
1 

 

Boldly Going – Outsmarting PROOT 

© 2020 Valentín Albillo 

 

1.  Introduction 

Welcome to a new article belonging to my “Boldly Going” series, which strives to provide simple solutions for 

difficult subjects. This article features a subprogram, PZER, which deals once and for all with a glaring limitation of the 

HP-71B Math Pac’s keyword PROOT, the polynomial rootfinder which finds all roots of a polynomial of degree N: 
 

  𝑃 𝑧 =  𝑎𝑁𝑧𝑁 + 𝑎𝑁−1𝑧
𝑁−1 + ⋯ + 𝑎2𝑧

2 + 𝑎1𝑧 + 𝑎0 
 

The “glaring limitation” is that PROOT works exclusively for polynomials having real coefficients. On the other 

hand, PZER works efficiently and accurately for polynomials whose coefficients are real and or complex numbers. 

 

2.  Comparison with PROOT 
 

As stated, PROOT only deals with real coefficients, so when working with polynomials having complex 

coefficients PROOT just can't cope, it’s left completely out of the picture and PZER steals the show, period. 
 
However, for polynomials with real coefficients we can compare them from a technical point of view, despite the 

obvious advantages in speed/accuracy that PROOT inherently has due to its assembly-language nature. Let's see: 

 

PROOT PZER 

           PROOT Advantages 

Assembly-language speed Plain-vanilla BASIC code 

15-digit mantissa ± 50,000 exponent 
1
 12-digit mantissa ± 499 exponent 

Real polynomials so less arithmetic operations 
2
 Complex polynomials so 2x-4x arithmetic operations 

No need to compute conjugate roots 
3 Has to compute every root, conjugate or not 

                                      PZER Advantages 

Only works for real polynomials 
4
 Works for real and complex polynomials 

Computes roots one at a time, uses deflation 
5
 Computes all roots at once, doesn't need deflation 

Can’t watch convergence to the roots 
6
 Optionally can watch convergence on the fly 

Doesn't return any extra info 
7
 Optionally can return tolerance achieved and iterations used 

Doesn't indicate if accuracy degraded 
8
 Indicates if the specified tolerance wasn't achieved 

User can't specify tolerance desired 
9 Optionally accepts any user-supplied tolerance 

User can’t specify a max. number of iterations Optionally accepts any max. number of iterations 

User can't provide initial guesses for the roots 
10

 Optionally accepts initial guesses for all the roots 

 
                                                        
1 The extended range improves accuracy and helps avoid internal underflows/overflows (see HP Journal July 1984 pp.35). 
2 For real arithmetic it takes 4x less operations, and for eval. at complex roots, only 2x (see HP Journal July 1984 pp.34). 
3 As the polynomial is real, PROOT knows that complex roots come in conjugate pairs and computes just one of them. 
4 Can't be used to compute eigenvalues of complex matrices by finding the roots of the Characteristic Polynomial. 
5 Using deflation can seriously degrade accuracy for high-degree polynomials, only using 15-digit mantissas alleviates it.  
6 Watching convergence speed is important to determine whether there are multiple/clustered roots and degraded accuracy. 
7 PROOT doesn’t return information such as the tolerance achieved and the iterations used, which can indicate problems. 
8 After it completes, you can’t know if accuracy was degraded (probably due to multiple or very close roots). 
9 For real-world data or if you don't need more than, say, 5-6 digits, this saves time by avoiding unnecessary computation.  
10 For cases where the user has a fair idea of the location of the roots, there’s no way to tell PROOT to speed up the process.  
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2.1.  Preprocessing 
 

While describing PROOT’s algorithm, the Hewlett-Packard Journal July 1984 issue says in p.33: 
 

“Before the root finder is initiated, leading zeros, trailing zeros, NaNs, and Infs alre all weeded out of the 

coefficient array.” 
 

This means that the coefficient array is scanned and all these elements are taken care of if present. For instance, if NaNs 

are found, all roots are set to (NaN, NaN) and the process ends immediately. Next, if ±Infs are found, every finite 

coefficient is set to 0. Then trailing zeros are removed and as many (0, 0) roots are placed in the roots array, decreasing 

the polynomial’s degree by an equal amount. Same with leading zeros, but the roots are (Inf, Inf) instead. 

PZER does nothing like this. Doing that kind of preprocessing, while perfectly possible, does increase the size of the 

subprogram, its complexity and the running time for no real gain. The goal of this article is to present a short, 

simple subprogram which works reliably and suitably fast for the kinds of polynomials that do appear in practice, 

and that doesn’t include ones with NaN and Inf elements, which can be considered pretty abnormal.  

Wasting time and memory catering for that is simply unwarranted. If the user or some process has included such 

elements among the coefficients, the execution will eventually error out or the results will obviously be 

meaningless, depending on the traps settings, and that will be indication enough that something’s seriously amiss 

with the polynomial. Same with leading zeros. If the leading coefficient happens to be 0, which isn’t allowed, the 

polynomial’s degree isn’t N but less and the execution will terminate with a Divide by Zero error. Just don’t do it. 

 
 

2.2.  Algorithm 
 

PROOT’s complicated and lengthy algorithm is thoroughly described in the Hewlett-Packard Journal July 1984 

issue pp.33-36. In particular, it says that PROOT computes the roots one at a time:   
 

“The basic iteration used is Laguerre’s method [...] It is the cubic convergence of this method that made it 

attractive [...]”  
 
and the details are pretty convoluted, to ensure convergence to each and every root, which is immensely facilitated 

by the mere fact that PROOT doesn’t work with polynomials having complex coefficients, only with real 

coefficients., which has the following important advantages: (1) it enormously simplifies finding the annuli which 

contains each subsequent root (several theoretical bounds are computed) and thus obtaining a good initial 

approximation for each; (2) it also allows for much simpler and faster real arithmetic; (3) only half the complex 

roots need be computed, as they must necessarily appear as conjugate pairs. The algorithm also caters for the 

detection of when a root should be considered a root, plus lots of corrective measures if the iterations don’t 

converge, the Laguerre step goes amiss, etc. 

 

All of this is done root by root, and once found the polynomial is deflated, reducing its degree by one or two, then 

the whole process restarts for the next root. Deflation tends to degrade accuracy and stability very quickly and very 

seriously, easily resulting in losing digits and even turning real roots into complex ones, and the effect is quickly 

amplified for large-degree polynomials, which require many consecutive deflations. PROOT avoids the worse by 

taking advantage of the 15-digit mantissas and ±50,000 exponents available only to assembly-language keywords.  

 

Also, PROOT uses Laguerre’s method, which converges cubically (i.e.: once cubic convergence starts, the number of 

correct digits triples at each iteration) but has a very convoluted, costly step per iteration, which includes evaluating 

the polynomial and its first derivative and its second derivative at each step, plus assorted arithmetic operations, 

including a square root. All of this is tolerable because PROOT is written in assembly-language and has an enormous 

advantage in execution speed, like the one it also has in accuracy/range, so making possible the use of costly steps. 

 

PZER on the other hand doesn’t have any of those advantages, as it’s written in plain-vanilla 10x-100x slower 

BASIC code and it’s only 407-byte long. Further, it deals with complex-coefficients polynomials, which in itself 

implies 2x-4x more arithmetic operations than PROOT’s real-coefficients ones. Finally, PZER can’t use extended 

accuracy or range and has to make do with just the user’s accessible 12-digit mantissas and ±499 exponents. 
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Taking all those limitations into account, PZER doesn’t go for the complicated, costly cubically-convergent 

Laguerre’s method (it would be too slow if implemented in BASIC) but for a quadratically-convergent method 

which doesn’t require generating and evaluating the first and second derivatives at each step, just the polynomial.  

 

This means that each step if much, much simpler, taking just a few arithmetic operations (and no square roots), 

and can be coded in very few lines, with less decisions to take at each step. In consequence, it all runs much 

faster per step than doing Laguerre’s, so that even if quadratic convergence takes more iterations than cubic 

convergence, each iteration runs much faster. That’s an important consideration usually not taken into account. 

 

PZER also doesn’t go for carefully calculating annuli specific to each individual root (using various theoretical 

bounds), nor does it try to compute first the smallest root to minimize the adverse effects of the always-fearful 

subsequent deflation. What PZER does is to generate a simple initial approximation in bulk for the roots (see 

Appendix B) and then proceeds to compute all roots at once, so if it needs 15 iterations for a 30
th

 degree 

polynomial, those 15 iterations will get you all 30 complex root at once, i.e.: not 15 iterations for one root but 15 

iterations in all for all 30 roots. Of course this means that deflation isn’t needed (or even possible!) and thus 

frequently the roots are accurate to the full 12 digits available, despite the accuracy/range limitations. 

 
2.3.  Multiple roots 
 
As most rootfinder procedures, PZER works at its best if the roots are single and preferably well separated from 

one another, which fortunately is usually the case for real-life and random polynomials.  

 

However, if the roots are clustered or have multiplicities greater than one (double roots, triple roots, ...) then the 

running time increases (more iterations are needed) and the accuracy can severely degrade (less correct digits are 

obtained). As HP says of Math Pac’s PROOT keyword: 

 

"The general rule-of-thumb for PROOT is that for multiple or nearly-multiple zeros, resolution of the root 

is approximately 12/K significant digits, where K is the multiplicity of the root." 

 

and the same applies to PZER, so double roots will be found with about 12/2 = 6 correct digits, triple roots with 

12/3 = 4 correct digits, and so on. Consider for instance the polynomial 𝑃 𝑧 = 𝑧3 + 3𝑧2 + 3 𝑧 + 1, which has 

a triple root −1, so P(−1) = 0. But P(−1.0001) and all the values in between also evaluate to 0 when computed 

using the 12-digit HP-71B so there's no way to tell apart −1.0001 from the correct root −1 and the same happens 

with P(−0.99993), which also evaluates to 0, etc. Therefore you can't consistently expect to get more than ~4 

correct digits in this case because, as far as the program can tell, all those values qualify as roots. See Examples. 

 

2.4.  Performance 
 
These are some results for PZER runtimes, iterations used and tolerances achieved for the polynomial of 

degree N defined as 𝑃 𝑧 =   𝑧𝑘 =  𝑧𝑁 +  𝑧𝑁−1 + ⋯ + 𝑧2 +  𝑧𝑁
𝑘=0  + 1, obtained by using the following code: 

 

 
10  DESTROY ALL @ INPUT "N=";N @ T=0 @ L=0 

20  OPTION BASE 0 @ COMPLEX P(N) @ OPTION BASE 1 @ COMPLEX R(N) 

30  MAT P=CON @ SETTIME 0 @ CALL PZER(P,R,L,T) @ DISP "Iters:";L;TIME @ DISP " Tmin:";T 

 
N Time Iterations Tolerance achieved N Time Iterations Tolerance achieved 

3 0.07” 6 3.76 E−12 30 12.86” 15 2.15 E−12 

5 0.20” 7 1.44 E−12 50 63.28” 27 1.50 E−12 

10 0.72” 7 3.00 E−12 70 136.93” 30 1.48 E−12 

15 2.89” 13 1.40 E−12 100 466.02” 52 4.85 E−12 

20 6.59” 17 1.34 E−12 − − − − 
 

Note: All runtimes in this article are for Jean-François Garnier’s Emu71/DOS running on a 2.4 Ghz single-core CPU pc. 

     For real-coefficients polynomials, the assembly-language PROOT keyword is 10x-60x faster, depending on the degree.
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3.  Subprogram Description and Calling Syntax 

 

PZER             Roots of a Real or Complex Polynomial 

 

SUB PZER(P(),R(),L, T) 

 

Where P is a real or complex vector with N+1 elements, where N is the degree of the polynomial whose roots 

are sought, R is a complex vector, and L and T are real scalar variables. 

 

  P  can be declared as either REAL, SHORT, INTEGER, COMPLEX or COMPLEX SHORT precision. 

  R  can be declared as either COMPLEX or COMPLEX SHORT precision. 

 

 

R will be assigned the (complex) values of the solutions of the equation P(z) = 0, where P is the polynomial of 

degree N whose coefficients are the values of the elements of P. The values for L and T may be passed as either 

real variables holding the value or real numeric expressions, and:   

 

  If L is passed a nonzero value, that will be the maximum number of iterations. Else the default is 100. 

  Additionally, if L is passed by reference the number of iterations used will be returned there. 

 

  If T is passed a nonzero value, that will be the desired tolerance. Else the default tolerance is 10
−10

. 

  Additionally, if T is passed by reference the tolerance actually achieved will be returned there. 

 

 

 

4.  Source Code Listing and Subprogram Characteristics 

 
 
 100  SUB PZER(P(),R(),L,T) @ N=UBND(R,1) @ OPTION BASE 1 @ COMPLEX S(N),D,U,V,Z 

 110  W=INF @ U=P(0) @ IF FLAG(0) THEN S$="4D,2X,K" ELSE S$="#2(^)" 

 120  T=T+(T=0)/10^10 @ L=L+(L=0)*100 @ IF RNORM(R) THEN 140 

 130  FOR I=1 TO N @ R(I)=(.4,.9)^(I-1) @ NEXT I 

*140  FOR K=1 TO L @ M=0 @ FOR I=1 TO N @ Z=R(I) @ D=1  

 150  FOR J=1 TO N @ IF I#J THEN D=D*(Z-R(J)) 

 160  NEXT J @ V=U @ FOR J=1 TO N @ V=V*Z+P(J) @ NEXT J 

 170  V=V/((D+NOT ABS(D))*U) @ R(I)=Z-RES @ M=MAX(M,ABS(V)) @ NEXT I 

 180  IF M<=T THEN T=M @ L=K @ END 

 190  IF M<W THEN W=M @ H=K @ MAT S=R @ DISP USING S$;K,M 

 200  NEXT K @ T=-W @ L=H @ MAT R=S 

 

 

 This BASIC subprogram is 11 lines (407 bytes) long and uses several matrix- and complex-related keywords 

from the Math Pac so the Math ROM must be available (either physically plugged in or virtual ROM image.) 
 

 It can be called either directly from the command line or from another program or subprogram. 
 

 It accepts four parameters, namely: 
 

P( ) input, real or complex array declared with OPTION BASE 0, holds the N+1 polynomial's 

coefficients. Returns unaltered. 

 

R( ) optional input, complex array declared with OPTION BASE 1. If not empty, specifies the 

initial approximations for each root. If you don't want to specify them, just leave it empty 

(all elements (0, 0), as just dimensioned) and they’ll be automatically generated. 

 

output, holds the N roots computed and returned by PZER. 
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L input, specifies the max. number of iterations to use. If you don't want to specify the 

max.numbers of iterations, pass either some numeric expression which evaluates to 0 or a 

variable holding 0, and the default maximum (up to 100 iterations) will be used. 

 

optional output, if you pass a variable by reference the number of iterations actually used 

will be returned in it. If you don't want this optional output, pass a numeric value or 

numeric expression in the call, or a variable enclosed in parentheses (or simply disregard). 

 

T input, specifies the min. tolerance
1
 to achieve. If you don't want to specify a min. tolerance 

pass either some numeric expression which evaluates to 0 or a variable holding 0 and the 

default tolerance (10
−10

) will be used.  

 

optional output, if you pass a variable by reference the tolerance actually achieved will be 

returned in it, and will be marked negative if greater than the tolerance specified, to let the 

user know that it wasn’t achieved. If you don't want this optional output, pass a numeric 

value or numeric expression in the call, or a variable enclosed in parentheses (or disregard). 

 

 
 

5.  Call Syntax Examples 

 

CALL PZER(P,R,0,0)  

 

Specifies the default min. tolerance (10
−10

) and default max. iterations (up to 100), but doesn't return 

the tolerance actually achieved or the iterations used, just the roots (aka “global mode” .) 

 

CALL PZER(P,R,50,0)  

 

Specifies default min. tolerance (10
−10

) and max. 50 iterations, but doesn't return the tolerance 

achieved or the iterations used. 

 

CALL PZER(P,R,50,1E-5)  

 

Specifies 10
−5

 as the min. tolerance and max. 50 iterations, but doesn't return the tolerance achieved 

or the iterations used. 

 

 L=0 @ T=0 @ CALL PZER(P,R,L,T)   

 

Specifies the default min. tolerance (10
−10

) and default max. iterations (up to 100), and also returns 

both the tolerance achieved and the iterations used. 

 

 L=50 @ T=0 @ CALL PZER(P,R,L,T)   

 

Specifies the default min. tolerance (10
−10

) and max. 50 iterations, and also returns both the tolerance 

achieved and the iterations used. 

 

 L=50 @ T=1E-5 @ CALL PZER(P,R,L,T)   

 

Specifies 10
−5

 as the min. tolerance and max. 50 iterations, and also returns both the tolerance 

achieved and the iterations used. 

  

You can also use one default but not the other and/or return the tol. achieved but not the iterations used, etc. 

                                                        
1 Specifying a tolerance smaller (say 10

−12
) than the default (10

−10
) isn't recommended and might result in unnecessarily 

longer runtimes and/or reduced accuracy. Due to the quadratic convergence, the default tolerance will usually give full 

12-digit accuracy (give or take a few ulps) for polynomials with single, adequately separated roots 
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6.  Silent and Verbose modes 
  

PZER can perform its computations in either a Silent mode (never displaying or printing anything, just like 

PROOT) or a Verbose mode in which relevant information is output on the fly while the process is running. 

 

 to specify Silent  mode,  previously execute:   CFLAG 0  (usually the default state) 

 to specify Verbose mode,  previously execute:  SFLAG 0 

 

The chosen mode will remain in effect until you execute another SFLAG / CFLAG 0 statement. When Verbose 

mode has been specified, each time an iteration achieves a smaller error than the previous ones the iteration 

number and the smallest error so far are output on the fly while the process continues. For example: 

 

Find all roots of P(x) = x
3
 – 3 x

2 
+ 3 x – 5  and use Verbose mode to show the convergence: 

 

We execute the following directly from the command line: 

 

>DESTROY ALL      { clear all variables to prevent conflicts with former definitions } 

>OPTION BASE 0 @ REAL P(3)   { declare the coefficients array } 

>OPTION BASE 1 @ COMPLEX R(3)  { declare the roots array } 

>MAT INPUT P      { ask for the coefficients } 

P(0)?     

1, -3, 3, -5    { enter the coefficients } 

 

>SFLAG 0 @ FIX 4     { specify Verbose mode and 4 decimals for the output } 

>CALL PZER(P,R,0,0) { call PZER passing just the coeffs. and returning just the roots } 

 

1   2.0542     { 1
st
 iteration, error = 2.0542 } 

4   0.4867     { 4
th

 iteration, smaller error  } 

5   0.0472     { 5
th

 iteration, ditto }  

6   2.0598E-5    { 6
th

 iteration, ditto } 

 

and the very next iteration results in an error of 2.7122∙10
−11

 (notice the quadratic convergence), which is less 

than the default tolerance (10
−10

), so the process ends and we proceed to display the computed roots: 

 

>MAT DISP R 

 

    (2.5874,  1.0000E-22)    { real root, disregard the negligible 10
−22

 imaginary part } 

    (0.2063,  1.3747)      { complex conjugate pair:  first root } 

    (0.2063, -1.3747)   { complex conjugate pair:  second root } 

 

Verbose mode can be very useful for diagnostic purposes or simply to check the convergence of the procedure, 

which eventually must be quadratic. If convergence seems to be slow (linear), this indicates that probably there 

are roots of multiplicity greater than one or closely clustered, and in that case the max. number of iterations 

specified should be increased though the improved roots might still not be accurate to full 10-12 digits. 

 

If after the call to PZER you're not satisfied with the achieved tolerance (it returns negative) and would like to 

perform more iterations, the work already done isn’t wasted as you can immediately repeat the call to PZER with 

the same parameters or different ones (e.g.: decrease the tolerance and/or increase the max. number of iterations) 

and, most important, with the R array still holding the just computed roots, which will be used as initial 

approximations by the new call, thus reducing the total computing time and hopefully improving the results.  

 

Essentially this means that the new batch of iterations is starting just where the previous one ended, it doesn’t 

redo those iterations again so no work wasted. This can be repeated as often as desired, see Example 8.3a/ 8.3d. 
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7.  A Simple Driver 

 

As seen above, PZER can be called from the command line or from another program/subprogram, but you might 

find it convenient to use the following simple 221-byte driver program
1
 which does all the initializations, asks 

you for the required inputs, validates them, calls PZER to compute the roots, and finally display them for you: 
 
 
 
 10  DESTROY ALL @ INPUT "N,Iter,Tol,Verb Y/N: ","3,0,0,N";N,L,T,V$ 

 20  N=MAX(2,ABS(IP(N))) @ T=ABS(T) @ L=ABS(IP(L)) @ CFLAG 0 @ IF UPRC$(V$)="Y" THEN SFLAG 0 

 30  OPTION BASE 0 @ COMPLEX P(N) @ OPTION BASE 1 @ COMPLEX R(N)  

 40  MAT INPUT P @ CALL PZER(P,R,L,T) @ DISP "Iters:";L @ DISP " Tmin:";T 

 50  DISP "Roots: [press CONT]" @ PAUSE @ DELAY INF @ MAT DISP R @ DELAY 0,0 

 
 

 

To use it, simply: 

 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N 

  

It asks for the polynomial’s degree (N, default=3), the max. number of iterations (Iter, default=100), 

the tolerance (Tol, default=10
−10

), and whether you want Verbose mode (Verb Y/N, default=N). If 

you're fine with the defaults, simply press  END LINE , else edit the parameters you want (e.g.: the 

degree N [change the 3] or activate Verbose mode [change the N to Y]) and press  END LINE . 

 

You'll be asked next for the coefficients of the polynomial. Enter them, beginning with the one for z
N

 

(which can't be 0 or (0, 0), lest the polynomial’s degree wouldn't be N): 

 

P(0)?     an, an-1, an-2, ... , a0  END LINE  

 

The computation starts (relevant iteration info will be output on the fly if Verbose mode was specified) 

and upon termination the results will be displayed: 

 

   → Iters:  iterations actually performed 

     Tmin:   minimum tolerance achieved  { if > specified tol., it will be marked negative } 

     Roots:  [press CONT] 

 

  You may now specify the display mode you want (STD, FIX n, SCI n, etc.) and then press  CONT : 

 

    CONT   → ( real part1 , imag. part1 )   { root #1 } 

       SPC  → ( real part2 , imag. part2 )   { root #2 } 

       ... 

    SPC  → ( real partN , imag. partN )   { root #N } 

    SPC  → >       {finished, show command line prompt } 

 

As you can see, execution stops
2
 after displaying each root so that you can write it down at leisure, then press 

most any key (e.g.:  SPC  , as above) to display the next one. When all have been displayed, the command line 

prompt (>) appears (and the DELAY INF is automatically reset to DELAY 0,0). 

 

If desired, you can redisplay or print all the roots by executing either  MAT DISP R or  MAT PRINT R. 

 

                                                        
1 This convenient driver program is similar to (but much simpler than) the one for PROOT featured in the HP-71 Math Pac 

Owner’s Manual  p. 121-124. 
2 If execution stops because of a run-time error (such as Division by Zero), if desired you can first examine the subprogram’s 

variables/parameters to look for the cause, then end the subprogram and return to the caller by executing from the command 

line either END (subprogram environment is lost and execution returns) or END ALL (the driver program is also terminated). 



8 

 

8.  Examples   
 

8.1 . Three Typical Examples: 
 

(a)  Use the driver (assume STD mode) to find all roots of:  P(z) = (1 + i) z
3
 + (2 + i) z

2
 + (3 + i) z + (4 + i) 

 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N  END LINE     { all defaults suits us fine } 

  →  P(0) ?  (1,1),(2,1),(3,1),(4,1)  END LINE     
 

  →  Iters: 6        { 0.07" } 

        Tmin:   5.08..E-12      { which is less than the default tolerance 10
−10

, so it’s Ok } 

          Roots:  [press CONT] 

 

 CONT   → ( -0.284985631787 , -1.3037864029   ) 

 SPC  → (  0.186345015088 ,   1.51551674976  )    

 SPC  → ( -1.4013593833   ,   0.288269653138 ) ,  which are accurate to full 12 digits. 

 

(b)  Use the driver (STD mode) to find all roots of:  P(z) = z
3
 − (9 + 12 i) z

2
 + (−21 + 64 i) z + (85 – 20i) 

 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N    END LINE   { all defaults suits us fine } 

      →  P(0) ?    1,-(9,12),(-21,64),(85,-20)  END LINE  

 

  →  Iters: 9     { 0.11" } 

        Tmin:   1.76..E-11   { which again it’s less than the default tolerance: 10
−10

 } 

          Roots:  [press CONT] 

 

 CONT   → ( 5                ,  6 ) 

 SPC  → ( 1.00000000001 ,  2 ) 

 SPC  → ( 3.00000000001 ,  4 ) ,  which are accurate to full 12 digits, give or take an ulp
1
. 

 

(c)  My HP-41C program featured in PPC Technical Notes V1N3 p6 is used there to find all roots of the 

complex polynomial:   P(z) = (2 + 8i) z
6
 + 3 z

5
 + (−1 + 2i) z

4
 + 2i z

3
 − (3 + 3i) z

2
 + (1 + 2i) z − 2 + 3i = 0 

 

Let's solve it with my current creation using the driver in Verbose mode to check convergence (assume FIX 7): 
 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N  

      

6,0,0,Y      END LINE       { specify degree 6 and Verbose, default tol. and max. iterations } 

 

      →  P(0) ?   (2,8),3,(-1,2),(0,2),-(3,3),(1,2),(-2,3)    END LINE    

 

      →  1   0.6257565   { iteration 1, err = 0.6257565 } 

  →  4   0.3368252   { iteration 4, err = smaller } 

  →  5   0.1249454   { iteration 5, ditto } 

  →  6   0.0035500   { quadratic convergence sets in } 

  →  7   0.0000011   { ditto } 
   

  →  Iters: 8    { 0.32" } 

        Tmin:   1.91..E-12  { once more, this is less than the default tolerance: 10
−10

 } 

          Roots:  [press CONT] 

 

 CONT    → ( -0.0715576,  1.1235559 ) ,  SPC  → (  0.5688927,  0.5464170  ) 

 SPC  → ( -0.4721457, -0.3777269 ) ,  SPC  → ( -0.9724260,  0.3032192 ) 

 SPC  → (  0.0323977, -0.8883400 ) ,  SPC  → (  0.8266036, -0.3541840 ) 

 

which exactly match the results given in p.9 of said issue. The other example there matches as well. 

                                                        
1 An ulp is a unit in the last place. For instance, using 12 digits we have that 23.0000000003 differs from 23 by 3 ulps. 
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8.2 . Two Examples comparing PZER to PROOT (real coefficients): 
 
 

(a)  Let’s try a PROOT usage example from the HP Math Pac Owner’s Manual p.124, featuring the polynomial: 

 

  P(z) = z
6
 + z

5
 + z

4
 + z

3
 + z

2
 + z + 1 

 

From the command line, execute the following: 

 

>DESTROY ALL 

>OPTION BASE 0 @ REAL P(6) 

>OPTION BASE 1 @ COMPLEX R(6) 

>MAT INPUT P 

P(0)?    1,1,1,1,1,1,1 

 

First let’s check that PROOT produces these roots: 

 

>MAT R=PROOT(P) @ STD @ MAT DISP R 

 

  ( -0.222520933956 ,  -0.974927912182 ) 

  ( -0.222520933956 ,   0.974927912182 ) 

  ( -0.900968867902 ,  -0.433883739118 ) 

  ( -0.900968867902 ,   0.433883739118 ) 

  (  0.623489801859 ,   0.781831482468 ) 

  (  0.623489801859 ,  -0.781831482468 ) 

 

Now let's see how PZER fares in its PROOT-like "global" fashion
1
 (i.e.: all defaults, Silent mode, no returned info): 

 

>MAT R=ZER @ CFLAG 0 { we first delete the roots PROOT produced and make sure Verbose mode is Off } 

>CALL PZER(P,R,0,0)  { now we call PZER with all the defaults; the process takes 0.35" to complete } 

>MAT DISP R 

 

  (-0.900968867903 ,   0.433883739117 ) 

  ( 0.623489801859 ,   0.781831482468 ) 

  (-0.222520933956 ,   0.974927912183 ) 

  (-0.900968867902 ,  -0.433883739118 ) 

  (-0.222520933956 ,  -0.974927912182 ) 

  ( 0.623489801859 ,  -0.781831482468 ) 

 

which (apart from ordering) are the same roots that PROOT produced to 12-digit accuracy save 1 ulp here and there. 

 

Also, the process was "global": the user didn't have to supply initial approximations or a stopping criterion, and 

no information other than the roots was returned, so in this regard PZER behaved just as PROOT does. 

 

 

(b)  Now let's try something much more extreme, namely finding all 100 complex roots of the 100
th

-degree 

polynomial whose coefficients are all 1, as mentioned in the HP Math Pac Owner’s Manual  p.129. 

 

In the same page, HP also goes on to say of PROOT 's performance:   

 

"Of the 200 real and imaginary components of the calculated roots, about half were found to 10 digit 

accuracy. Of the rest, the error did not exceed a few counts in the 12th digit". 

 

                                                        
1 “The PROOT function is global in the sense that the user is not required to supply either an initial guess or a stopping 

criterion”  (quoted from the HP Math Pac Owner’s Manual p.128.) 
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Again, let's see how PZER does in its "global" mode (all defaults, Silent mode, no returned info): 

 

>DESTROY ALL @ STD 

>OPTION BASE 0 @ REAL P(100)  

>OPTION BASE 1 @ COMPLEX R(100) 

>MAT P=CON @ CALL PZER(P,R,0,0) @ MAT DISP R   { 466" }   

 

     ( -0.987930439741 ,  -0.154898180214 )   { root #1 } 

     (  0.435884418475 ,   0.900002652069  )   { root #2 } 

     ( -0.712583964148 ,   0.701586839985 )   { root #3 } 

              ... 

     (  0.435884418475 ,  -0.900002652068 )   { root #98 } 

    (  0.969198999200 ,   0.246278906832 )   { root #99 } 

   ( -0.350126449192 ,   0.936702444524 )   { root #100 } 

 

Now if we go on and compute those 100 roots using PROOT and compare the outputs ... 

 

    ( -0.987930439740 ,  -0.154898180214 )   { root #37 }  

    (  0.435884418474 ,   0.900002652068  )   { root #50 } 

    ( -0.712583964147 ,   0.701586839985 )   { root #20 } 

              ... 

    (  0.435884418474 ,  -0.900002652068 )   { root #49 } 

    (  0.969198999199 ,   0.246278906832 )   { root #16 } 

    ( -0.350126449191 ,   0.936702444522 )   { root #54 } 

 

... we find that PZER 's roots #1, 2, 3, ... , 98, 99, 100 are PROOT 's roots #37, 50, 20, ... , 49, 16, 54, respectively, 

which are produced in a different order but are virtually the same to full 12-digit accuracy: among the 12 

components above, as many as four are identical, seven differ by just 1 ulp and only one differs by a mere 2 ulps. 
 
Considering PROOT’s higher numerical precision and extended range advantages, and that this is a 100

th
-degree 

polynomial with 100 quite clustered complex roots, the accuracy achieved by PZER on its own is utterly amazing. 

 

 

8.3 . Four Examples with Multiple roots: 
 

(a)  Use the driver (in FIX 7) to find the triple root of:  P(z) = z
3
 + 3 z

2
 + 3 z + 1 as accurately as possible. 

 

 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N  END LINE      { all defaults suits us fine } 

   →  P(0) ?  1,3,3,1       END LINE   

 

  →  Iters: 76      { 1.16" } 

        Tmin:  -0.0000090    { negative, so it didn't achieve the default tol., 10
−10

 } 

          Roots:  [press CONT] 

 

 CONT   → ( -0.9999811 ,  0.0000120 )  {  P(z) = (    0  ,  1.12766 ∙ 10
−14

 )  } 

 SPC  → ( -0.9999772 , -0.0000380 )  {  P(z) = (  −10−11
  , −4.36340 ∙ 10

−15
 )  }    

 SPC  → ( -1.0000252 ,  0.0000051 )  {  P(z) = (   10
−12 

,  9.62306 ∙ 10
−15

 )  }   

 

The default iterations got us about 5 correct digits (though as shown after each root z, P(z) is essentially (0,0) to 

11-12 digits so the values found are pretty accurate roots as far as PZER can tell), but we know better and can 

attempt to improve them by using 50 additional iterations. From the command line, execute: 

 

>T=0 @ CALL PZER(P,R,50,T)   { the just computed roots are now used as the initial approximations } 

 

which takes just 0.58" , and we now display the new achieved tolerance and the improved roots: 
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>T  

  -0.0000003  { new achieved tolerance, about 30 times better but still > 10
−10

, thus negative } 

 

>MAT DISP R 

 

  ( -0.9999963,  0.0000003    )  {  P(z) = (  0  , −1.2712 ∙ 10
−15

  ) 

  ( -0.9999939, -0.0000002    )  {  P(z) = (  0  , −2.3789 ∙ 10
−17 

 ) 

  ( -1.0000098,  2.2834334E-9 )  {  P(z) = (  0  ,  6.6389 ∙ 10
−19 

 )  

 

which get us ~ 6 correct digits and P(z) is now (0, 0) to 15-17 digits or better. The 50 extra iterations were indeed 

worth it but we can't achieve significantly more accuracy using 12-digit arithmetic. Quoting Zhonggang Zeng: 

 

"All standard softwares output similar inaccurate results, due to the "attainable accuracy" barrier they 

are subject to." 

 

 

(b)  Use the driver (in FIX 7) to find all roots of:  

 

                   P(z) = z
9  

− (3 + 4i ) z
8
 + (3 + 16i ) z

7
 + (11 − 44i ) z

6
 + (−61 + 80i ) z

5
 + (159 − 92i ) z

4
  

                        + (−267 + 32i ) z
3
 + (277 + 92i ) z

2
 − (156 + 128i ) + (36+48i ) 

 
 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N   

     

9,0,0,Y   END LINE   →   { specify deg. 9 and Verbose, default tolerance, max. iterations } 

 

P(0)?  1,-(3,4),(3,16),(11,-44),(-61,80),(159,-92),(-267,32),(277,92),-(156,128),(36,48) 

 

    END LINE   →   { now Verbose mode allows us to check convergence } 

 

      →  1 11.0805302 

      →  2  7.2399942 
     ... 

      →  14  0.0001299 

      →  19  0.0000656   { and indeed we observe very slow convergence, quite possibly 

      →  89  0.0000236       indicating several multiple roots } 

 

→  Iters: 89    { 8.40" } 

        Tmin:  -0.0000236  { negative, so it didn't achieve the default tolerance, 10
−10

 } 

          Roots:  [press CONT] 

 

 CONT    → (  1.0000000       ,   0.0000000 ) { alleged triple root : 1  } 

 SPC  → (  1.0000000       ,  -1.4142136 )    { conjugate pair #1  :   1 −  2 i } 

 SPC  → (- 1.0000017      ,   2.0000022 )    { alleged double root:  −1 + 2i  } 

 SPC  → (  1.0000000       ,   1.4142136 )    { conjugate pair #1  :   1 +  2 i } 

 SPC  → (  1.6022543E-13  ,  -2.0000000 )   { conjugate pair #2 :  −2i   } 

 SPC  → (  1.0000115   ,  -0.0001513 )    { alleged triple root :  1   } 

 SPC  → (  1.0000150       ,   0.0001694 )    { alleged triple root :  1   } 

 SPC  → ( -1.0470053E-12 ,   2.0000000 )    { conjugate pair #2  : 2i   } 

 SPC  → ( -1.0000001   ,   1.9999986 )    { alleged double root:  −1 + 2i  } 

 

So we have: - the single conjugate roots have full 12 correct digits 

- the alleged double root has about 6-7 correct digits 

- the alleged triple root has about 4-5 correct digits (but the first one is 12-digit exact) 

 

This is about as good as it gets using 12-digit arithmetic so there’s no point in performing extra iterations.  
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(c)  Use the driver (in FIX 5) to find all roots of the 11
th

 degree polynomial: 

 

                P(x) = x
11

 − 44 x
10

 + 852 x
9
 −9,576 x

8
 + 69,306 x

7
 – 338,376 x

6
 + 1,133,768 x

5
 – 2,596,984 x

4
 

             + 3,966,573 x
3
 – 3,826,620 x

2
 + 2,087,100 x – 486,000 

 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N   

     

11,0,0,N      END LINE   → { specify degree 11 and all the defaults } 

 

P(0)?  1,-44,852,-9576,69306,-338376,1133768,-2596984,3966573,-3826620,2087100,-486000 

 

 END LINE   → Iters:  75      { 12.24" } 

          Tmin: -1.02946 E-2 

        Roots: [Press CONT] 

 

It took many iterations (75) and the tolerance achieved is only 1.02 ∙ 10
−2

, much worse than the default 10
−10

 

specified, so we suspect several multiple roots and thus we won't display the just computed roots but instead 

we'll immediately repeat the process specifying more iterations (128) and watching convergence: 

 

>DELAY 0,0  END LINE    RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N   

     

11,128,0,Y   END LINE   → { we also specify Verbose mode (Y) to check convergence } 

 

P(0)?       { there’s no need to key in the many lengthy coefficients again, just use the 

      command stack to recall them all to the prompt and press  END LINE   } 
 

      →         ... 

      →  26  0.01315 

      →  27  0.01251 

      →  75  0.01029  { as expected, we observe very slow convergence, 

      →  113  0.00765    probably due to more than one multiple roots }  
 

      →  Iters:  113   { 15.68" } 

      →   Tmin: -0.00765 

      →  Roots: [Press CONT] 

  

 CONT  → ( 1.00000,  0.00000 )  { double :  1 ,   12 digits; PROOT: ~ same    } 

 SPC   → ( 5.00686,  0.01448     )  { triple  :  5 ,  2-3 digits; PROOT:  (4.95044,  0.08799) } 

 SPC   → ( 4.98292, -0.00013    )  { triple  :  5 ,  3-4 digits; PROOT:  (5.10033,  0.00000) } 

 SPC   → ( 3.00007, -0.00083    )  { double :  3 ,  3-4 digits; PROOT: ~ same (complex)  } 

 SPC   → ( 9.00000,  1.16255E-12) { single  :  9 ,    9 digits; PROOT: ~ same    } 

 SPC   → ( 2.00000,  6.49191E-89)   { single  :  2 ,   10 digits; PROOT: ~ same    } 

 SPC   → ( 3.00004,  0.00011     )   { double. :  3 ,  4-5 digits; PROOT: ~ same (complex)  } 

 SPC   → ( 6.00000, -3.57906E-8 )   { single  :  6 ,    7 digits; PROOT:  (5.99954,  0.00000) } 

 SPC   → ( 5.00694, -0.01235    )   { triple  :  5 ,  2-3 digits; PROOT:  (4.95044,−0.08799) } 

 SPC   → ( 4.00001, -3.39592E-9 )   { single  :  4 ,    6 digits; PROOT:  (3.99918,  0.00000) } 

 SPC   → ( 1.00001, -0.00002    )   { double  :  1 ,  5-6 digits; PROOT: ~ same    } 

 

The roots are: 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, so 2,4,6,9 are single roots, 1,3 are double roots and 5 is a triple root.   

 

That PZER manages to achieve about 140 correct digits out of 264 while dealing with that many multiple roots is 

a truly excellent result for an implementation mostly suited to isolated, single roots. Actually, it beats PROOT at 

its own game by obtaining more accurate roots in five cases. Furthermore, PROOT also reports several real roots 

as being complex, despite what it's said in the "Hewlett-Packard Journal” July 1984 p.34, namely: 

 

"Also, when a complex root is found, there is 100% confidence that it is actually complex (and not a real 

root contaminated by round-off) so that both it and its complex conjugate can be declared as roots." 
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(d)  Use the driver (in FIX 7) to find all the roots of this polynomial, taken from “On 4th order simultaneously 

zero-finding method for multiple roots of complex polynomial equations”: 

 

             𝑃(𝑧)  =  𝑧7  −  3 𝑧6  +  5 𝑧5  −  7 𝑧4  +  7 𝑧3  −  5 𝑧2  +  3 𝑧 –  1 

 

 

 

 RUN  → N,Iter,Tol,Verb Y/N: 3,0,0,N   

     

7,0,0,Y      END LINE   →   { we specify Verbose mode (Y) to check convergence } 

 

P(0)?   1,-3,5,-7,7,-5,3,-1   END LINE    
 

 →        ... 

  13 0.0000812 

  22 0.0000604 

  31 0.0000072 

  32 0.0000050    { slow convergence, thus probably multiple roots } 

 

  Iters:   32     { 5.22" } 

    Tmin:  -0.0000050      { negative, so it didn't achieve the default tolerance, 10
-10

 } 

  Roots:   [Press CONT] 

  

 CONT   → (  1.0000000 ,  0.0000000 ) 

 SPC  → ( -0.0000003 ,  1.0000002 ) 

 SPC   → ( -0.0000011 ,  0.9999997 ) 

 SPC    → (  0.0000007 , -0.9999998 ) 

 SPC   → ( -0.0000003 , -0.9999997 ) 

 SPC    → (  0.9999877 , -0.0000010 ) 

 SPC    → (  1.0000060 , -0.0000102 ) 

 

The actual integer roots are perfectly recognizable and have about 5-7 correct digits (though the first one has full 

12 correct digits) but we can attempt to get some extra precision just because, by performing an exotic 222 

additional iterations, like this:  

 

>CALL PZER(P,R,222,0) @ MAT DISP R 

 

   1   0.00019324 { notice the small first error because we're automatically using the just computed 

        roots as initial guesses for this new batch of iterations, which speeds it all up } 

         ... 

 203   0.00000006 { 11.57" } 

 

 (  1.0000000,  0.0000000 ) { triple root:    1 ;  PROOT:  ( 0.9999399,  0.0000000 ) 

 (  0.0000003,  1.0000009 ) { double root:   i ;   PROOT:  ~ same 

 ( -0.0000002,  0.9999998 ) { double root:   i ;  PROOT:  ~ same 

 (  0.0000001, -1.0000008 ) { double root:  −i ;  PROOT:  ~ same 

 (  0.0000004, -0.9999997 ) { double root:  −i ;  PROOT:  ~ same 

 (  0.9999976,   2.06..E-10 ) { triple root:    1 ;  PROOT:  (1.0000300,  0.0000520 ), complex 

 (  1.0000024,   8.90..E-14 ) { triple root:    1 ;  PROOT:  (1.0000300, −0.0000520 ), complex 

 

which got us 8 times better achieved tolerance and significantly more accurate roots, despite their various 

multiplicities. Matter of fact, there wasn’t even a single single root in sight.  

 

Notice also that PROOT did significantly worse, despite its extended accuracy/range: it didn’t get the first 

instance of the triple root (or any other for that matter) accurate to full 12 digits (just ~ 4), and the second and 

third instances were found to ~ 5 digits while PZER got 6-7 digits. Worst of all, it reports them as a complex 

conjugate pair instead of real, despite what HP stated (see the Example in the previous page) . Sorry but no. 
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Appendix A 
 

For checking purposes, these are all the roots of the 37
th

-degree polynomial  P(z) = z
37

 + z
36

 + ... + z
2
 + z + 1 

 

To obtain them, we execute the following directly from the command line: 

 

>DESTROY ALL @ STD    { clear all variables to avoid potential conflicts and set STD display mode } 

>OPTION BASE 0 @ REAL P(37)  { dimension the coefficients array, which for this polynomial it's real } 

>OPTION BASE 1 @ COMPLEX R(37) { dimension the roots array } 

>MAT P=CON      { all coefficients are 1 } 

>CFLAG 0      { ensure no Verbose mode } 

>L=0 @ T=0       { specify default max. iterations (100) and default tolerance (10
−10

) 

>CALL PZER(P,R,L,T) { call PZER passing the coefficients and returning the roots as well as    

the iterations used to compute all 37 roots and the tolerance achieved }  

     ...       { the computation proceeds for 21.32" } 

>L;T       { display the number of iterations used and the tolerance achieved } 

 

     17 1.15690811496E-12  { just 17 iterations achieved a tolerance of 1.1569∙10
−12

 < 10
−10

 } 

 

>DELAY INF @ MAT DISP R { display each root in turn; press any key to display the next one and 

don't forget to afterwards reset the DELAY to your preferred setting } 

 

  ( -0.9458172417  ,   0.324699469204 )  {  conjugate pair  #01 } 

  (  0.401695424653  ,   0.915773326655 )  {  conjugate pair  #02 } 

  ( -0.789140509396  ,   0.614212712689 )  {  conjugate pair  #03 } 

  ( -0.9458172417  ,  -0.324699469204 )  {  conjugate pair  #01 } 

  ( -0.245485487141  ,  -0.969400265939 )  {  conjugate pair  #04 } 

  (  0.945817241701  ,  -0.324699469205 )  {  conjugate pair  #05 } 

  (  0.546948158123  ,   0.837166478262 )  {  conjugate pair  #06 } 

  ( -0.677281571625  ,   0.735723910672 )  {  conjugate pair  #07 } 

  ( -0.789140509397  ,  -0.61421271269  )  {  conjugate pair  #03 } 

  (  0.245485487141  ,  -0.96940026594  )  {  conjugate pair  #08 } 

  (  0.0825793454728 ,  -0.996584493007 )  {  conjugate pair  #09 } 

  (  0.789140509396  ,  -0.614212712689 )  {  conjugate pair  #10 } 

  (  0.677281571626  ,   0.735723910673 )  {  conjugate pair  #11 } 

  ( -0.245485487141  ,   0.96940026594  )  {  conjugate pair  #04 } 

  ( -1                ,   0                 )  {  real root       } 

  (  0.789140509396  ,   0.614212712689 )  {  conjugate pair  #10 } 

  (  0.401695424653  ,  -0.915773326655 )  {  conjugate pair  #02 } 

  (  0.0825793454728 , 0.996584493007 )  {  conjugate pair  #09 } 

  ( -0.401695424653  ,   0.915773326655 )   {  conjugate pair  #12 } 

  ( -0.986361303403  ,  -0.164594590281 )  {  conjugate pair  #13 } 

  ( -0.401695424653  ,  -0.915773326655 )  {  conjugate pair  #12 }  

  (  0.546948158122  ,  -0.837166478262 )  {  conjugate pair  #06 } 

  (  0.879473751206  , 0.475947393037 )  {  conjugate pair  #14 } 

  ( -0.0825793454727, 0.996584493007 )  {  conjugate pair  #15 } 

  ( -0.879473751206 , 0.475947393037 )  {  conjugate pair  #16 } 

  ( -0.879473751206 ,  -0.475947393037 )  {  conjugate pair  #16 } 

  ( -0.0825793454722,  -0.996584493006 )  {  conjugate pair  #15 } 

  (  0.879473751206  ,  -0.475947393037 )  {  conjugate pair  #14 } 

  (  0.245485487141  ,   0.96940026594  )  {  conjugate pair  #08 } 

   ( -0.546948158122  ,   0.837166478263 )  {  conjugate pair  #17 } 

   (  0.677281571626  ,  -0.735723910673 )  {  conjugate pair  #11 } 

  ( -0.546948158123  ,  -0.837166478263 )  {  conjugate pair  #17 } 

   (  0.986361303403  ,   0.164594590281 )  {  conjugate pair  #18 } 

  (  0.945817241701  ,   0.324699469205 )  {  conjugate pair  #05 } 

  ( -0.986361303403  ,   0.164594590281 )  {  conjugate pair  #13 } 

   (  0.986361303403  ,  -0.164594590281 )  {  conjugate pair  #18 } 

  ( -0.677281571626  ,  -0.735723910673 )  {  conjugate pair  #07 } 
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Appendix B 
 

PZER uses a simple procedure to generate the initial guesses for the roots, which basically consist of spreading 

the guesses uniformly along a slowly decreasing spiral within the unit disk, but much more elaborate procedures 

are possible, such as those described in the "Hewlett-Packard Journal July 1984” issue pp 33-36, which among 

many other finesses strive to find annuli known to contain the smallest root of the current
1
 polynomial. 

 
On the other hand, PZER doesn't compute the roots one by one but all simultaneously so the annulus would have 

to contain all roots and then the initial guesses would be assigned by, say, generating random values uniformly 

distributed within said annulus. There are many methods to compute the bounds of all roots (i.e.: the annulus 

radii, R1 and R2) from very simple ones (but rather unsharp) to very complicated ones (but sharper). 
 

I did try a version of the well-known Cauchy criterion, where R1 and R2 are the unique positive roots of: 
 
  |an| z

n
 + |an−1| z

n−1
 + · · · + |a1| z − |a0| = 0   (R1) 

and 

  |an| z
n
 − |an−1| z

n−1
 − · · · − |a1| z − |a0| = 0   (R2) 

 
respectively. They can be computed relatively quickly and accurately using FNROOT but I found that in practice 

the upper bound R2 tends to be overly large and nothing is gained in terms of significantly less iterations (thus 

shorter running times) or improved accuracy to compensate for the added complexity, and matter of fact often 

enough the process ran slower, not faster. For instance, let’s consider the polynomial from Example 1b: 
 

P(z) = z
3
 + (−9 − 12 i) z

2
 + (−21 + 64 i) z + (85 – 20i) 

 

whose roots are (1,2), (3,4) and (5,6), which required 9 iterations with the current, simple implementation. Using 

Cauchy criterion we find: 
 

 R1  is the root of:  x
3
 +|(−9,−12)| x

2
+ |(−21,64)| x − |(85,−20)| = 0  →  R1 = 1.03922225823 

 R2  is the root of:  x
3
 −|(−9,−12)| x

2
− |(−21,64)| x − |(85,−20)| = 0  →  R2 = 18.8245724264 

 

and with R1, R2 in hand we would randomly assign the initial guess for each root within the annulus, like this: 
 

  RADIANS @ FOR I=1 TO N @ R(I)=RECT((RND*(R2-R1)+R1,2*PI*RND)) @ NEXT I 

 

However, once the solving procedure was executed with these new initial guesses I found that it still required 9 

iterations and the tolerance achieved (3.54∙10
−11

) was 2x worse than the one obtained using the simple guesses 

(1.77∙10
−11

) and the computed roots were ever- so-slightly less accurate. 
 

I conducted many such tests and tried various other criterions and bounds and ultimately decided that it just 

wasn't worth the complications and little was gained at all, quite the contrary, so the simpler procedure stayed. 

 

Final Conclusions 
 

Subprogram PZER is a very short piece of code which fills up a glaring PROOT limitation, as it can quickly and 

accurately find all roots of an N
th

 degree polynomial with complex coefficients, which PROOT just can’t touch.  
 

Further, it can work as a “global” procedure which requires no inputs from the user save the coefficients and 

returns nothing but the roots, as PROOT does, but additionally it also gives the user a lot of optional extra control, 

allowing the specification of desired tolerance, max. number of iterations, distinct initial guesses for each of the 

roots and the possibility of watching convergence to detect problems, as well as optionally returning the tolerance 

actually achieved (which will be marked negative if it didn’t meet the one specified) and the iterations used to 

achieve it. Last but not least, it frequently deals better with multiple roots than PROOT does.  

All in all, a worthy addition to the HP-71B math capabilities, which can be called directly from the command line 

or from your own programs/subprograms, as well as using the convenient driver program also featured herein. 

                                                        
1 PROOT finds the roots one by one, not all at once like PZER does, beginning with the smallest one in magnitude and once 

found using deflation to reduce the polynomial's degree by one or two, thus the current (deflated) polynomial varies. 


