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Boldly Going ... Matrix Square Root 
 

Valentín Albillo (HPCC #1075) 
 

Welcome to the very first of a new series of articles under the generic name of 
Boldly Going ... (“where no HP calc has gone before”, of course !), where I’ll 
(boldly) go into math topics very rarely seen, if at all, as they’re frequently 
neglected due to their perceived unusual difficulty. Most people wouldn’t know 
where to begin in order to tackle them: neither do our calculators feature them as 
built-in functionality nor can programmed solutions be found. Nevertheless I’ll 
show, in a non-rigorous way which you’re expected to improve upon, that the beast 
can be tamed (usually with surprisingly little code), so that you’ll be able to do 
with your vintage HP things many all-powerful, newer models won’t even touch. 

For instance, let’s suppose that some friend, duly impressed by your brand-new 
HP48/49/50, after hearing from you that it’ll do all sort of matrix operations,  went 
then to ask you to find the matrix square root of these two neat little matrices: 
      |   56   97   17   89  |       |  4 +  i   7 +  i   3 -  i   4 + 2i  | 
  A = |   33  -68  -42    5  | , A = |  6 -  i   9 + 4i   8 – 3i   3 – 2i  | 
      | -206  -48  -34 -104  |       |  1 + 3i   1 – 2i   4 + 2i   3 +  i  | 
      |  -39   92   27   30  |       |  2 -  i   1 + 4i  -3 + 4i   1 +  i  | 

that is, to find matrices R so that  R*R = A. Apart from softly weeping, what can 
you do about it ? Don’t despair, we’ll see that a few lines of code will do and, for 
the real case, even an HP-15C will suffice for dealing with up to 4x4 matrices. 

Squarely computing square roots of square matrices 
Computing the square root of a matrix is an infrequent operation which is fraught 
with difficulties. To begin with, only square matrices are eligible, of course, but 
then, unlike the case of a real or complex scalar value, which always has exactly 
two square roots, a matrix can have more than two square roots (for instance, the 
NxN identity matrix has at least 2N square roots) up to infinity, and can also have 
none whatsoever, not even considering the whole complex domain for its elements. 

Further, algorithms for computing the matrix square root when it does exist, are 
usually ridden with numerical instabilities, often failing to converge even when 
theoretically possible, or needing a large number of iterations, with the usual 
problem of rounding errors accumulating over time. That’s the case when trying to 
use a straight matricial version of Newton’s method to solve the equivalent 
matricial equation  R*R = A. It should converge fast but frequently it does not, 
ultimately resulting in divergence, so more stable methods are definitely required. 

Taking these difficulties into account and as the square root of a matrix is rarely 
seen outside of advanced engineering applications, it’s not surprising that no 
calculator does include this functionality as a built-in feature, even those having 
extensive matrix capabilities. But should the need arise, what’s one to do ? 



Page 2 DATAFILE Vxx Nx 

Well, the theory is pretty complicated and we won’t deal here with the existence 
and number of square roots of a given matrix nor the diverse methods available for 
computing them and their numerical properties, you can “google the web” for the 
details if interested. Instead, we’ll be satisfied with a couple of pretty simple but 
workable implementations of a good, numerically stable algorithm (see below) 
which will (often) find a square root for any given matrix if one does exist: one 
version for the general case (real or complex matrix), implemented in HP-71B‘s 
BASIC, the other for the real matrix case, implemented in RPN for the HP-15C. 

1. General case: Program listing for the HP-71B 

This 7-line (253-byte) subprogram, MATSQRT, takes a real or complex NxN matrix 
as input and attempts to find one of its square roots. If none can be found it  returns 
the zero matrix instead. A convergence indicator is shown while running. 

  SUB MATSQRT(A(,)) @ N=UBND(A,1) @ T=TYPE(A) 
  IF T=5 THEN REAL B(N,N),C(N,N),D(N,N) 
  IF T=7 THEN COMPLEX B(N,N),C(N,N),D(N,N) 
  MAT B=IDN @ FOR T=1 TO 20 @ MAT C=INV(B) @ MAT C=A+C @ MAT C=(.5)*C 
  MAT D=INV(A) @ MAT D=B+D @ MAT D=(.5)*D @ MAT B=A-C @ MAT A=C 
  N=FNORM(B) @ DISP N; @ IF N/FNORM(A)<.0000001 THEN END 
  MAT B=D @ NEXT T @ MAT A=ZER  

Notes: 
• You can use whatever line numbering suits you, no line numbers are  

internally addressed. Math ROM matrix keywords are extensively used. 
• A test is made to determine the type (real/complex) of the input matrix 

(which is assumed to be square), and 3 similar auxiliary matrices are then 
created. Thus complex operations and matrices are used/returned if and 
only if the argument matrix is complex, else everything is kept real,  
saving memory and run time. SHORT type matrices aren’t supported. 

• If convergence isn’t achieved within 20 iterations, no square root was 
found and the zero matrix is returned instead. The calling program can 
easily check for this by testing the result matrix FNORM against zero. You 
can also increase the iteration limit (20) and try again if desired. 

• The relative tolerance to terminate is set to 1E-7 which should be 
adequate in most cases to optimize  precision vs. computation speed. 

Usage instructions 

Simply execute the statement: 
CALL MATSQRT(A)  

from the command line or a program, where A is the real or complex square matrix 
whose square root you want to find. The result will be returned in A itself if the 
square root was indeed found, else the zero matrix will be returned. You can easily 
check the result by computing  A*A, which should be very close to the original A. 
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Example 
 

1. Find a square root of the 4x4 complex matrix: 

 
         |  4 +  i    7 +  i    3 -  i    4 + 2i  | 

   A = |  6 -  i    9 + 4i    8 – 3i    3 – 2i  | 
         |  1 + 3i    1 – 2i    4 + 2i    3 +  i  | 
         |  2 -  i    1 + 4i   -3 + 4i    1 +  i  | 

 

    First of all, let’s create the matrix and input its elements from the keyboard: 

   >DESTROY A @ OPTION BASE 1 @ COMPLEX A(4,4) @ MAT INPUT A [ENTER] 
 
      A(1,1) ?  (4, 1),(7, 1),( 3,-1),(4, 2)  [ENTER] 
      A(2,1) ?  (6,-1),(9, 4),( 8,-3),(3,-2)  [ENTER]  
      A(3,1) ?  (1, 3),(1,-2),( 4, 2),(3, 1)  [ENTER]   
      A(4,1) ?  (2,-1),(1, 4),(-3, 4),(1, 1)  [ENTER]  
 
 

Now let’s compute and display its square root, in FIX 4. After each iteration, a 
convergence indicator is displayed, which must converge to 0 if the matrix 
square root is to be found: 

 >FIX 4 @ CALL MATSQRT(A) @ MAT DISP A;    [ENTER] 
 
       9.7340  7.7617  3.6823  ...  0.0001   3.9004E-9  { convergence achieved ! } 
 
 (0.9868,-0.0946)  ( 2.0348,-0.1254)  ( 0.9028, 0.5128)  ( 1.0584, 1.3773) 
 (1.1578,-0.6776)  ( 2.8900, 1.0990)  ( 0.9221,-0.8419)  (-0.1454,-0.4297) 
 (0.0655, 1.1255)  (-0.0061,-0.9580)  ( 2.6403, 0.2270)  ( 1.2978, 0.0147) 
 (1.2080,-0.0028)  (-0.3845, 0.7936)  (-1.2190, 0.4988)  ( 1.1247,-0.5958) 
 
    So one of the square roots of matrix  A  is :  
 
      | 0.9868-0.0946i   2.0348-0.1254i   0.9028+0.5128i   1.0584+1.3773i | 
      |                                                                   | 
      | 1.1578-0.6776i   2.8900+1.0990i   0.9221-0.8419i  -0.1454-0.4297i | 
  R = |                                                                   | 
      | 0.0655+1.1255i  -0.0061-0.9580i   2.6403+0.2270i   1.2978+0.0147i | 
      |                                                                   | 
      | 1.2080-0.0028i  -0.3845+0.7936i  -1.2190+0.4988i   1.1247-0.5958i | 
 

    Let’s check the result by squaring it, to see if we get the original A: 
 
   >MAT A=A*A @ MAT DISP A;  [ENTER] 
 
 (4.0000, 1.0000)  (7.0000, 1.0000)  ( 3.0000,-1.0000)  (4.0000, 2.0000) 
 (6.0000,-1.0000)  (9.0000, 4.0000)  ( 8.0000,-3.0000)  (3.0000,-2.0000) 
 (1.0000, 3.0000)  (1.0000,-2.0000)  ( 4.0000, 2.0000)  (3.0000, 1.0000) 
 (2.0000,-1.0000)  (1.0000, 4.0000)  (-3.0000, 4.0000)  (1.0000, 1.0000) 
  

which indeed does reproduce the original matrix  A  to the precision shown. A 
second root would be –R and still others might possibly exist. 
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2. Real case: Program listing for the HP-15C version 
This small, 45-step RPN routine for the HP-15C implements a modified version of 
the above program that does require one less auxiliary matrix, thus allowing the 
HP-15C to compute the real square root of real square matrices up to 4x4 with 
room to spare, no mean feat. It is assumed that the input matrix is stored as matrix 
A, which will be replaced by one of its square roots. A convergence indicator is 
shown after each iteration, which should converge to the dimension of the matrix. 

    01  LBL A          16  RCL MATRIX B   31  RCL MATRIX B 
    02  RCL DIM A      17  1/X            32   + 
    03  STO I          18  RESULT A       33  RESULT B 
    04  DIM B          19  RCL MATRIX A   34   2 
    05  DIM C          20   +             35   / 
    06  CLX            21  RESULT C       36  RESULT C 
    07  STO MATRIX B   22  RCL MATRIX C   37  RCL MATRIX A 
    08  MATRIX 1       23   -             38   * 
    09  X<> 0          24  RESULT A       39  MATRIX 8 
    10  LBL 0          25  RCL MATRIX A   40  X^2 
    11  STO+ 0         26   2             41  PSE 
    12 uSTO B          27   /             42  RND 
    13  GTO 0          28  RESULT C       43  RCL I 
    14  LBL 1          29  X<>Y           44  TEST 6 
    15  RESULT C       30  1/X            45  GTO 1 

Notes: 
• Unlike the HP-71B routine above, there’s no limit on the number of 

iterations. You can watch convergence by checking the indicator briefly 
displayed after each iteration, which should converge to the dimension of the 
input matrix (i.e., to 4 for a 4x4 matrix) if a square root can be found 

• The program has found a square root and automatically stops if the 
convergence indicator equals the matrix dimension when rounded to the 
display setting specified (i.e., FIX 4, say), so you can control both precision 
and running time by setting the display mode before running the program. 

• If the convergence indicator fails to converge, you should stop the routine 
manually. This may happen if the input matrix doesn’t have square roots. 

• Step 12 is a “User” STO  instruction and must be entered in  USER  mode. 

Usage instructions 

Just reserve space for 3 matrices with DIM (i), set your chosen FIX display mode, 
have your input matrix stored in memory as matrix  A (up to 4x4), and execute: 

GSB A  (or simply A in USER mode) 

Once convergence within the specified display setting is achieved, the program 
stops with the result stored in A itself. You can check the result by computing  A*A, 
which should be very close to the original A. 
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Examples 

1. Find a square root of the 3rd order Hilbert matrix: 
 
            |  1   1/2  1/3  | 
            |                | 
        A = | 1/2  1/3  1/4  | 
            |                | 
            | 1/3  1/4  1/5  | 
   

    Let’s create the matrix and input its elements from the keyboard: 

      0, DIM (i), MATRIX 0, 3, ENTER, DIM A, MATRIX 1, USER, 
        1,  STO A,  .5,  STO A, 3, 1/X, STO A, 
      X<>Y, STO A, X<>Y, STO A,  .25,   STO A, 
      X<>Y, STO A, X<>Y, STO A,  .2,    STO A, USER, FIX 4 
 

Now let’s compute and display its square root, in FIX 4. After each iteration, the 
convergence indicator is displayed, which will converge to 3 (this is a 3x3 
matrix) in some two and a half minutes or so: 

       GSB A -> 8,755.4469 -> 573.0348 -> 44.0363  
             ->     6.6614 ->   3.3353 ->  3.0105  
             ->     3.0000 ->   3.0000    { convergence achieved ! } 

    To output the computed square root simply output A’s elements as usual: 
    
       MATRIX 1, USER, RCL A, RCL A, ..., RCL A, USER 
 
  and you’ll get: 
                | 0.9174   0.3455   0.1976  | 
                |                           | 
      SQRT(A) = | 0.3455   0.3750   0.2709  | 
                |                           | 
                | 0.1976   0.2709   0.2959  | 
 
 
2. Find a square root of the 4x4 matrix: 
          |   56   97   17   89  | 
          |                      | 
          |   33  -68  -42    5  | 
      A = |                      | 
          | -206  -48  -34 -104  | 
          |                      | 
          |  -39   92   27   30  | 
 

Let’s create the matrix and input its elements from the keyboard (remember to 
use CHS to enter negative values): 

      0, DIM (i), MATRIX 0, 4, ENTER, DIM A, MATRIX 1, USER, 
      56, STO A,  97, STO A,  17, STO A,   89, STO A, 
      33, STO A, -68, STO A, -42, STO A,    5, STO A, 
    -206, STO A, -48, STO A, -34, STO A, -104, STO A, 
     -39, STO A,  92, STO A,  27, STO A,   30, STO A, USER, FIX 4 
 

Now let’s compute and display its square root, in FIX 4. This time convergence 
will be to 4 (it’s a 4x4 matrix) in about four and a half minutes: 
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      GSB A -> 6,040.2650 -> 383.7246 -> 29.7370 -> 6.6446 
            ->     4.9362 ->   4.0163 ->  4.0000 -> 4.0000 
 
    Again, let’s output the matrix square root: 
    
       MATRIX 1, USER, RCL A, RCL A, ..., RCL A, USER 
 
  and get: 
                |  8.0000   6.0000   1.0000   7.0000  | 
                |                                     | 
                | -7.0000  -1.0001  -8.0000   3.0000  | 
      SQRT(A) = |                                     | 
                | -8.0001   6.0000   8.0000  -6.0000  | 
                |                                     | 
                |  6.0000   7.0000   7.0000   3.0000  | 
 
  which is exact to 4 decimal places save a couple of ulps here and there. 
 
 
3. Attempt to find a square root of the 2x2 matrix: 
          |  0  1  | 
      A = |        | 
          |  0  0  | 
 

As always, let’s create the matrix and input its elements from the keyboard:  
      0, DIM (i), MATRIX 0, 2, ENTER, DIM A, MATRIX 1, USER, 
      0, STO A,  1, STO A,  0, STO A, STO A, USER, FIX 4 
 

Now let’s attempt to compute and display its square root, in FIX 4. This time 
convergence should  be to 2 (it’s a 2x2 matrix), but ... 

      GSB A -> 9.999999 99 -> 9.999999 99 -> ... press R/S, CF 9 
 
  ... it doesn’t converge so we had to stop it manually (and CF 9 to stop the display 

blinking due to the overflow condition). This is a singular matrix which simply 
doesn’t have any square roots at all, even allowing for complex elements. 
Matter of fact, for singular matrices like this one (Determinant = 0) the existence 
of square roots isn’t guaranteed but depends on the structure of the elementary 
divisors of the matrix corresponding to the zero eigenvalues. 

 

Algorithms used 

Both versions of the program are based on the Denman and Beavers matrix square 
root iteration, which is pretty simple, quadratically convergent and numerically 
stable (though it may take a while for the convergence to begin in earnest): 

      P0 = A,  Q0 = I,    

      {  Pk+1 = 1/2*(P k + Q k
-1) ,  Q k+1  = 1/2*(Q k  + P k

-1) }   for  k = 0, 1, 2, ... 

using different termination criteria specifically taylored for each particular version.  


