5/1/2019	

♦ MoHPC ♦	The Museum of HP 🤍 Sea	<i>Calculators</i> rch ^{ag} Member List 📧 Calendar 🐵	Help
Welcome back, Valentin Albi	illo. You last visited: Yesterday	y, 10:28 PM Current time: 05-01-2019, 01:5	50 AM
View New Posts View Today's	Posts Private Messages (Unre	ead 0, Total 145) Open Budd	ly List
HP Forums / HP Calculator SRC#003- New Year 2019 Pages (2): 1 2 Next >	rs (and very old HP Com Special	oputers) / General Forum ▼ / [VA]	EPLY
	2019 Special	Threaded Mode Linear	Mode
01-16-2019, 12:42 AM		Pos	st: #1
Valentin Alb	illo 🔒	Posts: 347 Joined: Feb 2015	
Senior Member		Warning Level: 0%	
[VA] SRC#003- New Year 20)19 Special		
Hi, all:			
Welcome to my brand new	r SRC#003 , this time com	nmemorating the New Year 2019 .	
There will be some (hopefu assignment for you to tack <i>Mathematica, Python, Jav</i> <i>that)</i> , namely:	ully) interesting things disc kle with your preferred HP ra, Haskell, Wolfram Alpha,	cussed here but first of all there's a sim • calculator (<u>not</u> Excel, Matlab, . etc., there are other forums/threads	ple <i>for</i>
Write a program which i	mplements the following	g procedure:	
1) Create this 3x3 matrix	M:		
μ π 2019	9 2019		
$M = 1 \pi$	2019		
1 1	π		
2) Compute the successiv the value of M ⁿ (1,3) / M ⁿ	e powers of M (i.e: M², M (2,3) until it converges to	1³, etc.) and for each power n compute some limit.	ē
What is the numerical va computing ?	alue of this limit ? What	t do you think this procedure is actua	ally
You can use any HP calcu HP-11C or better) but, ag would be better if you dor intuition.	Ilator of your choice (M inir gain, write your code only I't peruse the Internet, jus	mum R ecommended M odel would be the in RPN , RPL or 71-BASIC , please, and st your programming skills and math	it
In a few davs I'll give a 5-	<i>line, 144-byte</i> program for	r the HP-71B (easiest code to	

understand), plus extensive comments and further discussion.

Meanwhile, let's see what you come up with. 😀

12.63898231939055286048607387871531		
Code:		
SPOILERS!!!		
S EMAIL PM S FIND	< QUOTE 🛃	REPORT
01-16-2019, 11:33 AM (This post was last modified: 01-16-2019 11:36 AM by Thor	mas Klemm.)	Post: #5
Thomas Klemm	Posts: 1,449 Joined: Dec 2013	3
RE: [VA] SRC#003- New Year 2019 Special		
The vector		
$e = egin{bmatrix} u^2 \ u \ 1 \end{bmatrix}$		
is eigenvector to the matrix		
$M = egin{bmatrix} a & u^3 & u^3 \ 1 & a & u^3 \ 1 & 1 & a \end{bmatrix}$		
with eigenvalue $\lambda = u^2 + u + a$ since		
$egin{bmatrix} a & u^3 & u^3 \ 1 & a & u^3 \ 1 & 1 & a \end{bmatrix} egin{bmatrix} u^2 \ u \ 1 \end{bmatrix} = egin{bmatrix} au^2 + u^4 + u^3 \ u^2 + au + u^3 \ u^2 + u + a \end{bmatrix} = (u^2 + u + a) egin{bmatrix} u^2 \ u \ 1 \end{bmatrix}$		
For the given values $a=\pi$ and $u^3=2019$ it appears that λ is the b Thus the vector M^nv will eventually converge to a multiple of the eivector $v eq 0$. Since we look only at values in the last column of M^n we can just as	iggest eigenvalue genvector e for e s well calculate:	every
$M^n \begin{bmatrix} 0\\0\\1 \end{bmatrix}$		

Thus the ratio

 $\frac{M_{1,3}^n}{M_{2,3}^n}$

converges to the value

$$rac{e_1}{e_2}=rac{u^2}{u}=u$$

For the given value $u^3=2019$ this means $u=\sqrt[3]{2019}\doteq 12.63898232.$

Here's a program for the **HP-48GX**:

Code:

```
«
@ (n M - ratio )
[ 0 0 1 ] ROT
1 SWAP START
OVER SWAP *
NEXT
SWAP DROP
DUP 1 GET
SWAP 2 GET /
»
```

Example:

With the given matrix ${\boldsymbol{\mathsf{M}}}$ in a variable:

200 M

12.6389823194

Or then using what we know from above:

```
M EGV DROP { 2 1 } GET INV (12.6389823194,0)
```

This works since e_1 of eigenvectors appears to be 1.

Cheers Thomas

	•
A similar calculation can be done:	
$egin{bmatrix} a & u^4 & u^4 & u^4 \ 1 & a & u^4 & u^4 \ 1 & 1 & a & u^4 \ 1 & 1 & 1 & a \ \end{bmatrix} egin{bmatrix} u^3 \ u^2 \ u \ 1 \end{bmatrix} = egin{bmatrix} a u^3 + u^6 + u^5 + u^3 + u^2 + u^5 + u^3 + u^2 + u^2 + u^4 + u^3 + u^2 + u^2 + u^4 + u^3 + u^2 + u + u^3 + u^2 + u^3 + u^3 + u^2 + u^3 +$	$egin{aligned} &+ u^4 \ + u^4 \ - u^4 \ + a \end{aligned} \end{bmatrix} = (u^3 + u^2 + u + a) egin{bmatrix} u^3 \ u^2 \ u \ 1 \end{bmatrix}$
Cheers Thomas	
PM FIND	🤞 QUOTE 🤞 🔗 REPORT
01-17-2019, 08:04 PM	Post: #7
DavidM 🕹 Senior Member	Posts: 722 Joined: Dec 2013
force loop to compare successive results until the Code:	e first duplicate was encountered (50g/RPL):
Result: 12.6389823194 Execution time: about 12s on a real 50g. Size: 146.5 bytes, of which 84 bytes is spent buil and require the initial matrix being left on the stat bytes.	lding the initial matrix. If I take that part out ck as an argument, the size drops to 62.5
A similar approach using Thomas' first optimization	1:
Code:	

▼

(this may take some time ...)

12.63898232

Registers:

```
0: 2019 (or whatever you entered)
1: x
2: y
3: z
```

Starting with:

 $egin{bmatrix} x \ y \ z \end{bmatrix} = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$

The following matrix multiplication is iterated:

$\begin{bmatrix} x \end{bmatrix}$		$\int \pi$	2019	2019		$\begin{bmatrix} x \end{bmatrix}$	
y	\rightarrow	1	π	2019	•	y	
$\lfloor z \rfloor$		$\lfloor 1$	1	π		$\lfloor z \rfloor$	

The resulting vector is reduced in lines 29-31 to avoid overflow.

$$egin{bmatrix} x \ y \ z \end{bmatrix}
ightarrow egin{bmatrix} 1 \ rac{y}{x} \ rac{z}{x} \end{bmatrix}$$

Cheers Thomas

	🗭 РМ	🔍 FIND
--	------	--------

< QUOTE 🛃 🔗 REPORT

Post: #9

.

01-18-2019, 07:44 PM

Thomas Klemm 🍐

Senior Member

Posts: 1,449 Joined: Dec 2013

RE: [VA] SRC#003- New Year 2019 Special

The translation for the **HP-67** is straightforward:

	С	0	d	e	•
--	---	---	---	---	---

001:	31	43		:	CL REG
002:	35	33		:	ST I
003:	35	53		:	R↓
004:	33	00		:	STO 0
005:	01			:	1
006:	33	03		:	STO 3
007:	31	25	00	:	►LBL 0
008:	34	03		:	RCL 3
009:	34	00		:	RCL Ø
010:	71			:	×
011:	35	73		:	π

Example:

2019 ENTER† 200 R/S	
(lots of blinkenlichten)	
12.03898232	
Cheers Thomas	
PM R FIND	< QUOTE 🔥 🖋 REPORT
01-18-2019, 09:15 PM	Post: #10
DavidM 💩 Senior Member	Posts: 722 Joined: Dec 2013
RE: [VA] SRC#003- New Year 2019 Special	
Thomas Klemm Wrote: ⇒	(01-18-2019 07:04 AM)
This program is for the HP-11C :	
(this may take some time)	
12.63898232	
2019/200 completed in about 476 seconds on my 11C.	
PM S FIND	🤞 QUOTE 📣 🖋 REPORT
01-18-2019, 10:28 PM	Post: #11
Thomas Klemm	Posts: 1,449 Joined: Dec 2013
RE: [VA] SRC#003- New Year 2019 Special Looking at the eigenvalues of the matrix M :	
M EGVL	
[(175.524449043,0) (-83.049835541,127.396573277) (-83.049835541,127.396573277)]	
respectively rather at their absolute values:	
[175.524449043, 152.076171921, 152.076171921]	
We can estimate the amount of iterations n needed for a 10-digit to return the exact value as:	t calculator like the HP-11C
$\left(rac{152.076171921}{175.524449043} ight)^n = 10^{-10}$	
This leads to:	

$n = rac{-10}{\log_{10} \left(rac{152.0761719}{175.5244490} ight)}$	$\left(rac{921}{043} ight) pprox 160.5744$	
Or then for a 12	-digit calculator like the HP-48GX to:	
$n = rac{-12}{\log_{10} \left(rac{152.0761719}{175.524449} ight)}$	$\left(rac{921}{943} ight) pprox 192.6892$	
DavidM Wrote:	: →	(01-18-2019 09:15 PM)
2019/200 comp	leted in about 476 seconds on my 11C.	
Using 160 instea	d of 200 would take about 380 seconds.	
Cheers Thomas		
🌾 PM 🥄 FIND		< QUOTE 🤹 💅 REPORT
01-20-2019, 01:33 P	Μ	Post: #12
Thomas Klem Senior Member	m 🖁	Posts: 1,449 Joined: Dec 2013
RE: [VA] SRC#003	- New Year 2019 Special	
	or the HP-25 :	
01: 14 33 :	CLEAR REG	
02: 23 04 :	STO 4	
03:22 :	R↓	
04: 23 00 :	STO 0	
05:01 :	1	
06: 23 03 :	STO 3	
07: 24 03 :	RCL 3	
08:24:00 :	RCL Ø	
10· 15 73 ·	л П	
10: 13 75 · . 11: 23 61 03 :	STO× 3	•
Example:		
2019		
ENTER↑		
200		
R/S		
12.63898232		
Cheers Thomas		
🗭 PM 🔍 FIND		< QUOTE 🥢 😿 REPORT
01-20-2019, 08:13 P	M	Post: #13
Thomas Klem	m 🔒	Posts: 1,449
Senior Member		Joined: Dec 2013

RE: [VA] SRC#003- New Year 2019 Special

This program	is	for	the	HP-29C:	
--------------	----	-----	-----	---------	--

Coc	le:				
01:	14	33		:	CLEAR REG
02:	23	00		:	STO 0
03:	22			:	R↓
04:	23	04		:	STO 4
05:	01			:	1
06:	23	03		:	STO 3
07:	15	13	00	:	⊾LBL 0
08:	24	03		:	RCL 3
09:	24	04		:	RCL 4
10:	61			:	×
11:	15	73		:	π

Registers:

0: looping counter 1: x 2: y 3: z 4: 2019 (or whatever you entered)

Example:

2019 ENTER† 200 R/S **12.63898232**

Cheers

Thomas

RE: [VA] SRC#003- New Year 2019 Special

Hi all:

First of all, many thanks to all of you who contributed your various RPN/RPL solutions and valuable comments. As Thomas Okken suspected and Thomas Klemm explained, the reason this procedure works and converges to the cubic root of 2019 has all to do with the eigenvalues of the matrix \mathbf{M} .

My original code for the **HP-71B** (easiest to understand), which exactly follows the steps given in my OP (i.e.: computing the powers of **M** instead of repeatedly multiplying by a vector) is the following *5-line, 144-byte* snippet of code, which also keeps count of the number of

iterations needed:

1	DESTROY ALL @ OPTION BASE 1 @ DIM M(3,3),B(3,3)
2	DATA PI,2019,2019,1,PI,2019,1,1,PI
3	READ M @ MAT B=M @ R=O @ I=O
4	REPEAT @ MAT B=B*M @ L=R @ R=B(1,3)/B(2,3)
5	I=I+1 @ UNTIL L=R @ DISP I;R;R^3
>RUI	N

183 **12.6389823194** 2019

so after 183 iterations the limit is found to be **12.6389823194**, which is 2019^(1/3), **the cubic root of 2019**. Now for a few comments:

The procedure can be generalized in many ways. For instance:

1) My example used **Pi** in the main diagonal just for aesthetics but actually **the procedure will converge for other positive values K in the main diagonal**, resulting always in the same limit but greatly affecting the number if iterations needed for convergence. For instance:

Κ	Iterations
1	198
2	200
Pi	183
10	130
20	83
40	51
80	39
120) 34
160) 33
200) 37

as you may see in the table above, the value of **K** which results in the lowest number of iterations needed seems to be around 120-140. In fact, the *theoretically optimum* value for **K** in the main diagonal which results in the minimum number of iterations to converge for a given number **N** (2019 in my OP) is:

 $K = (N^{(1/3)+N}) / (N^{(1/3)+1})$

which for N=2019 would be

 $(2019^{(1/3)}+2019) / (2019^{(1/3)}+1) = \underline{148.958253244}$

thus placing, say, **148** or **149** in the main diagonal instead of **Pi** will result in the *lowest* number of iterations needed, about *33-34* instead of the *183* needed when **K=Pi**.

2) The procedure will converge for numbers N other than 2019, be they integer, real (or even *complex* !), and the limit will be N^(1/3), the cubic root of N. For instance:

- using K = 1, N = 5: M = 1 1 5 5 M = 1 1 5 1 1 1

will converge in 25 iterations to $1.70997594668 = 5^{(1/3)}$, the cube root of 5

https://www.hpmuseum.org/forum/thread-12206.html

5/1/2019

- using K = 2, N = 2: 2 2 2 M = 1 2 2

1

2

1

will converge in 14 iterations to $\underline{1.25992104989} = 2^{(1/3)}$, the cube root of 2.

- using K = 1, N = 1 + 2 i: (remember to define M, B, L and R as COMPLEX)

 $M = \begin{array}{cccc} 1 & (1,2) & (1,2) \\ M = \begin{array}{cccc} 1 & 1 & (1,2) \\ 1 & 1 & 1 \end{array}$

will converge in 23 iterations to $1.21961650797 + 0.471711267789 i = (1 + 2i)^(1/3)$, the cube root of 1 + 2 i.

3) Though my OP specified the ratio B(1,3)/B(2,3), the procedure will converge using many other different ratios. For instance;

B(1,1)/B(2,1), B(2,1)/B(3,1), B(1,2)/B(2,2), B(2,2)/B(3,2), ..., B(3,3)/B(3,2), B(3,2)/B(3,1)

will converge to N^(1/3), the cubic root of N, while the ratios;

B(1,1)/B(3,1), ..., B(3,3)/B(3,1)

will converge to $N^{2/3}$, the *square* of the cubic root of N (or the cubic root of the square of N, your choice)

4) My OP used a 3x3 matrix and the limit was the cube root of N, but **using DxD matrices** with the same pattern will make the various ratios converge to $N^{(1/D)}$, $N^{(2/D)}$, $N^{(3/D)}$, ..., i.e., **the Dth root of N and its powers**.

5) Besides computing cubic roots, the procedure can also be made to converge to **the root of a given cubic** *equation* of a particular form. For instance:

Find a root of: $x^3 - 1.2 + x - 2.1 = 0$

We'll first create the following 3x3 initial matrix **M**:

 $\mathbf{K} \qquad \mathbf{P} \qquad \mathbf{Q} \\
 \mathbf{M} = \mathbf{1} \qquad \mathbf{K} \qquad \mathbf{0} \\
 \mathbf{0} \qquad \mathbf{1} \qquad \mathbf{K}$

where we'll use K=1, P=1.2, Q=2.1, so the initial matrix will be:

 $M = \begin{array}{cccc} 1 & 1.2 & 2.1 \\ M = \begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}$

which converges in 24 iterations to 1.58816816249, which is the real root of the given cubic equation. This can be checked like this:

https://www.hpmuseum.org/forum/thread-12206.html

<u>1.5881681625</u>	
6) As was the case for <i>Dth</i> roots, it's possible to create an in limit converge to a root of a given polynomial of degree D . lengthy and will not be discussed here.	iitial DxD matrix to have the The details are somewhat
As a final observation, notice the fact that for integer N and <i>rational approximations</i> (integer numerator and denominator) close to the floating point <i>real value of the Dth root</i> using just multiplications and nothing else: no subtractions, no division end if you wish to convert the fraction to a floating point value equations with integer coefficients.	I K this procedure will produce that will converge arbitrarily at integer additions and hs except the optional one at the ue. Same for polynomial
Thanks again to all of you for your interest and valuable cont keep them coming ! 😀	ributions, much appreciated,
Regards. V.	
PM S FIND	DIT 🔀 🍕 QUOTE 🤞 🔗 REPORT
01-20-2019, 11:28 PM	Post: #15
Albert Chan 💩 Senior Member	Posts: 624 Joined: Jul 2018
RE: [VA] SRC#003- New Year 2019 Special	
Valentin Albillo Wrote: →	(01-20-2019 09:40 PM)
2) The procedure will converge for numbers N other than even <i>complex</i> !), and the limit will be N^(1/3), the cubic root	n 2019 , be they integer, real (or of N.
2) The procedure will converge for numbers N other than even complex !), and the limit will be N^(1/3), the cubic root Some N might not converge, say -1	n 2019, be they integer, real (or of N.
2) The procedure will converge for numbers N other that even <i>complex</i> !), and the limit will be N^(1/3), the cubic roo Some N might not converge, say -1	n 2019, be they integer, real (or ot of N.
2) The procedure will converge for numbers N other than even complex !), and the limit will be N^(1/3), the cubic root Some N might not converge, say -1 Image: Some N might not converge, say -1	n 2019, be they integer, real (or ot of N. QUOTE A REPORT Post: #16
 2) The procedure will converge for numbers N other than even <i>complex</i> !), and the limit will be N^(1/3), the cubic root. Some N might not converge, say -1 EMAIL PM PM FIND 01-27-2019, 11:38 PM Valentin Albillo & Senior Member 	n 2019, be they integer, real (or ot of N. QUOTE A REPORT Posts: 347 Joined: Feb 2015 Warning Level: 0%
 2) The procedure will converge for numbers N other than even <i>complex</i> !), and the limit will be N^(1/3), the cubic root Some N might not converge, say -1 CEMAIL PM CFIND 01-27-2019, 11:38 PM Valentin Albillo Senior Member RE: [VA] SRC#003- New Year 2019 Special 	n 2019, be they integer, real (or ot of N. QUOTE A REPORT Posts: 347 Joined: Feb 2015 Warning Level: 0%
2) The procedure will converge for numbers N other than even complex !), and the limit will be N^(1/3), the cubic row Some N might not converge, say -1	n 2019, be they integer, real (or ot of N. QUOTE CAR REPORT Posts: 347 Joined: Feb 2015 Warning Level: 0% (01-20-2019 11:28 PM)
2) The procedure will converge for numbers N other that even <i>complex</i> !), and the limit will be N^(1/3), the cubic roo Some N might not converge, say -1	2019 , be they integer, real (or of N. 2019 , be they integer, real (or ot of N. EXAMPLE QUOTE QUOTE Warning Warning (01-20-2019 11:28 PM) (01-20-2019 09:40 PM)
2) The procedure will converge for numbers N other than even complex !), and the limit will be N^(1/3), the cubic roo Some N might not converge, say -1	2019 , be they integer, real (or ot of N. 2019 , be they integer, real (or ot of N. 2019 , be they integer, real (or ot of N. Posts: 347 Joined: Feb 2015 Warning Level: 0% (01-20-2019 11:28 PM) (01-20-2019 09:40 PM) ic root of N.
2) The procedure will converge for numbers N other that even <i>complex</i> !), and the limit will be N^(1/3), the cubic roo Some N might not converge, say -1	2019 , be they integer, real (or of N. 2019 , be they integer, real (or ot of N. 2019 , be they integer, real (or ot of N. Posts: 347 Joined: Feb 2015 Warning Level: 0% (01-20-2019 11:28 PM) (01-20-2019 09:40 PM) 1019 , be they integer, real ic root of N.

$egin{bmatrix} \lambda_1 & 0 & 0 \ 0 & \lambda_2 & 0 \ 0 & 0 & \lambda_3 \end{bmatrix}^n = egin{bmatrix} \lambda_1^n & 0 & 0 \ 0 & \lambda_2^n & 0 \ 0 & 0 & \lambda_3^n \end{bmatrix}$	
Thus assuming the initial vector v in a general position the rate coordinate after iterating n times will be roughly:	io of the 2nd to the 1st
$rac{\lambda_2^n}{\lambda_1^n}$	
We want that to be so small that it doesn't affect the display	:
$1+10^{-10}=1$	
For the given example I have a geometric intuition. A vector is stretched in direction of the 1st eigenvector by fa The other two eigenvectors define a plane where the projection stretched by 152.076171921. Now you can wonder how often you have to iterate such that direction is so much bigger that the rest becomes irrelevant.	ctor 175.524449043. on upon is rotated and stretching in the dominant
I assumed you are familiar with the concepts of eigenvalue an algebra. Otherwise it's not possible to explain the formula.	nd eigenvectors from linear
HTH Thomas	
S EMAIL PM S FIND	💰 QUOTE 💰 🗧 💅 REPORT
№ ЕМАІЦ № РМ № FIND 01-28-2019, 07:40 РМ	Source of the second se
EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm & Senior Member	Posts: 1,449 Joined: Dec 2013
EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm Senior Member RE: [VA] SRC#003- New Year 2019 Special	QUOTE Image: Construction of the second
EMAIL Image: PM 01-28-2019, 07:40 PM Thomas Klemm Senior Member RE: [VA] SRC#003- New Year 2019 Special Albert Chan Wrote: ⇒	QUOTE Post: #19 Posts: 1,449 Joined: Dec 2013 (01-28-2019 02:46 PM)
EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm Senior Member RE: [VA] SRC#003- New Year 2019 Special Albert Chan Wrote: → Sadly, I still don't understand the geometric intuition	QUOTE Image: Solution of the second state Posts: 1,449 Joined: Dec 2013 (01-28-2019 02:46 PM)
EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm Senior Member RE: [VA] SRC#003- New Year 2019 Special Albert Chan Wrote: Image: Albert Chan Wrote: Image: Sadly, I still don't understand the geometric intuition Sorry about that.	QUOTE Image: Solution Posts: 1,449 Joined: Dec 2013 (01-28-2019 02:46 PM)
 EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm B Senior Member RE: [VA] SRC#003- New Year 2019 Special Albert Chan Wrote: => Sadly, I still don't understand the geometric intuition Sorry about that. Let's start with a vector 	QUOTE Image: Constraint of the second s
EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm Senior Member Thomas Klemm Senior Member Senior Member RE: [VA] SRC#003- New Year 2019 Special Albert Chan Wrote: \Rightarrow Sadly, I still don't understand the geometric intuition Sorry about that. Let's start with a vector $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	VOTE Report Post: #19 Post: #19 Posts: 1,449 Joined: Dec 2013 (01-28-2019 02:46 PM) 01-28-2019 02:46 PM)
EMAIL Image: PM Image: FIND 01-28-2019, 07:40 PM Image: PM Image: PM Thomas Klemm Image: PM Image: PM Senior Member Image: PM Image: PM RE: [VA] SRC#003- New Year 2019 Special Image: PM Image: PM Albert Chan Wrote: Image: PM Image: PM Image: PM Sadly, I still don't understand the geometric intuition Image: PM Image: PM Sorry about that. Image: PM Image: PM Image: PM $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ Image: PM Image: PM Image: PM and a matrix Image: PM Image: PM Image: PM Image: PM	QUOTE Image: Constraint of the second s
EMAIL PM FIND 01-28-2019, 07:40 PM Thomas Klemm Senior Member RE: [VA] SRC#003- New Year 2019 Special Senior Member RE: [VA] SRC#003- New Year 2019 Special Senior Member Albert Chan Wrote: -> Sadly, I still don't understand the geometric intuition Sorry about that. Let's start with a vector $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and a matrix $M = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ Image: Senior Member in the senior intuition intuition in the senior intuition intuition intuition in the senior intuition intuit	♥ QUOTE ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
EMAIL FIND 01-28-2019, 07:40 PM Thomas Klemm Senior Member RE: [VA] SRC#003- New Year 2019 Special Albert Chan Wrote: \Rightarrow Sadly, I still don't understand the geometric intuition Sorry about that. Let's start with a vector $v = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and a matrix $M = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$ If we calculate $M^n v$ we end up with:	VOTE Image: Constraint of the second se

Thus the ratio of the coordinates is:

$$\frac{y}{x} = \frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n$$

If we want to know when the y component can be neglected compared to the x component using a 12-digit calculator we see that's when:

$$\frac{y}{x} < 10^{-12}$$

And therefore when:

$$\left(rac{2}{3}
ight)^n < 10^{-12}$$

Solve that for n to get:

 $n > rac{\log_{10} 10^{-12}}{\log_{10} rac{2}{3}} = rac{-12}{\log_{10} 2 - \log_{10} 3} pprox 68.1465$

Indeed:

2 ENTER 3 ÷ 69 y^x 7.0746e-13

But of course we could get a bit closer by using 5e-12 instead of 1e-12. This leads to n>64.1771 and indeed n=65 is enough:

```
2 ENTER 3 ÷ 65 y<sup>x</sup>
3.5815e-12
```

Using the eigenvectors as a basis just adds some coordinate transformations. We don't know the details (or rather I ignored them) but for a general vector that shouldn't matter much.

But of course this calculation changes if we start with something like:

$$v = \left[egin{array}{c} 1 \ 10^k \end{array}
ight]$$

for a big positive value of k. But even that would just add k to the result.

That's why I consider it only a rough estimate.

Does this make more sense?

Cheers Thomas

🛸 PM 🔍 FIND

01-28-2019, 08:17 PM

Posts: 1,449

< QUOTE

🝠 REPORT

Post: #20

I assumed you are familiar with the conce	epts of eigenvalue and eigenve	ectors from linear
algebra.		
Maybe this video can give some geometric	c intuition:	
Eigenvectors and eigenvalu	ies Essence of linear alg	ebra, c
PM FIND	5	💪 QUOTE <
PM FIND Next Oldest Next Newest »	Enter Keywords	Search Threa
PM FIND Next Oldest Next Newest » ges (2): 1 2 Next »	Enter Keywords	QUOTE CAR REPOR Search Thread
PM FIND Next Oldest Next Newest >> ges (2): 1 2 Next >> View a Printable Version	Enter Keywords	QUOTE CAR REPOR
PM FIND Next Oldest Next Newest >> ges (2): 1 2 Next >> View a Printable Version Send this Thread to a Friend	Enter Keywords	QUOTE C REPOR
PM FIND Next Oldest Next Newest >> ges (2): 1 2 Next >> View a Printable Version Send this Thread to a Friend Subscribe to this thread	Enter Keywords	QUOTE C REPOR Search Thread
PM FIND Next Oldest Next Newest >> ges (2): 1 2 Next >> View a Printable Version Send this Thread to a Friend Subscribe to this thread er(s) browsing this thread: Valentin Albillo*	Enter Keywords	QUOTE CAR REPOR
PM FIND Next Oldest Next Newest >> ges (2): 1 2 View a Printable Version Send this Thread to a Friend Subscribe to this thread er(s) browsing this thread: Valentin Albillo* ontact Us The Museum of HP Calculators Retuontent Lite (Archive) Mode RSS Syndication	Enter Keywords	Search Thread Search Thread NEW REPLY
PM FIND Next Oldest Next Newest >> ges (2): 1 2 Next >> View a Printable Version Send this Thread to a Friend Subscribe to this thread er(s) browsing this thread: Valentin Albillo* ontact Us The Museum of HP Calculators Retuontent Lite (Archive) Mode RSS Syndication um software: MyBB, © 2002-2019 MyBB Group.	Irn to Top Return to	QUOTE CAREPOR Search Thread NEW REPL glish (American) V Go
PM Image: FIND Next Oldest Next Newest >> ges (2): 1 2 Next >> View a Printable Version Send this Thread to a Friend Subscribe to this thread er(s) browsing this thread: Valentin Albillo* ontact Us The Museum of HP Calculators Retuontent Lite (Archive) Mode RSS Syndication um software: MyBB, © 2002-2019 MyBB Group.	Enter Keywords	QUOTE CAREPOR Search Thread Search Thread NEW REPL glish (American) V Go