
1 

 

Boldly Going - Mandelbrot Set Area 

© 2020 Valentín Albillo 

 

Welcome to a new article in my “Boldly Going” series, this time starring the Mandelbrot set and the difficult task of 

computing an accurate estimation of its area. The task is fraught with difficulties and it’s been attacked with really powerful 

hardware (think 4 GPUs), complex software and extremely long computation times (think 35 days) but all that work has 

produced only about 8-9 correct digits. Here I’ll attempt the feat using just my trusty HP calculators, many orders of 

magnitude slower and less capable but nevertheless I’ll manage to get about 5-6 correct digits in much shorter times. 

 
 
Introduction 

The Mandelbrot set (M for short) is the most well-known fractal of all, an amazing mathematical object which 

mystified everyone since its discovery by B. Mandelbrot ca. 1975 and subsequent popularization in the August 

1985 issue of Scientific American. There is an incredible amount of readily available literature dealing with all 

aspects of M from the very basic to the most advanced so I’ll refer the reader to it and won’t discuss them here.  

 

M has a fractal boundary which encloses a finite area whose 

precise value is still an open question, and an estimation of it is 

what this article is all about. To wit, there are several ways to try 

and estimate the area, including
1
: 

 the Monte Carlo approach, where a large number of 

random points are generated within some enclosing box, and a 

tally is kept of how many belong to M, which is then used to 

compute the estimation. 

 the pixel-counting approach, where finer and finer grids are 

averaged to tally the number of grid points belonging to M. 

 the theoretical approach, where a large number of terms of 

an exact formula converging (extremely slowly) to the area of M 

are evaluated and added up to get an estimate.  

 

The Monte Carlo approach has some advantages (such as not being prone to potential aliasing problems as may 

happen with equally-spaced grids) and disadvantages, the main one being that as is typical of standard Monte 

Carlo approaches, to get one more correct digit (i.e., increasing the resolution 10x) the number of generated 

pixels would need to be increased 100x, which would result in approximately 100x the running time. It also 

requires a very good, non-biased random number generator with a large cycle (at least several billions long). 

 

The pixel-counting approach has been widely used. For example, back in 2012 R. Munafo launched an 8-day 

run to calculate almost 17 trillion pixels (at 2.4 million px/sec) to get an estimated area of  1.506591856  with 

an estimated error of  0.0000000256.  

 

Later, T. Förstemann used some powerful hardware (Intel Core i7 2600K CPU, 2x GPU Radeon HD 5970 for a 

total of 4 GPUs with 1600 stream processors each, 350W under load) and software (Mathematica 8.0.4.0 under 

Windows 7, ATI driver Catalyst 11.2 with AMD Stream SDK 2.3 and installation of a C-compiler [Visual Studio 

2011] for Mathematica) running for 35 days straight with a grid size of 2,097,152 for a total of 

87,960,930,222,520 calculated pixels (at more than 29 million px/sec and depths starting at 8,589,934,592 

iterations) to get an estimated area/error of  1.5065918849 and 0.0000000028, ten times better than Munafo’s. 

                                                        
1 Other methods include the μ-atom method, used by J. Hill to get a lower bound which is close to the pixel counting 

methods. He included the area of all components up to period 16 (main cardioid is P1, main disk is P2), and all of period 16 

but one, and got an area of 1.506303622, which differs from Förstemann’s by ~ 0.0002883 (0.019%). 



2 

 

Finally, the theoretical approach uses Laurent Series, in particular a specific one introduced by Ewing and 

Schober, which allows computing the area of M by evaluating an infinite series of the form: 

𝑴𝑎𝑟𝑒𝑎 = 𝜋   1− 𝑛. 𝑏𝑛
2 

∞

𝑛=0

  

where bn are the coefficients of the Laurent series, the first ones being b0 = -1/2, b1 = 1/8, b2 = -1/4, b3 = 15/128, 

b4 = 0, b5 = -47/1024, etc. For a finite number of terms this formula always gives an upper bound of the area but 

despite its mathematical elegance it is absolutely unsuitable to compute the area as it converges incredibly slowly, 

with an estimated 6.4.10
11 

terms needed to get just one correct digit and more than 10
118

 terms to get two ! 

 

Matter of fact, Ewing et al used 500,000 terms (b500000 ~ 5.5221313·10
−8

) in 1990 to get an estimated area of 

1.72 and later in 2014 Bittner et al used 5,000,000 terms (whose bn  coefficients took 3 months to compute, 

b5000000 ~ 8.0532·10
−11 

) and got an estimation of  1.68288.  

 

To complicate the matter even further, this theoretical approach seems to converge to a value between 1.60 and 

1.70 while the empirical approaches (Monte Carlo and pixel counting) give estimates around 1.50659. This 

might be due to the fact that the boundary of M has Hausdorff dimension 2 and thus might have positive (i.e., 

non-zero) area, which would account for the discrepancy as none of the empirical approaches can ever generate 

and calculate points or pixels exactly belonging to M’s boundary, so their potential contribution to the area 

would never be included in the computation. As of 2020, this is still in the realm of speculation but nevertheless 

it seems quite plausible
1
. 

 

 

 
Boldly going ... 

As stated in the Introduction above, the purpose of this article is to use nothing but my trusty HP calculators 

(whether in physical or virtual form) to try and compute an estimation as accurate as possible (say 5-6 correct 

digits) for M’s area in reasonable times: less than half an hour for a virtual calc, a day or two at most for a 

physical one), which is no mean feat. 

 

In view of the above described hardware, software and computation time requirements, it’s clear that 

accomplishing my goal will require a good algorithm and pretty optimized code. As this is an informal Article, 

not a formal research paper, I’ll adopt a Machiavellian approach (“The Ends Justify the Means”) and I’ll mix 

sound mathematical optimizations with more informal heuristics as required. 

 

To begin with, I’ll use a Monte Carlo approach, generating a suitably large number N of random points within a 

rectangular box which completely encloses M, and counting how many actually belong to M. The sought-for 

area will then be proportional to the count. To make the task manageable I’ll use the following optimizations: 

 

 Each point (x,y) will be generated as a random complex number z within a rectangular box enclosing M. 

Actually, the leftmost extreme of M is at x = -2, the righmost extreme is at x = 0.471185334933396+, the 

topmost extreme is at y = 1.122757063632597+ and the downmost extreme is at y = -1.122757063632597+. 
 

 As M is symmetric, I only need to compute the area of the top half and the total area of M will then be twice 

this value. This means that I can use a smaller rectangular box with x ranging from -2 to 0.5 and with y 

ranging from 0 to 1.2 and I’ll generate all random complex points z within that box. 
 

 Each randomly generated complex z has to be tested for inclusion in M, which is done via the usual escape 

time algorithm: start with z0 = (0,0) and c = z, then iteratively compute zn+1 = zn
2
 + c until either the 

absolute value of zn ≥ 2, in which case z escapes to infinity and so definitely does not belong to M, or else a 

max. number of iterations is reached and z is considered to belong to M and the count is increased by 1. 

                                                        
1 D. Allingham (see References) wrote: “B. Mandelbrot himself conjetures that the boundary of the set may have Hausdorff 

dimension 2, which would imply that it actually contributes to the area.” 



3 

 

 As computing whether every z belongs to M is a very time-consuming iterative process (which will reach the 

maximum number of iterations if z actually belongs to M) we can try and avoid it altogether for those z 

which we can easily ascertain in advance as belonging to M without performing any iterations. That’s the 

case for those z either in the main cardioid (below left) or in the largest circular bud (main disk, below right): 

 

 

 

 

 

 

 

 

 

 

 

 

 The main cardioid’s area is 3π/8 = 1.178097+ (about 78.20% of the total area), while the main disk has an 

area of π/16 = 0.196350+, (another 13.03%) and their combined total is 7π/16 = 1.374447+, which already 

accounts for 91.23% of the total area of M so we need to compute just the remaining 8.77%, thus the 

expensive iterative process will be executed in full less than 9% of the time, a considerable savings. 

 

 To wit, if we can quickly check whether a given z belongs or not to the main cardioid or the main disk we’ll 

save lots of running time and as it happens, indeed we actually can, using just a few steps for the RPN 

version or just 2 lines of code for the BASIC version. 
 

 As for those points not belonging to either the main cardioid or the main disk, checking whether they belong 

to some other minor disks or cardioids quickly becomes more expensive and complicated than performing 

the K iterations, which will proceed faster if K is relatively small, say 256 iterations max.  
 

However, this will adversely affect the accuracy because there will be points which do not escape to infinity 

in 256 iterations but would if performing 512 iterations, say, and the same would happen with a bigger K, 

there will always be points (i.e.: those sufficiently close to the boundary) which will require more iterations 

than any limit we might specify in advance and so those points would be miscounted as belonging to M 

while actually they don’t. Nevertheless, there will be fewer of them as K grows bigger, which will help 

increase the accuracy but negatively impact the running time. 
 

 I’ll attempt to alleviate this dilemma by calculating a large number N of random points but using a relatively 

low maximum number of iterations, say K = 256, which will speed the computation as desired. To increase 

the accuracy, I’ll apply afterwards a correction factor to the resulting area, which will be heuristically 

computed like this: we’ll choose a suitably smaller number of random points N2 << N and we’ll obtain the 

count of the points belonging to M using first K = 256, then K = 1024 iterations. The resulting correction 

factor would then be: 
 

fcorr = count1024 / count256 
 

Simple as it is, this non-rigorous, heuristic approach works quite nicely and will allow us to use a relatively 

low number of max. iterations without actually compromising the obtained accuracy too much. 

 
 In short, my algorithm will rely on: (a) rigorous math (statistically-sound Monte Carlo method, tight box, 

symmetry, main cardioid and disk detection, etc.), (b) nonrigorous heuristics (the correction factor) and last 

but not least (c) a little luck. When dealing with random numbers you always need a little luck, as the 

sequence 7,7,7, ... has the same probability as any other more random-looking sequence. In practice this 

means that the results might be worse than average or better than average and the latter case is the lucky part.   



4 

 

Program Listing for the HP42S1
 

 

 

01 

 

 

 

05 

 

 

 

 

10 

 

 

 

 

15 

 

 

 

 

20 

 

 

 

 

25 

 

 

LBL "AM" 

 2.5 

STO 06 

 2 

STO 07 

 1.2 

STO 08 

 0.25 

STO 09 

 1 

SEED 

"Points?" 

PROMPT 

STO 04 

STO 00 

 256 

"Iters?" 

PROMPT 

STO 05 

CLX 

STO 02 

"Every?" 

PROMPT 

STO 03 

RECT 

 

 

26 

 

 

 

30 

 

 

 

 

35 

 

 

 

 

40 

 

 

 

 

45 

 

 

 

 

50 

 

 

CF 21 

"Working…" 

AVIEW 

CF 00 

X≠0? 

SF 00 

LBL 00 

RCL 05 

STO 01 

FS? 00 

XEQ 03 

RAN 

RCLx 06 

RCL- 07 

RAN 

RCLx 08 

COMPLEX 

ENTER 

ENTER 

SIGN 

RCL- 07 

RCLx ST L 

ABS 

RCLx 09 

X<>Y 

 

 

51 

 

 

 

55 

 

 

 

 

60 

 

 

 

 

65 

 

 

 

 

70 

 

 

 

 

75 

 

 

ABS 

X<Y? 

GTO 04 

SIGN 

RCL+ ST Z 

ABS 

RCL 09 

X>Y? 

GTO 04 

R↑ 

RCL 07 

RCL ST Y 

LBL 01 

X↑2 

RCL+ ST Z 

ABS 

X≥Y? 

GTO 02 

X<> ST L 

DSE 01 

GTO 01 

LBL 04 

ISG 02 

LBL 02 

DSE 00 

 

 

76 

 

 

 

80 

 

 

 

 

85 

 

 

 

 

90 

 

 

 

 

95 

 

 

98 

 

 

 

 

GTO 00 

LBL 03 

RCL 00 

RCL 03 

MOD 

X≠0? 

RTN 

CLA 

RCL 04 

RCL- 00 

X=0? 

RTN 

AIP 

├ "→" 
RCL 02 

AIP 

RCL÷ ST Y 

  6 

  x 

├ "LFArea~" 

ARCL ST X 

AVIEW 

END 

             

Uses: 

 

 - 98 steps (199 bytes) 

 - flags 00, 21 

 - labels 00-04 

 - registers 00-09 

 - sets RECT mode 

 - any angular mode 

 

 

Registers: 

 

 00:   N-loop index 

 01:   K-loop index 

 02:   M (count) 

 03:   every P 

 04:   N (# points) 

 05:   K (# iterations) 

 06:   2.5 

 07:   2 

 08:   1.2 

 09:   0.25 

 

 
 

Program details 

 
  Steps 01-31: main entry point:  initialization

2
 and prompting input from the user. { 31 steps } 

  Steps 32-36: start of the main loop. { 5 steps } 

  Steps 37-44: generation of a random point within the box, plus 2 copies on the stack. { 8 steps } 

  Steps 45-53: checking whether the point belongs to the main cardioid (thus, to M). { 9 steps } 

  Steps 54-59: checking whether the point belongs to the main disk (thus, to M). { 6 steps } 

  Steps 60-71: checking whether the point belongs elsewhere in M (iterations). { 12 steps } 

  Steps 72-73: if the point does indeed belong to M, increment the count. { 2 steps } 

  Steps 74-76: decrement the number of points yet to generate/check and loop until no more left. { 3 steps } 

  Steps 77-98: output routine, displays either the intermediate results and/or the final result. { 22 steps } 

  

                                                        
1 To enter text lines use the ALPHA menu; ├ is the Append character and LF is the Line Feed character, which can be 

found at the end of the second row of the PUNC submenu of the ALPHA menu. 
2 The initialization part stores four small constants in storage registers R06-R09 because of speed considerations. Simply 

having the constants as program lines and performing the relevant arithmetic operations takes two program steps each and is 

much slower than using recall arithmetic, which just takes a single step and is faster as well. As these operations are part of 

the main loop, every speed gain is essential when being repeated many thousands of times. 

Also, to save a register and a program step the constant 2 is stored just in R07, then used at 3 different locations in the program, 

but the very first use at step 39 depends on the enclosing box x-range being from -2 to 0.5. If using a different box x-range 

this constant might change and would need to be stored in its own register, say R10, the other instances remaining unaltered. 



5 

 

Usage Instructions 
The program accepts the number N of points to generate, the maximum number of iterations K, and whether you 

want to display intermediate results every P points or just the final estimation for the area.  

The program doesn’t automatically compute/apply any correction factor, that’s left at the discretion of the user to 

decide whether and how to compute it since there’s no optimal approach valid for all N and K, there’s plenty of 

leeway. Of course, the program will greatly assist in computing it, as we’ll see in the main run below. 

To compute an estimation of the area of M proceed as follows: 

 

 XEQ   ”AM” → Points?    { asks for the number of points to generate, N } 

N  R/S  → Iters?   { asks for the max.num. of iterations
1
, K. Default=256, just press R/S  } 

K  R/S  → Every?   { asks if you want to display intermediate results every P points
2
;  

   if you don’t and just want the final result, simply press R/S  } 

P  R/S  → Point P  →Count P { the intermediate tally of points generated and resulting counts } 

   Area ~ Area P   { the intermediate estimations of the area } 
    ... 

  → Point N  →Count N { the final tally of points generated and resulting count } 

   Area ~ Area N  { the final estimation of the area } 

 

Further Considerations 
To choose the number of points N and max. iterations K, we’ll take into account the following considerations: 

 Both the correctness of the estimated area and the running time depend on N and K, the larger the better 

as far as the estimated area is concerned but the longer the running time will be. Also, whether you’re 

using a physical HP42S/DM42 or a virtual HP42S and its underlying OS (iOS, Android, Windows, Mac, 

Linux, other) and hardware, all of it will greatly influence the choice of calculation parameters. 
 
Generally speaking, a physical original HP42S will be the slowest by far, and this will limit the running 

times allowable without depleting the batteries, probably 1-2 days at most. The DM42 is ~100x faster 

and can use an USB power source, so it can run the program for much longer. Some experimentation 

will be required, starting at a low value of N, K (say N = 1,000 and K = 256) and noting the running 

time. Then it’s possible to select how big N and K should be, as the time will be proportional to both. 
 

 On the other hand, a virtual HP42S will be orders of magnitude faster. For instance, using Free42
3
 

BCD on an Android mid-range Samsung tablet (as done below) will generate and check about 1,000 

points per second at 256 max. iterations per point. This means I can use N = 500,000 points and K = 

256 max. iterations, say, and get the result in less than 10 min. Using a faster version of Free42 and/or a 

faster emulator/OS/ hardware combination can easily get results even 10x or 100x faster. 
 

 Increasing the number of iterations K will always reduce the estimated area because performing more 

iterations weeds out points that never escaped to infinity when using K iterations, and thus were 

included in the count, but actually did escape when using more iterations and so weren’t included now.  
 

 However, increasing the number of points N while leaving K fixed results in estimated areas which 

overshoot/undershoot the area, slowly converging to the correct value of the area for that number of 

iterations, MK, not to the correct area of M, which would be the value for infinite iterations. 
 

 This can be remedied by using a correction factor, which uses Ki, j to extrapolate K∞ as we’ll see below. 

                                                        
1 The number of iterations doesn’t need to be a power of 2 (256, 512, ...), it can be any positive integer (say 1,000, 687, ... )  
2 If you enter a positive integer value P, the intermediate results will be displayed every P points as well as the final result 

once all N points have been generated. P doesn’t need to divide evenly into N, the final result will be displayed regardless. If 

P is 0 no intermediate results will be shown, which will mean faster execution but you won’t be able to monitor progress. 
3 Free42 is a fantastic free simulation of the HP42S created by Thomas Okken for many operating systems (Windows, Mac 

OS, Android, iOS, Linux, etc.) which also runs at the heart of SwissMicros physical DM42 calculator. It runs many hundred 

times faster than a physical HP42S and features vastly increased available RAM, 34-digit BCD precision and much more. 



6 

 

Sample runs 
Let’s see several examples. We’ll asume  FIX 05  display mode for all results that follow.  

 

Example 1 

For starters, let’s estimate M’s area using N = 10,000 points and K = 256 iterations, showing just the final result. 

 

 XEQ   ”AM”   → Points? 

 10000   R/S   → Iters?   { we’ll use 256 iters. which is the default so just press R/S } 

    R/S   → Every?     { we just want the final result so just press R/S } 

   R/S   → 10000 →2572  { the final tally: 10,000 points generated, 2,572 landed in M } 

    Area ~ 1.54320  { the estimated area of M, just two correct digits, err=2.43%, 11” } 

  

Example 2 

Let’s improve the estimation using N = 10,000 points and K = 512 iterations, showing results every 2,000 points. 

 

 XEQ   ”AM”   → Points? 

 10000   R/S   → Iters? 

   512   R/S   → Every?    

  2000   R/S   → 2000 →511 Area~1.53300  { the first intermediate result } 

    → 4000 →1041 Area~1.56150  { the 2
nd

 intermediate result } 

    → 6000 →1561 Area~1.56100  { the 3
rd

 intermediate result } 

    → 8000 →2053 Area~1.53975  { the 4
th

 intermediate result } 

    → 10000 →2560 Area~1.53600  { final result, still 2 correct digits but err=1.95%, 19”} 

 

The Ultimate Run  

Now for the real McCoy. Taking the above considerations into account and as I’ll be using a virtual HP42S 

(Free42 BCD for Android) running on a mid-range Samsung tablet, I’ll use half a million points and a low 256 

iterations for speed but I’ll also compute and apply a correction factor to try and increase the precision. I’ll 

compute this correction factor first, using 5x fewer points than the main run but 4x more iterations, as follows: 
 

fcorr = Area100000,1024 / Area100000,256 

 

where Area N,K means computing the area using N points and K iterations. Let’s proceed to compute fcorr : 

 

 XEQ   ”AM”   → Points?      { we’ll use 5x less points, just 100,000 } 

100000   R/S   → Iters?      { we’ll use first 1,024 iterations } 

  1024  R/S   → Every?        { we won’t be monitoring progress } 

   R/S   → 100000 →25312   Area~1.51872 { the value of Area100000,1024  [ 5’45”] } 

           STO 10   { we store it for later use } 

 

 XEQ   ”AM”   → Points?      { as above, still just 100,000 } 

100000   R/S   → Iters?      { now we’ll use 256 iterations, so just press R/S } 

     R/S   → Every?        { we won’t be monitoring progress either } 

   R/S   → 100000 →25501   Area~1.53006 { the value of Area100000,256  [ 1’58”] } 

           STO÷ 10   { R10 now contains the c. factor ~ 0.99258853 } 



7 

 

Now it’s time for the the main computation, to which we’ll afterwards apply the just calculated (and stored) 

correction factor. This will take less than 10 min. in all and we’ll monitor progress ... 

 

 XEQ   ”AM”   → Points?      { we’ll use the full 500,000 points } 

500000   R/S   → Iters?      { we’ll use 256 iterations, so just press R/S } 

      R/S   → Every?        { we’ll monitor progress every 100,000 points } 

100000   R/S   →100000 →25501   Area~1.53006 { the first intermediate result  [ 1’58”] } 

      ...   ... 

    →500000 →126486   Area~1.51783 { the main result, which in itself has err ~ 0.75% 

              before applying the correction factor [ 9’47”] } 
 

Finally, let’s apply to the just computed area in the display the correction factor previously computed and stored: 
 

  RCLx 10  → 1.50658  { more precisely, 1.50658_263  vs.  Förstemann’s 1.50659_188 } 
 

which is my final computed estimation for the area of M and it’s correct to 6 digits within less than one ulp (unit 

in the last place). It differs from Förstemann’s 88-trillion-pixels-calculated-at-8.6-billion-iterations-per-pixel 

result by just ~ 0.00000925, an error of ~ 0.000614%. 

He got an estimated area accurate to 9 correct digits (within possibly a couple ulps or three) in 35 days at great 

expense (both the costly hardware and the 35-day electricity bill), while I got 6 correct digits in less than 20 min. 

(actually 17’ 30” = 9’47” for the main computation plus 5’45” + 1’58” for the correction factor computation) at 

negligible expense, so point made. Not bad, isn’t it ? 

 

Where to go now 
As this is an informal article and the point has already been made, we could really call it a day and move on. But 

if we were willing to, there’s a number of further techniques to consider in order to improve the accuracy and/or 

reduce the computation times. For instance, among other possibilities: 

 

 We can avoid wasting time generating and checking random points in blank areas (~75% of the enclosing 

box used here) where no part of M is, by subdividing M into a number of rectangular boxes (9 in the sample 

partition below) and then computing the total count as the sum of the counts in each individual box.  
 

It is important to distribute the total 
number of points N among the boxes 
proportionally to the area of each box so 
that the density of points is the same.  
Otherwise we would be adding areas 
computed with different precisions and 
this is wasteful as the resulting sum will 
be no more accurate than the least 
accurate area. 

To implement this, the program must be 

converted into a subprogram with no 

prompting and no output, which accepts the dimension of each box and the number of points Ni to use and 

returns the count to a main program which first inputs the number of points N and max. iterations K from the 

user and then calls the subprogram with the coordinates and the Ni for each box, then adds up the returned 

counts and computes and outputs the total area. There’s no overhead and large blank areas are thus avoided. 
 

Also, the process is faster for each box because some time-consuming checks are avoided altogether: 
 

o Box 1 only needs to check if points belong to the main cardioid, but forfeits the check for the disk. 

o Box 2 only needs to check if points belong to the main disk, but forfeits the check for the cardioid. 

o all remaining boxes forfeit both checks, which significantly speeds the process. 



8 

 

 

 The correction factor could be improved like this: we’ll choose a suitable number of random points N and 

we’ll obtain the count of the points belonging to M for an increasing max. number of iterations, say for K = 

256, 512, 1024, 2048, etc.. We’ll then analyze the counts obtained and roughly extrapolate what the expected 

count would be for K = ∞. The resulting correction factor would then be: 
 

fcorr = count∞ / count256 
 

which will presumably get us a more accurate estimation. For instance, for N = 100,000 points we get: 

 

K 256 512 1024 2,048 4,096 8,192 ∞ 

count K 25,501 25,352 25,312 25,277 25,261 25,254 ? 

 

Now we simply use some extrapolation or curve fitting technique to try and estimate count∞.  
  

 We can use periodicity checking within the iterations to detect loops and abort the iterations early. 
 
 We can add a check for the secondary disk (the one in box 3 in the partition above) or even other μ-atoms. 

 
 And so on and so forth ... and what about the area of other fractals (Mandelbar, Burning Ship, ...) ? 

 

 
Notes 
 

1. Quoting D. Allingham (see References below): “This method [Monte Carlo] was employed using Mathematica, 

and after 20 hours and nearly 45,000 points being generated, the approximate area of the Mandelbrot set was 

found to be 1.4880 to 4 decimal places.” Actually the result barely has 2 correct digits and shows the amazing 

progress made in the last 25 years, as now I’ve used an inexpensive tablet to run my virtual HP calculator’s 98-step 

RPN program to calculate ~ 10x more points ~ 60x faster and got a result ~ 10,000x more accurate.   
 

2. I’ve also written a 9-line (334-byte) BASIC version of this RPN program for the HP-71B. Although the random 

number generator is the same as the one Free42 uses, producing the exact same sequence of random numbers when 

using the same seed (verified up to 100 million consecutive random numbers when starting from the seed 1, as used 

in the RPN program featured here), internally the HP-71B uses 15 digits (12 digits available to the user ) while 

Free42 has 34-digit accuracy, which over many generated points and iterations tends to produce slightly different 

results, so the sample and main runs given here might not produce the exact same results shown here. 

 

 

References 
Daniel Bittner et al (2014) New Approximations for the area of the Mandelbrot Set 

Thorsten Förstemann (2012) Numerical estimation of the area of the Mandelbrot set 

Kerry Mitchel (2001)  A Statistical Investigation of the Area of the Mandelbrot Set 

David Allingham (1995)  Conformal Mappings and the Area of the Mandelbrot Set   

John Ewing (1993)   Can We See the Mandelbrot Set ? 

Ewing and Schober (1990)  On the coefficients of the mapping to the exterior of the Mandelbrot set 

A.K. Dewdney (1985)  Computer Recreations (Scientific American, August 1985 issue) 

 

Thomas Okken       Free42: An HP-42S Calculator Simulator (website) 

 
 
 

Copyrights 

Copyright for this article and its contents is retained by the author. Permission to use it for non-profit purposes is granted as 

long as the contents aren’t modified in any way and the copyright is acknowledged.  

For the purposes of this copyright, the definition of non-profit does not include publishing this article in any media for which 

a subscription fee is asked and thus such use is strictly disallowed without explicit written permision granted by the author. 


