
1

HP-71B Advanced Uses of STRNGLEX

© 2020 Valentín Albillo

Welcome to a new article, this time featuring STRNGLEX, a most useful LEX (Language Extension) binary file for the

HP-71B, which provides much-needed string handling support to complement the sorely lacking set of built-in string

functions. First, all 11 functions provided are summarily described for the sake of completeness, then the focus centers on 4

of its less known keywords, whose full syntax and capabilities are described with basic examples aplenty as well as more

elaborate examples which are discussed in detail.

Introduction

STRNGLEX is a medium-size (837 bytes) LEX (Language Extension) binary file created and distributed by

Hewlett-Packard for the HP-71B, which greatly enhances the HP-71B’s string-handling capabilities. Once made

available to the operating system (by copying it to RAM or being present in some plug-in ROM module), it does

provide 11 string-related functions in the form of BASIC keywords immediately available to use either from the

command line or in user’s programs.

STRNGLEX includes the following 12 keywords (those ending in $ return string values; else, numeric values):

Keyword Syntax Description

1 TRIM$ TRIM$(A$,[B$]) Deletes all spaces (or the character specified in B$) from both ends of A$

2 LTRIM$ LTRIM$(A$,[B$]) Deletes all spaces (or the character specified in B$) from the left end of A$

3 RTRIM$ RTRIM$(A$,[B$]) Deletes all spaces (or the character specified in B$) from the right end of A$

4 LWC$ LWC$(A$) Converts A$ to all lowercase characters

5 LWRC$ LWRC$(A$) Converts A$ to all lowercase characters (same as LWC$, alternate spelling)

6 MEMBER MEMBER(A$,B$,[C$]) Returns the first position in A$ in which a character of B$ does appear

7 SPAN SPAN(A$,B$,[C$]) Returns the first position in A$ in which a character not in B$ does appear

8 REV$ REV$(A$) Returns the characters in A$ reversed from left to right

9 ROT$ ROT$(A$,N) Returns the characters in A$ rotated by N positions in either direction

10 RPT$ RPT$(A$,N) Returns the characters in A$ repeated N times

11 SBIT SBIT(A$,M,N) Returns the specified bit of A$

12 SBIT$ SBIT$(A$,M,[N,[P]]) Sets, clears or toggles the specified bits of A$

[]means the parameter is optional; A$,B$,C$ can be any string vars/expressions; M,N,P can be any numeric vars/expressions

Originally these extra string functions were intended to be included as part of the 64 Kb system ROM but they

were ultimately removed to make room for the (allegedly useless) “CALC Mode” feature, which required no less

than 5 Kb of ROM to implement, so complex-number handling had to be removed as well. Fortunately, HP

provided full complex-number functionality (except for some glaring omissions such as inverse trigonometric

functions of complex arguments) as part of the 32 Kb plug-in Math ROM, while the extra string functions were

released as extensions to the built-in set in the form of the STRNGLEX binary file discussed here.

Seven of the functions ([L|R]TRIM$, LW[R]C$, REV$, ROT$ and RPT$) are quite elementary (if very useful)

and present no difficulties to understand and use so this article focuses on the remaining four functions, (MEMBER,

SPAN , SBIT and SBIT$), which are rarely used in programs despite being extremely useful in the appropriate

context, explaining in detail what they do and providing a wealth of basic examples of use as well as several

non-trivial, advanced applications.

2

MEMBER

 MEMBER(A$,B$) returns the first position in A$ in which any character present in B$ does appear.

 Note: A$, B$ can be any string variables or string expressions.

Basic Examples

 MEMBER("ARBOTANTEJO","J") returns 10 (the position of the J)

 MEMBER("ARBOTANTEJO","JE") returns 9 (the position of the E)

 MEMBER("ARBOTANTEJO","JEB") returns 3 (the position of the B)

 MEMBER("ARBOTANTEJO","C") returns 0 (the C does not appear)

 MEMBER("ARBOTANTEJO","CA") returns 1 (the position of the first A)

 MEMBER("ARBOTANTEJO","DC") returns 0 (neither D nor C do appear)

 MEMBER("ARBOTANTEJO","DCB") returns 3 (the position of the B)

 MEMBER("ARBOTANTEJO","DCA") returns 1 (the position of the first A)

 MEMBER("","A") returns 0 (A$ has 0 length)

 MEMBER("A","") returns 0 (B$ has no characters)

 MEMBER("","") returns 0 (A$ has 0 length)

 Note: if A$ is the null string "" then it always returns 0 regardless of the contents of B$.

Usage Example

Given a prime number, we want to check if every permutation of its digits is a prime number as well. As

generating and checking all permutations can be a somewhat involved and lengthy procedure we want to first

quickly filter out those numbers which definitely have at least one permutation that can’t possibly be a prime.

This will be the case if the original prime includes any of the digits 0,2,4,5,6 or 8 because if it does they’ll

eventually end up as the last digit in some permutation and thus the corresponding number will be divisible by 2

and/or 5 and so it can’t possibly be a prime and should be discarded without further processing.

The following test code uses MEMBER to implement such a filter:

 10 DESTROY ALL @ INPUT A$

 20 IF MEMBER(A$,"024568") THEN DISP "No good, next !" ELSE DISP "OK"

 30 GOTO 10

>RUN

 ? 97135773 END LINE → No good, next ! (includes a 5)

 ? 375513079 END LINE → No good, next ! (includes a 0)

 ? 913551297 END LINE → No good, next ! (includes a 2)

 ? 7133397117 END LINE → OK (there’s no 0, 2, 4, 5, 6 or 8)

3

SPAN

 SPAN(A$,B$) returns the first position in A$ in which any character not present in B$ does appear.

 Note: A$, B$ can be any string variables.

Basic Examples

 SPAN("ARBOTANTEJO","A") returns 2 (the position of the R)

 SPAN("ARBOTANTEJO","R") returns 1 (the position of the first A)

 SPAN("ARBOTANTEJO","ARB") returns 4 (the position of the first O)

 SPAN("ARBOTANTEJO","ARBOTANTE") returns 10 (the position of the J)

 SPAN("ARBOTANTEJO","ARBOTANTEJ") returns 0 (all appear in B$)

 SPAN("","A") returns 0 (A$ has 0 length)

 SPAN("A","") returns 1 (the position of the A)

 SPAN("","") returns 0 (A$ has 0 length)

 Note: if A$ is the null string "" then it always returns 0 regardless of the contents of B$.

Usage Example

Given two strings of the same length and each individually having no repeated characters, we want to quickly

check if they are a permutation of each other.

Usually this would require a loop to check if every character of the first string does appear somewhere in the

second string and vice versa but we can use SPAN to perform the check very quickly, with no loop required.

The following test code uses SPAN to implement such a filter:

 10 DESTROY ALL @ INPUT A$,B$

 20 IF SPAN(A$,B$) OR SPAN(B$,A$) THEN DISP "Not a permutation" ELSE DISP "OK"

30 GOTO 10

>RUN

 ? AMOR,ROMA END LINE → OK (same chars, just rearranged)

 ? AMOR,AMAR END LINE → Not a permutation (the second string has no O)

 ? X,Y END LINE → Not a permutation (the second string has no X)

 ? X,X END LINE → OK (both strings are equal)

 ? 81437652,74315826 END LINE → OK (same chars, just rearranged)

? 12345678,876543201 END LINE → Not a permutation (the first string has no 0)

4

SBIT and SBIT$

 SBIT(A$,I,N) returns the value (0 or 1) of the N-th bit (0-7, 0=lowest bit) of character A$[I,I]

 SBIT$(A$,I) toggles all 8 bits of the I-th character of A$, i.e., of character A$[I,I]

 SBIT$(A$,I,N) toggles the N-th bit (0-7, 0=lowest bit) of character A$[I,I]

 SBIT$(A$,I,N,B) sets the N-th bit (0-7, 0=lowest bit) of character A$[I,I] to the value B (0 or 1)

 Note: A$ can be any string variable; I,N,B can be any numeric variables/expressions.

Example 1

The following sample code inputs a 2-character (or longer) string, displays a line consisting in an arbitrary line

label (-1), the given string, the numeric ASCII code for its 2
nd

 character and its bit representation, then loops

through each bit of that character in the original string from the lowest (bit 0) to the highest (bit 7), setting it to 1

and displaying in turn each line (labeled with the bit number, from 0 to 7) showing the result of the operation.

Note: the BSTR$ keyword from the Math ROM is used in subprogram PR(int bits) below to simplify the generation of the

 output. Also, the WHILE / END WHILE keywords from the JPC ROM are used for simplicity as well.

10 DESTROY ALL @ INPUT A$ @ K=2 ! second character of A$

20 CALL PR(A$,K,-1) @ DISP @ FOR I=0 TO 7 @ B$=SBIT$(A$,K,I,1)

30 CALL PR(B$,K,I) @ NEXT I @ GOTO 10

40 !

50 SUB PR(A$,I,B) @ N=NUM(A$[I,I]) @ B$=BSTR$(N,2) @ WHILE LEN(B$)<8

60 B$="0"&B$ @ END WHILE @ DISP " ";B;" ";A$;" ";N,B$

>RUN

? ABC END LINE

 -1 ABC 66 01000010 (the original string, B is the 2
nd
 char = ASCII 66 = 01000010)

 0 ACC 67 01000011 (bit 0 is set to 1 so the B changes to a C, ASCII 67)

 1 ABC 66 01000010 (bit 1 is set to 1, which it was so the B is left unchanged)

 2 AFC 70 01000110 (bit 2 is set to 1 so the B changes to a F, ASCII 70)

 3 AJC 74 01001010 (bit 3 is set to 1 so the B changes to a J, ASCII 74)

 4 ARC 82 01010010 (bit 4 is set to 1 so the B changes to a R, ASCII 82)

 5 AbC 98 01100010 (bit 5 is set to 1 so the B changes to a b, ASCII 98)

 6 ABC 66 01000010 (bit 6 is set to 1, which it was so the B is left unchanged)

 7 A.C 194 11000010 (bit 7 is set to 1 so the B changes to a ., ASCII 194)

5

Example 2

The SBIT keyword can be used as a replacement for the BIT keyword of the HP-IL ROM, as follows:

BIT(N,B) is equivalent to SBIT(CHR$(N),1,B)

 SBIT(A$,I,B) is equivalent to BIT(NUM(A$[I]),B)

so you can do basic bit handling without having to use the HP-IL ROM. The following tester code checks that

indeed BIT and SBIT are equivalent by generating all byte values from 0 to 255 and comparing the values

returned by both BIT and SBIT for all 8 bits in each byte:

10 DESTROY ALL @ FOR N=0 TO 255 @ FOR B=0 TO 7

20 IF BIT(N,B)#SBIT(CHR$(N),1,B) THEN DISP "Not equivalent" @ END

30 NEXT B @ NEXT I @ DISP “Equivalence OK”

>RUN

 Equivalence OK

Example 3

We want to be able to find out as quickly as possible whether a given positive integer from 2 to some maximum

value is prime or not. One way to do it using SBIT and SBIT$ is to generate a bit array stored in memory as a

string, with each bit set if the corresponding index is a prime and clear otherwise. SBIT$ can be used to

populate the bit array initially, and afterwards SBIT can be used to check the primality of any given integer in

the range by simply finding out whether the corresponding bit is set or not. This has the following advantages:

 each number in range requires just one bit to indicate whether the number is a prime or not

 the primes themselves need not be stored, they’re implicit as the bit array indexes

 as all even numbers >2 aren’t prime we only need to store the prime status of the odd values

 the primality of any given number can be instantly retrieved with one lookup, no search or loops

 this technique will work not only for primes but generally for any sequence of integers, see Notes.

The following sample code implements the concept and checks the implementation. Usually the bit string

recording the primality status would be already created and placed in memory but as this is proof-of-concept

code we’ll first create the bit string at the start (using the PRIM function of the JPC ROM to simplify the

generation) and then we can check the implementation and find out the primality of any given values, like this:

This line creates a 1,000-character string and initializes all its bits to 0:

 10 DESTROY ALL @ DIM A$[1000] @ A$=RPT$(CHR$(0),1000)

For every odd integer in [3, 16000], set the corresponding bit in the string if the integer is prime:

 20 FOR N=3 TO 16000 STEP 2 @ IF PRIM(N) THEN 40 ELSE I=(N-1)/2

 30 A$=SBIT$(A$,I DIV 8+1,MOD(I,8))

 40 NEXT N

6

For a quick visual check, this displays just the primes up to 100 using the FNP function defined below:

 60 FOR N=2 TO 100 @ IF FNP(N) THEN DISP N;

 70 NEXT N @ DISP

To test the correctness of the implementation now we check for primality all integers in [2, 16000] using both the

user-defined function FNP and the PRIM function, displaying any discrepancies (there should be none):

 90 FOR N=2 TO 16000 @ IF FNP(N)#NOT PRIM(N) THEN DISP "ERROR: Mismatch";N

 100 NEXT N @ DISP "Implementation tested"

Finally we time the implementation by counting the number of primes in [2, 16000] via the user-defined function

FNP(N) which returns 1 (True) if N is prime and 0 (False) otherwise, displaying both the count and the timing:

 120 SETTIME 0 @ S=0 @ FOR N=2 TO 16000 @ S=S+FNP(N) @ NEXT N @ DISP S;TIME @ END

 130 !

 140 DEF FNP(N) @ IF N=2 THEN FNP=1 @ END ELSE IF NOT MOD(N,2) THEN FNP=0 @ END

 150 N=(N-1) DIV 2 @ FNP=SBIT(A$,N DIV 8+1,MOD(N,8)) @ END DEF

 >RUN

 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

 Implementation tested (no mismatches were displayed, so the implementation is correct)

 1862 7.21 (1,862 primes counted in 7.21 sec. using J-F. Garnier’s Emu71 HP-71B emulator)

Notes

1. As stated, this technique can be used for arbitrary increasing sequences of positive integers with no repeated

elements, not just the primes. Once the bit array is created and in memory, any value can be checked almost

instantly to see whether it belongs in the sequence, with no search at all, no matter how difficult or time-consuming

it was to create the bit array initially.

2. This is much faster than storing the sequence elements in an array and having to loop through them to see if some

value is in the array or not, either using a linear search (931 tries average for our 1,862 primes example) or even a

binary search (~11 tries average). With this packing technique, just a single try is ever necessary.

3. The memory needed for a sequence of up to N elements is just N/8 bytes generally though some significant savings

can be applied depending on the sequence, as in our example where only odd numbers have to be considered and

we can reach up to N using just N/16 bytes of RAM. On the other hand, storing the primes themselves in an integer

array would take 3 bytes per element (for values up to 99,999) so 1,862 primes would need 5,586 bytes of memory

to store them, as compared with just 1,000 bytes with this technique.

Copyrights

Copyright for this article and its contents is retained by the author. Permission to use it for non-profit purposes is

granted as long as the contents aren’t modified in any way and the copyright is acknowledged.

For the purposes of this copyright, the definition of non-profit does not include publishing this article in any

media for which a subscription fee is asked and thus such use is strictly disallowed without explicit written

permision granted by the author.

