Small Fry – Primes A'counting

Valentín Albillo (HPCC #1075)

Welcome to a new series which will feature some of my *shortest* routines and programs (usually coded for the HP-71B but occasionally also for other models such as the HP-15C, 34C, 41C, etC.), where the accent is placed on *lightness*, both lightness of content *and* lightness of exposition (<= 1 page).

Let's begin with the topic of *prime counting*, i.e., *finding out how many prime numbers there are up to a given limit* N. For large N, generating all primes up to N and returning the count is prohibitive. In fact, getting the *exact* count for N>10²⁰ is a daunting task requiring utmost computational power. But if we content ourselves with an *asymptotic* approximation, where "asymptotic" means the *larger* is N the *smaller* is the *relative* error, then this 8-liner is a *fast, extremely accurate* one:

```
100 DEF FNZ(Z) @ IF Z=2 THEN FNZ=PI*PI/6 ELSE IF Z=3 THEN FNZ=1.20205690316
110 IF Z=4 THEN FNZ=1.08232323371 ELSE IF Z=5 THEN FNZ=1.03692775514
120 IF Z=6 THEN FNZ=1.01734306198 ELSE IF Z=7 THEN FNZ=1.00834927738
130 IF Z<8 THEN END ELSE S=1 @ T=0 @ N=2
140 S=S+N^(-Z) @ N=N+1 @ IF S<>T THEN T=S @ GOTO 140 ELSE FNZ=S
150 DEF FNR(N) @ J=LN(N) @ R=1 @ N=1 @ K=1
160 R=R+1/(K*FNZ(K+1))*J^K/FACT(K) @ IF R<>N THEN K=K+1 @ N=R @ GOTO 160
170 FNR=INT(R+.5) @ END DEF
```

This code implements two multiline user-defined functions, namely:

<u>FNR(N)</u> gives a very close approximation to the number of primes up to N FNZ(N) auxiliary: returns Riemann's Z function for integer N>1, fast

Let's test our function **FNR(N)** for $N = 10^3$, 10^6 , 10^9 , 10^{12} , 4.10^{16} :

> FOR I=3 TO 2	12 STEP 3 @ DISP	10^I,FNR(10^I) @ NEXT	I @ DISP 4E16,FNR(4E16)
1000	168	$\{ exact = 168 \}$, % $err = 0$ }
1000000	78527	{ exact = 78498	, % err = 0.0369% }
100000000	50847455	{ exact = 50847534	, % err =-0.000155% }
1.E12	37607910541	{ exact = 37607912018	, % err =-0.000004% }
4.E16	1.07529277875E15	{ exact = 107529277879315	0 , % err =-0.00000004% }

As you can see, this is *very close* to the exact values and the relative error (which never is that big anyway) decreases very quickly for large N. How well does it fare against other well-known approximations ? Let's check for N large and small:

Approximation	# Primes up to N=1000	# Primes up to N = 10^{12}
N/LN(N)	145 (-13.69%)	36191206825 (-3.767040%)
Log Integral Li(N)	177 (5.36%)	37607950280 (0.000102%)
This approximation	168 (0.00%)	37607910541 (-0.000004%)
Exact count	168 -	37607912018 -

Pretty good, isn't it ? And lots faster than generating and counting primes ! ...