
1

My suggested new features for Free42

by Valentín Albillo (2020)

Introduction

These are my well-pondered and researched suggestions of functionalities which could be implemented in

Thomas Okken’s awesome HP-42S simulator, Free42
1
, to very significantly increase its capabilities with

minimum effort. All of them are based on the functionalities that I’ve frequently found necessary to use in my

own programs to either simplify the programming effort or to very significantly increase the speed but alas, they

weren’t currently available at the moment. This might be the time to remedy these omissions for good !

In my educated opinion, many of them are really very easy to implement, most are fairly easy, and anyway I’m

including a color tag next to each one to indicate my fair estimation of the implementation difficulty: Trivial,

Very Easy, Easy and Moderate. There aren’t any really hard cases among the rated ones.

I’m also including an estimation of the general usefulness for each one: Useful, Very Useful and Most Useful

For easy reference, I’ve classified all the instructions and functionalities I’m proposing in the following Sections:

1. Math functions

1.1 Basic functions

1.2 Advanced functions

1.3 Number Theoretic functions

1.4 Statistics functions

2. Matrix operations and functions

3. Polynomial-related functions

4. Constants

5. Loop-related functions and functionalities

6. Utility keywords

7. Additional useful functionalities

8. Conclusion

1 Some relevant links related to Free42, the DM42 (its physical incarnation) and the original HP-42S:

 Main site for Free42: https://thomasokken.com/free42/

 Main site for DM42: https://www.swissmicros.com/product/dm42

 Description at MoHPC: https://www.hpmuseum.org/hp42s.htm

 Owner’s Handbook: https://literature.hpcalc.org/community/hp42s-om-en.pdf

 Programming Techniques: https://literature.hpcalc.org/community/hp42s-prog-en.pdf

 My HP-42S/Free42 articles: HP Article VA010 - Long Live the HP-42S

 HP Article VA040a - Boldly Going - Mandelbrot Set Area (42S)

 HP Article VA042a - Boldly Going - Outsmarting PROOT (42S)

 Detailed examples for the equivalent HP-71B functions: HP Article VA044 - HP-71B Math Pac 2 Comments and Proposals

https://thomasokken.com/free42/
https://www.swissmicros.com/product/dm42
https://www.hpmuseum.org/hp42s.htm
https://literature.hpcalc.org/community/hp42s-om-en.pdf
https://literature.hpcalc.org/community/hp42s-prog-en.pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA010%20-%20Long%20Live%20the%20HP42S.pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA040a%20-%20Boldly%20Going%20-%20Mandelbrot%20Set%20Area%20(42S).pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA042a%20-%20Boldly%20Going%20-%20Outsmarting%20PROOT%20(42S).pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA044%20-%20HP-71B%20Math%20Pac%202%20Comments%20and%20Proposals.pdf

2

1. Math functions

1.1 Basic functions

CEIL Trivial Useful

 Ceiling: CEIL(3.4) = 4, CEIL(5) = 5, CEIL(-2.3) = -2, CEIL(-0.1) = 0

Stack use: as other 1-argument functions, such as SIN, i.e. the function value replaces the argument in

ST X, which gets saved in ST L (LASTX).

 Rationale: standard math function present in most programming languages and instruction sets but

 absent in the HP-42S. Emulating it takes several steps and somewhat obscures the code.

FLOOR Trivial Useful

 Floor, just another name for IP, should be included for consistency with CEIL.

SIGNZ Trivial Very Useful

 Standard Sign function: SIGNZ(PI) = 1, SIGNZ(0) = 0, SIGNZ(-PI) = -1

- doesn't support alpha data or matrices

- does support complex numbers: SIGNZ(3 + i4) = 0.6 + i0.8

Stack use: as other 1-argument functions, such as SIN.

Rationale: this function is necessary, as the built-in SIGN function returns 1 for an argument of 0 for

compatibility with the HP-41C, but this is utterly non-standard (i.e.:“plain wrong”) from a mathematical

point of view and severely affects the usability of the built-in function for general purposes.

CONJ Trivial Useful

 Complex conjugate: CONJ(2 + i3) = 2 – i3, CONJ(5) = 5, CONJ(-5) = -5

Stack use: as other 1-argument functions, such as SIN.

Rationale: again, this frequently used basic function is missing from the HP-42S instruction set, and

emulating it takes several steps, is slower and obscures the code.

2X and LOG2 Trivial Useful

 Binary log and antilog: 210 = 1024, LOG2(33554432) = 25, LOG2(PI) = 1.651496+

Stack use: as other 1-argument functions, such as SIN.

Rationale: this pair of functions, each one the inverse of the other, are also missing. They’re quite

useful when dealing with anything binary or with exponential duplication, orders of magnitude, etc.

3

X3 and CURT Trivial Useful

 Cube and cube root: X3(-17) = -4913, X3(-2 + i3) = 46 + i9, CURT(-4913) = -17

Stack use: as other 1-argument functions, such as SIN.

Rationale: again, a missing pair of a function and its inverse, akin to X2 and SQRT. They’re useful

for anything having to do with volumes/radii, take several steps to emulate and are much faster.

FRC Easy Very Useful

 Convert to Fraction: FRC(PI,1E-6) → X:355, Y:113, FRC(PI,1E-9) → X: 103993, Y: 33102

T: T T: T

 Z: Z Z: Z

 Y: tol Y: numerator

 X: X FRC → X: denominator

 L: L L: X

Rationale: in many scientific and engineering applications it’s frequently necessary to substitute a

real number by a suitable equivalent fraction within a specified tolerance (for instance, when

designing gears), and also to rationalize the coefficients of a LSQ functional fit or approximation.

NSPLIT Trivial Useful

 Splits a number into mantissa and exponent: NSPLIT(5.23E-34) → X: 5.23, Y: -34

T: T T: Z

 Z: Z Z: Y

 Y: Y Y: exponent of N

 X: N NSPLIT → X: mantissa of N

 L: L L: N

Rationale: when dealing with really large numbers, exceeding even the ±6,144 exponent range of

Free42 Decimal (such as, say, 1,000,000 ! ~ 8.264…E5565708), which appear in Statistics,

simulations and research), working separately with mantissas and exponents is but mandatory.

NJOIN Trivial Useful

 Joins mantissa and exponent into a number: NJOIN(5.23,-34) = 5.23E-34

T: T T: T

 Z: Z Z: T

 Y: exponent Y: Z

 X: mantissa NJOIN → X: N = mantissa*10^exponent

 L: L L: mantissa

 Rationale: this is the inverse function of NSPLIT , see its Rationale above.

4

1.2 Advanced Functions

LAMW Moderate Very Useful

 Lambert’s W function: LAMW(-0.2) = -0.259171101818, LAMW(1) = 0.567143290411

Stack use: as other 1-argument functions, such as SIN.

Rationale: Lambert W function, recently popularized, has awesome mathematical properties and an

ever-growing number of important applications in all fields, to the point that it’s been proposed as a

new “elementary” function to join the ranks of exponentials, logarithms and trigs. Every worthy math

package includes it but few calculators do, so it would be highly desirable to implement it in Free42.

AGM Easy Very Useful

 Arithmetic-Geometric Mean: AGM(1,3)= 1.86361678324, AGM(5,7)= 5.9579660133

Stack use: as other 2-argument functions, such as COMB.

Rationale: the AGM function has a plethora of important applications, e.g.: to quickly and efficiently

compute many essential functions in engineering applications (such as the elliptic functions), and even

to compute π itself at unsurpassed speeds. As with the Lambert W function, few or no calculators

compute the AGM out of the box, so it would make a fine addition to the Free42 instruction set.

1.3 Number Theoretic functions

Rationale: the HP-42S completely lacks any Number Theoretic functions, even such “kindergarten” ones as GCD

(Greatest Common Divisor) and LCM (Least Common Multiple), let alone higher-level ones, which are available in the

instruction sets of most advanced calculators and pocket computers. All are very useful in various fields, including

anything having to do with cryptography, checksums, analysis of algorithms and data structures, any research on

Number Theory subjects, and even working on US$ 1,000,000 prize problems such as the Riemann’s Hypothesis.

GCD Very easy Useful

 Greatest Common Divisor: GCD(28702,117181) = 113, GCD(113,317) = 1

Stack use: as other 2-argument functions, such as COMB.

LCM Very easy Useful

 Least Common Multiple: LCM(28702,117181) = 29763974, LCM(5,7) = 35

Stack use: as other 2-argument functions, such as COMB.

MMUL Easy Very Useful

 Modular Multiplication (A*B) mod M: MMUL(123456789,987654321,3141592654) = 2910639175

MMUL(10123465234878998,65746311545646431,10005412336548794) = 4652135769797794

T: T T: T

 Z: A Z: T

 Y: B Y: T

 X: M MMUL → X:(A*B) MOD M

 L: L L: M

5

MEXP Easy Most Useful

 Modular Exponentiation (A^B) mod M: MEXP(6,5,10001) = 7776, MEXP(23,391,55) = 12

MEXP(113, 2305843009213693950, 2305843009213693951) = 1 (the modulus M is prime)

T: T T: T

 Z: A Z: T

 Y: B Y: T

 X: M MEXP → X:(A^B) MOD M

 L: L L: M

PRIM Moderate Useful

 N
th

 Prime: PRIM(1) = 2, PRIM(5) = 11, PRIM(1E4) = 104729, PRIM(1E5) = 1299709

Stack use: as other 1-argument functions, such as SIN.

Rationale: having this function available makes it unnecessary to generate on the fly a table or range

of primes or having them coded inline for programs which need a supply of them.

PRIMQ Moderate Useful

 Returns whether the argument is Prime or Composite: PRIMQ(100) = 0, PRIMQ(113) = 1

where 0 = False (the number is Composite) and 1 = True (the number is a Prime / Probable Prime).

Stack use: as other 1-argument functions, such as SIN.

PRIMF Moderate Useful

 Smallest Prime Factor: PRIMF(117181) = 17, PRIMF(117181/17) = 61

Stack use: as other 1-argument functions, such as SIN.

Rationale: repeatedly using this function makes it easy to obtain the complete factorization of any

integer numbers, even very large ones (say up to 30 digits in Free42 Decimal)

FPRIM Easy Useful

 Find Next Prime: FPRIM(113) = 113, FPRIM(114) = 127, FPRIM(1E6) = 1000003

Stack use: as other 1-argument functions, such as SIN.

P! (aka N#) Easy Useful

 Primorial: P!(5) = 2*3*5*7*11 = 2310, P!(19) = 7858321551080267055879090

Stack use: as other 1-argument functions, such as SIN.

6

PHI Moderate Useful

 Euler's Totient: PHI(113) = 112, PHI(2520) = 576, PHI(5000) = 2000

Stack use: as other 1-argument functions, such as SIN.

MOEB Moderate Useful

 Moebius function: MOEB(8) = 0, MOEB(13) = -1, MOEB(14) = 1

Stack use: as other 1-argument functions, such as SIN.

1.4 Statistics functions

RANG Easy Very Useful

Random Number generation with standard Gaussian Distribution of mean 0 and standard deviation 1:

Stack use: the stacks lifts and the value in placed in ST X, as with RCL. LAST x (ST L) is unaffected.

Rationale: The built-in RAN function only produces (pseudo-)random numbers uniformly distributed,

but there are various important applications that do require Gaussian distributions because they fit

many real-life processes in all areas from biology to finance. No calculator that I know of includes a

Gaussian random number generator so RANG will be a welcome and pretty useful first.

NCDF Moderate Useful

 Cumulative normal distribution: NCDF(0, 1, 2) = 0.97724986805

Stack use: as other 3-argument functions, i.e. the stack drops and the function value replaces the

argument in ST X, which gets saved in ST L (LAST x).

NICDF Moderate Useful

 Inverse cumulative normal distribution: NICDF(0, 1, 0.841344746069) = 1

Stack use: as other 3-argument functions like NCDF.

NORMD Moderate Useful

 Normal probability density: NORMD(0, 2, 0.5) = 0.193334058402

Stack use: as other 3-argument functions like NCDF.

ERF and IERF Moderate Useful

 Error function and Inverse Error function: ERF(1) = 0.842700793, IERF(0.95228512) = 1.4

Stack use: as other 1-argument functions, such as SIN.

7

2. Matrix operations and functions

MIDN Very easy Very Useful

Creates in ST X a real NxN square Identity Matrix:

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: N MIDN → X: [NxN Identity Matrix]

 L: L L: N

Rationale: A very basic function that is inexplicably absent from the HP-42S instruction set, all the

more as creating the Identity matrix from scratch requires a number of steps in a loop. It’s useful for

initializing many matrix procedures, such as evaluating matrix series (exponential of a matrix), etc.

MRAN Very easy Most Useful

Creates in ST X a Random Matrix filled up with random values: minV ≤ V < maxV:

T: T T: T

 Z: Z Z: T

 Y: {M,N} Y: Z

 X: {minV, maxV} MRAN → X: [MxN Random Matrix]

 L: L L: (minV, maxV)

Rationale: when doing simulations or testing algorithms there’s frequently the need to use some

random data as initial starting values to see if the algorithm behaves as expected or to seed the first

stage of the simulation, and in general random matrices find frequent use in all sorts of tasks. Creating

and filling up a matrix with random values in RPN requires loops and is rather clumsy and slow, so

having MRAN to do it in a single step at compiled high-level language speeds is extremely convenient.

MPOW Very easy Useful

Returns to ST X the N
th

 power of a square matrix:

T: T T: T

 Z: Z Z: T

 Y: [matrix] Y: Z

 X: N MPOW → X: [matrix]^N

L: L L: N

where N is an integer. The computation goes as follows:

- If N > 1 then Matrix^N = Matrix * Matrix * ... * Matrix

- If N = 1 then Matrix^N = Matrix

- if N = 0 then Matrix^N = Identity Matrix

- if N = -1 then Matrix^N = Inverse Matrix

- if N < -1 then Matrix^N = Inverse Matrix * Inverse Matrix * ... * Inverse Matrix

Rationale: another matrix function that’s very easy to implement (repeated matrix multiplications

using a binary decomposition) and conveniently freeing the user from having to code it as a slow RPN

loop. Possible applications are many, for instance to help evaluate more sophisticated transcendental

matrix functions such as exp(A) or sin(A), where A is a matrix, checking if a matrix is nilpotent, etc.

8

MSORT Easy or Moderate , depending on the sorting algorithm used. Most Useful

Sorts the elements of a matrix in ascending order.

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: {range} MSORT var → X: [sorted matrix]

 L: L L: {range}

where range = { first element, last element } specifies the range of elements to sort. If range = 0

then all the elements are sorted. The sort is in ascending order but if descending order is required then

simply use MREV (see below) immediately afterwards to reverse the order.

Rationale: sorting data is a most frequent operation and doing it in RPN is a very slow affair. For

large datasets one would go for complex, fast algorithms such as Quicksort or Heapsort, but when

using the HP-42S one usually needs to sort datasets having under 100 elements or so, in which case

the best sorting algorithms aren’t really needed and using Insert- or Shell Sort is perfectly adequate.

MREV Trivial Useful

Reverses the order of the elements of a matrix (useful for sorted matrices and Taylor series, etc.)

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: {range} MREV var → X: [reversed matrix]

 L: L L: {range}

where range = {first element, last element} specifies the range of elements to reverse. If range = 0

then all the elements are reversed.

Rationale: another basic array function which works well with other functions (such as with MSORT

to change the sorting order), while being trivial to implement.

TRACE Very easy Useful

Returns to ST X the Trace (sum of diagonal elements) of a real/complex square matrix:

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: [matrix] TRACE → X: Trace

 L: L L: [matrix]

Rationale: the trace (called Tr in the literature) is a basic scalar-valued matrix function, which finds

many uses, e.g.: computing the coefficients of the Characteristic Polynomial of a square matrix (while

also computing accurate inverses and determinants as byproducts, as seen in my PCHAR subprogram.)

https://albillo.hpcalc.org/articles/HP%20Article%20VA047%20-%20Boldly%20Going%20-%20Eigenvalues%20and%20Friends.pdf

9

3. Polynomial-related functions

PEVAL Very easy Most Useful+

Evaluates a polynomial (whose coefficients are stored in a matrix) for either a single value or for all

the values stored in another matrix, returning the single value or all the computed values in a matrix

created in ST X. The coefficients and the arguments can be real and/or complex.

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: argument PEVAL var → X: P(argument)

 L: L L: argument

 where:

var is a real/complex matrix which holds the coefficients of the polynomial to evaluate,

stored in decreasing order of powers of x (i.e: 2x
3
-5x+7 is stored as [2, 0, -5, 7]).

 argument is either a single real/complex value or a real/complex matrix.

 P(argument) is either a real/complex value or a matrix containing the values of P(argument)

Rationale: Polynomial evaluation is a most frequent task in any number of disciplines, from curve

fitting to interpolation to root finding to evaluating Taylor expansions to whatever, so doing it as

quickly and conveniently as possible will greatly simplify and speed up many programs.

For instance, let’s consider my PZER rootfinder RPN subprogram which, for the 50 iterations needed

to find all 100 complex roots of the sample 100
th

-degree polynomial, has to evaluate it some 5,000

times in all, each evaluation requiring a tight 10-step loop which is executed 100 times per evaluation,

so replacing this loop by a single PEVAL instruction will greatly speed up the root-finding process !

Implementing this instruction is just a matter of using Horner’s Scheme to evaluate an N

th
-degree

polynomial, which can be done very fast and accurately using just N multiplications and additions.

PDER Easy Very Useful

Returns a matrix with the coefficients of the N
th

 derivative of a polynomial whose coefficients are

stored as a matrix in a variable. The result matrix has the same type real/complex as the coeffs. matrix.

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: N PDER var → X: [result]

 L: L L: N

where:

 var stores a real/complex matrix which holds the coefficients of the polynomial,

result is a real/complex matrix which holds the coeffs. of the N
th

-derivative of the pol.,

 and is already in the format required for PEVAL to evaluate the derivative.

 Example: P(x) = 225 x
4
 – 425 x

3
 + 170 x

2
 + 370 x + 100, stored as matrix [225,-425,170,370,100]

 in variable MYPOL, and we want the coefficients of its first and second derivatives:

 1, PDER “MYPOL” → matrix[900, -1275, 340, 370] (coefs of the first derivative)

2, PDER “MYPOL” → matrix[2700, -2550, 340] (coefs of the 2nd derivative)

https://albillo.hpcalc.org/articles/HP%20Article%20VA042a%20-%20Boldly%20Going%20-%20Outsmarting%20PROOT%20(42S).pdf

10

Rationale: finding the derivatives of a polynomial in exact form is an essential task and PDER makes it

as fast, accurate and simple as possible. Working together with PEVAL the applications are endless,

e.g.: finding the extrema and points of inflection of a polynomial (which might be a Taylor Series or a

least-squares fit to experimental scientific and engineering data), etc.

PZER Moderate+ Most Useful

Returns all real/complex roots of a polynomial whose coefficients are stored in a matrix. The roots are

returned in another matrix. See my subprogram PZER in the article mentioned below.

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: {opt.pars} PZER var → X: [roots]

 L: L L: {opt.pars}

where:

 var stores a real/complex matrix which holds the coefficients of the polynomial.

roots is a complex matrix which holds the real/complex computed roots.

opt.pars is either 0 or a complex value {tol, maxiter} where 0 specifies default

parameterss for tol (tolerance) and maxiter (max. number of iterations).

See my article “HP Article VA042a - Boldly Going - Outsmarting PROOT (42S)” for details

about PZER implemented as an RPN subprogram for HP-42S/Free42. Implementing PZER as a

built-in function in Free42 instead of a user RPN program will greatly increase its speed.

PCHAR Easy Very Useful

Returns in a real/complex matrix the real/complex coefficients of the Characteristic Polynomial of a

real/complex NxN square matrix, that can then be passed to PZER to compute all its real/complex

roots, which are the matrix eigenvalues.

T: T T: Z

 Z: Z Z: Y

 Y: Y Y: x

 X: X PCHAR var → X: [CP coeffs.]

 L: L L: L

Rationale: computing eigenvalues of a matrix is essential in many important areas of science and

engineering as well as analysis of algorithms, etc. This instruction simplifies it by computing the

coefficients of the polynomial whose roots are the eigenvalues, which are then found quickly and

accurately by PZER, i.e., using just two instructions, another great example of the synergy between the

proposed PEVAL, PDER, PCHAR and PZER instructions. Further, PCHAR can also compute with

enhanced accuracy and return the Inverse matrix and the Determinant as byproducts at no cost.

See my article “HP Article VA047 - Boldly Going - Eigenvalues and Friends” for details about PCHAR

implemented as a subprogram for the HP-71B.

https://albillo.hpcalc.org/articles/HP%20Article%20VA042a%20-%20Boldly%20Going%20-%20Outsmarting%20PROOT%20(42S).pdf
https://albillo.hpcalc.org/articles/HP%20Article%20VA047%20-%20Boldly%20Going%20-%20Eigenvalues%20and%20Friends.pdf

11

4. Constants

 All of them: Trivial Useful

MAXREAL = Maximum positive number that Free42 can represent (depends on version, Decimal or Binary).

MINREAL = ditto but Smallest positive number instead.

Rationale: these two values have many uses in programs, e.g.: to check for limits or to detect

abnormal termination conditions, similar to the uses of NaNs and Infinities, which the HP-42S number

system also lacks. Another useful case would be for running programs to be able to determine

programmatically whether they’re being run under Free42 Decimal or under Free42 Binary, as the

values for MAXREAL and MINREAL will be different for each and can be checked to see what’s the case.

Also, the table below includes the 8 proposed constants that I find most useful. Additional ones are

perfectly possible, to be included in the free rows at the bottom:

Proposed constants

Name Description Steps replaced Value Rationale

kPHI Golden Ratio 5, SQRT, 1, +, 2, ÷ 1.618033984… cleaner, fast, shorter, saves 1 level

kPI2 π / 2 PI, 2, ÷ 1.570796326… ditto

k2PI 2 π PI, STO+ ST X 6.283185307… cleaner, faster, shorter

kE e 1, EXP 2.718281828… ditto

kGAMMA Euler’s Gamma .57721566… 0.577215664… cleaner, faster, much shorter

kCPLX0 Complex Zero 0, ENTER, COMPLEX 0 + i0 cleaner, fast, shorter, saves 1 level

kCPLXI Complex Unity 0, ENTER, 1, COMPLEX 0 + i1 ditto

kLSPEED
Lightspeed

(m/s)
299792458 299,792,458

cleaner, fast, shorter, useful for

astronomical distances and times

?

?

?

?

12

5. Loop-related functions and functionalities

INCR / INCR nnn Trivial Very Useful

Increments a numeric value in ST X by one or nnn (1 to 999). Doesn't test anything or skip any steps,

just increments the value as fast as possible:

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: X INCR nnn → X: X+nnn

 L: L L: X

DECR / DECR nnn Trivial Very Useful

Decrements a numeric value in ST X by one or nnn (1 to 999). Doesn't test anything or skip any steps,

just decrements the value as fast as possible:

T: T T: T

 Z: Z Z: Z

 Y: Y Y: Y

 X: X DECR nnn → X: X-nnn

 L: L L: X

XISG / XDSE Easy Most Useful

 Extended ISG/DSE, work like the built-in ones but using an extended loop control number like this,

 iiiii.fffffdd (if 12-digit) or better, instead of: iiiiiii.fffdd

which was kept that way for compatibility with HP-41C programs (for a 10-digit calculator) but it’s

unnecessarily limiting for a 12-digit calculator like the HP-42S (let alone Free42), and makes the

existing ISG useless if the final counter value has more than 3 digits, which frequently is the case.

IRCL, IRCL+, IRCL-, IRCLx, IRCL÷ Trivial Most Useful

Integer Part Recall: useful to recall (from within a loop, for instance) just the integer part of the

current value of an index stored in a register/variable in the usual ccccccc.fffii format (or the extended

format proposed above). This way, we can save much time and have cleaner and shorter code by just

doing, e.g.: IRCLx nn (1 step) instead of RCL nn, IP, x (3 steps), resulting in significant runtime

savings for time-consuming loops.

13

6. Utility keywords:

X=NN?, X>NN?, X>=NN? , etc. Easy Most Useful

The six HP-41CX tests comparing ST X with register NN. Quite useful to, for example, check a value

in ST X versus some limit (stored in a register or variable) without disturbing the ST X register.

FS?T, FC?T Trivial Most Useful

Flag Set/Clear test and Toggle: works exactly like the existing FS?S/FS?C/FC?S/FC?C flag tests but

instead of setting/clearing the flag after the test it now toggles it: if the flag was set then it’s cleared

and vice versa.

EVEN?, ODD? Trivial Most Useful

Parity Tests: work like any other tests, following the do-if-true rule, i.e.: executing the next step if the

value in ST X is even/odd respectively, and skipping it otherwise. Allows for easy “every other”

programming, as well as integer programming and Number Theory applications.

TF flag Trivial Most Useful

Toggle flag: like SF (Set Flag) and CF (Clear Flag), this isn’t a flag test as it doesn’t test the status of

the flag or skips steps, but simply toggles the flag: if the flag was set then it’s cleared and vice versa.

POP / POP N Trivial Very Useful

Pop Return level(s): deletes one/N pending returns. Frequently used to transfer execution back to a

return level other than the previous one because of some condition, like an error which needs special

handling.

STOST Trivial Most Useful

Store Stack: stores internally the 4 stack registers ST X,Y,Z,T. ST L is not stored. Doesn’t affect the

stack. Really useful in many situations. As ST L is not stored (nor replaced when executing RCLST

afterwards), it can be used to pass a value of any type between the current and restored stacks.

RCLST Trivial Most Useful

Recall Stack: recalls a stored stack (ST X,Y,Z,T) which was previously stored with STOST. The

register ST L is unaffected (see STOST above). If the stack wasn’t previously stored, it does nothing.

T: T T: T prev

 Z: Z Z: Z prev

 Y: Y Y: Y prev

 X: X RCLST → X: X prev

 L: L L: L (unaffected)

RSEED Trivial Very Useful

Recall Seed: recalls the current seed for the built-in random number generator, so that a sequence of

RANs can be continued exactly from where it was interrupted by using SEED with this value.

14

STACK stack-arrangement arg Easy Most Useful

Arranges the stack as specified by arg, which is exactly 5-char long (among X,Y,Z,T,L or a digit 0-9,

duplicates allowed), representing the new contents of X,Y,Z,T,L . E.g. STACK Z0LXT would result in:

T: T T: X

 Z: Z Z: L

 Y: Y Y: 0

 X: X STACK Z0LXT → X: Z

 L: L L: T

Other more useful examples would be, for instance (the possibilities are almost endless):

STACK XXXXL fills up the 4 levels with the contents of X while leaving L unaffected,

STACK TZYXL reverses the order of the stack registers’s contents, L unaffected,

STACK 00000 clears the whole stack, including L (CLST doesn’t clear L),

STACK 0019X clears X and Y, initializes to 1 an increasing counter in Z, to 9 a decreasing

counter in T, and stores the previous value of X in L,

STACK XZYTL is equivalent to ST Y <> ST Z, any other exchanges/copies are possible

and so on. From the keyboard, the function shows a 5-char prompt which only admits X,Y,Z,T,L or 0-9.

TMBEG Trivial Most Useful

Timing Begins: marks internally the beginning of the timing. Doesn’t affect the stack.

Rationale: Immensely useful for timing specific sections of code or whole programs, for instance to

help in optimization, and also for documentation purposes.

TMEND Trivial Most Useful

Timing Ends: recalls to ST X the time elapsed since the most recent execution of TMBEG, in seconds

and hundredths of a second. Doesn’t reset the mark, so as to provide subsequent timings if desired.

TRY … steps … CATCH … steps … ENDTRY Moderate+ Very Useful

Error Trapping and Recovery: executes the block of steps between TRY and CATCH, and:

- If none of them results in an error, upon reaching CATCH it skips the entire CATCH block and

immediately resumes execution at the first step after ENDTRY.

- If one of them results in an error, execution immediately jumps to the first step after CATCH

and the block of steps between CATCH and ENDTRY is executed. Within this block you can

use the also proposed ERRN (Error Number) and ERRS (Error Step) instructions to find out

which error took place and where, and take appropriate action. Upon reaching ENDTRY,

execution simply continues at the first step after ENDTRY.

- TRY/CATCH/ENDTRY constructs can’t be nested: if another error happens within the

CATCH block the error is immediately reported to the user and program execution halts.

IFtest … steps …ELSE… steps … ENDIF, where test is one of X?Y or X?0 (12 in all) Moderate+ Very Useful

Structured Conditionals: if the text (X<Y?, say) comes out True, first it executes the steps between

IFX<Y and ELSE, then resumes execution at the first step after ENDIF. If the test comes out False,

then it executes the steps between ELSE and ENDIF instead. Saves GTOs and LBLs and looks cleaner.

15

7. Additional useful functionalities (not rated):

1. The top two rows of keys should work as in the HP-41C to quickly enter addresses 01-10 for all

instructions which take an NN address (STO/RCL, STO+/-/…, GTO/XEQ, etc) so that just pressing the first key

of row 1 at the NN prompt will enter the address as 01, etc. This appreciably speeds up using these

instructions and is second-nature for HP-41C users, thus it’s sorely missed in the HP-42S (and Free42).

2. Extended STO, RCL, etc: at the NN prompt, pressing the E (exponent) key should lengthen the prompt to

1 _ _ so that R100 to R199 can be addressed directly. Other lengthenings and ranges are possible.

3. Possibility of having the "printer tape" appear next to the simulated keyboard/display so that printed output

can be seen simultaneously as it is produced. Extremely useful also for the new Stack Trace Mode.

4. Computing some kind of program checksum, which would appear at line 00 next to the byte length (i.e.:

333 bytes, ck FA079). To ensure that the checksum doesn't vary with internal representations of the

program or machine status, it must be based exclusively in the text representation of the program (i.e.: the

program text listing) so that identical listings are guaranteed to always result in identical checksums.

This way, the checksum would be useful to be 100% certain that a program has been typed in correctly, unlike

what happens with the HP-35S, where checksums are utterly useless because they take into account internal

factors and thus the ones obtained by different users/machines usually don’t match). Checksums may be

computed/updated only when line 00 is visible, to avoid wasting time while entering/editing long programs.

5. Implementing Equations, exactly as in the HP-35S (or a subset of the functionality), no need to reinvent the

wheel. I've been using them very extensively in the HP-35S and I've realized that they're a very powerful and

convenient way to greatly increase computing capabilities in programs, most especially as they allow for

evaluating quite complex expressions without affecting the stack at all if so desired, while offering the

possibility of storing and recalling intermediate values on the fly, including to/from the stack registers.

In Free42 they should be pre-parsed when entered/edited, so that they execute at full speed at run time,

without further parsing, unlike the HP-35S where they're re-parsed every time they are executed in a

running program, making them unbearably slow, to the point that they should be avoided within a loop

because it will take much longer than if the computations were done as pure RPN code instead.

6. Better handling of “bignums”, i.e.: adding some functionalities to make life much easier when using

numbers longer than 12 digits ("bignums", up to 34 digits in Free42 Decimal), for instance:

- Right now, using VIEW with bignums shows only up to 12-digit mantissas (e.g.: VIEW 00 would

show something like R00=2.30..21E18). It should allow for viewing the whole 34 digits because

else you’re forced to stop the program and manually do something like X<> 00, SHOW, X<>00, R/S,

which is quite cumbersome and can’t be done within a running program which works with bignums.

- It should be possible to input a bignum or recall it and see it whole in the stack regs (at least in ST X).

- Possibility of printing whole a bignum in the printer, copy it to the “clipboard”, etc.

- Possibility of ARCL-ing it whole to the ALPHA register.

- Expand FIX/SCI/ENG modes to work with more than 12-digit mantissas (e.g.: FIX 20 for bignums).

Perhaps this last functionality (or all of them) can be implemented as a new Mode, for instance:

 FIX/SCI/ENG/ALL/BIG or Mode BIGN , which can be checked On or Off

7. (Speculative) Implementing a kind of "compilation" of RPN programs to some faster-executing code. The

"compiled" program wouldn't be editable, just "runnable", and as at runtime it wouldn't need to perform

some ancillary operations or checks that regular non-compiled programs need to do at every step, and all

label searches would be pre-resolved, it might be significantly faster, similar to using a kind of

"System-RPN", akin to the existing "SysRPL” instruction set used with RPL programming.

Admittedly speculative, but perhaps this isn’t too difficult to implement (no conversion to assembler or

anything of the sort) and would probably speed programs significantly. Some food for thought.

16

8. Conclusion

To wit, this is a worthwhile, carefully-selected set of new functions/operations which will very significantly

augment Free42 math and programming capabilities and general usability, even for real-life scientific or

engineering uses on the go, at the workplace or at home.

As I see it, Free42 really has the potential to be used profitably even compared with modern computing systems,

and implementing the proposed functionalities is a step towards achieving that goal. I honestly feel most are not

that hard at all to implement (though ergonomically fitting them in the interface will require careful consideration,

I know.)

Free42 with a Voyager Series-inspired skin running on an Android device

