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1.  Introduction 

 

This article features a subprogram, PCHAR, which deals with an advanced funtionality very frequently needed in all 

sort of disciplines in Science, Engineering and Computing, yet not covered at all in the HP-71 Math Pac ROM, 

namely the task of computing all eigenvalues real and complex of an arbitrary real or complex square matrix. 

PCHAR helps in this regard and besides it also returns at no cost both the determinant and the inverse matrix. 

 

One way to compute the eigenvalues is to take advantage of the already existing Math Pac„s keyword MAT..PROOT 

or my subprogram PZER (both can work as global polynomial rootfinders
1
), because actually the eigenvalues are 

the roots of the Characteristic Polynomial of the matrix. Thus, if we can quickly and accurately compute the 

coefficients of said polynomial, then afterwards using either MAT..PROOT (only for real polynomials) or PZER (for 

both real and complex ones) will complete the task, producing all the eigenvalues at once. PCHAR does exactly that 

and much more, as we‟ll see. The main points for PCHAR are: 

 

 Its usefulness:  computing the eigenvalues of a matrix is essential in many important areas of science and 

engineering, as well as analysis of algorithms, etc. See for instance Chapter 10: “Origins of Matrix 

Eigenvalue Problems” from the book “Numerical Methods for Large Eigenvalues Problems”. I quote: 

 

  “We list below just a few of the applications areas where eigenvalue calculations arise: 

    • Structural dynamics • Quantum chemistry • Electrical Networks • Markov chain techniques 

    • Combustion processes • Chemical reactions • Macro-economics • Magnetohydrodynamics 

    • Normal mode techniques • Control theory 

 

One class of applications which has recently gained considerable ground is that related to linear algebra 

methods in data-mining, [...] The most commonly solved eigenvalue problems today are those issued from 

the first item in the list, namely those problems associated with the vibration analysis of large structures” 

 

 Its versatility:  besides its primary task of computing the Characteristic Polynomial (CP), PCHAR also 

returns the determinant and the inverse of the input matrix for free, at no cost whatsoever . They are side 

byproducts of the main computation and returning them doesn‟t involve any extra memory or time. 
  
Furthermore, it transparently works for real or complex matrices and will return real or complex 

determinants/inverses (note that the Math Pac can’t compute determinants of complex matrices), with far 

more precision in some cases, such as certain integer and troublesome matrices. See Examples 5-9 below. 
 

 Its simplicity:  this BASIC subprogram is just 6 lines (271 bytes) long and besides it‟s quite amenable for 

conversion to Assembler code. See Section 6 below for full details about the conversion process. 
 

MAT..PROOT or PZER already do much of the work and PCHAR takes care of the essential preliminary step. As stated 

above, MAT..PROOT only works for polynomials with real coefficients while PZER works for both real and complex 

coefficients, so for complex Characteristic Polynomials PZER is the only choice. For real CPs both MAT..PROOT and 

PZER can be used and will produce similarly accurate results but the assembly-language MAT..PROOT keyword will 

produce results much faster than the BASIC subprogram PZER2. 

                                                        
1 “No user-supplied initial guess(es) or stopping criteria should be required” (July 1984 Hewlett-Packard Journal p.33). 
2 See my article “HP Article VA042 - Boldly Going - Outsmarting PROOT” for PZER„s full documentation. 
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2.  Subprogram Description and Calling Syntax 
 

 

PCHAR                Characteristic Polynomial 

 

SUB PCHAR(A(,),P(),D,M(,)) 

 

Where P is a vector, A and M are different square matrices, and D is a scalar variable. All must be of the same 

type, real or complex, and can be declared as REAL, SHORT, INTEGER, COMPLEX or COMPLEX SHORT precision. 

 

 

Assigns to P the coefficients of the Characteristic Polynomial of A, in a format ready for immediate use with 

either the MAT..PROOT keyword (only if they‟re real) or with subprogram PZER (real or complex coefficients) to 

find at once all eigenvalues real and/or complex of A. 
 
If scalar variable D is passed by reference the determinant of matrix A will be returned there. 
 
Matrix M is also passed by reference and the matrix inverse of A will be returned in it. If the determinant of A 

is 0 or (0,0), then matrix A is singular and the returned inverse will be meaningless. 
 
 

 
 
 
3. Source Code Listing and Subprogram Characteristics 
 
 

 
200  SUB PCHAR(A(,),P(),D,M(,)) @ P(0)=1 @ K=UBND(A,1) @ IF K=1 THEN MAT M=IDN ELSE MAT M=A 

210  FOR I=1 TO K-1 @ D=0 @ IF I#1 THEN MAT M=A*M  

220  FOR J=1 TO K @ D=D-M(J,J) @ NEXT J @ D=D/I @ P(I)=D 

230  FOR J=1 TO K @ M(J,J)=M(J,J)+D @ NEXT J @ NEXT I @ D=0   

240  FOR I=1 TO K @ FOR J=1 TO K @ D=D-A(I,J)*M(J,I) @ NEXT J @ NEXT I  

250  D=D/K @ P(K)=D @ MAT M=(-1/(D+NOT ABS(D)))*M @ D=(-1)^K*D 

 
Note: the line numbers are arbitrary, the code uses none as there’s no explicit branching. Use whatever numbering suits you. 

 

 This BASIC subprogram is 6 lines (271 bytes) long and uses several matrix-related keywords from the Math 

Pac so the Math ROM must be available (either physically plugged in or as a virtual ROM image.) 
 

 It can be called either directly from the command line or from another program or subprogram. 
 

 It accepts four parameters, namely: 
 

o A( , ) input, square matrix whose CP, determinant and/or inverse are sought. Returns unaltered. 

o P( ) output, column vector where the CP‟s coefficients will be returned. Always monic. 

o D  output, scalar num. variable where the determinant will be returned (if passed by reference). 

o M( , ) output, square matrix where the inverse will be returned, if it exists. Else, meaningless. 
 

 All parameters must be of the same type, REAL or COMPLEX. 
 

 All parameters can be of full REAL (COMPLEX), SHORT (COMPLEX SHORT) or INTEGER precision, but if 

SHORT or INTEGER are specified accuracy can degrade, and INTEGER can result in Overflow warnings. 
 

 Both matrices A and M must have the same dimensions and must be declared with OPTION BASE 1 in 

effect. Also, M can‟t be the same matrix as A, they must be different matrices. 

 

 The column vector P( ) must be declared with the same upper index as the matrices but with OPTION BASE 0. 
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4.  Usage Instructions  

 

The subprogram PCHAR can be called either from the command line or from any other program or subprogram, by 

performing the following steps: 

 

1) Specify OPTION BASE 1 and dimension the square matrices A and M (the names are arbitrary but they can‟t 

be the same matrix). Both matrices must be of the same type (REAL or COMPLEX) and of any precision 

(REAL, REAL SHORT, COMPLEX, COMPLEX SHORT or even INTEGER (the latter is absolutely discouraged, as 

it can lead to massive loss of precision in the results or even  Overflow  errors or warnings). E.g.: 

 

 OPTION BASE 1 @ DIM A(3,3),M(3,3)         specifies two 3x3 real matrices of full precision 

 OPTION BASE 1 @ REAL A(3,3),M(3,3)         ditto 

 OPTION BASE 1 @ SHORT A(7,7),M(7,7)      specifies two 7x7 real matrices of short precision 

 OPTION BASE 1 @ COMPLEX A(5,5),M(5,5)       specifies two 5x5 complex matrices of full precision 

 OPTION BASE 1 @ COMPLEX SHORT A(4,4),M(4,4)  specifies two 4x4 complex matrices of short precision 

 

2) Specify OPTION BASE 0 and dimension vector P and scalar variable D (names are arbitrary but they must 

be same type REAL/COMPLEX as matrices A and M, and P‟s upper bound must be the same as well). E.g.: 
 

 OPTION BASE 0 @ DIM P(3),D          4-element real vector and scalar w/ full precision 

 OPTION BASE 0 @ REAL P(3),D          ditto 

 OPTION BASE 0 @ SHORT P(7),D       8-element real vector and scalar w/ short precision 

 OPTION BASE 0 @ COMPLEX P(5),D        6-element complex vector and scalar w/ full precision 

 OPTION BASE 0 @ COMPLEX SHORT P(4),D   5-element complex vector and scalar w/ short precision 

 

3) Assign the elements of matrix A (e.g.: using  MAT INPUT, READ/DATA or computing the elements). 

 

4) Call the subprogram PCHAR: 
 

CALL PCHAR(A,P,D,M) 
 

5) Upon returning from the call: 
 

  A  will be left unaltered,  

P  will contain the coefficients of the Characteristic Polynomial of A,  

D  will contain the determinant of A and if D isn‟t 0 or (0,0) then  

M  will contain the matrix inverse of A (else the contents of M will be meaningless). 

 

6) If desired, you can display the coefficients of the CP using MAT DISP P , the determinant using DISP D, and 

the elements of the inverse matrix using  MAT DISP M; , for instance.  

 

7) Whether A is real or complex, you can now compute all its eigenvalues by performing the following steps: 
 

7.a) Dimension a complex vector R (say) to hold the N eigenvalues of the NxN square matrix A. E.g.: 
 

OPTION BASE 1 @ COMPLEX R(7)  assuming A is a 7x7 real matrix 

 

7.b) Compute and display the eigenvalues by executing either 
 

MAT R=PROOT(P) @ MAT DISP R   only if P has real coefficients,i.e.: real A (fastest) 

or 

CALL PZER(P,R,0,0) @ MAT DISP R  if P has real or complex coefficients
1
 (complex A) 

                                                        
1 In this case you must have subprogram PZER available either in the same file as subprogram PCHAR or in some other file 

in main RAM. You can find the BASIC source listing and full documentation for PZER in my article “HP Article VA042 - 

Boldly Going - Outsmarting PROOT”. 
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5. Examples {all of them demonstrated as if directly executed from the command line } 

The “Basic” Cases 
 
Example 1: A simple 3x3 real matrix.  

Example 2:  A simple 3x3 complex matrix. 

Example 3:  Singular real and complex matrices. 

Example 4: The 5x5 symmetric real matrix featured in my article “HP Article VA012”, pp 6-7. 
 

The “Troublesome” Cases 
 

Example 5:  The 7x7 real matrix AM#1 featured in my article “HP Article VA016 - Mean Matrices”. 

Example 6:   A simple symmetric 3x3 real matrix, which the Math Pac handles inaccurately . 

Example 7:   A very simple 2x2 complex matrix, which the Math Pac handles quite inaccurately . 

Example 8:  A seemingly slight inaccuracy which actually isn’t, unlike what the Math Pac does. 

Example 9:  The Mother of All Troublesome Matrices, my 7x7 real matrix AM#7 (see my “HP Article VA016”). 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

Example 1: A simple 3x3 real matrix.  
 

Let‟s find the characteristic polynomial, determinant, inverse and all the eigenvalues of this 3x3 real matrix: 
 

A =  
  3  1 5
  3  3 1
  4  6 4

    

 

>DESTROY ALL @ STD 

>OPTION BASE 1 @ DIM A(3,3),M(3,3) @ COMPLEX R(3) 

>OPTION BASE 0 @ DIM P(3),D 

 

>MAT INPUT A 

A(1,1)?       3,1,5,3,3,1,4,6,4 

 

>CALL PCHAR(A,P,D,M) 

 

>MAT DISP P 

P =  

      1
 −10
     4
−40

     so its characteristic polynomial is:  P(x) = x
3
 – 10 x

2
 + 4 x – 40 

>D 

  40     and its determinant is 40. As it‟s non-zero, the inverse exists and we now display it: 
 

>FIX 2 @ MAT DISP M; 

 

A
-1 

=  
    0.15     0.65 −0.35
 −0.20  −0.20    0.30
    0.15  −0.35    0.15

      the exact inverse matrix. 

 

And finally we compute and display all its eigenvalues: 
 

>MAT R=PROOT(P) @ MAT DISP R 
 

R =  
    5.76 . 10−17 + 2𝑖
   5.76 . 10−17 − 2𝑖

 10

     so there‟s a real eigenvalue and two complex conjugate ones, ± 2 i.  
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Example 2:   A simple 3x3 complex matrix. 

 

Find the characteristic polynomial, determinant, inverse and all the complex eigenvalues of the following matrix: 

 

A =  
    1 + 2 i   2 + 3 i     3 + i
−1 + 2 i 2 − i  −1 − i 

 3 i −2  2 + 2 i 
   

 

>DESTROY ALL @ STD 

>OPTION BASE 1 @ COMPLEX A(3,3),M(3,3) 

>OPTION BASE 0 @ COMPLEX P(3),D 

 

>MAT INPUT A 

A(1,1)?       (1,2),(2,3),(3,1),(-1,2),(2,-1),(-1,-1),(0,3),(-2,0),(2,2) 

 

>CALL PCHAR(A,P,D,M) 

 

Let‟s display the characteristic polynomial: 
 

>MAT DISP P 
 

P = 

 
 
 
 

 
    1

 −5 − 3 i
  17 − i

 − 44 + 6 i 

  

 
 
 
 
 so the characteristic polynomial is P(z) = z

3
 + (– 5 – 3 i) z

2 
+ (17 – i) z – 44 + 6 i 

 

and the determinant is: 
 

>D 

 (44,-6)    this is:  Det = 44 – 6 i.  As for the inverse matrix: 
 

>FIX 4 @ MAT DISP M; 
 

A
-1

 =  
  0.0892 +  0.0122 i −0.0527 − 0.2799 i −0.1217 −    0.1075 i
   0.2160 −  0.0842 i    0.0314 − 0.0639 i   −0.1582 +   0.1602 i  
   0.0081 −  0.2262 i −0.1866 + 0.2018 i      0.2617 +   0.0811 i 

   

 

We can check the accuracy of the inverse by multiplying it by the original matrix and seeing how close the 

product is to the 3x3 complex Identity matrix: 
 

>STD @ MAT M=A*M @ MAT DISP M; 
 

A*A
-1

 =  
                 𝟏 − 1.5 . 10−12  i    5 . 10−13 +  6 . 10−13  i    2 . 10−12

   −5 . 10−13 +  3 . 10−13  i                 𝟏 −  6 . 10−13  i   −2 . 10−12  i
       7 . 10−13 −  2 . 10−13  i   4 . 10−13 +  8 . 10−13  i     𝟏

    

 

The sum of the absolute values of the errors is 9.0866 . 10−12 , while using the Math Pac‟s MAT..INV keyword 

results in a sum equal to ~1.8847 . 10−11, which is about 207% higher. 

Regrettably, the Math Pac can‟t compute the complex determinant (obtained above as 44 – 6 i ) because its DET 

keyword doesn‟t work with complex matrices
1
. Also, although we obtained the complex characteristic 

polynomial just fine, we can’t use the MAT..PROOT keyword to compute the eigenvalues either because, again, it 

doesn‟t work for polynomials having complex coefficients, which is the case here. However, we can use PZER: 
 

>OPTION BASE 1 @ COMPLEX R(3) @ CALL PZER(P,R,0,0) @ FIX 4 @ MAT DISP R 
 

RT  =    2.5815 +  1.2406 i , 2.6226 + 4.6544 i , −0.2041 − 2.8950 i   , which are the eigenvalues. 

                                                        
1 This limitation of DET has been removed by J-F Garnier in his version, Math Pac 2, including many other enhancements. 
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Example 3:  Singular real and complex matrices. 

 

Find the CPs, determinants, inverses and all eigenvalues for each of these two matrices: 
    

A =  
  −7    1    5
     3 −7    1
     4    6 −6

     , A =  
    7 − 14 i    −1 + 2 i  −5 + 10 i
   −3 + 6 i     7 − 14 i     −1 + 2 i
       4 − 8 i     6 − 12 i  −6 + 12 i

     

 

We‟ll deal with the real matrix first: 
 

>DESTROY ALL @ STD @ OPTION BASE 1 @ DIM A(3,3),M(3,3) @ OPTION BASE 0 @ DIM P(3),D 

>MAT INPUT A 

A(1,1)?       -7,1,5,3,-7,1,4,6,-6 
 

>CALL PCHAR(A,P,D,M) @ MAT DISP P 

P =  

  1
  20

  104
  0

    so its characteristic polynomial is:  P(x) = x
3
 + 20 x

2
 + 104 x 

>D 

  0   but its determinant is 0 so the matrix is singular and its inverse matrix doesn’t exist. 
 

Anyway, we can display the meaningless “inverse” matrix, just to have a look at it: 
 

>MAT DISP M; 
 

M
 
=  

   −36  −36  −36 
   −22  −22  −22 
   −46  −46  −46 

     which is itself singular, as the rows are proportional. 

 

If we then go on and compute A*M we get the Zero matrix, not the Identity matrix. As for the eigenvalues: 
 

>OPTION BASE 1 @ COMPLEX R(3) @ MAT R=PROOT(P) @ MAT DISP R 

 

R =  
    0

  −10 + 2𝑖 
  −10 − 2𝑖 

     so there‟s a real 0 eigenvalue and two complex conjugate ones. 

 

Now for the complex matrix: 
 

>DESTROY ALL @ STD @ OPTION BASE 1 @ COMPLEX A(3,3),M(3,3) @ OPTION BASE 0 @ COMPLEX P(3),D 

>MAT INPUT A 

A(1,1)?       (7,-14),(-1,2),(-5,10),(-3,6),(7,-14),(-1,2),(4,-8),(6,-12),(-6,12) 

 

>CALL PCHAR(A,P,D,M) @ MAT DISP P 

P =  

  1
 −8 + 16 i
  36 + 48 i

  0

    so its characteristic polynomial is:  P(z) = z
3
 + (−8 + 16 i) z

2
 + (36 + 48 i) z 

>D 

  (0,0)     but its determinant is (0,0) so the matrix is singular and its inverse matrix doesn’t exist. 

As in the real case, A*M is the complex Zero matrix, not the complex Identity matrix. 
 

As for the complex eigenvalues, PROOT won‟t do but we can use PZER just fine, like this 
 

>OPTION BASE 1 @ COMPLEX R(3) @ CALL PZER(P,R,0,0) @ FIX 4 @ MAT DISP R 
 

RT  =    9.2915 −  18.5830 i , − 1.2915 + 2.5830 i , 0.0000 + 0.0000 i   , which are the eigenvalues. 



7 

 

Example 4: The 5x5 symmetric real matrix featured in my article “HP Article VA012”, pp 6-7. 
 

Compute the characteristic polynomial, the determinant, the inverse and all the eigenvalues of the following 5x5 

symmetric real matrix, and further check that the sum of the eigenvalues equals the trace (sum of the main 

diagonal elements) and the product of the eigenvalues equals the determinant: 
 

A = 

 
 
 
 
 
  5  1  2 0  4  
  1  4 2 1  3  
  2  2 5 4  0  
  0  1 4 1  3  
  4  3 0 3  4  

 

 
 
 
 
 

 

 
>DESTROY ALL @ STD 

>OPTION BASE 1 @ DIM A(5,5),M(5,5) @ COMPLEX R(5) 

>OPTION BASE 0 @ DIM P(5),D 

 

>MAT INPUT A 

A(1,1)?       5,1,2,0,4,1,4,2,1,3,2,2,5,4,0,0,1,4,1,3,4,3,0,3,4 

 

>CALL PCHAR(A,P,D,M) 

>MAT DISP P 

 

P = 

 
 
 
 
 
 

          1 
    −19 
       79 
     146 
−1153 
   1222 

 

 
 
 
 
 
 

 

 

so the characteristic polynomial is: P(x) = x
5
 – 19 x

4
 + 79 x

3
 + 146 x

2
 – 1153 x + 1222 

 
and the five eigenvalues of A are its five roots, which we‟ll presently compute and display like this: 

 
>MAT R=PROOT(P) @ MAT DISP R 

 

R = 

 
 
 
 
 
    1.49765770722  
    3.36187557654  
 −3.55783865798  
       5.6725513961  
    12.0257539781   

 
 
 
 

   so all 5 eigenvalues are indeed real. Let‟s check them: 

 
>S=0 @ FOR I=1 TO 5 @ S=S+REPT(R(I)) @ NEXT I @ S 

 

  19   thus their sum does indeed equal the trace:  5 + 4 + 5 + 1 + 4 = 19. 

 

>S=1 @ FOR I=1 TO 5 @ S=S*REPT(R(I)) @ NEXT I @ S 

 

  -1222  and their product does equal the computed determinant, which is: 

>D 

  -1222  as expected;  finally, the inverse matrix is: 

 

>FIX 4 @ MAT DISP M; 

A
-1

 = 

 
 
 
 
 
     0.2021 −0.0106     0.0851 −0.2021 −0.0426
 −0.0106     0.3609     0.0360 −0.2201 −0.0949
    0.0851     0.0360     0.0966     0.0687 −0.1637
 −0.2021 −0.2201     0.0687     0.1252     0.2733
 −0.0426 −0.0949 −0.1637     0.2733     0.1588

  

 
 
 
 
 

    the inverse matrix is symmetric too. 
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Example 5:  The 7x7 real matrix AM#1 featured in my article “HP Article VA016 - Mean Matrices”. 

 

As seen in the article, this is a much more difficult matrix but will be dealt with accurately and effortlessly. Let‟s 

compute the characteristic polynomial, the determinant, the inverse and all the eigenvalues of the following 7x7 

all-integer real matrix, AM#1: 
 

AM#1 = 

 
 
 
 
 
 
 
  58 71 67 36 35 19 60 
  50 71 71 56 45 20 52 
  64 40 84 50 51 43 69 
  31 28 41 54 31 18 33 
  45 23 46 38 50 43 50 
  41 10 28 17 33 41 46 
  66 72 71 38 40 27 69 

 

 
 
 
 
 
 
 

 

 
 
>DESTROY ALL @ STD 

>OPTION BASE 1 @ DIM A(7,7),M(7,7) @ COMPLEX R(7) 

>OPTION BASE 0 @ DIM P(7),D 

 

>MAT INPUT A 

A(1,1)?       58,71,67,36,35,19,60,50,71,71,56,45,20,52,64,40,84,50,51,43,69 

A(4,1)?       31,28,41,54,31,18,33,45,23,46,38,50,43,50,41,10,28,17,33,41,46 

A(7,1)?       66,72,71,38,40,27,69 

 

>CALL PCHAR(A,P,D,M) @ MAT DISP P 

 

P = 

 
 
 
 
 
 
 
 

 
    1

 −427
    34952

  −1293342
     22042627

  −149615896  
   197215484

−1

 

 
 
 
 
 
 
 
 

 

 

so the characteristic polynomial is: 

 

 P(x) = x
7
 – 427 x

6
 + 34952 x

5
 – 1293342 x

4
 + 22042627 x

3
 – 149615896 x

2
 + 197215484 x – 1 

 
 

and the seven eigenvalues of AM#1 are its seven roots, which we now compute and display, like this: 

 
>MAT R=PROOT(P) @ MAT DISP R 

 

R = 

 
 
 
 
 
 
 

  5.07059579484 . 10−9

1.70591335651
14.5014291232
17.9482205987

  29.8437818861 + 21.037406773 i  
  29.8437818861 − 21.037406773 i  

333.156873144  
 
 
 
 
 
 

   so five of them are real and the other two are complex. 

 
 

Notice that though the first real eigenvalue is very small it‟s not 0, else the matrix would be singular (Det=0). 

We can check the eigenvalues as usual by computing their sum and their product: 
 

>S=0 @ FOR I=1 TO 7 @ S=S+REPT(R(I)) @ NEXT I @ S 

 

  427  which exactly equals the trace:  58 + 71 + 84 + 54 + 50 + 41 + 69 = 427 
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>COMPLEX T @ T=1 @ FOR I=1 TO 7 @ T=T*R(I) @ NEXT I @ T 

 

  (1, 1.33262749258E-13) which (negligible imaginary part aside) does equal the determinant, 1 

>D 

  1  which indeed is the exact value. Finally, the inverse matrix is: 

 

>FIX 4 @ MAT DISP M; 

 

AM#1
−1

 = 

 
 
 
 
 
 
 

 96360245  320206 −537449  2323650 −11354863  30196318 −96509411
   4480   15 −25   108 −528   1404 −4487
−39436 −131   220 −951   4647 −12358   39497
 273240   908 −1524   6589 −32198    85625 −273663

−1846174 −6135   10297 −44519 217549 −578534  1849032
  13150347  43699 −73346  317110 −1549606  4120912 −13170704
−96360787 −320208 537452 −2323663 11354927 −30196488    96509954

 

 
 
 
 
 
 
 

 

 

which is also exact. On the other hand, the HP-71 Math Pac produces these highly inaccurate results: 

 

>DET(A) 

 

 .97095056196   instead of the correct value 1 we obtained above. The error is ~2.91% , way too high. 

 

>MAT M=INV(A) @ FIX 2 @ MAT DISP M; 

 

 

M =  
  99243204.31 … −99396833.15

… … …
−99243762.53 … 99397392.39

   

 

 

which is in error by some 3% either. The determinant of this inverse is computed as 1.059,  error = 5.91%. 

 

 

Note: 

 

In this and all the following examples (#6 - #9) the inverse matrices and determinants returned by PCHAR are 

significantly more (even much more) accurate than the ones returned by the assembler keywords MAT..INV, DET 

(which doesn‟t work for complex matrices) or even MAT..SYS (which can be used to more accurately compute the 

inverse matrix), most especially when dealing with such difficult matrices as my AM#1 (Example 5 above) and 

AM#7 (Example 9 below), where the results produced by said keywords go from very inaccurate to garbage. 
 

Even for non-troublesome, simple integer matrices of low dimensions (as in Examples 6, 7 and 8 below), PCHAR 

will produce the exact inverse matrix and the exact integer determinant where the Math Pac keywords will 

instead introduce rounding errors which turn the exact integer elements into inaccurate real elements. 
 

Also, apart from the sheer speed inherent to their assembly-language nature, the Math Pac keywords have an 

intrinsic advantage that PCHAR doesn‟t have, namely they compute their results using the internally-available 

15-digit and ±50,000 exponent range numeric forms and arithmetic while PCHAR has to make do with the 

user-accessible 12-digit and ±499 exponent range numeric forms and operations.  
 

This can be remedied by converting PCHAR from its original BASIC code into a binary (assembly-language) 

subprogram or a LEX keyword. See Section 6 below for details. 
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Example 6:   A simple symmetric 3x3 real matrix, which the Math Pac handles inaccurately  

 

Find the characteristic polynomial, determinant, and inverse of this 3x3 real matrix: 

 

A =  
  60  30 20
  30  20 15
  20 15 12

    

 

>DESTROY ALL @ STD 

>OPTION BASE 1 @ DIM A(3,3),M(3,3) 

>OPTION BASE 0 @ DIM P(3),D 

 

>MAT INPUT A 

A(1,1)?       60,30,20,30,20,15,20,15,12 

 

>CALL PCHAR(A,P,D,M) 

 

>MAT DISP P 

P =  

      1 
 −92

    635
  −100  

     so its characteristic polynomial is:  P(x) = x
3
 – 92 x

2
 + 635 x – 100 

 

>D 

  100   

 

and its determinant is 100 so the matrix is far from singular (Det = 0) and its inverse does exist, which we now 

proceed to display: 

 

>MAT DISP M; 

 

A
−1 

=  
    0.15  −0.6     0.5
 −0.6     3.2 −3
    0.5  −3    3

     which is exact and symmetric too, as it should. 

 

However, despite its simplicity, very small size and very small integer elements, the Math Pac, working 

internally with 15-digit precision, nevertheless fail to produce such accurate result. The inverse comes out as: 

 

>MAT M=INV(A) @ MAT DISP M; 

 

A
−1

 =  
     0.14999999999𝟖   −0.59999999999𝟏   0.49999999999𝟏 
  −0.5999999999𝟖𝟖     3.1999999999𝟒 −2.9999999999𝟒 
     0.4999999999𝟖𝟖 −2.9999999999𝟒     2.9999999999𝟒 

   

 

which not only is noticeably inaccurate but also is not symmetric (as it should), symmetry is somehow lost ! 

The determinant is computed more accurately but also fails to be an integer: 

 

>DETL 

  100.000000002   
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Example 7:   A very simple 2x2 complex matrix, which the Math Pac handles quite inaccurately  

 

Find the characteristic polynomial, determinant, inverse and all eigenvalues of this 2x2 complex matrix: 
 

A =  
  15 + 19 i  20 + 13 i
  16 + 13 i  19 + 7 i

    

 

 

>DESTROY ALL @ STD 

>OPTION BASE 1 @ COMPLEX A(2,2),M(2,2) 

>OPTION BASE 0 @ COMPLEX P(2),D 

 

>MAT INPUT A 

A(1,1)?       (15,19),(20,13),(16,13),(19, 7)  

 

>CALL PCHAR(A,P,D,M) 

 

>MAT DISP P 

 

P =  
      1 

 −34 − 26 i
    1 − 2 i

     so its characteristic polynomial is:  P(z) = z
2
 + (–34 – 26 i) z + 1 – 2 i 

 

>D 

  1 – 2 i   

 

and the (complex) determinant is nonzero , so the complex matrix does have an inverse, namely: 

 

>MAT DISP M; 

A
−1

 =  
   1 + 9 i     1.2 − 10.6 i  
   2 − 9 i −4.6 +   9.8 i  

      which is exact. 

 

Again, despite its simplicity, trivial size (2x2!) and really small integer elements, the Math Pac, working at 

15-digit precision, still utterly fails to produce accurate results, e.g., the inverse comes out as: 

 

>MAT M=INV(A) @ MAT DISP M; 

 

A
−1

 =  
    0.99999999𝟕𝟎𝟓𝟖 +  9.00000000𝟐𝟏𝟕 i   1.20000000𝟐𝟗𝟖 − 10.60000000𝟐𝟑 i  
  2.00000000𝟑𝟓𝟓  − 9.00000000𝟏𝟏𝟐 i −4.60000000𝟑𝟔𝟐 +    9.80000000𝟏𝟐 i   

   

  

which is noticeably inaccurate. As for the complex determinant, the Math Pac can‟t compute it so no way to 

know how accurate or inaccurate it would be (but see the footnote at the bottom of page 5 above). 

 

Also, we can‟t get either the complex eigenvalues using PROOT , but PZER will readily deliver them, like this: 
 

>OPTION BASE 1 @ COMPLEX R(2) @ CALL PZER(P,R,0,0) @ FIX 4 @ MAT DISP R 

 

R =  
      34.0099 +  26.0513 i 

 − 0.0099 − 0.0513 i
     , which are the complex eigenvalues. 
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Example 8:    A seemingly slight inaccuracy which actually isn’t, unlike what the Math Pac does. 
 

Find the characteristic polynomial, determinant, and inverse of this 3x3 real matrix: 

 

A =  
  −149  −50   −154  
     537   180    546
    −27   −9   −25

   

 

>DESTROY ALL @ STD 

>OPTION BASE 1 @ DIM A(3,3),M(3,3) @ COMPLEX R(3) 

>OPTION BASE 0 @ DIM P(3),D 

 

>MAT INPUT A 

A(1,1)?       -149,-50,-154,537,180,546,-27,-9,-25  

 

>CALL PCHAR(A,P,D,M) 

 

>MAT DISP P 

 

P =  

       1   
 −6
   11
−6

     so its characteristic polynomial is:  P(x) = x
3
 – 6 x

2
 + 11 x – 6 

>D 

  6    and the determinant is nonzero, thus the inverse matrix does exist, namely: 
 

>MAT DISP M; 

 

A
-1

 =  
    69.000000000𝟏       22.6666666667  70.000000000𝟏

−219.5 −72.166666666𝟖 −224
    4.5000000000𝟏   1.5  5.0000000000𝟏

     

  

where the five highlighted elements have one-ulp inaccuracies. Why is this ?  

 

The reason is that the Math Pac includes a MAT..(n)*A keyword for scalar-matrix multiplication but it doesn‟t 

include MAT..A/(n)for the matrix-divided-by-scalar operation, so the subprogram mimics it by using  

MAT..(1/n)*A thus multiplying by 1/6, which can‟t be represented exactly and introduces the inaccuracies seen 

here. An assembler version (or coding the divide operation as a BASIC loop) would settle the issue for good. 
 

The eigenvalues are computed and displayed as usual: 
 

>MAT R=PROOT(P) @ MAT DISP R 

 

and they‟re all real:  1, 2 and 3.  As for how the Math Pac does with this matrix, we have: 
   

>MAT M=INV(A) @ MAT DISP M; 

 

A =  
     68.999999𝟏𝟏𝟏𝟗       22.666666𝟑𝟕𝟑𝟖     69.999999𝟎𝟕𝟓𝟔
 −219.49999𝟕𝟏𝟕𝟑 −72.16666𝟓𝟕𝟑𝟒𝟑 −223.99999𝟕𝟎𝟓𝟕
    4.4999999𝟒𝟏𝟐𝟑     1.4999999𝟖𝟎𝟔𝟐     4.9999999𝟑𝟖𝟖𝟑

     

 

which loses as many as 4-5 significant digits for this simple matrix. The determinant is likewise inaccurate: 

 

>DETL 

  6.00000007752   
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Example 9:  The Mother of All Troublesome Matrices, my 7x7 real matrix AM#7 (see my “HP Article VA016”) 

 

As seen in the article, this is an even more difficult matrix than AM#1 is, despite looking quite similar. However 

it won‟t give us any more trouble here than AM#1 did, namely none, but the same can‟t be said of the Math Pac, 

which fails catastrophically. Let‟s compute just the determinant and the inverse of AM#7: 
 

AM#7 = 

 
 
 
 
 
 
 
13 72 57 94 90 92 35
40 93 90 99 01 95 66
48 91 71 48 93 32 67
07 93 29 02 24 24 07
41 84 44 40 82 27 49
03 72 06 33 97 34 04
43 82 66 43 83 29 61

 

 
 
 
 
 
 
 

 

 

 

>DESTROY ALL @ STD 

>OPTION BASE 1 @ DIM A(7,7),M(7,7) 

>OPTION BASE 0 @ DIM P(7),D 

 

>MAT INPUT A 

 

A(1,1)?    13,72,57,94,90,92,35,40,93,90,99,1,95,66,48,91,71,48,93,32,67   

A(4,1)?    7,93,29,2,24,24,7,41,84,44,40,82,27,49,3,72,6,33,97,34,4     

A(7,1)?    43,82,66,43,83,29,61   

 

>CALL PCHAR(A,P,D,M)  

 

>D  

 1    which is the exact value. Now, the computed inverse matrix is: 

 

>MAT DISP M; 

 

AM#7
−1

 =  
     71082 −507460 −2128901626 −36543896    265158513    3554051 2129774383

… … … … … … …
  −133357    952047    3994038146    68560103 −497464609 −6667765 −3995675528  

   

 

which is also the exact inverse and it identically matches the one featured in the aforementioned article, where it 

was obtained using the powerful, arbitrary-precision software Mathematica running on a PC. 

As usual, we can easily check its correctness by mutiplying this inverse and the original AM#7: 

 

>MAT M=A*M @ MAT DISP M; 

  

which indeed results in the exact 7x7 Identity matrix. Alas, when using the Math Pac keywords, we get: 

 

>MAT M=INV(A) @ MAT DISP M; 

 

which is totally unlike the exact inverse above. As for the determinant, it just comes out as sheer garbage: 

 

>DETL 

  0.0699243217409  ,  instead of the correct value 1 we obtained above. 
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6. Detailed analysis for eventual conversion to Assembler 
 

 This BASIC subprogram can be converted to either a LEX keyword (MAT..PCHAR) or a binary subprogram. 

 

Implementing it as a keyword would fit in with the already existing MAT keywords but has the added difficulty 

of having to implement specific parse and decompile routines for it, as it would require 4 parameters and no 

existing MAT keyword caters for that. Thus, no existing code can be reused or even mimicked, adding to the 

complexity of the coding itself plus the memory requirements for the ad-hoc parse and decompile routines. 

 

On the other hand, implementing it instead as a binary subprogram would take away all that drudge and 

memory requirements, as the system already caters for binary subprograms so the only thing needed would be 

to write the code for the functionality itself, as the parsing and decompiling would be taken care of by the 

System ROMs, as documented in the various IDS volumes. 

 

Sure enough, there are instances of this approach implemented and released by HP, e.g. the HP-71 Curve 

Fitting Pac does include seven binary subprograms to provide certain important functionalities, such as quick 

and accurate (15-digit arithmetic) evaluation of real polynomials up to the 19
th
 degree. 

 

One thing worth considering is whether the built-in subprogram header parsing allows for optional parameters. 

That‟s not the case for BASIC subprograms but perhaps binary ones can allow it, in which case the user would 

be able to call the binary subprogram passing just A and P (disregarding the determinant and the inverse, so no 

need to dimension their variables and pass them to the subprogram), or just A, P and D (disregarding the 

inverse) or all four, as described here. Note that passing less parameters doesn’t save on either memory or 

running time; the determinant and inverse are but side effects of the main computation, a free bonus so to say. 

 

Also, another possibility is not having to pass the D parameter to return the value of the determinant if the 

assembler code can use instead the internal variable DETL (or parameterless DET) to return the value. It would 

simply compute it and update DETL to hold the value. Then the call would be reduced to CALL PCHAR(A,P,M) 

and, if desired, the user would optionally execute DET (or DETL) instead of D to retrieve the determinant. 

 

 The BASIC subprogram‟s body doesn‟t explicitly declare any variables, auxiliary or otherwise so the 

assembler version doesn‟t need to allocate extra matrices or vectors or even complex variables and such. The 

only implicitly created variables are I, J and K, used for loop indexing purposes, which could be INTEGER 

variables or even BYTE variables as they are always positive numbers less than 256, thus the assembler code 

just needs to find or allocate space for as few as 3 bytes, nothing more. 

 

This is so because parameters M and D, passed by reference (and thus already allocated by the calling program), 

are used as auxiliary variables before being ultimately assigned their correct output values at the very end. 

 

The 256-limit is anything but, as a 256x256 matrix would have 65,536 elements which exceeds system limits. 

 

Also, all loops are for byte-sized indexes going from 1 to the upper bound of the matrix row/col index, and 

incrementing by one each time so they should be fairly trivial to implement in the assembler code. There are 

no early exits either from the loops or the subprogram itself, no branching and at most 1 level of loop nesting. 

 

Finally, the BASIC code assumes that both matrices have indexes beginning at 1 (OPTION BASE 1) while the 

column vector has an index beginning at 0 (OPTION BASE 0). The assembler code can assume this or perhaps 

it could simply begin processing from the first element of both matrices and vector, regardless of its index. 

 

 

Let‟s now carefully analyze how to convert the BASIC code to assembler code line by line: 

 

 Line 200:  the assembler code doesn‟t need to call the ROM routine for UBND as this returns just the upper 

 limit of the dimension of A, which can be retrieved trivially. 

 

 Line 200:  the internal routines for MAT..IDN  and  MAT..= can either be called by the assembler code 
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    or else implemented in line, as one is just assigning 1 to the only element of A and the other is a

   simple copy operation, whichever is easier or shorter. 

 

 Line 210:  MAT M=A*M, the assembler code just needs to call the internal routine for matrix multiplication. 

 

 Line 220:  this loop just computes the -trace of M, i.e.: the -sum of the diagonal elements.  

 

 Line 230:  this loop just increments by D each diagonal element of M. 

 

 Line 240:  the innards of this double loop is just a running sum of a product of some A and M elements.  

 It avoids a much more costly full matrix-matrix multiplication plus an additional trace. 

 

 Line 250:  the operation  MAT M=(1/scalar)* M  is an ad-hoc replacement for the nonexistent keyword 

MAT M=M/(scalar), and as seen in Example 8 it might introduce unnecessary inaccuracies. The 

assembler code should just divide every element of M by that scalar. 

 

 

The concoction D+NOT ABS(D) simply avoids division by 0 if matrix A is singular ( and so its determinant happens 

to be 0 or (0,0) ) by replacing it with 1 in such cases. If D isn‟t 0 or (0,0) it‟s left unaffected, of course. 

 

This works nicely for both real and complex D. The assembler code can either compute this expression by calling 

the necessary routines, or else check in-line for 0 or (0,0) as required, depending on the real or complex type of D. 

 

Also, to compute D=(-1)^K*D the assembler code doesn‟t need to do any raising to the K
th

 power or any 

multiplication, it just needs to perform a simple parity check to either change the current sign of D or not. 

 

This BASIC-code version computes the CP, determinant and inverse matrix about 4 times slower than the 

assembler-code MAT..INV keyword (which computes the inverse and determinant for real matrices but not the 

determinant of complex matrices, nor of course does it compute the CP). I‟d expect an assembler-code version to 

run much faster, most specially taking into account that FOR..NEXT loops (even empty ones, and branching in 

general) are very slow in BASIC, while they should be orders of magnitude faster in assembler, particularly the 

ones featured here that go from 1 to a small byte-sized integer in increments of one. As the BASIC code has 

several such nested loops, the increase in speed of the converted assembler code should be very noticeable. 

 

Finally, the whole computation should be performed using the internal 15-digit arithmetic as much as possible, 

without rounding intermediate results to the user-accessible 12-digit form until the computation is finished and 

the values are about to be stored in the parameters passed by reference to be returned to the user. I‟m aware that 

this might not be possible for all intermediate computations but whenever possible it must be done so. 

 

To wit: the optimum approach is to minimize errors by using the 15-digit forms and internal arithmetic to the 

maximum extent possible. For difficult matrices and for most any large matrix (think least-squares fit to a set of 

data) this might make the difference between useful results and unusable ones. 

 

 

 
7. Final Conclusions 
 

Subprogram PCHAR is a very short yet very powerful addition to any matrix-handling library, capable of quickly 

and accurately computing the Characteristic Polynomial of a real or complex square matrix, which is left stored in 

a format ready for computing all real/complex eigenvalues of the matrix with a single use of MAT..PROOT or PZER, 

so we get the task done using just two statements:  the call to PCHAR and the execution of MAT..PROOT or PZER.  

 

As a really big bonus, it will also compute real/complex determinants and inverse matrices with accuracies far 

exceeding in some significant cases what the assembler-code MAT..INV, MAT..SYS and DET keywords can achieve, 

and at no extra cost either in memory usage or computing time besides what the computation of the CP requires. 


