
DATAFILE Vxx Nx Page 1

Boldly Going ... Matrix Square Root

Valentín Albillo (HPCC #1075)

Welcome to the very first of a new series of articles under the generic name of
Boldly Going ... (“where no HP calc has gone before”, of course !), where I’ll
(boldly) go into math topics very rarely seen, if at all, as they’re frequently
neglected due to their perceived unusual difficulty. Most people wouldn’t know
where to begin in order to tackle them: neither do our calculators feature them as
built-in functionality nor can programmed solutions be found. Nevertheless I’ll
show, in a non-rigorous way which you’re expected to improve upon, that the beast
can be tamed (usually with surprisingly little code), so that you’ll be able to do
with your vintage HP things many all-powerful, newer models won’t even touch.

For instance, let’s suppose that some friend, duly impressed by your brand-new
HP48/49/50, after hearing from you that it’ll do all sort of matrix operations, went
then to ask you to find the matrix square root of these two neat little matrices:
 | 56 97 17 89 | | 4 + i 7 + i 3 - i 4 + 2i |
 A = | 33 -68 -42 5 | , A = | 6 - i 9 + 4i 8 – 3i 3 – 2i |
 | -206 -48 -34 -104 | | 1 + 3i 1 – 2i 4 + 2i 3 + i |
 | -39 92 27 30 | | 2 - i 1 + 4i -3 + 4i 1 + i |

that is, to find matrices R so that R*R = A. Apart from softly weeping, what can
you do about it ? Don’t despair, we’ll see that a few lines of code will do and, for
the real case, even an HP-15C will suffice for dealing with up to 4x4 matrices.

Squarely computing square roots of square matrices
Computing the square root of a matrix is an infrequent operation which is fraught
with difficulties. To begin with, only square matrices are eligible, of course, but
then, unlike the case of a real or complex scalar value, which always has exactly
two square roots, a matrix can have more than two square roots (for instance, the
NxN identity matrix has at least 2N square roots) up to infinity, and can also have
none whatsoever, not even considering the whole complex domain for its elements.

Further, algorithms for computing the matrix square root when it does exist, are
usually ridden with numerical instabilities, often failing to converge even when
theoretically possible, or needing a large number of iterations, with the usual
problem of rounding errors accumulating over time. That’s the case when trying to
use a straight matricial version of Newton’s method to solve the equivalent
matricial equation R*R = A. It should converge fast but frequently it does not,
ultimately resulting in divergence, so more stable methods are definitely required.

Taking these difficulties into account and as the square root of a matrix is rarely
seen outside of advanced engineering applications, it’s not surprising that no
calculator does include this functionality as a built-in feature, even those having
extensive matrix capabilities. But should the need arise, what’s one to do ?

Page 2 DATAFILE Vxx Nx

Well, the theory is pretty complicated and we won’t deal here with the existence
and number of square roots of a given matrix nor the diverse methods available for
computing them and their numerical properties, you can “google the web” for the
details if interested. Instead, we’ll be satisfied with a couple of pretty simple but
workable implementations of a good, numerically stable algorithm (see below)
which will (often) find a square root for any given matrix if one does exist: one
version for the general case (real or complex matrix), implemented in HP-71B‘s
BASIC, the other for the real matrix case, implemented in RPN for the HP-15C.

1. General case: Program listing for the HP-71B

This 7-line (253-byte) subprogram, MATSQRT, takes a real or complex NxN matrix
as input and attempts to find one of its square roots. If none can be found it returns
the zero matrix instead. A convergence indicator is shown while running.

 SUB MATSQRT(A(,)) @ N=UBND(A,1) @ T=TYPE(A)
 IF T=5 THEN REAL B(N,N),C(N,N),D(N,N)
 IF T=7 THEN COMPLEX B(N,N),C(N,N),D(N,N)
 MAT B=IDN @ FOR T=1 TO 20 @ MAT C=INV(B) @ MAT C=A+C @ MAT C=(.5)*C
 MAT D=INV(A) @ MAT D=B+D @ MAT D=(.5)*D @ MAT B=A-C @ MAT A=C
 N=FNORM(B) @ DISP N; @ IF N/FNORM(A)<.0000001 THEN END
 MAT B=D @ NEXT T @ MAT A=ZER

Notes:
• You can use whatever line numbering suits you, no line numbers are

internally addressed. Math ROM matrix keywords are extensively used.
• A test is made to determine the type (real/complex) of the input matrix

(which is assumed to be square), and 3 similar auxiliary matrices are then
created. Thus complex operations and matrices are used/returned if and
only if the argument matrix is complex, else everything is kept real,
saving memory and run time. SHORT type matrices aren’t supported.

• If convergence isn’t achieved within 20 iterations, no square root was
found and the zero matrix is returned instead. The calling program can
easily check for this by testing the result matrix FNORM against zero. You
can also increase the iteration limit (20) and try again if desired.

• The relative tolerance to terminate is set to 1E-7 which should be
adequate in most cases to optimize precision vs. computation speed.

Usage instructions

Simply execute the statement:
CALL MATSQRT(A)

from the command line or a program, where A is the real or complex square matrix
whose square root you want to find. The result will be returned in A itself if the
square root was indeed found, else the zero matrix will be returned. You can easily
check the result by computing A*A, which should be very close to the original A.

DATAFILE Vxx Nx Page 3

Example

1. Find a square root of the 4x4 complex matrix:

 | 4 + i 7 + i 3 - i 4 + 2i |

 A = | 6 - i 9 + 4i 8 – 3i 3 – 2i |
 | 1 + 3i 1 – 2i 4 + 2i 3 + i |
 | 2 - i 1 + 4i -3 + 4i 1 + i |

 First of all, let’s create the matrix and input its elements from the keyboard:

 >DESTROY A @ OPTION BASE 1 @ COMPLEX A(4,4) @ MAT INPUT A [ENTER]

 A(1,1) ? (4, 1),(7, 1),(3,-1),(4, 2) [ENTER]
 A(2,1) ? (6,-1),(9, 4),(8,-3),(3,-2) [ENTER]
 A(3,1) ? (1, 3),(1,-2),(4, 2),(3, 1) [ENTER]
 A(4,1) ? (2,-1),(1, 4),(-3, 4),(1, 1) [ENTER]

Now let’s compute and display its square root, in FIX 4. After each iteration, a
convergence indicator is displayed, which must converge to 0 if the matrix
square root is to be found:

 >FIX 4 @ CALL MATSQRT(A) @ MAT DISP A; [ENTER]

 9.7340 7.7617 3.6823 ... 0.0001 3.9004E-9 { convergence achieved ! }

 (0.9868,-0.0946) (2.0348,-0.1254) (0.9028, 0.5128) (1.0584, 1.3773)
 (1.1578,-0.6776) (2.8900, 1.0990) (0.9221,-0.8419) (-0.1454,-0.4297)
 (0.0655, 1.1255) (-0.0061,-0.9580) (2.6403, 0.2270) (1.2978, 0.0147)
 (1.2080,-0.0028) (-0.3845, 0.7936) (-1.2190, 0.4988) (1.1247,-0.5958)

 So one of the square roots of matrix A is :

 | 0.9868-0.0946i 2.0348-0.1254i 0.9028+0.5128i 1.0584+1.3773i |
 | |
 | 1.1578-0.6776i 2.8900+1.0990i 0.9221-0.8419i -0.1454-0.4297i |
 R = | |
 | 0.0655+1.1255i -0.0061-0.9580i 2.6403+0.2270i 1.2978+0.0147i |
 | |
 | 1.2080-0.0028i -0.3845+0.7936i -1.2190+0.4988i 1.1247-0.5958i |

 Let’s check the result by squaring it, to see if we get the original A:

 >MAT A=A*A @ MAT DISP A; [ENTER]

 (4.0000, 1.0000) (7.0000, 1.0000) (3.0000,-1.0000) (4.0000, 2.0000)
 (6.0000,-1.0000) (9.0000, 4.0000) (8.0000,-3.0000) (3.0000,-2.0000)
 (1.0000, 3.0000) (1.0000,-2.0000) (4.0000, 2.0000) (3.0000, 1.0000)
 (2.0000,-1.0000) (1.0000, 4.0000) (-3.0000, 4.0000) (1.0000, 1.0000)

which indeed does reproduce the original matrix A to the precision shown. A
second root would be –R and still others might possibly exist.

Page 4 DATAFILE Vxx Nx

2. Real case: Program listing for the HP-15C version
This small, 45-step RPN routine for the HP-15C implements a modified version of
the above program that does require one less auxiliary matrix, thus allowing the
HP-15C to compute the real square root of real square matrices up to 4x4 with
room to spare, no mean feat. It is assumed that the input matrix is stored as matrix
A, which will be replaced by one of its square roots. A convergence indicator is
shown after each iteration, which should converge to the dimension of the matrix.

 01 LBL A 16 RCL MATRIX B 31 RCL MATRIX B
 02 RCL DIM A 17 1/X 32 +
 03 STO I 18 RESULT A 33 RESULT B
 04 DIM B 19 RCL MATRIX A 34 2
 05 DIM C 20 + 35 /
 06 CLX 21 RESULT C 36 RESULT C
 07 STO MATRIX B 22 RCL MATRIX C 37 RCL MATRIX A
 08 MATRIX 1 23 - 38 *
 09 X<> 0 24 RESULT A 39 MATRIX 8
 10 LBL 0 25 RCL MATRIX A 40 X^2
 11 STO+ 0 26 2 41 PSE
 12 uSTO B 27 / 42 RND
 13 GTO 0 28 RESULT C 43 RCL I
 14 LBL 1 29 X<>Y 44 TEST 6
 15 RESULT C 30 1/X 45 GTO 1

Notes:
• Unlike the HP-71B routine above, there’s no limit on the number of

iterations. You can watch convergence by checking the indicator briefly
displayed after each iteration, which should converge to the dimension of the
input matrix (i.e., to 4 for a 4x4 matrix) if a square root can be found

• The program has found a square root and automatically stops if the
convergence indicator equals the matrix dimension when rounded to the
display setting specified (i.e., FIX 4, say), so you can control both precision
and running time by setting the display mode before running the program.

• If the convergence indicator fails to converge, you should stop the routine
manually. This may happen if the input matrix doesn’t have square roots.

• Step 12 is a “User” STO instruction and must be entered in USER mode.

Usage instructions

Just reserve space for 3 matrices with DIM (i), set your chosen FIX display mode,
have your input matrix stored in memory as matrix A (up to 4x4), and execute:

GSB A (or simply A in USER mode)

Once convergence within the specified display setting is achieved, the program
stops with the result stored in A itself. You can check the result by computing A*A,
which should be very close to the original A.

DATAFILE Vxx Nx Page 5

Examples

1. Find a square root of the 3rd order Hilbert matrix:

 | 1 1/2 1/3 |
 | |
 A = | 1/2 1/3 1/4 |
 | |
 | 1/3 1/4 1/5 |

 Let’s create the matrix and input its elements from the keyboard:

 0, DIM (i), MATRIX 0, 3, ENTER, DIM A, MATRIX 1, USER,
 1, STO A, .5, STO A, 3, 1/X, STO A,
 X<>Y, STO A, X<>Y, STO A, .25, STO A,
 X<>Y, STO A, X<>Y, STO A, .2, STO A, USER, FIX 4

Now let’s compute and display its square root, in FIX 4. After each iteration, the
convergence indicator is displayed, which will converge to 3 (this is a 3x3
matrix) in some two and a half minutes or so:

 GSB A -> 8,755.4469 -> 573.0348 -> 44.0363
 -> 6.6614 -> 3.3353 -> 3.0105
 -> 3.0000 -> 3.0000 { convergence achieved ! }

 To output the computed square root simply output A’s elements as usual:

 MATRIX 1, USER, RCL A, RCL A, ..., RCL A, USER

 and you’ll get:
 | 0.9174 0.3455 0.1976 |
 | |
 SQRT(A) = | 0.3455 0.3750 0.2709 |
 | |
 | 0.1976 0.2709 0.2959 |

2. Find a square root of the 4x4 matrix:
 | 56 97 17 89 |
 | |
 | 33 -68 -42 5 |
 A = | |
 | -206 -48 -34 -104 |
 | |
 | -39 92 27 30 |

Let’s create the matrix and input its elements from the keyboard (remember to
use CHS to enter negative values):

 0, DIM (i), MATRIX 0, 4, ENTER, DIM A, MATRIX 1, USER,
 56, STO A, 97, STO A, 17, STO A, 89, STO A,
 33, STO A, -68, STO A, -42, STO A, 5, STO A,
 -206, STO A, -48, STO A, -34, STO A, -104, STO A,
 -39, STO A, 92, STO A, 27, STO A, 30, STO A, USER, FIX 4

Now let’s compute and display its square root, in FIX 4. This time convergence
will be to 4 (it’s a 4x4 matrix) in about four and a half minutes:

Page 6 DATAFILE Vxx Nx

 GSB A -> 6,040.2650 -> 383.7246 -> 29.7370 -> 6.6446
 -> 4.9362 -> 4.0163 -> 4.0000 -> 4.0000

 Again, let’s output the matrix square root:

 MATRIX 1, USER, RCL A, RCL A, ..., RCL A, USER

 and get:
 | 8.0000 6.0000 1.0000 7.0000 |
 | |
 | -7.0000 -1.0001 -8.0000 3.0000 |
 SQRT(A) = | |
 | -8.0001 6.0000 8.0000 -6.0000 |
 | |
 | 6.0000 7.0000 7.0000 3.0000 |

 which is exact to 4 decimal places save a couple of ulps here and there.

3. Attempt to find a square root of the 2x2 matrix:
 | 0 1 |
 A = | |
 | 0 0 |

As always, let’s create the matrix and input its elements from the keyboard:
 0, DIM (i), MATRIX 0, 2, ENTER, DIM A, MATRIX 1, USER,
 0, STO A, 1, STO A, 0, STO A, STO A, USER, FIX 4

Now let’s attempt to compute and display its square root, in FIX 4. This time
convergence should be to 2 (it’s a 2x2 matrix), but ...

 GSB A -> 9.999999 99 -> 9.999999 99 -> ... press R/S, CF 9

 ... it doesn’t converge so we had to stop it manually (and CF 9 to stop the display

blinking due to the overflow condition). This is a singular matrix which simply
doesn’t have any square roots at all, even allowing for complex elements.
Matter of fact, for singular matrices like this one (Determinant = 0) the existence
of square roots isn’t guaranteed but depends on the structure of the elementary
divisors of the matrix corresponding to the zero eigenvalues.

Algorithms used

Both versions of the program are based on the Denman and Beavers matrix square
root iteration, which is pretty simple, quadratically convergent and numerically
stable (though it may take a while for the convergence to begin in earnest):

 P0 = A, Q0 = I,

 { Pk+1 = 1/2*(P k + Q k
-1) , Q k+1 = 1/2*(Q k + P k

-1) } for k = 0, 1, 2, ...

using different termination criteria specifically taylored for each particular version.

