

Notes on the back story of this letter:

 This 5-page letter is also one of the first I sent to Richard Nelson, who was in charge of PPC

back then. By now some of my contributions had been published, at long last, and my fledgling

self-taught English was improving a little, which encouraged me to send more materials.

 In this letter I focused mainly on various aspects of the PPC ROM Project logistics, asking a

number of questions (which, as always, went unanswered by Mr. Nelson) and suggesting that it would be

highly desirable and useful to publish an special issue (which could well be a double one) fully dedicated

to the many routines being submitted for the ROM, to raise public awareness, discussion, improvement

and even voting. I also included a couple of additional contributions for the ROM, (which weren't

selected) namely these two synthetic routines:

• A short, efficient Byte Counter routine which would help determine the length of any program or

consecutive programs without requiring a printer, as well as the byte count between arbitrary

lines in program memory, which the printer wouldn't provide. It would even automatically create

a required synthetic assignment, needing no inputs at all.

• The second one was Reset Flags, a very short synthetic routine which would reset the status of all

flags from 00 to 55 to their Master Clear default values in one go, taking just half a second and

leaving all registers and the whole stack + LAST X undisturbed.

I also included an input for the "Feedback" or "41 notes" sections, providing a list with names and

functionalities for ~ fifty "Flag 30 Catalog" functions, giving the actual function being executed upon

filling up their prompts (digits, alpha, IND, stack, etc.), which featured such gems as eG0BEEP and

$T+N IA, allowing programming printer functions without a printer, all 127 local labels, etc.

 Valentin Albillo, 21-12-2021

Richard Nelsm

Editor, PFC Journal

2541 We. Camden Place
Santa Ana , CA 92704
U. S. A

Valentin Albillo (4747)
Padre Rubio, 61 = 20 C
Madrid 29
SPAIN

Hello, Richard , how are you ?

Too much work for you, isn“t it ? I hope
the Club copier project is going allright. I°1l send you some dollar bills as soon
as I can get them (it is not very easy here in Spain). Do you liked any of my past
contributions ? As you may have noticed, I am very interested in the PPC Custom ROM.
If itscontents are what they promise to be, I may order as many as 5 ROMs ; they will
be a fantastic publicity for the Clubs this is, I am not very sure if members are -
allowed to buy more than ome . If a member can only buy a single ROM , sorry. Now ,
a question 3 are there any legal restraints to byy a ROM in the US from here in Spain ?
(I mean Custom laws, or the like). Can foreign members buy ROMs freely ? Will they
have to pay more for the ROM than US members 7 .

Anyway, here is a suggestions it would be a very
good idea to dedicate a special number of PFC CJ to the already submitted routines for
the ROM (much like the "Special Routines issue (V5 N7) ". Most of the submitted routines
will appear in that number, so that members can hying.opinions, criticism, comments,
even improvementto some of the routines, I , of course, agree with the open review pro-
cedure policy. I am very amazed that, although we are almost in mid summer, so few -
routines for the ROM have appeared in the PPC CJ. I am very sure that many, many members
should have submitted quite a lot of routines, ideas,etc. Why have them not bean pu-
blished ? You should probably publish them all in the previously mentioned special -
issue (which may be a double issue if that is necessary) s members should vote every
routine, together with comments., Someone (the ROM Committee, I guess) should compile
the votes and comments, to make a final selection for the ROM. That selection must be
public, So, even members which are not going to buy the ROM will take advantage of the
ROM routines for their use in RAM .

‘ Well, here included are some submittalss
-~ Two routines for the ROM s one is a Byte Counter routine, as described in V6 N8 P15.

It will count the bytes used by any program, or the bytes between any two specified
nemory locations. It allows the user to determine program length without the use of
a printer. Even members with printer will find this routine useful,as the printer -
does not give byte count between program lines, or other than full programs. The
present routine uses no registery disturbs no flag, and is completely automatic.
Even the necessary assignment of RCL b to a key is done automatically by the routi-
ne if requested, requiring no input at all from the user, in less than a second.
Byte count itself takes less than 5 seconds, regardless of the number of bytes. To
count the bytes, all the user has to do is going to the first location, press: R/S,
g0 to the second location, press R/S, XEQ "BC" and the number of bytes appears in
the display, in less than 5 seconds, labeled as nnn BYTES.Magnetic card ineluded.

The other is a RESET FLAGS routines it is only 27 bytes
long, uses no register, leaves the whole stack X,Y,Z,T,L, unaltered, executes in less
than a second, and resets the status of all flags 00~55 to its MASTER CIEAR default

value, It.takes into account if a printer is present or nots if the printer is present,
flags 21 & 55 are set. If not, both are cleared. This routine can be very usefuls as
an initlalization routine, it is unique, as it specifies FIX 4, DEG, beeper active,
USER off, ALPHA off, etec. (including flag 21 matched to flag 55), almost instantaneous-
ly (about half a second). It uses synthetic text lines and functions.Mag card included

= A 1ist of "ghost" funotions , as ASCI _ _ , etc, whose names appear in the flag 30
Catalogs. The list includes the name and known function(s) of most of them which
are known to me. All those functions may be generated using the KEY ASSIGNMENTS pro—
gram with appropriate inputs, Some of them are very useful, as they can generate un—
supported local labels directly, together with its GTO, XEQe. The '"digit" functions,
allow the editing as a line of program of any combination of digits, .,=-,exponent,
etc. Some functions as PRIVATE _ _ , and OO REG _ __ _ are not documented, yet, but
they do exist and seem to execute in program memorye. They are not included in the
list, as I am not very sure how they are ;enerated, not to mention its functionm.

Excuse me for writing you so frequently. Hope you like some of this stuff.

Best regards (Y147

P,D s Magnetic cards are included ‘
with the ROM routines recorded onto them

-this is an input to "FEEDBACK", or "41 notes”" , etc...

- The discovery of the "flag 30 Catalogs" (see V7 N4 P26 ,
27) lead many members to think what those odd names of
"ghost functions" may indicate. Here included is a ligt
of the identification of several of the functions that
appeared in those 3 catalogs:

NAME FINCTIQN

(blank) @ (zero)
$T+N A 1, XEQ local(all locals, even A, etc)
o 2, RCL 06

Y - 3, GTO 00 , RCL 15
ICABCC a 4
X 5
HLD 6
A _ T

2 _ _ 8, CHS, spare, GTO nn, RCL 08, STO 05-15
oD 9, BCL 11, STO 08 , XEQ local
- oy XBEQ local

H _ _ E, IBL
e GTO alpha
A _ RCL 01, RCL 12, GT'O 00
IEW RCL 02
c_ _ RCL 03
~ RCL 04, STO 13, STO 14, GTO 00

TBHICABEEa RCL 05, RCL 10
g RCL 07, GTO 00, XEQ 00 , #
Y RCL 09
dsy_y RCL 13
X(=Y? RCL 14, X(=Y?
ASCT STO 00 (Note s I have seen many -
9 STO 01 others, such as PRIVATE _ _
REG — STO 02 but its functiomn is not
STX ~ STO 4 clear to me up to now. All

this functions may be crea~-
8__ STO 06 ted using the SYNTHETIC KEY
+ SO 10 4y + ,\SSTGNMENTS program in -
>SF STO 11 V7 N3 P3, using O ENTER
LT GTO 00 mn ENTER key R/S)
W GTO 00
A XROM 00,00 thru XROM 03,52 (at least)
yoo_ AROM 04,00 thru XRM 07,52 (id.)
ZBEEP XROM 08,00
3 - XROM 16’00 (locallabels A,ooo,J,T’Z)
T XROM 24,00 XY,L,M,ys0ey0tc oxist)
oCG@BEEP XROM 28,00 thru XROM 29,35 , IBL alpha
< ulf? XBOM 12,00 (there are 127 local la —
B __ _ GTO local bels. All are useful. For
S GTO local instance, GTO X (localg
M5 GTO 00 addresses LBL X (local))
wT SPARE
a< _ GTO local
y (flying g. GTO 00
D GTO 00
R . GTO 00
oCAB(Ca XEQ nn
“a XEQ 00
X XEQ local (even local X,Y,Z,T,L)

This list is not exhaustive at all. Not all possible
functions belonging to each name are given. All underscore
symbols are promrts. Most prompts may be filled using nump-
bers, alpha characters, IND, ST (stack),X,Y,2,T,L, and even
+y=y%y/ (they become ST+,ST-,STz,ST/ , thens. Some of this
functions are very useful. For instance, $T+N IA o if
youfill the prompt, becomes XEQ 00 thru XEQ e (including -
A,B,...,J,T,X,Y,Z,L,M,...,append, etc, local labBIS)

~here is an input to the ROM PROGRESS column

Certainly, the ROM ideas suggested in V6 N8 P15 are a source
of inspiration to all those people interested in the ROM pro-
gress. Here included is a routine that should be considered
for its inclusion in the PPC Custom ROM . It is my answer to
the request for a Byte Counter, defined as 1 " ... gives pro-
gram byte count without printer attached”.

This routine, called "BC" (nyte counter),
allows the user to count the hytes used by any program, or bet-
ween any location in program memory and another location. Easch
locationmay be in a different program , as there are no limits
to the procedure. It may also be useful to find how many pro-
gram memory is used at any moment. Simply, uge the routins to
count the bytes between the first line of the first program in
memory, and the final END, and there you are.

The routine is fully automatic s you sim-

pPly, go to the beginning of the part whose bytes you want to -
count, press a key, thengo to the last line, press the same ~
key, XEQ "BC" , and a message nmn BYTES will appear in the dis
playe. No registers, flags, are used at all.

01 IBL"BI" 19 XEQO1 37 & 55 "ETTTTR"
02 "XEy"E" 20 - 38x() N 56RCL M
03 ASTO X 21 ClA 39 XEQ 01 57 FRC
Mx()o , 22BL4 407 58 10
05 "BRES™" 23 FIX O 41 = 59 =
06 RCL M 24CF2 42Xx()Y 60x()M
ggsrooo 25 ARCL Y 43 XEQ 01 61 INT
fiy 26 "¢ BYTES" 44 STOM 62 1

09 o 27 SO 4 45 16 63 =
10 RCL 28 PROMPT 46 ST/ M 64 16
11 X() d 29 1BL O 47 MOD 65 =
12 SF 04 30 X()Y : 48 1792 66 IBL 02
13x) a 31 CLA 49 = 67 RCT X
14 9ro+ 32 STOM 50 + 68 INT
15 K" 33 "r=sxzmx" 51 GTO 02 69 +
16 PROMPT 34 CLX 52 IBL 01 70 END
17 1BL"BC* 35 X() N 53 STON
18 X8Q 01 36 "kt 54 RIN

This routine is 70 lines, 156 hytes.
Does not use any register (except the stack and status re—
gisters), no flags are changed at all. The first part,"BI",
is an optional initialization routine that automatically -
assigns BCL b (XROM 01,60) to the R/S key. No inputs are re-
quired. This is done to fully automatize the procedurc. If
the user has already assigned RCL b to a key, he or she may
skip this initialization, and use its own RCL b key instead
of R/S. Otherwise, simply XEQ "BI" and , in less than a se-
oand, the message (K appears in the display. Now RCL b is
assigned to the R/S key for its exscution in USER mode. This
is convenient as : although R/S is assigned, it will stop any
program, catalog listing, etc, even in USER mode, regardleas
of the assignment, so R/S does not lose all of its functions.
Besides, it may be reassigned at will, using ASN @any)R/S.

Executing BI does not use any register, does not change
any flag. No "ghost" assignments are created, only RCL b to
the R/S key. However, if they were previous assignments, the
last two will be lost, and changed to ABS. All other assign-
ments remain unchanged. If you want to preserve all your pre-
vious assignedents, simply assign anything to any two keys
not already assigned, then XEQ "BI" . The dummy assignments
will be cleared, but no other assignment will be changed at

alle ;.ne 02 is F50169CCOCEF
line 05 is FTPOYOTC 38000000

T

line 55 is ;g.ppend 0000000001" , this is
TFO000000001

Detailed explanation
BI s lines 02-04 create the new temporal contents of Re, which

is 100169CCOOBF,. lines (5-07 store the new assignment re—
gister , FO907C38000000 , in the place of the last two -
assignments (if any). FO is the first byte of an assign-
ment register. 907C is the code for RCL b. 38 is the code
for the R/S key. The nulls are necessary to make a full 7
bytes. Lines 08-09 restore the original contents of Ra.
Lines 10-12, set the appropiate flag (04) in the proper
status register, to confirm the assignment to the B/S key.

No other assignments are disturbed or created. lines 13-14,
restore the status of all flags, and the work is done.

13 assuming the two necessary pointer locations are in X,Y ,
routine O1 (f.i—r'gt) is executed twice, to convert each ad-
dress to a decimal number. Both are sustracted, to yield
the number of bytes between both addresses. Lines 22,27
assure that no status information is changed (FIX, etc).
lines 30-38, separate the two bytes of the address, before
converting them to decimal. the second LBL 01 is a modified
version of UNBLD (see V7 N2 P37). Changes to BC are very
oritical, a8 most intermediate results, addresses, etc ,
are carried stored in the stack.

Characteristics i =completely automatic
-no registers used
-no flags used

~if BI is not used, nothing is changed in machine status
~if BI is used, RCL b is assigned to R/S . Any assignment to
the R/S key is lost, of course. The last two assignmenta are
changed to ABS (default). No ghost assignments are created.
R/S is still useful to stop any program, etc.

-execution times 3 BI , less than a second
BC , 5 seconds

INSTRUCTINS : -first of all, (a) if you already have RCL b
assigned to some key, and you want to use

that key, use it instead of R/S (b) if you haven’t RCL b
assigned, there are two possibilities : (1) you have no assig-
nments at all(user’s program assignments don’t count, as they
are stored with the program label, not in the assignments re-
gisters) , then XEQ '"BI", will assign RCL b to R/S . The same
is valid if you have some assignments, but don’t care about
the last two being removed. (2) if you have some assignments,
and you don“t want to lose the last two, then assign any func-
tion (not program) to two keys, then XEQ '"BI". This will assign
RCL b to R/S, and the dummy assignments will be removed, leaving
all others undistrubed.

soe

END__
| LBL'PEPE"
‘ *o®e

‘ *ee

LBL"JOSE"
l s0e

| see

END
+END.,

25510 3’8}
jeoe

47 LaST X
48SIN

~the following assumes RCL b is assigned to R/S

-suppose you want to count the bytes used by the

program called "PEPE". Do as follows:

GTO "PEFE" , (user; R/S éuser;
GTO "JOSE" , (user) R/S (user
XEQ "BC" ¥ nnn BYTES

-now, you want to count the bytes used by the

program "JOSE", which is the last program in
memory; do the followings
GTO "JOSE" , (user) R/S (user)
GTO we , (user) R/S (user)
XEQ YBC" ¥ nnn BYTES

-now, to countthe bytes between line 25 and
47, both included, do as follows:

GTO 025 , (user) R/S (user)
Gro .048 , (user) R/S (user)
XEQ “BC" ¥ nnn BYTES

-t0 count all used bytes in program memorys
" LeFmRste] CAT 1 » B/S (as somn as the first IBL or

~oL

B

i

END appears)
| e J RIN , (user) R/S (user)
L' m‘“"“m"‘ GTO oo(USeI') R/S (user)

. . XEQBC" % nnn bytes

-of course, many keystrokes may be saved, by simply not

switching out of USER if it is not necessary (i.e, if
anly R/S is assigned, or CAT and GTO are not assigned)

TEST EXAMPIE : assume you have just loaded Byte Counter.

"(:)1'_1231'.—"}3}5”\’ and you havent RCL b assigned. To count

P77 Se—— the bytes used by BI, then by BC, then by
;T’l IBLED "J the whole programs

[ooe XEQ'BI" » K (now RCL b is in R/S)
JOEND _ _l}GTO "BI" , (user) R/S (user
71 END. gro "BC" , (user) R/S (user

XEQ "BC" > 44 BYTES ooccupied by BI

GTO "BC" , 2user) R/S (user;
GTO +» o (user) R/S (user
X8Q "BC" 9 112 BYTES ocuupied Yy BC

GTO "BI" , (userg R/S (user)
GTO es » (user) R/S (user)
XEQ "BC" » 156 BYTES occupied by the whole

-of course, 44 + 112 = 156 bytes.

WARNINGS 3 -the line or the program may be accessed by any

maansg, GTO alpha, or GTO .nmn, or GT0eey OT CAT.

- BI must not be used if there are no free registers in pro-

sTem memory to store a single assignment (this is, there is

not a single assignment already made, nor place for any).

VALENTIN ALBILLO (4747)

I read carefully the letter of Larry Fox (2596) published in the
ROM PROGRESS column of the MAY iesue (V7 N4 P12). I think most
of the routines he suggests for the R(M are intended to be micro

code level routines: for instance, FS?S , FC?S are only suita -

ble as microcode. Otherwise, FS?S is equivalent to FS?,then SF,

which would be horribly ineficcient in a user—level R(M routine.
He asks for a RESET FLAGS routine, which should re-

set the status of all flags to its initialization (MEMORY LOST)
default values. Here included is a routine, to be considered for

its inclusion into the PPC Custom R, which does exactly that:

all flags are reset to its MASTER CIEAR value: no registers,etoc
are used. Only = = —~ the AIPHA register is cleared. X,Y,Z,T"&
LAST X remain unchanged. The routine takes into account the ve-
lue of flag 55 before the call, If flag 55 is set (printer pre-
sent), flaz 55 and flag 21 are set. If flag 55 is clear (no -
printer), flag 55 and flag 21 are cleared.

01 IBL"FR" The routine, called FR (Flag Reset) , is 8 1i -

o2, xE-" nes, 27 bytes. Uses no register, leaves the who

03 PS? 55 le stack, X,Y,2,T,L , unaltered. Clears ALPHA

o4 nX,KBA" register. To use, simply XEQ "FR" .

05 ASTO d flags 00-20,22-25,27,30-36,38-39,41-54 : clear
8"} ga% flags 26,28-29,37,40 1 set

08 END flags 21,55 s if printer present (55 set;: set
if no printer (55 cleared)sclear

- this exactly reproduces the status of all flags after a master

clear. Of course, the display will be FIX 4, DEG, comma sepa-

rators active, beep active, out of USER& alpha, etc.

(exscution time: less than 1 sec) VAIENTIN AIBILLO (4747)

lina 02 is F420048000 § line 04 is F50420048001

