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Boldly Going – HP-16C Scientific Functions Part 2 

© 2020 Valentín Albillo 

 

Welcome to a new article in my “Boldly Going” series, this time featuring the second part of the mini-series of articles 

dedicated to provide the HP-16C Computer Scientist calculator with a full set of the main scientific functions usually 

available in most HP scientific models, and some of them even in financial models such as the HP-12C. Here we’ll address 

the implementation of the 7 inverse functions corresponding to the direct ones already discussed and implemented in Part 1. 

 
 
Introduction 

For completeness’ sake, I’ll re-state the goals introduced in the first part. 

The HP-16C is a fantastic programmer’s calculator belonging to the legendary Voyager Series, which includes 

such landmark models as the financial HP-12C and the “Swiss-knife” HP-15C. Indeed, the HP-16C excels at its 

design goals, with a most comprehensive instruction set covering all the needs of professionals and students 

working in the field, plus decent programmability and all the many exceptional traits germane to the Voyager 

Series, such as Continuous Memory, incredibly long battery life, rock-solid ergonomic hardware, the works. 

 

However, when it comes to floating-point calculations, the HP-16C falls surprisingly short of the mark, even 

when compared to the financial (not scientific) HP-12C. Regrettably, its floating-points capabilities are restricted 

to basic arithmetic (+, −, x, ÷), reciprocal (1/x) and square root ( 𝑥) and that’s all. It lacks the logarithm (LN),  

exponential (e
x
) and power (y

x
) functions, which even the HP-12C includes, let alone trigonometrics, to say 

nothing of hyperbolics or advanced functions such as Gamma. It also lacks any sort of statistical functions such 

as the various summations, mean, standard deviation, linear regression, and even the factorial (n!). 

 

That being so, this threesome mini-series of articles strives to overcome those limitations by providing a full set 

of scientific functions, discussed and implemented as follows: 
 

 Part 1 – Direct Functions: trigonometric (sin, cos, tan), hyperbolic (sinh, cosh, tanh), exponential (e
x
). 

 

 Part 2 – Inverse Functions: trigonometric (arcsin, arccos, arctan), hyperbolic (arcsinh, arccosh, 

                    arctanh), natural logarithm (ln). 
 

 Part 3 – Extra Functions: powers (y
x
), factorial (n!), Gamma function, etc. 

 
 
 

Boldly going ... 

As stated in the Introduction above, the purpose of this Part 2 is to implement the 7 inverse functions arcsin(x), 

arccos(x), arctan(x), arcsinh(x), arccosh(x), arctanh(x) and ln(x), subject to these five desirable requirements: 

 

1) All seven inverse functions must fit into a single, relatively short (100-step) program. 
 

2) Full or very extended ranges, up to −10
50

 < x < 10
50

 – 10
100

, depending on the particular function. 
 

3) Fast execution speed over the whole argument range, a few seconds at most. 
 

4) About 5-6 correct digits or better over the whole argument range for all functions. 
 

5) Convenience of use, each function will be callable by pressing just two easy-to-remember keys. 
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Two questions come to mind: 

 

Why settle for just 5-6 correct digits instead of 9-10 ?  Because that would conflict with three of the other 

requirements: the program would be significantly longer, would have a restricted argument range for some of the 

functions, and would run noticeably slower. It seems better to go and achieve those three worthwhile goals even 

if this means some small sacrifice in accuracy, which nevertheless is rarely justified in real-world applications. 
 

Why not have all direct and inverse functions included in a single program ?  Again, several reasons: 
 

i. Having all 14 functions in a single program would need the whole of program memory, leaving no 

program memory for anything else and also no storage registers for manual use, except the index  RI. 

 

ii. Having to delete and then key in anew 200+ steps every time you need to run other programs or have 

some storage registers available to perform other calculations, would be a tiresome, error-prone chore. 

 

iii. There aren’t enough labels to define and use all 14 functions. Calling the functions themselves needs 14 

labels, one for each function (GSB A-F, GSB 0-7) and as there are only 16 possible labels in all, that 

would leave just two labels for internal use (mostly calling internal subroutines), which aren’t enough. 

 

iv. As it’s next to impossible to fit all 14 functions at once, if desired the users can go and bundle the 

functions they want by including the relevant code sections into a single program. For instance, a user 

might want to include the trig functions, the exponential function and the logarithmic function, 

forfeiting hyperbolics altogether. That would be just 8 functions, it’s doable, and it’s left as an exercise 

for the reader, though some useful relevant details are given in the Notes on function extraction below. 

 

To achieve all five goals above, we’ll have to overcome the following HP-16C shortcomings: 
 

a) No storage (let alone recall) arithmetic and no summations either, so all operations have to be 

performed on the stack, which wastes both program steps and time, and loses stack registers. Even the 

HP-12C allows for storage arithmetic using register R0 to R4, but not the HP-16C. 

 

b) no  x
2  

or  y
x  

functions, no INT, FRAC, ABS, SGN or  n! , which might come handy. Most functions 

available for integer bases (e.g.: multiply/divide by 2
n
, remainder) don’t work in floating-point mode. 
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Program Listing for the HP-16C 
 

 

01 

 

 

 

05 

 

 

 

 

10 

 

 

 

 

15 

 

 

 

 

20 

 

 

 

 

25 

 

 

 LBL A 

 SF 1    

 GSB 9  

  -    

 CHS   

  𝑥    

 GTO 8 

 LBL B 

 SF 1    

 CF 0    

 GTO 8 

 LBL C 

 SF 1    

 GSB 9   

  +    

  𝑥    

 1/X    

 GTO 8  

 LBL D 

 CF 1    

 GSB 9   

  +      

  𝑥    

 GTO 8  

 LBL E 

 

26 

 

 

 

30 

 

 

 

 

35 

 

 

 

 

40 

 

 

 

 

45 

 

 

 

 

50 

 

 

 CF 1   

 CF 0   

 GTO 8 

 LBL F 

 CF 1   

 GSB 9  

  -       

 CHS    

  𝑥   

 1/X    

 GTO 8 

 LBL 0 

 CF 1 

 CF 0 

 ENTER 

 1/X 

 X>Y? 

 SF 0 

   + 

   2 

   ÷ 

 LBL 8 

   1    

 STO I 

   1 

 

51 

 

 

 

55 

 

 

 

 

60 

 

 

 

 

65 

 

 

 

 

70 

 

 

 

 

75 

 

 

  5 

 EEX 

 CHS 

  6 

 F? 1 

 CHS    

  +    

 X<>Y     

 F? 1     

 X<>Y     

 LBL 7 

 F? 1     

 X<>Y     

 STO 0 

  1     

  +  

  2     

  ÷     

  𝑥  

 ISZ   

 F? 1 

 X<>Y   

 X>Y?   

 GTO 7  

 RCL 0 

 

76 

 

 

 

80 

 

 

 

 

85 

 

 

 

 

90 

 

 

 

 

95 

 

 

 

 

100 

 

 

  1   

  -   

 F? 1 

 CHS   

 ENTER   

  +    

  𝑥  

 DSZ   

 DSZ   

 LBL 6 

 ENTER   

  +      

 DSZ      

 GTO 6   

 F? 0    

 CHS      

 RTN 

 LBL 9 

 CF 0 

 ENTER 

 X<0? 

 SF 0 

  x 

  1 

 RTN 

   

     

    

 

Resources used: 

 

-  100 steps (but 100 RTN 

   isn’t needed if that’s the 

   end of program memory) 

 

-  flags 0, 1 

-  labels A-F, 0, 6-9 

-  registers 0, I 

 

FLOAT mode required 

  

  103 bytes left for other uses 

  such as additional routines 

  or storage registers, i.e.: 

  up to 14 floating-point 

  registers, plus register RI 

 

 

Registers used: 

 

 0:   scratch 

 I:   loop control 

 
 

Function details: 
 

Function Call sequence Input Range    Program steps used 

arcsin(x) GSB A −1 ≤  x  ≤ 1 01-07 + 47-100 

arccos(x) GSB B −1 ≤  x  ≤ 1 08-11 + 47-92 

arctan(x) GSB C −10
50

 <  x  < 10
50

 12-18 + 47-100 

arcsinh(x) GSB D −10
50

 <  x  < 10
50

 19-24 + 47-100 

arccosh(x) GSB E 1 ≤  x  < 10
50

 25-28 + 47-92 

arctanh(x) GSB F −1 <  x  < 1 29-36 + 47-100 

ln(x)
1
 GSB 0 10

-99
 ≤  x  < 10

100
 37-92 

 

 
Notes on function extraction: 
 

 For the purpose of creating a mix of choice functions into a single program, the user must extract the 

program steps specified above for each function. All functions require the 47 LBL 8 .. 92 RTN subroutine.  
 Group 1: the hyperbolic functions arcsinh(x), arccosh(x) and arctanh(x), as well as the logarithm ln(x), all 

clear flag 1, so CF 1 itself and all pairs of steps F? 1(some step) needn’t be extracted, saving up to 14 bytes. 
 Group 2: the trigonometric functions arcsin(x), arccos(x) and arctan(x) all set flag 1, so SF 1 itself and 

all the single instructions F? 1 need not be extracted, saving up to 8 bytes. 
 If extracting functions from both Group 1 and Group 2 at once, the above instructions do not apply. 

                                                        
1 The ln(x) function returns the natural (base e) logarithm of x. To obtain logarithms to any other base b>1, simply divide the 

result of ln(x) by the constant ln(b), e.g.; log10 (x) = ln(x) / ln(10) = ln(x) / 2.302585093, and log2 (x) = ln(x) / 0.6931471806. 
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Usage Instructions 
To evaluate any of the seven available inverse functions for a given argument x, proceed as follows: first of all 

place the HP-16C in floating-point mode by executing  FLOAT 0..9  or  FLOAT .  (eq. to SCI 6) and then: 

 

y = arcsin(x)  Input Range:   −1  ≤  x  ≤  1 Output Range:   −π/2  ≤  y  ≤  π/2 

 

x   GSB A   →  arcsin(x)  

 

y = arccos(x)  Input Range:   −1  ≤  x  ≤  1 Output Range:   0  ≤  y  ≤  π 

 

x   GSB B   →  arccos(x) 

 

y = arctan(x)  Input Range:   −10
50

  <  x  <  10
50

 Output Range:   −π/2  <  y  <  π/2 

 

x   GSB C   →  arctan(x) 

 

y = arcsinh(x)  Input Range:   −10
50

  <  x  <  10
50

 Output Range:   −115.823  <  y  <  115.823 

 

x   GSB D   →  arcsinh(x) 

 

y = arccosh(x)  Input Range:   1  ≤  x  <  10
50

 Output Range:   0  ≤  y  <  115.823 

 

x   GSB E   →  arccosh(x) 

 

y = arctanh(x)  Input Range:   −1  <  x  <  1 Output Range:   −11.8597  <  y  <  11.8597 

 

x   GSB F   →  arctanh(x) 

 

y = ln(x)  Input Range:   10
−99

  ≤  x  <  10
100

 Output Range:   −227.958  <  y  <  230.2591 

 

x   GSB 0   →  ln(x) 

 

Notes: 
 

 The computation time is mostly independent of the specific function being evaluated (just a few 

seconds) and varies by no more than a factor of about 2 between the extremes of the particular range. 
 

 The accuracy is typically 5-6 correct digits (not decimals) or better for all functions and ranges. See the Notes 

section at the end of this article for a detailed discussion and the Appendix for comprehensive sample results. 
 

 Input values outside the Input Range will result in an error conditition. See Note 2 at the end of this article. 
 

 The initial stack contents aren’t preserved, so previously store in some registers (except R0 or RI) any 

contents you may want to keep between calculations. Also, x isn’t automatically saved in LAST X. 
 

 Results for arcsin, arccos and arctan are in radians. For degrees, multiply them by 180/π = 57.29577951. 
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Examples 
Compute arcsin(x) for x=( −0.7, −0.1, 1), arccos(x) for x=( −1, −0.1, 0.7), arctan(x) for x=( −0.25, 20, ~10

50
), 

arcsinh(x) for x=( −1.5, 50, ~10
50

 ), arccosh(x) for x=( 1.5, 50, ~10
50

), arctanh(x) for x=( -0.4, 0.9, 0.995, 

0.99999, ~1), and ln(x) for x=( 6.4. 10
−23

, 0.15, 1.5, 50, 10
50

, ~10
100

). 

 

 FLOAT 6  
 

arcsin(x):  

 −0.7    GSB A  → −0.775397 { all 6 digits are correct } 

 −0.1    GSB A  → −0.100167 { all 6 digits are correct } 

  1     GSB A  →   1.570793 { last digit should be a 6 } 

 

arccos(x): 

 −1    GSB B  →  3.141586 { last digits should be 93 } 

−0.1    GSB B  →  1.670964 { all 6 digits are correct }  

  0.7    GSB B  →  0.795398 { last digit should be a 9 }  
 

arctan(x): 

 −0.25    GSB C  → −0.244978   { last digit should be a 9 } 

 20    GSB C  →  1.520838   { all 7 digits are correct } 

 ~1E50    GSB C  →  1.570793   { last digit should be a 6; key in ~1E50 as  9.999999999  EEX  49 } 

 

arcsinh(x): 

 −1.5    GSB D  → −1.194769 { last digit should be a 3 } 

 50    GSB D  →  4.605269 { last digits should be 70 } 

 ~1E50    GSB D  → 115.822249  { last digits should be 402; key in ~1E50 as  9.999999999  EEX  49 } 

 

arccosh(x): 

 1.5    GSB E  →  0.962437 { last digits should be 24 } 

 50    GSB E  →  4.605098 { last digits should be 70 } 

 ~1E50    GSB E  → 115.822249  { last digits should be 402; key in ~1E50 as  9.999999999  EEX  49 } 

 

arctanh(x): 

 −0.4    GSB F  → −0.423649   { all 6 digits are correct } 

 0.9    GSB F  →  1.472211 { last digit should be a 9 } 

 0.995    GSB F  →  2.994478 { last digits should be 81 } 

 0.99999  GSB F  →  6.103074 { last digits should be 34 } 

~1   GSB F  →  11.859671 { last digits should be 499; key in ~1 as  .9999999999 } 

 

ln(x): 

 6.4E-23   GSB 0  → −51.103900 { last digits should be 159 } 

 0.15    GSB 0  → −1.897131 { last digits should be 20 } 

 1.5    GSB 0  →  0.405469 { last digit should be a 5 } 

 50    GSB 0  →  3.912028 { last digit should be a 3 } 

 1E50    GSB 0  → 115.129518  { last digits should be 255 } 

~1E100   GSB 0  → 230.259036  { last digits should be 8509; key in ~1E100 as  9.999999999  EEX  99 } 
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Appendix: Sample results 
Upper value = theoretical result,    Lower value = computed result   * ~1E50 = 9.999999999 E49 

x arcsin(x) arccos(x) x arcsin(x) arccos(x)  x arctan(x) x arctan(x) 

-1 
-1.5707 96 

-1.5707 93 

3.1415 93 

3.1415 86 
0.1 

0.1001 67     

0.1001 67 

1.4706 29 

1.4706 26 

 
0 

0 

0 
10 

1.4711 28E00 

1.4711 25E00 

-0.98 
-1.3704 61    

-1.3704 54 

2.9412 58 

2.9412 52 
0.2 

0.2013 58     

0.2013 57 

1.3694 38 

1.3694 31 

 
0.1 

9.9668 65E-02 

9.9668 31E-02 
20 

1.5208 38E00 

1.5208 38E00 

-0.95 
-1.2532 36    

-1.2532 29 

2.8240 32 

2.8240 32 
0.3 

1.2661 04 

1.2660 99 

0.3046 93     

0.3046 91 

 
0.25 

2.4497 87E-01 

2.4497 83E-01 
50 

1.5507 99E00 

1.5507 94E00 

-0.9 
-1.1197 70    

-1.1197 65 

2.6905 66 

2.6905 54 
0.4 

0.4115 17     

0.4115 16 

1.1592 79 

1.1592 74 

 
0.5 

4.6364 76E-01 

4.6364 54E-01 
100 

1.5607 97E00 

1.5607 90E00 

-0.8 
-0.9272 95    

-0.9272 91 

2.4980 92 

2.4980 83 
0.5 

0.5235 99     

0.5235 97 

1.0471 98 

1.0471 95 

 
0.75 

6.4350 11E-01 

6.4349 76E-01 
1E3 

1.5697 96E00 

1.5697 91E00 

-0.7 
-0.7753 97    

-0.7753 97 

2.3461 94 

2.3461 84 
0.6 

0.6435 01     

0.6434 98 

0.9272 95 

0.9272 91 

 
1 

7.8539 82E-01 

7.8539 66E-01 
1E4 

1.5706 96E00 

1.5706 97E00 

-0.6 
-0.6435 01    

-0.6434 98 

2.2142 97 

2.2142 86 
0.7 

0.7753 97     

0.7753 97 

0.7953 99 

0.7953 98 

 
1.5 

9.8279 37E-01 

9.8279 00E-01 
1E5 

1.5707 86E00 

1.5707 81E00 

-0.5 
-0.5235 99    

-0.5235 97 

2.0943 95 

2.0943 90 
0.8 

0.9272 95     

0.9272 91 

0.6435 01 

0.6434 98 

 
2 

1.1071 49E00 

1.1071 43E00 
1E10 

1.5707 96E00 

1.5707 93E00 

-0.4 
-0.4115 17    

-0.4115 16 

1.9823 13 

1.9823 03 
0.9 

1.1197 70     

1.1197 65 

0.4510 27 

0.4510 26 

 
3 

1.2490 46E00 

1.2490 41E00 
1E20 

1.5707 96E00 

1.5707 93E00 

-0.3 
-0.3046 93    

-0.3046 91 

1.8754 89 

1.8754 83 
0.95 

1.2532 36     

1.2532 29 

0.3175 60 

0.3175 59 

 
5 

1.3734 01E00 

1.3733 95E00 
~1E50

*
 

1.5707 96E00 

1.5707 93E00 

-0.2 
-0.2013 58    

-0.2013 57 

1.7721 54 

1.7721 52 
0.98 

1.3704 61     

1.3704 54 

0.2003 35 

0.2003 35 

 Note:  for negative x, results are the same but also negative 

-0.1 
-0.1001 67    

-0.1001 67 

1.6709 64 

1.6709 64 
1 

1.5707 96     

1.5707 93 

0 

0 

     

0 
0 

0 

1.5707 96 

1.5707 93 
   

     

  
              ** ~1E100 = 9.999999999 E99 

x arcsinh(x) arccosh(x) ln(x) x arcsinh(x) arccosh(x) ln(x) 

0 
0 

0 
- - 20 

3.6895 04E00 

3.6895 28E00 

3.6882 54E00 

3.6882 48E00 

2.9957 32E00 

2.9957 03E00 

0.25 
2.4746 65E-01 

2.4746 99E-01 
- 

-1.3862 94E00 

-1.3863 06E00 
50 

4.6052 70E00 

4.6052 69E00 

4.6050 70E00 

4.6050 98E00 

3.9120 23E00 

3.9120 28E00 

0.5 
4.8121 18E-01 

4.8121 87E-01 
- 

-6.9314 72E-01 

-6.9315 28E-01 
100 

5.2983 42E00 

5.2983 96E00 

5.2982 92E00 

5.2983 47E00 

4.6051 70E00 

4.6052 12E00 

1 
8.8137 36E-01 

8.8138 02E-01 

0 

0 

0 

0 
1E3 

7.6009 03E00 

7.6009 50E00 

7.6009 02E00 

7.6009 50E00 

6.9077 55E00 

6.9078 65E00 

1.25 
1.0475 93E00 

1.0476 00E00 

6.9314 72E-01 

6.9315 28E-01 

2.2314 36E-01 

2.2314 35E-01 
1E4 

9.9034 88E00 

9.9035 15E00 

9.9034 88E00 

9.9035 15E00 

9.2103 40E00 

9.2104 23E00 

1.5 
1.1947 63E00 

1.1947 69E00 

9.6242 37E-01 

9.6243 74E-01 

4.0546 51E-01 

4.0546 92E-01 
1E5 

1.2206 07E01 

1.2206 15E01 

1.2206 07E01 

1.2206 15E01 

1.1512 93E01 

1.1512 97E01 

2 
1.4436 35E00 

1.4436 22E00 

1.3169 58E00 

1.3169 70E00 

6.9314 72E-01 

6.9315 28E-01 
1E10 

2.3719 00E01 

2.3719 34E01 

2.3719 00E01 

2.3719 34E01 

2.3025 85E01 

2.3025 93E01 

3 
1.8184 46E00 

1.8184 65E00 

1.7627 47E00 

1.7627 60E00 

1.0986 12E00 

1.0986 25E00 
1E20 

4.6744 85E01 

4.6744 67E01 

4.6744 85E01 

4.6744 67E01 

4.6051 70E01 

4.6051 87E01 

5 
2.3124 38E00 

2.3124 61E00 

2.2924 32E00 

2.2924 51E00 

1.6094 38E00 

1.6094 64E00 
1E50 

1.1582 24E02 

1.1582 22E02 

1.1582 24E02 

1.1582 22E02 

1.1512 93E02 

1.1512 95E02 

10 
2.9982 23E00 

2.9982 40E00 

2.9932 23E00 

2.9932 52E00 

2.3025 85E00 

2.3026 06E00 
~1E100

**
 - - 

2.3025 85E02 

2.3025 90E02 

 Note:  for arcsinh(x) with negative x, results are the same but also negative        

               *** ~1 = 0.9999999999 

x arctanh(x) x arctanh(x) x arctanh(x) 

0 
0 

0 
0.6 

0.6931 47 

0.6931 53 
0.99 

2.6466 52 

2.6466 74 

0.1 
0.1003 35 

0.1003 37 
0.7 

0.8673 01 

0.8673 07 
0.995 

2.9944 81 

2.9944 78 

0.2 
0.2027 33 

0.2027 35 
0.8 

1.0986 12 

1.0986 25 
0.999 

3.8002 01 

3.8001 99 

0.3 
0.3095 20 

0.3095 21 
0.9 

1.4722 19 

1.4722 11 
0.9999 

4.9517 19 

4.9517 57 

0.4 
0.4236 49 

0.4236 49 
0.95 

1.8317 81 

1.8317 87 
0.99999 

6.1030 34 

6.1030 74 

0.5 
0.5493 06 

0.5493 12 
0.98 

2.2975 60 

2.2975 63 
~1

***
 

11.8594 99 

11.8596 71 

Note:  for negative x, results are the same but also negative 
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Notes 
 
 

1. The maximum accuracy obtained ultimately depends on the number of digits the calculator can carry (the HP-16C 

is a 10-digit calculator while the HP-42S, for instance, is a 12-digit calculator) and it also depends on the value of 

the constant (K) defined at steps 50-54, which can be empirically fine-tuned to optimize the accuracy, and also 

depends itself on the number of digits and, to a lesser degree, on the particular function being evaluated.  
 

As using a different, specifically fine-tuned constant for each of the 7 functions would take some 35-40 additional 

program steps or more, the program slightly compromises by using the same constant K for all functions, which I 

carefully fine-tuned with the help of an ad-hoc routine I wrote to, given a candidate value for K, first compute the 

results for a selection of arguments covering the whole range, and then to accumulate the absolute value of the 

relative errors for each evaluation as compared to the theoretical value. The optimum value of K resulting in the 

smallest sum of relative errors is the one finally featured in the program. 
 

For 10-digit calculators such as the HP-16C, I found that K = 0.000015 gives about 5-6 correct digits or better, 

while for 12-digit calculators a smaller K = 0.000002 gives an extra correct digit, i.e.: about 6-7 correct digits or 

better. At any rate, the accuracy obtained is highly consistent throughout all seven functions and the whole extended 

ranges, as is the running time, which makes for a reliable, no-surprises experience. Also, for actual, real-world 

applications, which usually deal with experimentally obtained data, 5-6 digits should be adequate enough. 

 
2. Input values outside the Input Range will result in an error condition. In the case of Overflow errors, when some 

intermediate computation results in a number with a magnitude greater than ±9.999999999E99, it will be 

automatically replaced with this value, flag 5 (the out-of-range flag) will be set and the G annunciator will be 

displayed, but the program will not stop, though the final result will most likely be invalid.  

 

On the other hand, if the input value causes an illegal mathematical operation (such as attempting division by zero 

or the square root of a negative number) Error 0 (Improper Mathematical Operation) will be displayed and the 

program will immediately stop. In both cases, simply input a valid value and call the function again. 
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