IND 06
29 DSE 03
30 x()Y
31 DSE 06
32 DSE 05
33 GTO 05
34 RCL 03
35 LBL 06
36 CF 00
37 CHS
38 sTO 04

39 FIX 2
40 RND
41 PIX 6
42 X#0?
43 GTO 01

registers:s

00=n

O1=add. an

02=adde bp N
03=r.p. of z
04=i.p. of z

O5=aux.(ang
06=auo(bn

44 SIGN
45 STO 04
46 1BL 01
47 RCL 00
48 STO 08
49 SF 01
50 XEQ 11
51 R-P
52 1/X
53 STO 07
54 X()Y
55 CHS
56 STO 08
57 CF 01
58 XEQ 11
59 RCL 08
60 RCL 07
61 P-R
62 XBQ 03
63 ST- 03
64 x()Y
65 ST- 04
66 RND
67 X#0?
68 GTO 01
69 x()Y

7 1
76 ST+ 05
T1 ST+ 06

78 1 E=3
79 ST+ 01
80 RCL 03
81 STO IND 05
82 RCL 04
83 STO IND 06

84 DSE 00
85 GTO 06
86 BEEP

09=a5 (up)
10=a1 (uy-q)

n+9=an §§n;
n+10=bo (W
n+11=d, (vyy)
o0 e oo o 00

OT=auxiliar 2h+10=b, (by)
08=auxiliar

remarks g typical running timess n=6 , 5 min
n=10,14 nin

ESESEssEsEsmssmmm

87 RCL 01
88 T
89 10
90 -

91 1 E3
92 /
93 ST=- 05
94 IBL 10
95 1I3G 00
9 IBL 14
97 HRwI\ e

98 FIX ©
99 ARCL 00

100 AVIEW
101 PSE
102 "IJ:"

103 FIX 7
104 ARCL IND 05
105 PRQMPT
106 |rv=|l

107 ARCL IND 06
108 PRQMPT
109 DSE 06
110 DSE 05
111 GTO 10
112 RTN
113 IBL 11
114 RCL 01
115 STO 05
116 RCL 02
117 STO 06
118 FC? 01
119 GTO 13
120 1 E=3
121 ST+ 05

122 IBL 13
123 RCL IND 06
124 RCL IND 05
125 FC? 01
t26 GTO 02
127 RCL 08
128 ST= 2
129 =

real parts
of coeff,
(& roots)

imag. parts
of coeff.
(& roots)

R; 3 8 min gc;
R

130 DSE 08
131 GTO 02
132 RIN
133 LBL 00
134 RCL 04
135 RCL 03
136 XEQ 03
137 RCL IND 05
138 FS? 01
139 RCL 08
140 FS? 01
141 =
142 +

143 FS? 00
144 STO IND 05
145 X()Y
146 RCL IND 06
147 FS? O1
148 RCL 08
149 FS? O1
150 =
51 +
152 FS? 00
153 STO IND 06
154 X()Y
155 FS? 01
156 DSE 08
157 1BL 02
158 DSE 06
159 DSE 05
160 GTO 00
161 RIN
162 1BL 03
163 STO L
164 RS
165 ST Y
166 X() 2
167 ST= 2
168 A
169 ST= Y
170 ST L
171 X() L
172 RA
173 -
174 RIN

175 +
176 RA
177 END

177 lines

298 bytes
SIZE 2n+11

322 min (C

VALENTIN ALBILLO (4747)

RPN STACK OF N IEVELS (by Valentin Albillo) (4747)

01 IBL"STKN" 41 RCL 12 81 RTN 121 RTN
02 "W=2" 42 + 82 IBL 03 122 LBL"/N"
03 PRQVPT 43 xX() 11 83 FS2C C4 123 XEQ 03
04 11 44 STO L 8 CF 22 124 /
05 + 45 RIN 85 FS7C 22 125 RTN
06 1 E3 46 .012 86 RTY 126 LBL"/N"
o1/ 47 ST+ 12 87 1s¢ 1 127 X&Q 03
08 13 48 RIN 88 GTO 10 128 YA
09 + 49 RTN 89 RCL 11 129 RTN
10 STO 11 50 LBL 07 90 FRC 130 LBL"IX"
11 13.012 51 Fs2C 04 91 13 131 ZEQ 07
12 STO 12 52 CF 22 92 + 132 LASTX
13 XEQ"CIN" 53 FC?C 22 93 STO 11 133 RTH
14 "READY" 54 GTO 06 94 RIN 134 LBL"PI"
15 PROMPT 55 X()Y 95 LBL 10 135 XEQ 07
16 LBL"XY" 56 XEQ 06 96 RCL IND 11 136 PI
17 FS€ 04 57 X()Y 97 X() D 12 137 RIN
18 CP 22 58 IBL 06 98 RCL 11 138 IBL"CIN"
19 FS?C 22 59 I5G 11 99 FRC 139 XBEQ 01
20 GTO 10 60 ISG 12 100 RCL 12 140 CLST
21 X() IND 11 61 GgTO 02 101 INT 141 CF 04
ggrgblrl o 2291‘0]1@11 102 + 142 CF 22

BL 1 3 RIN 103 STO 11 143 LBL 05
24 XEQ 06 64 1BL 02 104 RIN 144 STO IND 11
25 x()Y 65 13,012 105 x()Y 145 DSE 12
26 RIN 66 STO 12 106 DSE 12 146 DSE 11
27 IBL"RD" 67 RIN 107 DSE 11 147 ISG 12
28 XEQXY" 68 LASTX 108 GTO 01 148 GTO 05
29 DSE 12 69 x() 11 109 RIN 149 RTN
30 DSE 11 70 FRC 110 IBL"+N" 150 IBL"RCIN"
31 GTO 01 71 13 111 XEQ 03 151 XeQ 07
32 RTN 72 + 112 + 152 '"RCL __"
33 IBL 01 73 X() 11 113 RIN 153 AVIEW
34 LASTX 74 STO L 114 IBL"-N" 154 LBL 04
35 x() 11 75 RIN 115 XEQ 03 155 PSB
36 FRC 76 STO IND 11 116 - 156 FCC 22
37 ST0 12 77 BTN 117 RTN 157 GTO 04
38 1 E3 78 LBL"ET" 118 ILBL"aN" 158 RCL IND X
39 = 79 XEQ 07 119 XBQ 03 159 END
40 x() 12 80 SF o4 120 %

44+t+bbbbbbA

Characteristics .- This program simulates a n-level RFN stack,
this is, a stack with n registers (not just the 4 registers of
the standard, built-in, 4-level stack). The value, n, is chosen
by the user, and is limited only by available memory. Several
functions are provideds ENTER,X()Y,RIN,CLST,+,—,%,/,y%,LASTX,
PI,and RCL. The rest of the functioms are the built-in func—
tions, for instance, STO is the built-in STO, SQRT ,SIN,etc.

The program is 159 lines, 343 bytes. It re-
quires SIZE n+12 for a n-level stack. All operations are very
fast, even for large n, so the program may be used as easily
as if it were the standard 4-level stack. All functions are su-
prosed to be asigned to keys for its execution in USER modes

is assigned to 41 (ENTER), RD (RIN) to_ 22 (RIN)ET EENTER)

AU to 61
to 81 / s PI to =82 (PI)

RCIN (RCL) to 34 (RCL), XY (X()YS

H' <1(=) to 51 (=), =(=) to 71 (x),
CIN (CLST) to -21 (CLTL),
to 21 (X()Y),A to =12(y¥)

The stack behaves exactly like the original
ones it 1lifts and performs the same, register duplication, eto,
but for a minor detailiRCL after ENTER does not overwrite the
nunber in X, but the stack is lifted. This has been done inten-
tionally, but can be changed to the overwrite mode easily.Ex -
cept for this sequence, all other functions performs as you -

would expect, the upper register replicates each time the stack

drops because of a two-number operation, etc.

RCLN,when exccuted, prompts for an argument
with the standard RCL _ _, and the program stays in a PSE loop,
waiting for you to enter the argument for the desired register.
This can be O thru 10 (both included) and n+12 upwards, where n
is the number of levels of your stack. So, when using ST0, remem-
ber that you have registers 0O thru 10 and n+12 upwards for your
use., R11,R12 are used as scratch, and R13 thru R(n+11) are used
to store part of the stiack,

Instructions.~ make all the neccessary assignments, set USER mode

-use the stack as normal: first, XEQ "STKN" < N=7?
-enter the desired number of levels: n R/S » READY
-from now on, think of the 41c as a n-level stack machine, and -
execute desired functions accordingly. Take into account that
ST0 should be used only with addresses 00 thru 10 and n+12 up,
and the same is true for RCLe. The argument for RCL is entered
during a pause. RCL after ENTER does not overwrite X, but lifts

the stack first,

EXAMPIRS 3 We want a 5-level RPN stacks set USER, FIX 2

XEQ "STKN" 3 N=? , 5 R/S < READY
1 ENTER 2 ENTER 3 ENTER 4 ENTER 5 RIN » 4.00, RIN » 3.00,
RIN & 2.00 , RIN & 1.00, RIN » 5.00 (the 5 levels have been -
Shm) ’ X > 20.00, + > 23000 9 X()Y > 2000, X()Y » 23000,

RIN » 2.00, RIN » 1.00, RIN » 1.00, RIN » 1.00, RIN ¥ 23,00 ,

(the upper register has replicated as the stack dropped),

LASTX » 20.00, / 9 1.15, STO 03 > 1.15, ® > 2.30, PI > 3.14,
+ 9 5.44, RCL 9 RCL _ _, 3 %1415, y~ ¥ T+02, CLE » 0.00

so, you see, it is as easy to use as if it were the normal
stack. Now, let’s compute an example taken from TI adds:

Compute 1 + 2 = 2.5(3/7) = ?

~-if we want to key in the problem left-to-right, we need a
5-level stack (minimum)s

XEQ"STKN" » W=? , 5 R/S ¥ READY

1 ENTER 2 ENTER 2.5 ENTER 3 ENTER 7 5, / > 0.43
’ yx % 1.48 9 x } 2-96 y + ') 3;96 ’ F]X 9 9 30961936296

so, the oroblem was keyed in left~to~right. This is a very good
advantage of a n-level stack, you can hold up to n=1 pending
operations. Using the standard 4-level stack, up to 3 operations
may be left pending, and problems requiring more pending opera=-
tions cannot be keyed left~to-right, and have to be rearranged.

But, using a, say, 15-level stack, you can hold as many as 14
pending operations, and thus, you can confidently key in any -
problem left to risht, without rearranging anything. That’s the
usefulness of the programe. You can also use it when leaving so-
meone your 41c, and that person is not very used to RPNs show
him how to use ENTER,RIN,and X()Y, and let the 15 (say) level
stack do the rest !

VALENTIN ALBILLO (4747)

EVEN WINS

01 IBL'SVEN" 31 +
02 FIX O
03 STO 00
04 CLX
05 STO 01
06 STO 03
07 9.02
08 CF 29
09 4
10 IBL 00
11 STO D Y
12 ISG Y
13 GTO 00
14 1BL O1
15 CIX
16 STO 05
17 STO 06
18 RCL 00
19 R-D
20 FRC
21 STO 00
22 13
23 =

X

S
V
I
R
R
E
R

—
*
g
g
g
\
x
x
n
—
0

+

bt

134 lines

SIZE 021

e
oo
e

T

[
|-

+

(by Valentin Albillo , #4747)

66 AVIEW
32 370 07 67 TONS 9
33 IBL 02 68 PSE
34 "THEZRE ARE " 69 "IEAVE *
35 ARCL 07 70 ARCL O7
36 AVIEW 71 AVIEW
37 PSE 72 PSE
38 RCL 03 T3 "youz"

39 STO 04 74 PROMPT
40 RCL O1 75 STO 08
41 STO 02 76 RCL 07
42 RCL 05 77 X=Y?
43 2 78 GTO 08
44 MQOD 79 RCL 08
45 CF 02 80 sT=- 07

47 SF 02 82 GT0 02
48 3TO 03 83 IBL 06
49 RCL 07 84 "I TAKE "
50 6 85 ARCL 07
51 MOD 86 AVIEW
52 STO 01 87 TOWE 9
53 RCL 03 88 PSE
54 XEQ 04 89 RCL 07
55 RCL 07 90 STO IND T
56 X(=Y? 91 ST+ 06
57 GTO 06 92 IBL 08
58 x()Y 93 RCL

06

59 STO 08 94 2
60 X(=0? 95 MOD
61 GTO 09 96 X=07

62 ST= 07 97 GTO 10
63 ST+ 06 98 IBL 09
64 "I TAKE " 99 "YOU WIN"
65 ARCL 08 100 AVIEW

101 BEEP

102 PSE

103 RCL 01

104 RCL 03

105 XEQ 04
106 1

107 X=Y7?

108 GTO 13
109 GTO 07

110 IBL 10

111 "I WIN"

112 AVIEW

113 BEEP

114 PSE
115 GTO 01

116 IBL 13

117 RCL 02

118 RCL ™4
119 XBQ 4
120 1
121 X=Y?

122 GTO 01

123 IBL O:[

124 -
125 STO IND Y

126 GTO 01
127 1BL O
128 8
129 x

130 +

131 9
132 +
133 RCL IND X

134 END

btttbbbbbbbRbRbbbbb
Description .- At the beginning of the game, a randon number of

chips are placed on the board. On each tum, a
player must take 1,2,3 or 4 chips. The winner is the player who
finishes with a total number of chips that is even. The game runs
continually, as soon as one finishes, another starts, but you may
quit at any moment by inputting 0 as your move.

What is really remarkable is that the computer -
starts out knowing only the rules of the game, but a learning me
chanism allows it to learm from its mistakes, playing gradually
better and better, until it is extremely difficult to beat.In -
fact, after 20 games in a row, it is almost unbeatable. Thus, -
this is a learning program: the better you play against it, the

faster it leams to play well.
It could be interesting for those members desi -

ring to implement playing strategies which learn more and more

as they play.

Warmings s your move is not tested for legality: you must take
19243 or 4 chips. HP moves first. If, at any moment,

flag 02 is set (see annunciator), your total is even. If flag 02
is clear, your current total is odd.

Instructions .- to begin a sessions key in a seed (betw. O & 1)
seed , XEQ"EVEN" 2 THERE ARE nn » I TAKE m < IEAVE nn & YOU?

enter your move (take 1,2,3 or 4)s
>THERE ARE nn 9 I TAKE m & IEAVE nn $ YOU?
continue the game., When the last chip is taken off the board,
either YOU WIN or I WIN appears (the winner is the one with a -
total number of chips that is even) and another game gtarts,

n R/S >

