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Boldly Going - Climbing Project Euler 

© 2020 Valentín Albillo 

Welcome to a new article in my “Boldly Going” series, this time dealing with Project Euler, a fantastic project which attempts (and 

succeeds, in spades !) at providing a huge supply of challenging math+programming problems which are immensely fun to try and 

solve, learning loads of new concepts while sharpening your skills in the process. In this article I tell my story with PE and how I 

dealt with it using the vintage 1984 HP-71B handheld computer/calculator (emulated & physical), thus enormously upping the ante. 

 
 
Introduction 

While enjoying my summer vacations back in 2011, yours truly serendipitously discovered Project Euler, an 

Internet-based project which, in their own words (my highlighting), PE ... 

“... is a series of challenging mathematical/computer programming problems that will require more than just mathematical 

insights to solve. Although mathematics will help you arrive at elegant and efficient methods, the use of a computer and 

programming skills will be required to solve most problems. The motivation for starting PE [...] is to provide a platform for 

the inquiring mind to delve into unfamiliar areas and learn new concepts in a fun and recreational context” 

 

In order to check it, I tried my hand at PE #101 using my virtual HP-71B (J-F Garnier’s Emu71/DOS), quickly 

succeeded and got instantly hooked. As my out-of-home first half of the vacations had already elapsed and I was 

just beginning the at-home second half, I decided to try and solve as many problems as I could during the 15 

remaining days, after which no more time could be allocated to it because of work, etc. and I’d be done with it.  

 

The Rules 

Before starting for good, I set me up some carved-in-stone rules: 

1) I would use use just a virtual and/or physical HP-71B for all the problems, to see how many I could 

solve with such a truly ancient system (namely Emu71/DOS running on the 16-bit subsystem of 32-bit 

Windows XP on a pretty obsolete 2000-era 2.4 Ghz single-core CPU with 512 Mb of RAM). 
 

2) I would write all code (utilities included) in the HP-71B BASIC language, augmented with the Math, 

HP-IL and JPC ROMs, the string-handling LEX files STRINGLX and REPLEX, and nothing else. 
 

3) I absolutely would not search the Internet for solutions or hints or other people’s code or whatever. The 

only allowable use of the Internet would be for reference (Wikipedia, MathWorld, Wolfram, etc.) or 

occasionally OEIS for identifying sequences but nothing else. No hints accepted, no spoilers of any kind. 
 

4) Any new concepts would first be learned, then applied. After solving the problem, I’d immediately go 

solve the next one, no peeking at the solution thread to see how other people did (see rationale below). 
 

5) PE problems are intended to be solvable in ~1’ but this assumes modern hardware and high-level 

programming languages. As I’d be using ancient hardware/software I equalized by allowing for more time. 

 

PE states that about 1 min. should be adequate for most problems but I didn’t delude myself about what my 

setup could physically achieve, so considering that it ran at least 100-1,000× slower than using modern 

languages on multi-core CPUs I cut myself some slack in that regard and thus considered that anything around 

10’-20’ for the virtual 71B or 2-4d for the 280× slower physical one should be considered success.  

Indeed, using a handheld calculator (even if emulated) is already handicap enough to further compound the 

situation by requesting physically unrealizable times, so some fair scaling was definitely in order. Not to say that 

I didn't strive for faster times if at all possible, e.g.: my solution for PE #162 ran in just a few seconds while for 

the much harder PE #214 my running time was under 20’. Success. 
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As for the solution threads to which I had access after having solved a problem, I never visited them or posted 

my HP-71B solutions there, mainly for two reasons: first, I wasn’t interested as this was a completely private 

endeavour so I just entered my computed result in PE, got the green Ok, and that was it, next problem please. 

To be fair, I visited the solution threads just once right after solving my very first PE problem (PE #101) in order 

to see how the threads went, and after a cursory glance I decided that I didn't want to see any of it lest I'd spoil 

me both the fun and the learning, and that’s my second reason. 

I'll explain: it wasn’t unfrequent that I did manage to solve one of the problems yet I wasn’t fully satisfied with 

my approach. Later, I usually revisited the problem and came up with a much better approach, all on my own. 

That additional satisfaction and the self-learning which came with improving it would have been completely 

ruined if I had simply looked at the solution threads straight away. No second attempt would have been possible. 

Also, I was on PE strictly for the fun, not to "learn" from others. Any and all learning would be self-taught, by 

working hard through a problem till I solved it satisfactorily. That's how I learned the most, through sheer effort, 

and not only new techniques but also the fine art of finding worthy resources (books, papers, PhD thesis). 

Simply looking at other people's solutions, which requires no effort whatsoever, absolutely pales in comparison 

and is but the easy, lazy approach which, as I said before, might spoil both the fun and the learning. 

 

The Equipment 

You can’t go mountain-climbing without having ready the adequate equipment beforehand (of course I didn’t 

think about all of what follows at once, some of it came out of experience). For PE-climbing I’ll recommend 

having at hand the following tools, utilities (all specific for the HP-71B) and references as a start: 
 

  Number Theory: Factorization, primality testing, modular powers, primes/Fibonacci generators/lists, 

    GCD, LCM, sums-/num-/lists-of-divisors, Euler’s totient, Moebius, Moebius inversion. 
 

  Assorted:  Linear recurrences, direct formula for the N-th term, diophantine equations, inequalities 

    Generation of combinations, variations and permutations, permutation-checking. 

    Root finding, matrix operations including linear systems and determinants, basic geometry. 
 

  References:  Wikipedia, MathWorld, Wolfram Alpha, OEIS, anything that helps and doesn’t spoil the fun. 

 

And last but certainly not least, a certain level of math proficiency can do wonders for PE problems. Consider 

PE #276, for instance, a truly wonderful problem which can be stated in one line and everyone can understand 

exactly what is asked, yet a straight brute-force attack is doomed to failure from the start.  

Should you attempt such primitive approach you'll quickly find out that the problem is O(N
3
), thus completely 

unmanageable for the 10
6
 limit asked. After some thinking and a little math reasoning it's possible to reduce it to 

O(N
2
), which is a million times faster, yet it would still take a number of months or years to arrive at a solution. 

Then, if your math foundations are solid and sound, you'll eventually find a way to reduce the complexity to O(N), 

which is a trillion times faster than the brute-force O(N
3
) and this finally delivers a correct solution in reasonable 

times (mine was 19’). Even better times are still possible but that would be going for the A+ and I was in a hurry ... 

In short, improving your math skills is both a prerequisite for and a consequence of PE problem-solving. 

 

The Techniques 

Again, I didn’t immediately stumble upon these useful techniques all at once but as I started from PE#001 

onwards (save for PE#101) I eventually developed them and began to use them for every problem. Some are: 
 

1) Before doing any math or programming, first create a text file (say, PE104.txt) for every PE problem 

you’re going to tackle. Use it to record your notes, links to useful references, the listings of the various 

versions you create, from the very first, crude attempt to the final “production” program, as well as the 

results obtained when running each and your comments on them, the code for any short utilities you 

create to try new approaches, anything and everything. It will prove invaluable to keep a record of your 

efforts and as a reference when solving similar problems or even revisiting and improving each one. 
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2) Now, try and duplicate the sample values given for each problem (say, the result for N=10
4
, where the 

result for N=10
10 

is later asked) to check that your initial no-matter-how-crude-and-inefficient 

algorithm works Ok, then use it to gather additional data (say, for N=10
k
 for k=1,2,3,4,5,6). Also, if you 

can’t duplicate the sample values, give this problem a miss for the time being and go try some other. 
 

Once you have enough data (4-6 terms are usually sufficient) use some 71B utility (like my LINREC, 

see References, or write your own) to detect patterns, e.g.: if the data satisfy some recurrence relation,  

which can be extremely useful to greatly speed up your program and bring additional insight. This can 

be done as well for intermediate sequences your program finds midway. You can also try OEIS, it might 

identify the sequences and offer new terms (but be extra-careful not to spoil anything), which will be 

useful to refine or reorient your search for patterns and eventually implement a successful algorithm.  
 

3) You can speed your program by pre-computing things, using a file containing a set of pre-calculated 

data (think long sequences that take a while to compute). Once created, you can then retrieve data as 

fast as you can read them from the file which, RAM permitting, could possibly hold 1,000’s of elements. 
 

4) Don’t be afraid to use recursion, it can be a very powerful asset either to completely solve a problem or 

to gather enough data for pattern recognition, and even a slow, inefficient recursive procedure will be 

suitable for that. It’s frequently the case that recursion is a natural for a problem, avoiding clumsy, 

non-recursive procedures, and though HP-71B‘s BASIC language does support recursive subprograms, 

at times it might be convenient to implement it using arrays instead, substituting recursive calls 

involving already computed elements by simpler, faster array retrieving. 

 

Boldly going ... 

Now, at long last, I’ll give here my original (2011) HP-71B commented solutions for the following 7 choice PE 

problems. This is less than 1% of all currently existing PE problems as of 2020, so I’ll grant you permission to 

“cheat” and examine them at leisure as long as you promise not to cheat at all for the remaining 99%: 
 

Project Euler problem #015 ─ Lattice paths 

  Project Euler problem #017 ─ Number letter counts 

    Project Euler problem #040 ─ Champernowne's constant 

      Project Euler problem #077 ─ Prime summations 

        Project Euler problem #093 ─ Arithmetic expressions 

          Project Euler problem #094 ─ Almost equilateral triangles 

            Project Euler problem #104 ─ Pandigital Fibonacci ends 
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Project Euler #015:  Lattice paths 
 

Starting in the top left corner of a 2×2 grid, and only being able to move to the right and down, there are exactly 6 routes 

to the bottom right corner. 

 

 

 

 

 

 

 

 

How many such routes are there through a 20×20 grid? 

 

 

My 139-byte solution for the HP-71B is: 

 
 

 10  DESTROY ALL @ STD @ OPTION BASE 1 @ L=20 @ DIM R(L,L)  

 20  FOR I=1 TO L @ R(I,1)=I+1 @ R(1,I)=RES @ NEXT I 

 30  FOR I=2 TO L @ FOR J=2 TO L @ N=1 @ FOR K=1 TO I @ N=N+R(K,J-1) @ NEXT K 

 40  R(I,J)=N @ NEXT J @ DISP I;R(I,I) @ NEXT I 

 

 

 RUN   →  2   6    {  6 routes through a 2×2 grid } 

         3   20      

         4   70       

         5   252    { 252 routes through a 5×5 grid } 

         6   924 

         7   3432 

         8   12870 

         9   48620 

       10   184756   { 184,756 routes through a 10×10 grid } 

       11   705432 

       12   2704156 

       13   10400600 

       14   40116600 

       15   155117520  { 155,117,520 routes through a 15×15 grid } 

       16   601080390 

       17   2333606220 

       18   9075135300 

       19   35345263800 

       20   137846528820 { 137,846,528,820 routes through a 20×20 grid } 

 

So there are  137,846,528,820  routes through a 20×20 grid.    {  0.54” virtual,  2’ 7” physical } 

 
 

Comments 

Brute-force isn’t an option here and though there are problems where the use of recursion results in a short, fast, 

clear and elegant solution (see PE#077 and PE#093 below) this isn’t one of them. Attempting to use recursion: 
 

10  DESTROY ALL @ OPTION BASE 1 @ N=0 @ L=1 

20  FOR I=1 TO 20 @ CALL ROUTES(I,I,N,L) @ DISP I;N @ NEXT I 
 

30  SUB ROUTES(A,B,N,L) @ IF A=1 THEN N=B+1 @ END ELSE IF B=1 THEN N=A+1 @ END 

40  N=1 @ FOR I=1 TO A @ CALL ROUTES(I,B-1,M,L+1) @ N=N+M @ NEXT I 
 

indeed results in a short, clear and elegant solution but certainly not fast: the run time grows exponentially with 

the grid size and by the time we reach a mere 15×15 (never mind 20×20) we’re talking hours or worse. Here the 

non-recursive solution clearly wins hands down (but see Note 1).  
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Project Euler #017:  Number letter counts 
 

If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3+3+5+4+4=19 letters used in total. 

 

If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used? 

 

NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one 

hundred and fifteen) contains 20 letters. The use of "and" when writing out numbers is in compliance with British usage. 

 

 

My solution for the HP-71B is
1
: 

 
 

 10  DESTROY ALL @ OPTION BASE 1 @ DIM U$(19)[9],D$(9)[7] @ READ U$,D$ @ S=0 

 20  DATA one,two,three,four,five,six,seven,eight,nine,ten,eleven,twelve 

 30  DATA thirteen,fourteen,fifteen,sixteen,seventeen,eighteen,nineteen 

 40  DATA ten,twenty,thirty,forty,fifty,sixty,seventy,eighty,ninety 

 50  FOR I=1 TO 1000 @ S=S+LEN(REPLACE$(REPLACE$(FNN$(I)," ",""),"-","")) @ NEXT I 

 60  DISP "Count:";S 
  

100  DEF FNN$(N) @ IF N=1000 THEN FNN$=”one thousand” @ END ELSE N$="" 

110  IF N<20 THEN FNN$=N$&U$(N) @ END 

120  U=MOD(N,10) @ D=MOD(N DIV 10,10) @ C=N DIV 100 @ IF C THEN 140 

130  N$=N$&D$(D) @ IF U THEN FNN$=N$&"-"&U$(U) @ END ELSE 150 

140  N$=U$(C)&" hundred" @ IF U+D THEN N$=N$&" and " @ N=MOD(N,100) @ GOTO 110 

150  FNN$=N$ 

 

 

 RUN   →   Count: 21124   {  0.84” virtual,  3’ 58” physical } 

 

So  21,124  letters would be used to write out the first 1,000 numbers in words. 

 

Comments 

My program first initializes a string array with the words for 0-19 (“zero”, ”one”, ..., “nineteen”), another with 

the words for 0, 10, ..., 90 (“zero”, ”ten”, ..., “ninety”) and then tallies the total number of letters by simply 

looping through all numbers from 1 to 1,000, adding for each the number of letters of the equivalent wording 

returned by a user-defined string function FNN$, which essentially does all the work. 
 

FNN$ accepts a numeric value as its argument and returns the equivalent wording by disassembling it into its 

units, decades and hundreds and reassembling the words for each component. The particular value 1,000 is 

singled-out early. It can be used in other programs or even called from the command line, like this: 

 

>FNN$(25)  END LINE   →   twenty-five  

>FNN$(8*13)  END LINE   →   one hundred and four  

>FNN$(969)  END LINE   →   nine hundred and sixty-nine  

>FNN$(517)  END LINE   →   five hundred and seventeen  

>FNN$(550)  END LINE   →   five hundred and fifty  

>FNN$(111)  END LINE   →   one hundred and eleven  

 

                                                        
1 The code uses the REPLEX keyword REPLACE$ to quickly delete spaces/hyphens from the wording returned by FNN$. If 

unavailable, either edit FNN$ to not include spaces/hyphens in the wording (see Note 2) or use this equivalent BASIC code:    

-  add line:  200 DEF FNL(S$) @ L=LEN(S$) @ FOR J=1 TO L @ L=L-(POS(" -", S$[J,J])#0) @ NEXT J @ FNL=L 

-  change lines 50 and 60 to just:  50 S=0 @ FOR I=1 TO 1000 @ S=S+FNL(FNN$(I)) @ NEXT I @ DISP "Count:";S 

Alas, the program can be halved and run faster as well by not using strings at all !. Simply replace each string by its length 

everywhere and every string operation/variable by the equivalent numeric operation/variable. FNN$ becomes FNN, etc. 
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Project Euler #040:  Champernowne's constant 
 

An irrational decimal fraction is created by concatenating the positive integers: 
 
 0.123456789101112131415161718192021... 
 
It can be seen that the 12

th
 digit of the fractional part is 1. 

 

If dn represents the n
th

 digit of the fractional part, find the value of the following expression: 
 

 d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 

 

 

My 113-byte solution for the HP-71B is
1
: 

 
 
10  DEF FNP(N)=(IP(LGT(N))+1)*N-(10^(IP(LGT(N))+1)-1)/9+1 

20  DEF FND(P) @ N=IP(FNROOT(1,1000000,FNP(FVAR)-P)+.001) 

30  P=P-FNP(N)+1 @ FND=VAL(STR$(N)[P,P]) 

 

 

No need to run a program, simply evaluate this from the command line: 
 

>DESTROY ALL   END LINE  

>FND(1)*FND(10)*FND(100)*FND(1000)*FND(10000)*FND(100000)*FND(1000000)  END LINE  
 

    210    {  0.15” virtual,  42” physical } 

 

Comments 

A little experimentation with a suitably long string version of the constant will easily produce these data: 
 

Range Starting position Range of positions 

1 ─ 9  p(n) = n 1 ─ 9 

10 ─ 99  p(n) = 2*n-10 10 ─ 188 + 1 

100 ─ 999  p(n) = 3*n-110 190 ─ 2,887 + 2 

1,000 ─ 9,999  p(n) = 4*n-1,110 2,890 ─ 38,886 + 3 

10,000 ─ 99,999  p(n) = 5*n-11,110 38,890 ─ 488,885 + 4 

100,000 ─ 999,999  p(n) = 6*n-111,110 488,890 ─ 5,888,884 + 5 

 

My code isn’t a runnable program but instead uses the above data to help implement two numeric user-defined 

functions, FNP (single-line) and FND (multi-line), which can be executed right from the command line. 
 

1) FNP(N) returns the position P in the constant where the given value N begins. For instance: 
 

  >FNP(1);FNP(9);FNP(1000);FNP(9999);FNP(100000);FNP(999999)  END LINE  

 

       1  9  2890  38886  488890  5888884    { 1 appears in the 1
st

 position, 1000 in the 2,890
th

 posit., etc. } 

 

2) FND(P) is the inverse of FNP(N), given the position P in the constant it returns the digit D at that 

position. We use FND to find the individual digits at the given positions in Champernowne’s constant: 
 

  >FND(1);FND(10);FND(100);FND(1E3);FND(1E4);FND(1E5);FND(1E6)   END LINE  
 

       1   1   5   3   7   2   1        { so 1 appears at position 1, 5 at pos. 100, 7 at pos. 10,000, etc. } 
 

  and their product is:  1×1×5×3×7×2×1=  210  ,  as seen above. 

  

                                                        
1 The code uses the Math ROM’s keyword FNROOT to find a root of a non-polynomial equation so a Math ROM is required. 
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Project Euler #077:  Prime summations 
 

It is possible to write 10 as the sum of primes in exactly 5 different ways: 
 

7 + 3 = 10,   5 + 5 = 10,   5 + 3 + 2 = 10,   3 + 3 + 2 + 2 = 10  and  2 + 2 + 2 + 2 + 2 = 10 
 

What is the first value which can be written as the sum of primes in over 5000 different ways ? 
 

 

My 244-byte solution for the HP-71B is: 

 
 
 10  DESTROY ALL @ OPTION BASE 1 @ DIM P(25) @ READ P  

 20  DATA 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 

 30  FOR N=11 TO INF @ S=0 @ CALL PSUM(N,P,1,S) @ DISP N;S @ IF S>5000 THEN END 

 40  NEXT N 
 

 50  SUB PSUM(N,P(),K,S) @ FOR I=K TO 25 @ M=N-P(I) @ IF M<=0 THEN S=S+NOT M @ END 

 60  CALL PSUM(M,P,I,S) @ NEXT I  

 

 

 RUN   → 11  6  { 11 can be written in 6 ways as a sum of primes } 

12  7  { 12 can be written in 7 ways as a sum of primes } 

      ... 

69  4268 { 69 can be written in 4,268 forms as a sum of primes } 

70  4624 { 70 can be written in 4,624 forms as a sum of primes } 

71  5007  { 71 can be written in 5,007 forms as a sum of primes }  {  8’ 7” virtual,  38h physical } 

 

So the solution is (quite fittingly)  71 , which can be written as a sum of primes in 5,007 different ways. 

 

Comments 

Recursion has a bad reputation of being resource-consuming and slow (mainly because of examples like the 

dreadful recursive implementation of the Fibonacci series vs the iterative one), but in my experience it can really 

help simplify the implementation of many complex functionalities that can be coded in less lines using recursion 

and are easier to understand and debug as well. That’s the case here (and also in PE#093 below.) 
 

My program begins by filling up an array P with the first 25 primes (enough for this problem) and then, starting 

with N=11, it calls a recursive subprogram PSUM which finds and returns in variable S the number of ways to 

write N as a sum of primes. Once the call returns, the main program simply displays both N and S, and loops 

until S is over 5,000 , as required. In other words, the 2-line recursive subprogram PSUM does all the work ! 
 

PSUM simply loops through the array of prime numbers starting at the k-th prime (where k=1 for the first call), 

subtracting each prime from the value still remaining and doing a three-pronged check of the result:  
 

(1) if the result is < 0, then this prime and the ones after it exceed the sum so it’s not a valid way, return. 
 

(2) if the result is = 0, then we have an exact sum, so increment the number of ways by one and return. 
 

(3) if the result is > 0, then more primes are still needed, so it recursively calls itself with the new value to 

add up to and the index of the current prime just used (as it might be used multiple times). Upon 

returning from the recursive call, loop till all the primes have been considered and then return. 
 

Note that the solving procedure is completely general, so you can use sequences other than the first 25 primes. 

For instance, editing the program to use instead this subset of the Fibonacci numbers {1, 2, 3, 5, 8, 13, 21, 34, 

55, 89, 144, 233, 377} (just change the two 25 to 13 and the whole DATA statement at line 20) we readily find 

that there are exactly 400 ways to add up to 28 and more than 500 ways (509 in fact) to add up to 30. 
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Project Euler #093:  Arithmetic expressions 
 
By using each of the digits from the set, {1, 2, 3, 4}, exactly once, and making use of the four arithmetic 

operations (+, −, *, / ) and brackets/parentheses, it is possible to form different positive integer targets. 
 
For example, 
 
 8 = (4 * (1 + 3)) / 2,   14 = 4 * (3 + 1 / 2),   19 = 4 * (2 + 3) – 1,   36 = 3 * 4 * (2 + 1) 
 
Note that concatenations of the digits, like 12 + 34, are not allowed. 
 
Using the set, {1, 2, 3, 4}, it is possible to obtain 31 different target numbers of which 36 is the maximum, and 

each of the numbers 1 to 28 can be obtained before encountering the first non-expressible number. 
 
Find the set of four distinct digits, a<b<c<d, for which the longest set of consecutive positive integers, 1 to n, 

can be obtained, giving your answer as a string: abcd. 
 

 

My 596-byte solution for the HP-71B is: 
 
 

 10  DESTROY ALL @ STD @ DEFAULT OFF @ DIM V$[512] @ R=0 

 20  FOR A=1 TO 9 @ FOR B=A+1 TO 9 @ FOR C=B+1 TO 9 @ FOR D=C+1 TO 9 @ M=-1 

 30  V$="#" @ CALL EXPR(STR$(A)&STR$(B)&STR$(C)&STR$(D),"",V$,M,0) @ K=M 

 40  FOR I=1 TO M @ IF NOT POS(V$,"#"&STR$(I)&"#") THEN K=I-1 @ GOTO 60 

 50  NEXT I 

 60  IF K>R THEN R=K @ DISP A;B;C;D;":";K 

 70  NEXT D @ NEXT C @ NEXT B @ NEXT A @ DEFAULT ON 

  

 90  SUB EXPR(S$,N$,V$,M,P) @ M$="+-*/" @ FOR I=1 TO LEN(S$) @ T$=S$ 

100  E$=T$[I,I] @ D$=N$&E$ @ T$[I,I]="" @ IF T$="" THEN 140 

110  FOR J=1 TO 4 @ Q$=M$[J,J] @ CALL EXPR(T$,D$&Q$,V$,M,(P)) 

120  IF P>0 THEN CALL EXPR(T$,D$&")"&Q$,V$,M,P-1) 

130  CALL EXPR(T$,N$&"("&E$&Q$,V$,M,P+1) @ NEXT J @ NEXT I @ END 

140  IF P>1 OR P<0 THEN END ELSE IF P=1 THEN D$=D$&")" 

150  ON ERROR GOTO 170 @ N=VAL(D$) @ IF N<=0 OR FP(N) THEN END 

160  M=MAX(M,N) @ IF NOT POS(V$,"#"&STR$(N)&"#") THEN V$=V$&STR$(N)&"#" 

170  END SUB 

 

 

 RUN   → 1  2  3  4 : 28   {    31” virtual,   2h 28’ physical }  
     1  2  3  8 : 35     {  2’ 36” virtual,  12h 22’ physical }  
            ...   ... 
     1  2  5  6 : 43    {  6’ 17” virtual,  29h 46’ physical }   
       1  2  5  8 : 51     {  7’ 20” virtual,  34h 45’ physical } 

 

So the solution abcd is   1258  , which produces all consecutive integers from 1 to 51. 

 

Comments 

Once more, recursion proves extremely useful to efficiently implement a neat solution to a complex task like the 

one here, where the expressions to evaluate can be considered as formed by various sub-expressions to be 

evaluated recursively. Think for instance of something like the first example, E=(4 * (1 + 3)) / 2, which can be 

evaluated as E=U / 2 where U=4 * V where V=1+3, all of them simpler number-oper-number sub-expressions. 
 
Here the main program simply sets up four nested loops going in order through all possible values for a, b, c and 

d, and within the innermost loop it calls the recursive subprogram EXPR which tries all combinations of the 

operations [+, −, *, / ] and parentheses by recursively calling itself three times (to evaluate the sub-expressions), 

discarding those expressions which have unbalanced parentheses, produce non-positive or non-integer values or 

just error out, and recording (w/o repetitions) the valid results in a string, which the main program later checks 

to find out how many consecutive integers were produced and display on the go the currently best combinations. 
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Project Euler #094:  Almost equilateral triangles 
 
It is easily proved that no equilateral triangle exists with integral length sides and integral area. However, the 

almost equilateral triangle 5-5-6 has an area of 12 units. 
 

We shall define an almost equilateral triangle to be a triangle for which two sides are equal and the third differs 

by no more than one unit. 
 

Find the sum of the perimeters of all almost equilateral triangles with integral side lengths and area and whose 

perimeters do not exceed one billion (1,000,000,000). 
 

 

My 186-byte solution for the HP-71B is: 
 
 

 10  DESTROY ALL @ S=0 @ A=1 @ B=17 @ C=241 @ L=-1 @ GOSUB 30 

 20  A=1 @ B=5 @ C=65 @ L=1 @ GOSUB 30 @ DISP "Sum:";S @ END 

 

 30  S=S+3*(B+C)+2*L 

 40  D=15*(C-B)+A @ P=3*D+L @ IF P>1000000000 THEN RETURN 

 50  S=S+P @ DISP D,P,S @ A=B @ B=C @ C=D @ GOTO 40 

 

 

 RUN   → 3361         10082        10854  { area, perimeter and running sum of perimeters } 

    46817       140450       151304 

      ...      ...      ... 

    2433601     7300804     416721290 

    33895685    101687056   518408346 

 

    Sum:  518408346      {  ~0.01” virtual,  3.2” physical } 

 

Comments 

Trying to fully solve this problem by using a brute-force search is unbearably inefficient considering the one 

billion limit, but a very useful technique is to use simple brute-force up to a much smaller limit to get some data 

which can then be analyzed to detect patterns. For instance, this code for the case of the C side differing by −1: 
 

10 DESTROY ALL @ FOR A=1 TO 10000 @ S=FNA(A,A,A-1) @ IF NOT FP(S) THEN DISP A;A;A-1;S 

20 NEXT A 

30 DEF FNA(A,B,C)=SQRT((A+B+C)*(B+C-A)*(A+C-B)*(A+B-C))/4  { FNA  returns the area of  ∆ABC } 
 

when run produces these useful data: 

 
 RUN   → 1    1   0  0   { side A, side B=A, side C=A−1, integral area } 

17     17 16    120  

241     241    240   25080 

     3361    3361   3360  4890480 

 

and using my LINREC utility (see References) to analyze the A sides we find this 3-term linear recurrence: 
 

A1 = 1,  A2 = 17,  A3 = 241,  and   An = 15 An−1 − 15 An−2 + An−3  
 

Editing and then running the above code for the +1 case (just change the two −1 in line 10 to +1) produces 

instead the sequence 1, 5, 65, 901 for the A sides and using again LINREC we find this recurrence, also 3-term: 
 

A1 = 1,  A2 = 5,  A3 = 65,    and   An = 15 An−1 − 15 An−2 + An−3  
 

which is the same linear recurrence , only with different starting values. Using both recurrences in the program it 

reaches the 1 billion limit extremely quickly and produces almost instantly the required sum of perimeters. 
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Project Euler #104:  Pandigital Fibonacci ends 

 

The Fibonacci sequence is defined by the recurrence relation: 

 

Fn = Fn−1 + Fn−2  ,  where F1 = 1 and F2 = 1. 

 

It turns out that F541, which contains 113 digits, is the first Fibonacci number for which the last 9 digits are 1-9 

pandigital (contain all the digits 1-9, but not necessarily in order). And F2749, which contains 575 digits, is the 

first Fibonacci number for which the first 9 digits are 1-9 pandigital. 

 

Given that Fk is the first Fibonacci number for which the first 9 digits AND the last 9 digits are 1-9 pandigital, find k. 
 

 

My 326-byte solution for the HP-71B is
1
: 

 
 

 10  DESTROY ALL @ A=1 @ B=1 @ P=1 @ U=1 @ K=10^9 @ FOR I=3 TO INF 

 20  C=A+B @ X=P+U @ Y=Q+V+X DIV K @ Z=R+W+Y DIV K @ X=MOD(X,K) 

 30  Y=MOD(Y,K) @ IF Z<K THEN 50 ELSE X=Y @ Y=MOD(Z,K) @ Z=Z DIV K 

 40  U=V @ V=MOD(W,K) @ W=W DIV K @ P=Q @ Q=MOD(R,K) @ R=R DIV K 

 50  C=MOD(C,K) @ IF SPAN("123456789",STR$(C)) THEN 80 

 60  DISP I;C; @ H=10^IP(1+LOG10(Z)) @ H=Z*K DIV H+Y DIV H @ DISP H 

 70  IF NOT SPAN("123456789",STR$(H)) THEN DISP "K=";I @ END 

 80  A=B @ B=C @ P=U @ U=X @ Q=V @ V=Y @ R=W @ W=Z @ NEXT I 

 

     

        k       9 last digits of Fk  9 first digits of Fk 
       ─────────────────────────────── 

 RUN   → 541   839725641   516212329  { 9 first digits of Fk aren’t 1-9 pandigital } 

    919   965324781   513046096  {   ditto  } 

       ...   ...   ... 

    328733  712489653   608775679  {   ditto  } 

    329468  352786941   245681739    { Found!: 9 first and 9 last digits are 1-9 pandigital } 
 

   K=  329468         {  3’ 23” virtual,  16h 2’ physical } 

 
So  F329468  is the first Fibonacci number for which the first 9 digits and the last 9 digits are 1-9 pandigital. 
 
 
 

Comments 

The very first thing is to realize that we don’t need to compute all the digits of extremely large F numbers (the 

solution F329468 has ~69,000 digits), we just need the first 9 and the last 9, which essentially makes the running 

time linear on k, no matter how large Fk turns out to be. The latter are obtained by computing each term using 

the recurrence relation, adding the previous terms mod 10
9
 and then checking the last 9 digits of the sum for 

“1-9 pandigital-ness” (the SPAN keyword is used to do it), displaying each successful candidate for feedback.  
 
The former are also checked for 1-9 pandigital-ness but if and only if the latter checked Ok (which saves a lot of 

time if they didn’t), and could ideally be computed very quickly if we had ~17 digit precision (see Note 3) but as 

we don’t (12-digit only) we compute them accurately by keeping track of the first 27 digits for each Fk and 

periodically discarding the least significant 9 (so we’re carrying 18 digits from Fk to Fk+1), using arithmetic 

modulo 10
9
 for the additions. At check-time the first 9 are singled out (at line 60) and checked out via SPAN. 

 
If this second check also comes out Ok then we have a solution, which is output and the program ends. If any of 

the checks fail then the execution loops to generate and check the next candidate F number.  

                                                        
1 The keyword SPAN, which is used to check if a number is 1-9 pandigital, is provided by the STRINGLX LEX file. If 

STRINGLX is not available but the Math ROM is, it can also be used to speed up the check somewhat, see Note 4. 
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The Rant 

Despite being awesome overall, Project Euler does also have its shortcomings which frustrated me frequently 

enough that I feel I must mention the main ones here, namely: 
 

1) Far too many problems require using more than 12 digits to solve them, so they can’t be solved using 

the HP-71B or any other 12-digit handheld computer or calculator even if using the best algorithms 

which otherwise could solve them quickly and efficiently. The only alternative would be to implement a 

sort of “double-precision” in BASIC but this usually results in a much longer, much slower program, it 

isn’t practical and muddles everything so much that the problem utterly loses it’s appeal (it can be done, 

though, if you’re sufficiently motivated; see my sample HP-71B program for PE#104 above). 
 
For instance, PE #387 - Harshad Numbers can be solved with a short, clever recursive algorithm 

which was delightful to discover and implement but then it has a 15-digit result, which forces my 71B 

program to fall short of the mark at the intermediate 12-digit sum 497,168,223,439, which is a pity. 
 
Same thing happens with PE #196 (18 digits), PE #210 (19 digits), PE #214 (13 digits), PE #235 (13 

digits), PE #276 (19 digits), PE #387 (13 digits) and many others. 

 

2) Again, far too many problems involve computing results for a given upper limit which frequently is far 

too high (and often results in more than 12 digits for the final result as well). Such excessively high 

limits also force extremely long execution times (we’re talking many days) for the 71B, so they can’t be 

solved in reasonable time even using the very best algorithms possible. Again, incredibly frustrating. 
 

This happens for some of the problems mentioned in (1) above and PE #162 (up to 16
16

), PE #168 (up 

to 10
100

), PE #171 (up to 10
20

), PE #193 (up to 2
50

), PE #601 (up to 4
31

) and many others as well. 
 

3) Some problems require the program to read a sizable ASCII text file as their input, e.g.: 5 Kb, 10 Kb, 16 

Kb, 26 Kb, 46 Kb, ... . As trying to read these text files in an emulated HP-71B (let alone a physical 

one !!) is extremely cumbersome (never mind manually keying the data into the 71B), this makes it 

impractical or impossible to solve them using the HP-71B (though, again, it can be done if you’re 

sufficiently motivated, as I very tediously did for PE #096, successfully solving it with the HP-71B). 
 

For example, this is the case for PE #022 (46 Kb), PE #054 (30 Kb), PE #081 (31 Kb), PE #082 (31 

Kb), PE #083 (31 Kb), PE #098 (16 Kb), PE #102 (26 Kb), PE #424 (27 Kb), among others. 
 

Of course I can understand that PE problems are aimed at being solved with fast modern PC/laptops (not ancient 

calculators, even if emulated) using high-level compiled languages (not interpreted BASIC), but that said I also 

feel that fulfilling PE goals, namely:  “... to provide a platform ... “ 
 

“...for the inquiring mind to delve into unfamiliar areas and learn new concepts in a fun and recreational context” 
 

can be achieved without resorting to artificially high limits and multiprecision results, as there’s an infinite 

number of interesting problems fulfilling the stated goal without needlessly forcing such limiting constraints. 

There are much better, smarter ways to increase the difficulty, it’s just a matter of finding them. Surely it will 

take more effort on the part of problem creators but ultimately it’ll be much more rewarding for everyone than 

just taking the lame “Hey, let’s ask the result for n=10
zillion

, that’ll teach them !” attitude. 

 

 

The Results 

By the end of August, 2011 the allotted fortnight had elapsed and I had solved ~140 PE problems (the very first 

day I solved the first 25), achieved Level 5 and was within the 15 topmost solvers in Spain (among ~1,000 in all) 

and within the topmost 2,400 in the world (among ~250,000 in all), i.e.: I was within the 1% world percentile.  
 
I also left another ~50 PE problems unfinished at various states of completion, with plenty of notes and partial 

results (several text pages for each), due to sheer lack of time to investigate them any further, but the figures are 

irrelevant, the important thing to me was that I had extensively practiced and enhanced my math and 

programming skills and, as PE promised, my mind did delve into unfamiliar areas and I learned new concepts so 

PE’s goal was achieved and mine too. And yes, it was tremendously fun !  Highly recommended !! 
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Notes  
1. PE #015: as I originally attempted to solve each PE problem in ascending order from PE #001 onwards, by the 

time I dealt with this PE #015 I still hadn’t developed all the techniques and tools that I did use for later problems, 

so for this one I didn’t use the very useful technique of creating and running some simple procedure, even if grossly 

inefficient (brute force, recursion) up to a much smaller limit to quickly get data which I could then analyze to 

detect patterns (e.g.: some linear recursion) or even to consult OEIS for the particular short sequence obtained. 

Had I done so, running the simple recursive version would have produced the sequence 2, 6, 20, 70, 252, 924 in 

less than a second, which OEIS readily identifies as sequence A000984 Central binomial coefficients: 

binomial(2*n,n), listing the value 137,846,528,820 for the 20
th

 element, which is the solution. Furthermore, in the 

COMMENTS section it says: “The number of direct routes from my home to Granny's when Granny lives n blocks south 

and n blocks east of my home in Grid City”, which is fully equivalent to PE’s statement of the problem and kills it. 

Of course, using the information gathered at OEIS the HP-71B’s solution doesn’t even require writing a program 

but reduces to evaluating this expression from the command line (requires the JPC ROM for the COMB keyword): 
 

>COMB(40,20)  →   137846528820  
 
which is much simpler than any of my two attempts and instantaneously solves the problem, but I don’t regret 

spending time concocting a solution without consulting references on the Internet, it was way funnier. 

 

2. PE #017: if REPLEX isn’t available and you opt for not including spaces/hyphens in the wording returned by 

FNN$ you must edit out the hyphen at line 140, the spaces at lines 150 and 160, and the space in “one thousand”. 

Also, change line 50 to:  50 FOR I=1 TO 1000 @ S=S+LEN(FNN$(I)) @ NEXT I 

 

3. PE #104: if we had a high-precision (~17-digit) decimal logarithm at hand we could compute the first 9 digits by 

directly evaluating INT(10^(8+FP(K*LOG10((1+SQR(5))/2)-LOG10(5)/2))), and for k=329468 this 

gives 245681739, which indeed are the correct first 9 digits. However, when limited to the HP-71B’s native 

12-digit accuracy, the above expression evaluates to 245681751, which isn’t accurate enough. A real pity, as this 

forced me to keep a 27-digit running total using modular arithmetic and culling, which is much, much slower. 

 

4. PE #104: If STRINGLX is not available but the Math ROM is, you can create this UDF to speed up the check: 
 
   100  DEF FNP(N) @ S$=STR$(N) @ IF POS(S$,"0") THEN END ELSE IF LEN(S$)#9 THEN END 

   110  MAT D=CON @ FOR J=1 TO 9 @ D(VAL(S$[J,J]))=0 @ NEXT J @ FNP=NOT RNORM(D)  

and then change in the main code these lines as indicated:  
   

 10  DESTROY ALL ..      to  DESTROY ALL @ OPTION BASE 1 @ DIM D(9).. 

 50  .. IF SPAN("123456789",STR$(C)) ..  to  IF NOT FNP(C) ... 

 70  .. IF NOT SPAN("123456789",STR$(H)) .. to  IF FNP(H) ... 

 

If also unavailable, MAT..CON simply assigns 1 to all elements of D and RNORM adds up all the elements of D. 
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