

Notes on the back story of this letter:

 I sent this 10-page letter to Richard Nelson on Sept, 27 (1980), including within the

following materials for their publication in the PPC Calculator Journal, namely:

 (1) BASIC Software for the HP-41C, an article describing some guidelines to convert an

arbitrary BASIC program to the HP-41C's RPN version in a rather automatic way, so as to create an

RPN program that worked like the original BASIC program without knowing anything about the

algorithms used, the implementation details or even the program's purpose. An enclosed example

demonstrated in full the complete translation process applied to an autolearning BASIC game, "Even

Wins", which plays better and better the more you play against it.

 (2) RP (Roots of Polynomials), an HP-41C program to automatically find all real and/or

complex roots of a polynomial equation of arbitrary degree (up to 132, limited only by available

memory) with real and/or complex coefficients, in a completely global fashion (i.e., no initial

approximations required) and callable as a subroutine from other programs.

 Finally, I commented on the proposed publication of the PPC Barcode Book and the wand

itself, some notes on the memory required to call XROM functions with long names, and the idea of

asking members to rate programs published in the PPC CJ.

.

 Valentin Albillo, 14-02-2022

Richard Nalson

Editor, PFC CJ Valentin Albillo (4747)
2541 W. Camden Place Padre Rubio, 61 = 2 C
UeSeAes Sep‘b,25 - 80 Ig;il]g}:d 29

Hi, Richards
how are you ? As busy as always, I guess, I have let two months

pass by before submitting material, because of the large amounts of materials already sub -

mitted, and yet waiting for its publication. Now the stack seems to have lowered a littls,

so here are two more contributions for FFC CJ: (Calculator Journal, of course!)

a) BASIC SOFTWARE FOR THE 41c , an article describing some basic guidelines to convert a

program written in BASIC language to the 41c, in a rather automatic way. This allows 41c

user’s to gain access to a vast amount of material and books,plenty of programs in BASIC

for microcomputers. The article describes ideas and some rules to successfully carry out

the translation to RFN. An onclosed example shows how to translate a game written in

BASIC to the 410, so as to create a program written using conventional 41¢ functions that

does exactly the same as the BASIC prosgram. The translation is performed "blindly", this

is, the user does not have to know the algorithms of the original program to create the

translation, only things needed are a general knowledge of BASIC language, and the BASIC

program listing.

b) ROOPS OF POLYNOMIAL EQUATIONS , a program for the 41c, which solves the general equation

of degree n, with real or complex coefficients, finding all its n roots, whether real or

complex, to 10-digit accuracy. The degree,n, ranges from {1 to 132. Only input required

are the (n+1) complex (or real) coefficients. Output are all n roots. Roots are stored

as well, so the program is usable as subroutine. Program is optimized to be short (177

lines, 298 bytes) and fast (indirect addresses duplicated to increase speed). It is

the most general version possible for polyncmial root finders. Hope you’ll like it.

Most unfortunately, I cannot send you a card with the program recorded on

it, as my card reader is (once more!) being repared at HP. However, the enclosed listing
has been exhaustively checked to ensure it being correct, and error-free.

Some commsntss -I agree with the publication of the PPC Barcode Booke I
do not have a wand yet, but I had a demo unit at home to
test several weeks, and it worked nicely. It read absolu-

tely all barcodes in V7 N5, including all programs and sparse barcodes. My wand was an 1D
type. 1t tock very little power from the batteries. In fact, the wand continued to read

even with the BAT annunciator on (and my calculator has a very low BAT levely 1 hour af-

ter BAT appears, my calculator stops functioning properly)

-I also agree with Steve Flarity (5154) (see V7 N6 P13c)s
labels in the ROM may be as large as desirsd, because, in user’s RAM, XROM'IECOIE" is only

2 bytes ! The same is true regardless of being XROM"DD" or XROM"ABCIEFG", any XROM takes

just 2 bytes. You didn“t seem to understand it ! Be aware that any XROM call is 2 bytes,

regardless of the length of the function’s name being called. I point this out, because

you mentioneds "ee. if the users RAM ... could call the ROM subroutines by their XROM num—

ber, a hyte would be saved... ". You’re wrongs XROM 29,01 is 2 bytes, as is XROM"1234567".

Well, that’s all. Thank you, for you work so hard to keep FPC going

an smoothly. Till the next letters

Valentin Albillo (4747)

Final note s I also agree with Werner Frangen (2468)(see V7 N6 PTc) about the idea of as-

king members to evaluate programs published in PFC, and further publish the

results, so that every author should have a feedback about howwell his pro—

gram was considered by the membershipe It would be funny to see wonderful

programs about synthetics being rated O, and financial programs rated 10 !

THHHRRbbbbbbbbbbbbbbbt
+ +
+ ((((((((BaSTC soFTWARE FR THE 41C))))))))
++++++tbbbtbbbbbbbbbbbbbbbR

let’s be positive: whether you believe it or not ,the
HP 41c is the heart of a true microcomputinz system, not just a -
mere handheld programmable calculator, but a handheld (or briefca
se) computer, with over 2,2 K of RAM, up to 32 K of external ROM,
peripheral printer, mass storage devices, and last but not least,

analog-digital interface via the wand. It has interface capabili
ties thru its 4 ports, and may handle any task using appropriate
interface modules. It is quite possible to have (in a future) so
me data cartridge drive available for it, to store, retrieve, -

even chain programs or data, at a tremendous speed, and capable-
of storing as much as 200 K of programs in a single tape. Almost
any desired input/output may be done if the proper peripheral is
available. Now, you“ll agree with me that this sounds more to mi
crocomputer than to calculators, isn“t it ?

Once Wwe agree that the 41c¢c is a microcomputer, we -~
may expect it to be capable of running the programs a microcom -
puter will, However, a great deal of good programs for micros is
written using BASIC (or FORTRAN, or PASCAL, or ...) language ,
and it seems to be inaccesible for the 41¢, unless the algorithms
used by the BASIC program are fully documented and understood,so
that they can be rewritten using RPN. But, what if the program -~
is not documented (except for the user’s instructions), and only
the listing is available ? Should we discourage ? Of course, if
you have a pretty good patience, you may try to follow what the
program does, in order to fully understand its function and all
handle of data to arrive at the output. Once you understand the
algorithms, it is relatively simple to translate them to RPN.

However, yo do not need to understand what the BASIC
program does in order to write a translation for the 41c that -
will give the same outputs for the same inputs.

This article tries to stablish some guidelines to con
vert a BASIC program to the 41c, so that software in BASIC may be
used in the 41c, even if the internal algorithms of the original
program are not known or understood. The concept may be easily -
used for other languages.

This allows you to use programs written in BASIC, so
gaining access to a vast amount of books and pacs full of pro =
grams in BASIC.

An included example shows how to translate a game in
BASIC to the 41c, step by step, automatically.

This is not an exhaustive article on the subject, and
not all BASIC programs may be translated for the 41c. It attempts
to give you useful ideas, and remove your fear to BASIC software.
You must be able to implement your own algorithms, and create new
ones not explicitly pointed out herey like READ-DATA statements.

BASIC GUIDELINES
-first of all, a general knowledge of BASIC lan

guage is assumed, of course.

(1) Scan the BASIC listing. Delete all REMarks statements, all
comments and titles. Mark with a ® all lines referenced by
GO TOy or IF ... THEN , or any other jumping statement. Also,
mark with a x all statements FOR .

(2) Scan the listing and make a separate record of all the varia-
bles either simple (A,J,W5), or subscripted (R(I,J), A(7))
assigning a register for every element. This is, R05 is assig
ned to say, P , RO6 to A7, RO7 thru R18 to R(0,0) thru -
r(1,5) Z12 elements 1in total), be aware that the number of
elements of a unidimensional array is given by a statement
DIM in the listing. For instance, DIM A7(8) means that you

(3)

(4)

(5)

(6)

(7)

(8)

(9)

need to reserve 8+1 = 9 registers to store A7(0),A7(1),e.ay
A7(8), and DM & 2,3) means you must reserve (2+1).é 3+1),
this is, 12 registers, to store ©(0,0),Q0y1)yessy2(0,3), -
A150) 500y 2,3).
If the program listing includes generation of random numbers
reserve a storage register to store a seed. This is, if you
find statements inclusing RNI(number) or RANDOMIZE, reserve
a registery to be used for the seed.

Every time you find a (R, reserve a register to be used as
an index. It may be not needed if the stack is available,
but reserve it anyway. If another cycle FOR starts within
the first, save another register for its index. If another
cycle FOR starts out of the first, it may use its register
for indexing, so another register is not neccessary.

Input statements should be translated as alpha prompts. For
instance, IITPUT W5 should be regarded as 'W5 ?", PRQMPT,
or, if W5 is your move, as "MOVE ?" , PRQMPT. Outputs are
performed using "text" , ARCL nn, AVIEW , PSE , where nn
is the register assigned to the variable being output, and
"text" ia some text describing the variable.

Now, let’s begin the translation. Scan the listings

every time you find an assignment statement, this is, an ex—
presion of the form IET variable = ,.. 4 Or : variable = ..
compute the value using RPN for evaluation, remembering that
each variable is a RCL nn, where nn is the number of its -
assigned register., If the variable is a suscripted one (uni-
dimensional or two-dimensional), it is equivalent tos

index index 1

o XEqQ 99 or index 2 .
(1 dim) P30 x xEQ 99 (2 dim)

RCL IND X
where ILBL 99 is a routine that computes the assigned register
for the suscripted element given its index. Each suscripted
array needs its own "computer" routine, so one may be IBL 99,
another IBL 98, and so on. This routines are written later,
so simply consider the sequence given bafore,

Once the value of the variable is computed,
use 5TO nn to assign it to the variable. If the variable who-
se value has been computed is suscripted, use the same sequen
ces as before, but using STO IND Y instead of RCL IND X. It
is assumed that the value of the variable is previously sto -
red in a scratch register before calling IBL 99 (say), then
it is recalled, then STO IND Y will do the jobe.

every time you find a line marked with = , inmediately put a
label, starting from IBL 00 , and, enclosed within brackets,
the number of the BASIC line,

For instance, = 130 IET A ... , inmediately generates the
sequence IBL 00 (130)

As soon as you find a reference to a line, write down a GTO
and, enclosed within brackets, the number of the basic line.
For instance,

150 GO TO 280 should generate GTO (280)
230 IF ... THEN 1040 , must be ... GTO (1040)

also, if you find a NEXT statement, do not forget a GTO to
the label of its corresponding FOR statement. For instances

128 FOR «ee

167 NEXT , must be , ... GTO (128)

a FR-NEXT cycle must include a register to hold the index.

(10)

(11)

If the index is a computed value, proceed to the computation,
then assign the value to the index (STO in the index register)
If the step is going to be such as to increment the index
value in each cycle, use ISG , otherwise, DSE., For instance,

130 FOR I = 2 TO 30 STEP 3 (label of FOR , IBL 28, say)

*o e o0 e e se [R]

240 NEXT I

should be translated as (I register is 17, say)

2403003 ees set~up of the index
STO 17 ese I is assigned a value
LBL 28 .o« the cycle begins
cee oae if I is used, you should take INT(I)

IS¢ 17 eee the NEXT. First, get next value of I, then
GTO 28 test to see if the cycle is done. If not,

returmn to FOR, otherwise, continue.

Conditionals are translated as conditionals in the calcula-
tor. For instance, the sentence:

250 IF R(E,L)>= P THEN 320

is translated as follows:s assume E is assigned to R17, L to
RO1, P to R16, and IBL 99 computes the address of R(x,y)s

RCL 17 ees got E , first index &or suscript)
RCL 01 eee g0t L , second index (or subscript)
XEQ 99 eee got the address of R(E,L)
RCL INDX «.. get R(E,L)
RCL 16 eeoe gfit P

X<=Y? eee perfom the test

GTO (320) eee if the test is met, perform the jump.

Once the whole program is written down as a sequence of 41c¢

instructions, edit the programs

-write the routines to compute the address of a subscrip-—
ted variable, assuming the index{es) are In X and Y ,

and the address should be returned to X. For instance:

if R(0,0) thru R(1,5) are assigned to RO3 thru R14, and
R is dimensioned 1,5 , then if I is in ¥ and J is in X,
the address for R(I,J) is given by

IBL99 5, 3, +,%X()Y, 6, =, +, RIN

for instance, R(1,3) is in R12 (3+3+6%1 = 12)

-scan all GTO (.+..) , and change the contents of the brac-
kets for the label corresponding to that line. This iss

IBL 07 (340)

GTO (340) should be changed to GTO O7

-set the initial conditionss prompt for a random seed, set

the display to FIX O, CF 29, insert BEEP, etc.

Resuming, if all goes well, you°ll have a program for the 41c =
which does what the original BASIC program did. The program should
work, but if you feel capable, optimize it. Once you know the pro
gram works (run an example), put aside the BASIC program, and put
all your knowledge to the task of optimizing your RPN programs sa
ve registers, use stack for indexing, suppress innecesary prmtmg

Now, let’s see an exampls of a translation. The following program
in BASIC is given. All remarks have been previously supressed, and
the lines referenced by GO TO’s, conditionals and NEXT are markeds

Original BASIC oprogranm

20 DIM R(1,5)
25 L=@ 3 B=f

=30FRI=gT05
40 ’(1,I) = 4 s R(0,I) = 4
60 NEXT I

sTOA=0§:1B=4¢
90 P = INT((13=RND(1)+9)/2)=2+1

%100 IF P = 1 THEN 530
110 PRINT "THERE ARE"$P3"CHIPS ON THE BOARD"

#120E1 =83 L1 =1L
140 E = (A/2 - INT(A/2))=2
150 L = IND((P/6 -~ INT(P/6))=6 + .5)
160 IF R(E,L)>= P THEN 320
170 M = R(E,L)
180 IF M{=¢ THEN 370
190 P = P-M
200 IF M=1 THEN 510
210 PRINT "I TAKE";M;"CHIPS LEAVING";P;" YOUR MOVE"

2220 B = B+M
€230 INPUT M ¢ M = INT(M)
%0 IF M< 1 THEN 450 ¢ IF M>4 THEN 460
270 IF M>P THEN 460 s IF M=P THEN 360
200 P =P-M s A=A+ M GO TO 100

%320 IF P=1 THEN 550
330 PRINT "I TAKE";P;"CHIPS"

#340 R(E,L) =P s B=B + P
%360 IF B/2 = IN{B/2) THEN 420
=370 PRINT "YOU WIN"
390 IF R(E,L) = 1 THEN 480
400 R(E,L) = R(E,L) - 1 s GOTO 70
®420 PRINT "I WIN" s GOTO 70
450 IF M=¢ THEN 570
2460 PRINT "ILIEGAL , YOUR MOVE" s GOTO 230
=48 1F R(E1,L1) = 1 THEN 70
490 R(E1,L1$ = R(E1,L1) - 1 s GOTO TO

£510 PRINT "I TAKE 1 CHIP IEAVING";P;" YOUR MOVE" s GOTO 220
%530 PRINT "THERE IS 1 CHIP (N THE BOARD"™ s GOTO 120
%550 "I TAKE 1 CHIP" s GOTO 340
=570 END

This is the BASIC listing of a game called "Even wins"
taken from "BASIC COMPUTER GAMES" by David He. Ahl , edited by -

Creative computing press. The game is played as followss at the

beginning of the game, a random number of chips are placed on the

boarde On each turm, a player must take 1,2,3 or 4 chips. The win

ner is the player who finishes with a total number of chips that

ig even.The game runs continually,as one finishes, other starts.

What is really remarkable is that the computer starts out

knowing only the rules of the game, and a learning strategy allows

it to play gradually better and better, until it is extremely dif-

ficult to beat. Thus, this is a learning programs the better you
play against it, the faster it learms to play well.After 20 ga -
mes in a row, it is almost unbeatable,

We are told nothing about the internal algorithms. Can we

make a translation for the 41c’ YES !!! We can . let’s starts
(1) REMarks and comments have been already deleted. The lines re-

ferenced by GTO’s, conditionals and NEXT are marked, too.

(2) There are 8 simple variabless L,B,A,P,E,E1,L1,M, and one 2=
dimensional variable R(I,J).Its DIM statement at line 20
tells us it is a 2x6 matrix, 12 elements total. We assign
registers as followss (there is also a RND statement at line
90, a seed in needed)sOO=seed , O1=L, 02=B , 03 thru 14=
R(0,0) thru R(1,5), 15=A , 16 = P , 17 = E, 18E1 , 19=L1,
20=M ~ due to the RND (random) statement, you should input

a seed (any number between O and 1):at the beginning
simply, key in seed, XEQ"EVEN", and the rest is

—this is most useful in tabular forms

8(1) : zeed 1; : g(;fig =80, all variables have an as—
02 = 3B 13 = »(1,4) signed 41c¢ register, a.md thus,

03 = r(0,0) 14 =R 1’5) an address. The auxiliar routi
’ ’ ne to compute the address of -

04 = R(0,1) 15 = A i
05 = r(0,2 16 = P each element in tl}e 2-dimensio

0% = (0,3 17 = & nal array R(I,J) is

07 = R(0,4 18 = Bt IBL 99 6 where I is in Y,
08 = Rr(0,5 19 = L1 3 x J is in X,
09 = R(1,0) 20 =M + + the address is
10 = R(1,1) x()Y RTN in X at RIN.

the program is given a names LBL "EVEN"
the seed is stored + S3T0 00

B ee. line 25 is translateds L & E get a valus of §
STO 01 L is assigned to RO1 and E to R 17
STO 17
3.014 eee lines 30 thru 60s: a loop is set to assign the

4 value 4 to all R(I,J). After the loop is execu~
IBL 00 ted , RO3 thru R14 all contain 4°s, This is just
STOIND Y what the original loop does, assign 4 to all

IS¢ Y values of R(I,J)
GTO 00
IBL 01(70) es+e line 70 is marked, so we set up a IBL. A & B

zet a value of § . A is R15, B is RO2
STO 15
3TO 02
RCL 00 , R-D, FRC , STO 0Oy e.s line 90s this generatss a ran -

13,8559y +92,5/ dom number, and computes the va

INT 4 ST+X 4 1 5 + lue of P using RPN. Then P,which

STO 16 is R16, is assigned that valus.
IBL 02(100) +ee lins 100s P (R16) is tested against 1. If the
RCL 16 test is met, jump to 530
1 Otherwise, go on with next line

X=Y?
aro(530)
"THERE ARE ", ARCL 16 , "} CHIPS" ... line 110, the PRINT state

AVIEW SE ment. R16 is PP
IBL 03(120)
RCL 17, STO 18, RCL O1, STO 19 ... line 120, E1=E(, Li=L
RCL 15, 2 5, / 5 FRCy ST+K 4, ... line 140s 4/2-INT(A/2) is the
STO 17 same as FRC(4/2). R17 is E
RCL 16, 6 4 / 5 FRCy 6 5 ® 5 .o line 150: L (RO1) gets its
S 4 + 4 WT, STO O1 computed value
RCL 17, RCL 01, XEQ 99 ees line 160s get address of R(E,L)
RCL IND X get R(E,L) itself
RCL 16 , X<=Y?, GT0(320) test against P (R16)
x()Y , 370 20 ees 1line 170: M was in Y. R20 is assigned to M
X<=07 , GTO (370) eee line 1803 M is tested (& remains in X)
Sr=-16 eee line 1903 M is substracted from P
1, X=Y? , GTO{510) <. line 200s M (still in X)is tested
ny TAKE " ’ ARCL 20 9 AVEW 9 BEE:P, coe line 2103 M is RZO, P

PSE, "LEAVE ", ARCL 16 , AVIEW , is R16
PSE , '"YOUR MOVE" , AVIEW, PSE
IBL 04(220) ees line 2203 M , which is in R20, is
RCL 20 , ST+ 02 added to the previous value of B {R02)
IBL 05(230) ees line 230s M is requested, and
"M=?" , PROMPT, INT , STO 20 its INT is assigned to R20

1, X()Y, X<¥?, GTO{450) 4 ... line 2503 M (was in X), is tes-
4, X<Y? , GTO(460) ted twice
RIN, RCL 16, X<Y? ,GTO(460) «o. line 270s M (was in Y) is teated
X=Y? , GTO(360) against P (R16) twice
RCL 022 sr;us, ST+15, GTO(100) .o line 290s P=P-M, A=A+M
IBL 320 eee line 320¢ P (R16) is tested
RCL 16, 1 , X=Y? , GTO(550)
"I TAKE ", ARCL 16, AVIEW' PSE, BEEP +¢. line 330

IBL 07(340) eee line 3403

RCL 16 , STOIND Y , ST+ 02 ... assign P to R(E,L) & add to B
18L 08(360) ees line 360s test B to see if
RCL 02,2,/,FRC,X=0? , GT0(420) it is even (FRC(B/2)=¢)
IBL 0 eses line 370 3 output the messa-

"YOUJ WIN" , AVIEW, BEEP , PSE ge
RCL 17, RCL 01, XEQ 99 ees line 390: get addr. R(E,L)
RCLINDX , 1 , X=Y ?, GTO(480) get R(E,L) & test
-, STO IND Y, GTO(70) «ee line 400: 1 substract.from R(,)
LBL 10(420) e..line 420: output the
"I WIN" , AVIEW, BEEP, PSE, GTO(70) message and jump
LBL 11(450; ,BCL 20,X=07,GT0(570) ...line 450: M (R20) is tested
1BL 12%460 ,"ILLEGAL" ,AVIEW ,PSE,GTO(230) ... Illegal message
1BL 13(480) ee. line 480: R(E1,L1) is first
RCL 18,RCL 19,XEQ 99,RCL IND X recalled ,
1, X=Y?, GT0(70) then tested
-, STO IND Y, GTO(70) ees line 490: 1 is substracted
IBL 14(510) ees line 510: all mossages are
"I TAKE 1'",AVIEW,BEEP,PSE, output. R16 is P
"IEAVE ",ARCL 16, AVIEW, PSE
"YOUR MOVE", AVIEW, PSE,GTO(220) after output, jump to 220

IBL 15(530)
"THERE IS 1 CHIP",AVIEW,PSE,GTO(120) output message & jump

IBL 16(550)
"I TAKE 1",AVIEW,BEEP,PSE,GTO(340) output message & jump
IBL 12(570) , END end of program

So, the work is done !!! Now, simply compile all the

GT0’s (This is, change, say, GTO(70) by GTO 01, because LBL 01
includes 70 within brackets, and so on). The resulting HP-41C
program is as followss (in condensed form)(to save space!)

01 IBL"EVEN"
sTo 0o, @, STo 01, STO 17, 3.014, 4, IBL 00, STO IND Y, ISG Y,
¢ro 0o, 1BL 01, @, STO 15, STO 02, RCL 00, R-D, FRC, STO 00, 13,
Xy 9, +y 2, ;, INT, ST+X, 1, +9 STO 16’ IBL 02’ RCL 16, 1’ X=Y?,

GTO 15, "THERE ARE ", ARCL 16, "KCHIPS", AVIEW, PSE,IBL 03
RCL 17, STO 18, RCL 01, STO 19, RCL15, 2, /, FRC, ST+X, STO 17,
RCL 16, 6, /, FRC, 6, %, .5, +, INT, STO O1, RCL 17, RCL O1,
XEQ 99, RCL IND X, RCL 16, X<=Y?, GTO 06, x()Y, STO 20, X<=07,
GTO 09, ST-16, 1, X=Y?, GTO 14, "I TAKE ", ARCL 20, AVIEW, BEEP,
PSE, "LEAVE ", ARCL 16, AVIEW, PSE, "YOUR MOVE", AVIEW, PSE ,
IBL 4
RCL 20, ST+ 02, IBL 05, "M=?", PROMPT, INT, STO 20, 1, X()Y,
X<Y?, GTO 11’ 4, X ?, GI‘O 12, RIN, RCL 16, X<Y?’ GI\O 12, X=Y? 9

GTo 08, RCL 20, ST= 16, ST+ 15, GTO 02, IBL 06, RCL 16, 1, X=Y7,
GTO 16, "I TAKE ", ARCL 16, AVIEW, PSE, BEEP, IBL O7
RCL 17, RCL 01, XEQ 99, RCL 16, STO IND Y, ST+ 02, IBL 08, RCL 02
2, /, FRC, X=0%, GTO 10, 1BL 09, “YOU WIN", AVIEW, BEEP, PSE,
RCL 17, RCL 01, XEQ 999 RCL IND X, 1, X=Y?, GTO 13' -9 STO IND Y,

¢TO Ot, IBL 10, "I WIN", AVIEW, BEEP, PSE, GTO 01, IBL 11
RCL 20' XBO?, GTO 17’ I.BL 12’ "ILLEGA-L"’ AVIEW, PSE’ GTO 05’

IBL 13, RCL 18, RCL 19, XEQ 99,RCL]ND X, 1) X=Y?’ GI‘O 01, -9

STO IND Y, GTO O1, IBL 14, "I TAKE 1", AVIEW, BEEP, PSE, "LEAVE "
ARCL 16, AVIEW, PSE, "YOUR MOVE", AVIEW, PSE, GTO 04, IBL 15
“THERE IS 1 CHIP%, AVIEW, PSE, GTO 03, LBL 16 , "I TAKE 1",
AVIEW, BEEP, PSE, GTO 07, LBL 17, END

of course, if you want to get a good display of messages,

insert FIX 0, CF 29 after O1 LBL'EVEN", and the auxiliar routine,

IBL 99, 3, +y X()Y, 6, %, +, BTN, must be inserted somewhere, for
inatance, add a RTN after IBL 17, then this auxiliar routine.

You now have a program which is an exact translation of the

original BASIC program, and performs exactly the same function.
How, you can set the task of optimize it, to reduce space or run

time, or use it as it is now, as well,

ROOTS OF POLYNOMIAL EQUATIONS - R/C COEFFICIENTS

This program finds all n roots, real and/or
complex, of any given equation of degree ni

n=1n 2
P(z) =cz +C.2 +aee+0Cp2 +Cz +C,=0

where the coefficients, c; are of the general forms c; = aj +bii

this is, they are complex coefficients. Of course, the particu -

lar case of real coefficients is included, simply all bi are O.

The program finds automatically all n roots

of the equation, The roots are of the general forms zj = uj +vii

if the root is real, v = 0 .

No initial approximations are needed, simply

enter the coefficients and go have a cup of coffee. All roots -

will be computed to 10-digit accuracy, and stored as well. The

roots are displayed after you press R/S, so you”ll have all nee-—

ded time to write them downe.

CHARACTERISTICS
The program is 177 lines, 298 bytes long. It -

requires a minimum size 2n+11 to solve an equation of degree n.

If you have no modules, you can solve up to a 4th degree equa -

tion (if you use the .END., and supress the alpha label, up to

5th degree is posible). Having modules, the following appliess

1 module - up to 36th degree
n modules—up to (32n+4) deg.

so, the rangs is 1(=n(=132 . Roots are stored, so this program
may be used as a subroutine of another main program requiring

the zeros of a polynomial (filters, perhaps) by simply supressing

the input-output routines. See listing for details.
The execution time is quite fast, but for lar

ge n, it should be long. Bach time flag O is set (watch indica-
tor), a root has been found, and the search for another root be-

ins. The program first calculates the n-th root, then the -

?2—1)th one, up to the 1st one. If you want to review which root
is being computed at a given moment, simply R/S, VIEW 00, will

display the number of the root being calculated. Then R/S to re-
sume the computation.

The program uses Newton‘s method to find each

root, starting from a program’s selected initial approximations

z =z =Pz)/P(z) , where the subscripts denote the next
n+1 n n n .

approximation,

z) = cnzn+cn.1zn.1+...+c1z+co

P*(z)= ncnzn‘1+(n-1)cn_1zn“2+...+202z+o1

Once a root has been found, deflation is used (by means of
Horer’s schems) to remove the root from the equation, so it is
reduced by one degree, and the search for another root begins.

As the degree decreases hy one (or two if coefficients are real
and the root is complex) every time a root has been found, the
following root takes usually less time to compute.

Every iteration includes about n+2 complex

multiplications and 1 complex division (not to mention +,=).
IBL 03 performs the multiplication of two complex numbers c4,C2,

leaving the result in X,Y, and uses only the stack. It does not

use R-P or P-R, so as to be as fast as possibls.

HOW TO USE s the equation is cpz” + o1281+eee4cyz + Co = 0
where Ck=ai+bi

~-get SIZE 2n+11 minimum, where n is the degree, of course.
-XEQ "RP" + N? , key in the degree of the equation
n R/S 9An=? , key in An (real part of o)
a, R/S » Bn=? , key in Bn (imag.part of c,)

b, R/S ¥ An-1=? , keep on introducing all coefficients...
oce 3 Bf=? , enter the last coefficient
bo B/S » the compytation begins , every time a root is found,

you’ll see the O indicator tum on. After a while,
all roots are computed and stored, the output takes
places

(veep) < ROOT 1 9 U=real part of z
R/S 9 V=imag part of z4

R/S Y ROOT 2 » U=real part of z,
R/S » V=imag part of z»
oo s 00 eece ooveoo e oo o ee

< ROCT n # U=real part of zn
R/S > V=imag part of z,

R/S » 0.00n-1

~for another equation, go back to the beginning.
-remember, z. = W+ Vi i . If the root is real, v, is either O

or very close to 0, sgy 2E-~9 or so.

if your equation has only real coefficients, enter all b; as O

HARNINGS s —convergence is not guaranteed. It may be possible -
for the program to never find a root.However, I ha=-

ve been unable to find such a case: all tested cases up to date
were solved successfully. Convergence is quadratics once a good
approximation is found, the number of exact digits doubles on
every iteration.

~miltiple roots will take much longer to compute,and
the accuracy will get worse. For instance:

x2 + 4x + 4 = O gives (2 min.26 sec), zq =2.0000005-0.0000004
(double root, z4=zp==2) ' Zy =1.9999995+0.00000041

2343x2432+1=0 (7 min.48 sec) , zy= =1.0004717-3.9996900E-8 1
zo= =0.9997642+0.0004079 i

(triple root, zq=zp=z3==1) z3= =0.9997641-0.0004079 i

EXAMPIES s 1) Find all roots of the following equations

(2+81) 26+(3+01) 294 =1+21) 24+(0+21) 23+{ =3=31) 224(1421) z4+{ =2+31)=0

9the degree is 6, so SIZE 23

n
o
u

> XEQ "RP" 3 N? , 6 R/S 2 A6=? , 2R/S »B6=? , 8 R/S » A5=?
3R/S+B5=? , OR/S 9+ AM4=? , =1 R/S 3 B4=? , 2 R/S & A3=?
OR/S +3B83=? , 2R/S > A2=? , =3 R/S »B2=? , =3 R/S 3 A1=?
1R/S+B1=? , 2R/S »A¢=? , -2 R/S 3B@=?, 3R/S =
computation takes place. After 8 min. you get:

9 ROCT 1 & U=—0.9724260 , R/S » V= 0.3032192 , R/S >
» ROOT 2 ¥ U==0.0715576 , R/S 3 V= 1.1235559 , R/S >
> ROOT 3 % U= 0,0323977 , R/S ¥ V=—0.8883400 , R/S >
> ROOT 4 + U= 0.5688927 , R/S ¥ V= 0.5464170 , R/S »
» ROOT 5 + U= 0.8266036 , R/S > V==0.3541840 , R/S 3
9 ROOT 6 > U=-0.472145T7 , R/S 5 V=—0.37T7269 , R/S 9 0.0050000

2) Solve 5x0 —ax? -3x% +8x3 4822 -2x 47 = 0
ydegree 6, SIZE 23, as before
9 XEQ "RP" 3 N? , 6 R/S 9 A6=? , 5 R/S »B6=? , O R/S 9 AS5=?
-4 R/S 9 B5=? , O R/S » AMd=? , =3 R/S 9 B4=? , O R/S » A3a?
8R/S> B3=? , OR/S dA2=? , 8 R/S 9B2=? , O R/S 3 A1=?
-2R/S 4 B1=? , O R/S > A=? , 7 R/S +B¢=? , O R/S >

after just 5 minutes, you get:

3 ROOT 1 ¥ U= 1.1936146 , R/S < V==0.8739372 , R/S +
> ROCT 2 & U= 1.1936146 , R/S > V= 0.8739372 , R/S >
< ROOT 3 3 U= 0.1940332 , R/S » V==0.6858876 , R/S »
3 ROOT 4 » U= 0.1940332 , R/S » V= 0.6858876 , R/S >
» ROOT 5 9 U==0.9876477 , R/S > V==0.5325453 , R/S =+
» ROOT 6 9 U=—0.98764T7 4 R/S * V= 0.5325453 , R/S > 0.0050000

Happy programming, folks 1!

VALENTIN ALBILLO (4747)

ROOTS OF POLYNOMIAL EQUATIONS - R/C COEFFICIENTS

01 IBL'RP"
02 FIX ©
O3 CF 29
04 "N?"

05 PROMPT
Cé STO 00
07 STO 03
08 9.008
09 +

10 STO 01
11 STO 05
12 RCL 00
13 ST+ X
14 10
15 +

16 STO 02
17 STO 06
18 IBL 05
19 HAH

20 ARCL 03
29 "p=21

22 PRQVPT
23 STO IND 05
24 '"B"
25 ARCL 03
26 n’,g?u

27 PROMPT
28 STO IND 06
29 DSE 03
30 x()Y
31 DSE 06
32 DSE 05
33 GTO 05
34 RCL 03
35 LBL 06
36 CF 00
37 CHS
38 sT0 04
39 FIX 2
40 RND
41 FIX 6
42 X407
43 GTO 01

registers:s

00=n

01=add. an

02=adde bp n
03=r.p. of z
Od=ie.pe of z

05=aux‘(an§

06=aux.(bn

44 SIGN
45 STO 04
46 1BL 01
47 RCL 00
48 STO 08
49 SF 01
50 XEQ 11
51 R=P
52 1/X
53 STO 07
54 X()Y
55 CHS
56 STO 08
57 CF 01
58 XEQ 11
59 RCL 08
60 RCL 07
61 PR
62 XEQ 03
63 ST- 03
64 x()Y
65 ST= 04
66 RND
67 X#0?
68 GTO 01
69 x()Y
70 RND
71 X407
72 GTO 01
73 SF 00
74 XEQ 11
1
76 ST+ 05
Tl ST+ 06
78 1 E=3
79 ST+ 01
80 RCL 03
81 5TO IND 05
82 RCL 04
83 STO IND 06
84 DSE 00
85 GTO 06
86 BEEP

09=a5 (un)
10=a1 (upq)

n+9=an 5 an ;
n+10=bo (v

n+11=by (v,)

OT=auxiliar 2h+10=b, (by,)
08=auxiliar

remarks g typical running timess n=6 , 5 min
n=10,14 nin

SSESsEcEasEnEsEmz

87 RCL 01
88 T
89 10
90 -

91 1 E3
92 /
93 ST=- 05

94 LBL 10
95 I5G 00
96 IBL 14
97 anI\ 11}

98 FIX ©
99 ARCL 00
100 AVIEW
101 PSE
102 IDIJ""

103 FIX 7
104 ARCL IND 05
105 PRQMPT
106 H'v___ll

107 ARCL IND 06
108 PRQMPT
109 DSE 06
110 DSE 05
111 GTO 10
112 RTN

113 IBL 11
114 RCL 01
115 STO 05
116 RCL 02
117 STO 06
118 FC? 01
119 GTO 13
120 1 E=3
121 ST+ 05

122 IBL 13
123 RCL IND 06
124 RCL IND 05
125 FC? 01
126 GTO 02
127 RCL 08
128 ST= 2
129 =

real parts
of coeff,
(& roots)

imag. parts
of coeff.
(& roots)

Rg;Bmin
R

130 DSE 08
131 GTO 02
132 RIN
133 LBL 00
134 RCL 04
135 RCL 03
136 XEQ 03
137 RCL IND 05
138 FS? 01
139 RCL 08
140 FS? 01
141 =

142 +
143 FS? 00
144 STO IND 05
145 x()Y
146 RCL IND 06
147 FS? 01
148 RCL 08
149 FS? O1
150 =
51 +
152 FS? 00
153 STO IND 06
154 X()Y
155 FS? O1
156 DSE 08
157 1BL 02
158 DSE 06
159 DSE 05
160 GTO 00
161 RTN
162 LBL 03
163 STO L
164 Rf
165 ST= Y
166 X() 2
167 ST= 2
168 rA
169 ST= Y
170 ST L

171 X() L
172 RA
173 -
174 RIN
175 +
176 RA
177 END

177 lines
298 vytes
SIZE 2n+11

8$22 min

VALENTIN ALBILLO (4747)

