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Boldly Going ... Going Back to the Roots 

 

© Valentín Albillo 
 

Welcome to a new a Boldly Going ... article, this time paying homage to the brand 

new offspring in the ever-growing HP calculator family, the HP35s, a very 

significant, very interesting model which essentially is HP’s attempt to go back to 

the roots by releasing a model which largely draws from classic look and feel. For 

my money, they’ve essentially succeeded and while the HP35s does have its share 

of valid criticism, the raw facts are that it is indeed a worthwhile addition to the 

lore, all the more interesting both for its strong points and its shortcomings.  

A future Long Live ... ! article will deal with both pretty soon (circumstances 

permitting), but for now, if HP can go back to the roots in the hardware side, it’s 

only natural that we would do likewise in the software side, right ? Let’s try ! 

Finding complex roots of complex equations is a complex business 

Most specially when the built-in Solver won’t do it per se. Though the HP35s 

includes pretty decent complex number handling to the point that each and every 

register (direct, indirect, stack) can hold a complex value and many arithmetic and 

transcendental functions are defined to work with them, there are also many others 

that aren’t, and in particular you can’t generally use the built-in Solver to find 

complex roots of arbitrary equations. This means that if you need to solve 

065432
234  xxxx                { 4 complex roots } 

or  

0)86()43()21()32(
23  ixixixi  { 1 real, 2 complex roots } 

or even   

    0)51(3)42(
2  ixixSin          { infinite complex roots } 

you’re definitely out of luck. But that sad state of affairs ends right now.  

This small program I’ve written anew specifically for the HP35s will allow you to 

Boldly Go where no HP35s has gone before and find a real or complex root of an 

arbitrary equation with real and/or complex coefficients starting from just one real 

or complex initial guess. The root will be displayed as labeled output and left both 

in the X stack register and direct register X. Roots will be returned as genuine 

real/complex values as appropriate, i.e., a computed real root will be a proper real 

value, not a complex value with a zero or very small imaginary component.  

Further, a real initial guess may find a complex root and vice versa. The program 

implements an optimized version of an advanced, cubically-convergent numerical 

method that typically converges very quickly to a root with speed comparable to 

that of the built-in Solver, and which, unlike Newton’s method, will foray into the 

complex domain if need be, even starting from a real initial guess. 
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Program listing for the HP 35s 

This small, 48-step RPN routine for the HP 35s will allow you to find real and/or 

complex roots of any equation or program you care to define under LBL F below: 
 

    A001  LBL A     A026 STO W 

    A002  REGX*(1i0Z)X   A027  / 
    A003  SQ(1E-4S)T   A028 STO V 

  A004  0.5Y     A029 RCL* U 

  A005  XEQ F001    A030 RCL/ W 

  A006 RCL/ Y     A031 RCL- Z 

  A007 STO U     A032  +/- 

  A008 RCL S     A033 RCL Y 

  A009 STO+ X     A034  y
X
 

  A010 XEQ F001    A035 RCL- Z 

  A011 STO V     A036 RCL/ V 

  A012 RCL S     A037 STO+ X 

  A013 STO- X     A038 RCL/ X 

  A014 STO- X     A039 ABS 

  A015 XEQ F001    A040 RCL T 

  A016 STO W     A041 X<Y? 

  A017 RCL+ V     A042 GTO A005 

  A018 RCL- U     A043  ABS(SIN(ARG(X)W)) 
  A019 RCL/ T     A044  X<Y? 

  A020 RCL V     A045  SGN(COS(W))*ABS(X)X 
  A021 RCL- W     A046 RCL X 

  A022 RCL S     A047  VIEW X 

  A023 STO+ X      A048  RTN 

  A024  /      F001  LBL F 

  A025 RCL* Y     F002  RTN 

Notes: 

 Lines A002, A003, A004, A043, and A045 hold equations, so you should 

press EQN prior to keying them in. All include store operations (the “” 

symbol) which are entered by the STO key sequence. A003 includes a +/- 

 All “*” and “/” symbols are the multiply/divide operation, respectively.  

 It uses no indirect registers, no flags, leaves direct registers A-R free for 

other purposes, and last-but-not-least, it works in any angular mode. 

 Though they’ll probably differ from yours due to the infamous checksum 

bug, f.t.r. these are my checksums for the above program and equations: 

Program or Equation Length Checksum 

LBL A 213 8501 

A002 14 3025 

A003 12 AE07 

A004 5 7F8C 

A043 18 412A 

A045 20 4A9D 
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Usage instructions 

1. This program is to be run in RPN mode so make sure the correct mode is active. 

Also, keep flag 10 cleared so that equations are evaluated, not displayed. 

2. You can solve both equations and programs. The variable being solved is 

always X and your equation or program must take the X value from direct 

register X  (not the display) and return the function value to the X stack register.  

3. To define your equation, insert it right after line F001 LBL F, using X as the 

variable to solve, and terminate the definition with a RTN instruction at line 

F003, like this example (2
nd

 sample equation in the intro): 

F002 2i3*X^3-1i2*X^2-3i4*X-6i8 

F003 RTN  

4. If you’re solving a program, enter its lines after line F001 LBL F, using direct 

register X (not the display, X stack register) to compute the functional value 

which should be left in the X stack register, finishing with a RTN instruction. 

For instance, to solve  x
x   your RPN program would be: 

    F001  LBL F 

    F002  RCL X {recall the X value to the X stack register} 

    F003  ENTER {duplicate it in the Y stack register} 

    F004 y
X
  {compute X^X} 

    F005     {place Pi in the X stack register} 

    F006  -  {compute X^X-Pi and leave the result in stk X } 

    F007  RTN  {return the result to the calling program} 

 Your program can use any direct registers from A to R for its own purposes, as 

well as all indirect registers, all flags, and whatever display and angular modes 

it needs, plus any labels save A and F. Display mode has no effect on accuracy. 

5. Enter a suitable initial guess in the display (X stack register) and execute the 

program (XEQ A). Unlike the built-in Solver, you only need to supply a single 

guess (not two), which can be real or complex and allows you to find other 

roots if they exist by varying it, as normally the closest root will be returned.  

 A real initial guess will usually result in the closest real root being found, but if 

there are none nearby, or if the given equation has no real roots, it can and will 

find the closest complex root instead. Likewise, a complex initial guess will 

usually produce a complex root, but it can find and return a real root if no 

complex roots are nearby or the equation doesn’t have any. In short, any kind of 

guess can return any kind of root, irrespective of their real/complex type.  

initial guess, XEQ A [ENTER]    X = computed root 
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6. After a while the root (real or complex) is labeled and output, remaining both 

in direct register X and in the display (X stack register), for you to store it 

somewhere else or use it right away in further computations. If desired, you 

can check that it is indeed a root by evaluating your equation or program right 

after finding it. With the root still in direct register X (the content of stack 

register X doesn’t matter), simply press: 

 XEQ F [ENTER]  value at root { should be zero or near zero } 

7. To try and find a different root, go to step 5 and enter a different initial guess. 

To solve another equation, go to step 3. To solve another program, go to step 4. 

Notes: 

 As your equation or program will be called with complex values for X, 

you must use in your definition only those functions and operations 

which admit complex values as arguments, else the program will stop 

with an  INVALID DATA message in the display as soon as a non-

supported operation is encountered. Regrettably, non-supported HP35s 

complex operations include such common functions as x  and 
2

x . You 

can replace 2
x  by  X^2  or  ENTER, *  and x   by  X^Y or RCL Y, 

x
y , 

because, as an added convenience, direct register Y contains the constant 

0.5 at all times while the program is running.  

See page 9-3 in the User’s Guide for a comprehensive list of those 

functions and operations which work with complex values. 

 Though unlikely, the algorithm might fail to converge in rare occasions. 

In that case simply stop the program and try a different initial guess. 

 It’s also possible to stumble upon a  DIVIDE BY 0  error which would 

halt the program. In that case try a different initial guess. This might 

happen for trivial 1
st
 degree or constant polynomial equations (which are 

in no need for a full solver treatment anyway) or if either the initial 

guess or some intermediate X value happens to make some derivatives 

of the solved function equal zero. This is infrequent, however, and just 

slightly changing the initial guess will do in most cases. 

 You must never delete line F001 LBL F lest you risk the built-in 

automatic renumbering wrongly updating the XEQ instructions at lines 

A005, A010, and A015 to point somewhere else. It shouldn’t happen but 

I’ve seen it happen at least twice so I think a caveat emptor is in order. 

Should you delete it accidentally or if the program misbehaves, check 

those lines to ensure the XEQ F001 instructions are unchanged. 

Likewise, never try to “optimize” the XEQ F001 instructions to XEQ 

F002, for the same reason. 
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Programming techniques 

 Powerful as it is, the HP35s is nevertheless rather a slow machine, most 

specially when evaluating equations (this includes numeric constants as 

well, be they real values, complex values, or vectors !) because they aren’t 

syntactically checked until evaluation time so that they can be used to 

display messages as well. Upon evaluation, every character has to be parsed, 

recognized as a valid identifier, then eventually executed. If the equation is 

within a loop this time-consuming process gets redone anew every time. 

 

Thus, it’s good programming practice to avoid using equations within loops 

altogether. They are best left for non-iterative sections of the program, such 

as initialization and output, which usually get done just once. That’s the case 

in the listing above, where the main loop from A005 to A042 contains just 

pure RPN code for maximum speed, while the initialization section (A001-

A004) and the output section (A043-A048) contain 5 equations in all. They 

allow for much more concise code, and the time penalty is irrelevant there. 

 Program lines A043-A045 constitute a very small but clever routine which 

makes sure a real root is returned as a genuine real value, not a complex 

value with zero or very small imaginary component. A threshold is tested 

and, if met, the complex value is converted to a properly signed real one.  

This is specially useful since there is no built-in command to extract the real 

component of a complex root and, if left as a complex value (with a zero or 

small complex component), many common functions won’t accept it as a 

valid argument ( x  or 2
x , for instance), complicating its further use. Not 

to mention its ungainly aspect in the display and diminished readability. 

Assorted Examples 

1. Find a root of :    (a)  x
x   ,    (b)  ix

x   

We’ll solve both cases with a single, generalized equation depending on a 

free parameter (R) defined at line F002 (don’t forget to press EQN first): 

F002 X^X-R     {LN=5, CK=3D1C} 

Now, let’s solve (and check) both particular cases (assume ALL display): 

         , STO R,  2, XEQ A   X = 1.85410596792  {4 seconds}  

         XEQ F   -0.00000000001  
 

   i , STO R,  XEQ A   X = 1.36062487029 i 1.11943916624  

     {it took 9 secs} XEQ F    4.45661923132E-12 i 0 
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2. Find all roots of :    0)86()43()21()32(
23  ixixixi  

Replace the equation at line F002 (if any) by this equation: 

F002 2i3*X^3-1i2*X^2-3i4*X-6i8 {LN=25, CK=AA4C} 

As this equation is a 3
rd

 degree polynomial, it will have exactly 3 roots, 

which we’ll now proceed to find (assume FIX 5 display): 

            1, XEQ A   X =  2.00000    {15 seconds} 

       -1, XEQ A   X = -0.70473 i –0.91388  {15 seconds} 

   1 i 1, XEQ A   X = -0.67988 i  0.99081  {21 seconds} 

 

Notice that although the equation, being a  3
rd

 degree polynomial, must have 

exactly 3 roots,  they do not necessarily come in complex conjugate pairs, as 

can be seen here; that’s only the case for real-coefficient polynomial 

equations while the present one has complex coefficients. Further, despite its 

complex coefficients, the very first root found happens to be  real !. 

Also note that: 

o in the case of the 1
st
 root, a real guess has produced a real root 

o in the case of the 2
nd

 root a real guess has produced a complex root 

o lastly, for the 3
rd

 root a complex guess has produced a complex root.  

 Producing a real root from a complex guess is also possible as we’ll see in 

the very next example. 
 

3. Attempt to find a complex root of:    026
3  xx  

Replace the equation at line F002 (if any) by this equation: 

F002 X^3-6*X-2     {LN=9, CK=EA16} 

As we’re trying to find a complex root it would seem fairly natural to start with 

a complex guess (assume ALL display): 

   2 i 3,  XEQ A   X = 2.60167913189 

     XEQ F   -0.0000000001 

 but as you may see we’ve got instead a real root, thus demonstrating the 4
th
 

case mentioned before, i.e.: a complex guess can produce a real root. This 

particular equation has no complex roots, all its three roots are indeed real. 
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4. Solve Leonardo di Pisa’s equation:   020102
23  xxx  

Replace the equation at line F002 (if any) by this equation: 

F002 X^3+2*X^2+10*X-20   {LN=17, CK=73A0} 

 Being a 3
rd

 degree polynomial equation with real coefficients, we know that it 

must have at least one real root and either a conjugate pair of complex roots or 

two additional (not necessarily distinct) real roots. Assuming ALL display: 

 
      1, XEQ A   X =  1.36880810782                  {5 seconds } 

  -6, XEQ A   X = -1.68440405391 i –3.4313313502  {15 seconds} 

 and we know the remaining root must be the complex conjugate of the 2
nd

 one, 

thus it automatically is  X = -1.68440405391 i 3.4313313502 and no further 

computation is required (any number of first guesses would produce it if 

desired,  -2 i 3 for instance). 

 By the way, as the equations are defined for this program in a way compatible 

with the built-in Solver, we can check how  SOLVE  does with this example: 

  FN= F, 1, STO X, SOLVE X   X =  1.36880810782  {5 seconds} 

 which completely agrees with this program’s result and takes essentially the 

same time to find the root. Of course SOLVE cannot cope with the complex 

roots so testing that case is simply not possible. 

 

5.  Find several complex roots of :   0)51(3)42(
2  ixixSin   

Replace the equation at line F002 (if any) by this equation: 

F002  SIN(2*X-i4)+3*X^2-1i5  {LN=21, CK=A8EE} 

Let’s try several different initial guesses (assume FIX 5 display): 

            0, XEQ A   X =  0.76368 i 1.11805  {18 seconds} 

      -1, XEQ A   X = -1.37126 i 0.50438  {13 seconds} 

          , XEQ A   X =  2.32883 i 0.29914  {16 seconds} 

 It seems likely that this transcendental equation has an infinite number of 

complex roots and we’ve found some of the smallest in absolute value.  

 Remember that although we’re displaying them to 5 decimal places, they are 

found to full accuracy, and you can check them with XEQ F if desired. 


