
DATAFILE Vxx Nx Page 1

Small Fry – Let’s Be Rational

Valentín Albillo (HPCC #1075)

There are times both in real-life applications (engineering, f.i.) and pure math
calculations where we need to convert a real value, given either in symbolic form
or as a decimal number, into a rational approximation which agrees with it to some
specified precision. The following short HP-71B subprogram does just that:

100 SUB DEC2FRC(X,N,D,W) @ V=1 @ N=1 @ D=0 @ Y=INF @ Z=ABS(X) @ F=SGN(X) @ X=Z
110 C=INT(X) @ IF FP(X) THEN X=1/FP(X) @ S=N ELSE N=(N*C+U)*F @ D=D*C+V @ END
120 T=D @ N=N*C+U @ U=S @ D=D*C+V @ V=T @ R=N/D @ IF ABS(R/Z-1)<=W THEN N=N*F @ END
130 IF R=Y OR MAX(N,D)>1E12 THEN N=U*F @ D=V ELSE Y=R @ GOTO 110

DEC2FRC: The Convert-Real-To-Fraction subprogram

This 4-line (229 bytes) subprogram converts a given real value to the simplest
equivalent fraction within a user-specified max. relative error. Its calling syntax is:

CALL DEC2FRC(X,N,D,W) , where:

 X input : real value to convert to fractional form
 N output: integer numerator of the simplest fraction
 D output: integer denominator of the simplest fraction
 W input : maximum relative error (0 means maximum accuracy)

It uses continued fractions to generate convergents until one meets the specified
tolerance, which is also guaranteed to be in its lowest terms, i.e.: numerator and
denominator have no common factor.

Examples: Convert π to a rational within 1E-7, then with maximum accuracy:

>CALL DEC2FRC(PI,N,D,1E-7) @ N;”/”;D,N/D;PI
 355 / 113 3.14159292035 3.14159265359

>CALL DEC2FRC(PI,N,D,0) @ N;”/”;D,N/D;PI
 1146408 / 364913 3.14159265359 3.14159265359

You can also use it to perform exact rational arithmetic ...

>CALL DEC2FRC(1+1/2+1/3+1/4+1/5+1/6+1/7,N,D,0) @ N;”/”;D
 363 / 140

... or to reduce fractions to lowest terms:
>CALL DEC2FRC(-15318/16169,N,D,0) @ N;”/”;D

 -18 / 19

Specifying maximum precision (W=0) will frequently get you an exact fit but
sometimes at the expense of unnecessarily large terms. Compare these two runs:

Page 2 DATAFILE Vxx Nx

>CALL DEC2FRC(0.66666666668,N,D,0) @ N;"/";D
16666666667 / 25000000000 {= 0.66666666668 }

>CALL DEC2FRC(0.66666666668,N,D,1E-10) @ N;"/";D
2 / 3 {= 0.66666666667 }

As a bonus, you can see the continued fraction representation of a given value by
doing this simple modification: change line

110 C=INT(X) @ IF FP(X) ...
to:

110 C=INT(X) @ DISP C; @ IF FP(X) ...

Then, upon calling it, all terms of the continued fraction will be displayed, e.g.:
>CALL DEC2FRC(PI,N,D,0) @ DISP
 3 7 15 1 292 1 1 1 2 1

so π ’s continued fraction is (3,7,15,1,292,1,1,1,2,1,...) which evaluates to:
>3+1/(7+1/(15+1/(1+1/(292+1/(1+1/(1+1/(1+1/(2+1/1)))))))), PI

3.14159265359 3.14159265359

Yet another simple modification will output the successive convergents as they’re
being computed. If you made the previous modification first restore line 110 to its
original form (remove the DISP C; @ statement), and then change line

120 T=D @ N=N*C+U @ U=S @ D=D*C+V @ V=T @ R=N/D @ IF ABS ...
to:

120 T=D @ N=N*C+U @ U=S @ D=D*C+V @ V=T @ R=N/D @ DISP N;D @ IF ABS ...

and then, upon calling it, all successive convergents will be displayed:
>CALL DEC2FRC(PI,N,D,0)

 3 1 {3/1 = 3 }
22 7 {22/7 = 3.14285714286}
333 106 {333/106 = 3.14150943396}
355 113 {355/113 = 3.14159292035}
103993 33102 {103993/33102 = 3.14159265301}
104348 33215 {104348/33215 = 3.14159265392}
208341 66317 {208341/66317 = 3.14159265347}
312689 99532 {312689/99532 = 3.14159265362}
833719 265381 {833719/265381 = 3.14159265358}
1146408 364913 {1146408/364913 = 3.14159265359}

You might want to alter the routine to accept additional parameters so you can
leave the modifications permanently available but optional, offer the choice of just
display or return the continued fraction/convergents to the caller, or even convert
the routine to RPN or RPL. But that’s left as an exercise for the reader.

Though very capable by itself, DEC2FRC can also be used as a building block to
create much more complex programs. See “Boldly Going - Identifying Constants”
in this same issue of Datafile for a particularly impressive application.

