
DATAFILE Vxx Nx Page 1

Long Live The HP-71B !

Valentín Albillo (HPCC #1075)

As much as I loved RPN, back in the early 80’s, my first encounter with a
handheld BASIC-programmable machine, the awesome SHARP PC-1211, left me
deeply convinced that BASIC was a much easier and powerful environment to
develop and run custom programs, as told in my previous Datafile article “Know
Thy Foe”. The caveat, however, was that the extensibility and capabilities of the
flagship RPN machine, the HP-41C, certainly more than made up for its more
primitive ‘language’ and so, in the end, it ultimately came up as the more powerful
model, if not the one with the most convenient programming paradigm.

The end line, however, was clear. What I longed for was a BASIC-programmable
handheld with an enhanced BASIC dialect (the PC-1211’s, while a brave first
attempt, was certainly primitive), greater speed (the PC-1211 was only as fast as
the HP-41C, i.e., rather on the slow side), larger RAM (1.8 Kb for the PC-1211,
about 7 Kb for an HP-41CV with two EMMs), and increased expandability (the
HP-41C won this one hands down). Then the SHARP PC-1500 came out and I
gave it serious thought but, while interesting and certainly more powerful than the
pioneer PC-1211, it still wasn’t exactly what I wanted, something was still missing.
Enter the HP-71B.

A dream come true
It was February, 1984, and HP introduced yet another landmark model, the HP-
71B. After hearing some rumours here and there, I was truly itching to lay my
hands on one, and Pedro Casado, a friend of mine working at HP at the time, was
kind enough to lend me one for just a weekend. Awesome. It was awesome, I was
absolutely awed by it, by its feel, by its looks, by its speed, by its features.
Everything was state-of-the-art quality, surpassing anything out there in spades,
and letting the SHARP PC-1500 in the dust. In fact, the mere thought of
comparing them felt almost like utter blasphemy.

Regrettably, the same ‘scaling factor’ applied to its price. It was so horrendously
high (something like 6-7 times the price of an HP-41C, even at the bare-bones
configuration!!), that purchasing one was simply out of the question. I didn’t have
that kind of money, and even if I did, I could not commit it to purchase this
machine however much I desired it. So, after returning the HP-71B to Pedro, I was
left with the definite impression that it was curtains for my personal relationship
with it. But, providentially, I was working at the time for an engineering firm
which, as a byproduct, also developed architectural software exclusively for HP
microcomputers such as the HP-85/86/87, etc. These were much more expensive
machines than even the HP-71B was, but fitted with a Math ROM and extra RAM
I found out that the HP-71B would be more or less capable of duplicating their
performances in our fields of interest, with the added advantage of portability.

Page 2 DATAFILE Vxx Nx

To make a long story short, I managed to convince my boss to get an HP-71B for
me to try and see how could we port the programs to run on it, and lo and behold,
after a few long weeks I was given a wonderful box with a brand-new, shiny HP-
71B inside (plus card reader) for me and me alone ! I quickly went to work with it,
learned its secrets, and quite soon I got also a Math ROM (this one paid for with
my very own money) and the bulky 3-volume IDS, which I promptly (!?) devoured
from first to last page. But what was so exciting about it ?. Let’s briefly enumerate
the (for me) most important and innovative aspects:

• Very small (HP-75 anyone?), solid-as-a-brick, well built, nice looking
machine, with a dot-matrix addressable display, a fantastic QWERTY
keyboard, and a new, much faster CPU (the very first, 0.6 Mhz Saturn!).

• Tremendous ROM/RAM adressing capabilities, up to nearly 512 Kb (!!),
which was absolutely unheard of for such a small portable model, and even
surpassed the amount of RAM typically available in the micros of the era,
which was 16/32 Kb for the HP-85, about 128 Kb for the HP-87XM, and 64
Kb for most other models, IBM PC included. And of course, all RAM
would be retained upon turn off and the operating system, being in ROM,
would always be instantly available and use up very little of it.

• 4 built-in frontal expansion ports (see picture below) which would accept
ROM and RAM modules in most any combination (you can see three 4K
RAM modules plus the Math ROM pictured), plus an additional rear port for
the HP-IL interface ROM (but which would accept any other RAM/ROM
module if needed), plus and additional upper port for the card reader, which
could also accept high-capacity third-party RAM/ROM/EPROM modules,
such as the 128 Kb CMT RAM module pictured here.

DATAFILE Vxx Nx Page 3

• Awesome expandability, with a large number of plug-in ROMs available (
both HP-produced and third-party ones), which included such gems as the
Math ROM (32 Kb of truly state-of-the-art, fully optimized assembly-
language math routines in the convenient form of BASIC keywords), the
Forth/Assembler ROM, and the HP-41C Translator/Forth ROM, not to
mention the HP-IL ROM, which could handle dataflows much faster than
the HP-41C equivalent, and was even able to control up to three independent
IL loops at a time. Thanks to its extensive HP-IL capabilities, the HP-71B
could control and use a vast number of peripherals, including various kinds
of mass storage, printers, plotters, data acquisition devices, whatever.

• An incredibly powerful version of HP’s technical BASIC, inheriting many
of the characteristics of its larger siblings’ (such as the HP-85/87), but
enhancing it to new heights with such revolutionary capabilities as a full
RAM-based filesystem, independent subprograms with their own local
environments and parameters passing by value or reference, multi-line user-
defined functions, full support for recursion, programmable timers which
could even wake up the turned-off machine and run programs at specified
times, full IEEE compliancy with NaNs, infinities, and denormalization,
and (with the Math ROM plugged in), real and complex-valued matrix
operations, full support for complex variables and operations, nested Solve
and Integrate, polynomial root-finding, and even Fast Fourier Transforms !

• Open system concept: the whole 64 Kb built-in operating system was listed
and explained in detail in the three Internal Design Specification volumes,
so that developers would be able to understand everything done in the
machine and even use the many officially supported entry points in their
own assembly-language routines.

• Multi-language programming: the powerful BASIC language wasn’t the
only choice. You could further extend its capabilities with assembly-
language routines, or you could program in Forth, a powerful threaded
language faster (if less friendly) than BASIC. Running your HP-41C
programs or even creating new ones in HP-41C’s own ‘language’ was easily
made possible with the HP-41 Translator/Forth ROM as well.

Regrettably, the HP-71B was marred by some poor (impossed ?) decissions,
such as the vastly undersized, 1-line x 22-character dot matrix display, which
made programming life really difficult, the vast amounts of System ROM space
wasted in such undeserving features as CALC mode and IEEE compliancy
which resulted in the initially built-in, ultra-useful Math ROM capabilities
being removed from the System ROMs to make space for them, the impossibly
high price, and the inept, virtually non-existing marketing, which combined
resulted in this wonderful machine selling very poorly, thus failing to reach
HP’s expectations and being the last of its kind. But that’s another story !

Page 4 DATAFILE Vxx Nx

Sample program: Stereograms in 6 lines !
Just to show off the HP-71B’s versatility, this very small, 6-line program I’ve
written specifically for this article will compute and print 3D random-text
stereograms starting form a user-specified Z-map which records the heights for
each location in a 32-row by 64-column random-character arrangement.

The user just needs to provide a subprogram which generates and returns the
desired Z-map, and this program does the rest, quickly and efficiently. The
resulting random-text stereogram can be viewed with the usual techniques to result
in a genuine 3D rendering of your map.

Simple as the program is, it nevertheless demonstrates a number of very important
features available in the powerful HP-71B’s BASIC dialect, as we’ll see right now.

Program listing
10 DESTROY ALL @ OPTION BASE 1 @ RANDOMIZE 7 @ DIM C,D,L,M,R,T,V,X,Y
20 M=24 @ C=64 @ R=32 @ T=12 @ DIM Z$(R)[C],P$[C+T] @ INPUT "SUB=";S$
30 CALL S$(Z$,(R),(C)) @ FOR Y=1 TO R @ L=0 @ D=T @ P$=""
40 FOR I=1 TO T @ P$=P$&CHR$(RND*16+32) @ NEXT I
50 FOR X=1 TO C @ V=VAL(Z$(Y)[X,X]) @ IF V#L THEN D=M-V @ L=V
60 P$=P$&P$[LEN(P$)-D+1][1,1] @ NEXT X @ PRINT P$ @ NEXT Y

Notes:

• In order to actually produce the stereogram in an immediately viewable
format, you must use a suitable output device, which typically will be
either the 80-column display emulation available in Emu71, a physical
HP-IL 80-column display device, or an HP-IL printer, which you must
define as your PRINTER IS device. Obviously, for the purposes of seeing
the 3D image, the built-in one-line display won’t do unless you
painstakingly type the output in some PC editor, by hand.

• Though the program code itself requires very little RAM, the generated
stereogram will take some 2K to generate and store, plus the RAM that
your Z-map generator subprogram uses. All in all, a bare-bones HP-71B
with some 4 Kb free RAM should be perfectly adequate.

• This program uses only built-in BASIC commands, no external keywords
taken from ROMs or LEX files (though some of the subprogram
examples below do use common LEX-provided string operations).

• If desired, you can easily modify it to generate grids larger than 32x64 by
simply changing the values assigned to R (rows) and C (columns) at line
20, to suit that 80- or 128-column line printer of yours. Also, you can use
a larger character set by increasing the value 16 at line 40 (up to 96 max).
I find these 16 characters to be easier on the eyes but you may find it
easier still to 3D-visualize the image when using more varied characters.

DATAFILE Vxx Nx Page 5

Program description
Let’s point out some of the powerful BASIC statements mostly unique to the HP-
71B dialect that are being used here, on a line-by-line basis:

10 DESTROY ALL @ OPTION BASE 1 @ RANDOMIZE 7 @ DIM C,D,L,M,R,T,V,X,Y

• HP-71B’s BASIC does allow dynamic creation and destruction of variables
as a fully-programmable feature, and further it shares calculator-mode
variables with BASIC programs. So for this sample program, to start from a
known variable state we use a DESTROY ALL statement which wipes out all
calculator-mode variables, freeing RAM and avoiding type conflicts.

• We then specify the lower bound for arrays to start at 1 by using the standard

OPTION BASE 1 statement, and initialize the pseudo-random generator seed
from a specific value, so that you can exactly duplicate the examples below
to test that the program was typed in correctly. Once this is checked, you can
simply use RANDOMIZE instead of RANDOMIZE 7, for simplicity.

• Once this is done, we reserve space for the variables by using a DIM

statement. This isn’t mandatory, but it’s good programming practice.

20 M=24 @ C=64 @ R=32 @ T=12 @ DIM Z$(R)[C],P$[C+T] @ INPUT "SUB=";S$

• As mentioned above, unlike many other BASIC dialects, dynamic variable
creation is allowed, and this also applies to vectors and matrices, which can
have their dimensions specified at runtime. In this case, we are creating a
vector of strings, Z$, which will have R elements of length C, as well as a
single string variable P$, which will be able to hold up to C+T characters. The
program then asks for your Z-map generating subprogram’s name.

30 CALL S$(Z$,(R),(C)) @ FOR Y=1 TO R @ L=0 @ D=T @ P$=""

• Yet another very important feature of HP-71B BASIC, almost unique at its
time, is the ability to define and use independent subprograms, which will be
called and passed parameters either by value or by reference, and can return
results to the calling program, while having their own environment with their
own variables, etc.

• Here we’re calling a subprogram which itself has a variable name (!),

specified in the string variable S$, and which gets passed three parameters,
namely Z$, the string array where the user-specified Z-map will be returned,
passed by reference so that it will be returned to our calling program, plus
the number of rows and columns, which are passed by value (by enclosing

Page 6 DATAFILE Vxx Nx

them in parentheses), so that if your subprogram modifies them, the original
variables in the calling program won’t be affected at all.

40 FOR I=1 TO T @ P$=P$&CHR$(RND*16+32) @ NEXT I

• This line shows a character being randomly generated in a given range, then
getting appended to form a full line of output stored in string variable P$.

50 FOR X=1 TO C @ V=VAL(Z$(Y)[X,X]) @ IF V#L THEN D=M-V @ L=V
60 P$=P$&P$[LEN(P$)-D+1][1,1] @ NEXT X @ PRINT P$ @ NEXT Y

• Two powerful capabilities are demonstrated here, namely the substring
operator, [], which can extract a specified portion from any string
expression (the Y–th element of string array Z$ in the first case; it can also
assign a substring within a string variable), and the string evaluation
function, VAL which will compute and return the numeric value of any string
expression which can be interpreted as a numeric expression.

• The [] substring operator can be used repeatedly in a daisy-chained fashion

if necessary (such as P$[LEN(P$)-D+1][1,1] at line 60), and combined with
numerical evaluation of logical operators can bring the user amazing
substring-slicing and parsing capabilities, specially since it can be used at
both sides of the = assignment operator to either extract or assign a given
substring.

• On the other hand, while VAL is a standard function present in all respectable

BASIC dialects, it’s usually strictly limited to string expressions than can be
interpreted as a number, say “-1.234E7”, while HP-71B’s implementation
will evaluate any expression which returns a numeric value, from simple
ones like “2+SIN(X)*EXP(X)” to really complex ones making use of external
ROM keywords, such as “INTEGRAL(0,Z,1E-5,EXP(-IVAR^2))”, which will
promptly return the numeric value of the integral as long as the Math ROM
is present and Z is a numeric variable containing the upper limit. This is
incredibly powerful as a program can accept funtion definitions or
mathematical expressions from the user on the fly.

• Finally, the generated stereogram is output by issuing a PRINT P$ statement,

which, simple as it seems, actually uses any device specified by the current
PRINTER IS setting, so it can be an HP-IL thermal printer, an RS-232 line
printer, a 80x24 HP-IL LCD display, an emulated 80-colum display as the
one provided by Emu71, or even some instrument which can be specified as
the “printing” device and can accept output sent by the PRINT statement.
How’s that for utmost flexibility ?

DATAFILE Vxx Nx Page 7

Usage instructions
Once you’ve keyed the program in, you must also enter your own subprogram
which generates the desired Z-map and must meet these requirements:

• It can be in the same file as the main program itself, or in a completely
separate file in RAM, either on its own or as part of some other code.

• It can have any legal name as long as it is unique. If not, then it must be
included in the same file as the main program in order to avoid ambiguity.

• It must accept the following parameters, in this order, which can have any
legal name as long as their types are as follows:

o Z$, a one-dimensional string array where your subprogram must store
the Z-map. As it is passed by reference, whatever your subprogram
puts in it will be returned to the calling main program.

o R, a real numeric value representing the number of rows in the map,
which is the number of string elements in Z$. As it is passed by value,
any changes to it will not alter the original value in the caller.

o C, a real numeric value representing the number of columns in the
map, which is the length in characters of each string element in Z$.
It’s also passed by value.

Your subprogram must fill up the Z$ array with the proper heights for each row and
column on the map, as follows (see also the examples below):

• Each element in Z$ represents a map row, from top (Z$(1)) to bottom
(Z$(R)). Each position in an element represents the number of a column, so
that the character stored at position 3 in Z$(7) (i.e., Z$(7)[3,3]) records
the height of the location at row 7, column 3 in your Z-map.

• The heights themselves are represented by single characters from the set

”0”, ”1”, ”2”, ”3”, ... , where ”0” represents the base plane (height = 0), ”1”
represents the next plane above it (height=1), and so on. Theoretically you
could have up to 10 different heights, from 0 to 9, but in practice that many
different heights can be somewhat difficult to discern so you’d do well to
limit your maps to heights from 0 to 4 for best viewing results.

Once your subprogram has been written and entered, simply run the main program:
 >RUN
 SUB= (key in the name of your subprogram, then press [ENTER])

The random-text stereogram is then generated and output.

Page 8 DATAFILE Vxx Nx

Examples

1. Try and generate a random-text stereogram for this 3D image

First of all, we need to write and enter a
subprogram CIRCLE which will generate the
required Z-map for this stereogram, assuming the
darker area is the base plane (height=0), and the
lighter circle-with-square-hole is above it, at
height 1. The subprogram which will then fill Z$
with properly placed ”0”s and ”1” is:

500 SUB CIRCLE(Z$(),R,C) @ FOR I=1 TO R @ Z$(I)=RPT$("0",C) @ NEXT I
510 FOR I=6 TO 28@T$=RPT$("1",7+SQR(121-(I-17)^2))@Z$(I)[1,LEN(T$)]=T$
520 Z$(I)=RPT$("0",12)&REV$(Z$(I)[1,20])&Z$(I)[1,20]&RPT$("0",12)
530 IF I>11 AND I<23 THEN Z$(I)[26,39]=RPT$("0",14)
540 NEXT I

Let’s run it all and generate our stereogram:
>RUN
 SUB=CIRCLE [ENTER]

/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.
$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"
%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-
,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.'
)*&).(-,*!0)*&).(-,*!0)*&).(-,*!0)*&).(-,*!0)*&).(-,*!0)*&).(-,*!0)*&)
&&(,.-")&+"&&(,.-")&+"*&&(,.-")&+"*&(,.-")&+"*&&((,.-")&+"*&(,.-")&+"*&&((
$)"/-&"*+"-.$)"/-&"*+"-.$)"/-&"*"-.$)"/-&"*+"-.$)"/-&"*""-.$)"/-&"*+"-.$)"/-
&."(+%$*%(%%&."(+%$*%(%%&."(+%$%(%%&."(+%$*%(%%&."(+%$%(%%%&."(+%$*%(%%&."(+
($,*%$" ('%'($,*%$" ('%'($,*%" ('%'($,*%$" ('%'($,*%" ('%'(($,*%$" ('%'($,*%
($.0%,(..#(-($.0%,(..#(-($.0%(..#(-($.0%,(..#(-($.0%(..#(-(($.0%,(..#(-($.0%
+$&& #$"!*0"+$&& #$"!*0"+$&&#$"!*0"+$&& #$"!*0"+$&&#$"!*0"+$$&& #$"!*0"+$&&#
+,$))(")!"'(+,$))(")!"'(+,$)(")!"'(+,,$))(")!"'(+,$(")!"'(+,,,$))(")!"'(+,$(
.!!''+(#"+0!.!!''+(#"+0!.!!'+(#"+0!.!!!''+(#"+0!.!!+(#"+0!.!!!!''+(#"+0!.!!+
+!!(-'"$#,"*+!!(-'"$#,"*+!(-'"$#,"*+!!!(-'"$#,"*+!('"$#,"*+!!!!(-'"$#,"*+!('
)'+*(!0)%*)/)'+*(!0)%*)/)'*(!0)%*)/)''+*(!0)%*)/)'*!0)%*)/)''++*(!0)%*)/)'*!
+,('.*" /.!-+,('.*" /.!-+,'.*" /.!-+,,('.*" /.!-+,'*" /.!-+,,(('.*" /.!-+,'*
-/%!,&*(,*-%-/%!,&*(,*-%-/!,&*(,*-%-//%!,&*(,*-%-/!&*(,*-%-//%%!,&*(,*-%-/!&
,$*+!%!'"'"*,$*+!%!'"'"*,$+!%!'"'"*,$$*+!%!'"'"*,$+%!'"'"*,$$**+!%!'"'"*,$+%
0-/.* +-')"&0-/.* +-')"&0-.* +-')"&0--/.* +-')"&0-. +-')"&0--//.* +-')"&0-.
,0+/$,(0"!$,0+/$,(0"!$,0/$,(0"!$,00+/$,(0"!$,0/ ,(0"!$,00++/$,(0"!$,0/
.$&'0-$($)*/.$&'0-$($)*/.$&0-$($)*/.$$&'0-$($)*/.$&-$($)*/.$$$&'0-$($)*/.$&-
'#"#,('*"'+.'#"#,('*"'+.'#",('*"'+.'##"#,('*"'+.'#"('*"'+.'###"#,('*"'+.'#"(
"",&.,+&# ,+"",&.,+&# ,+"",&,+&# ,+"",&.,+&# ,+"",&,+&# ,+""",&.,+&# ,+"",&,
-'#*-//*%,-$-'#*-//*%,-$-'#*-/*%,-$-'#*-//*%,-$-'#*-/*%,-$--'#*-//*%,-$-'#*-
-"*-.&&#'##(-"*-.&&#'##(-"*-.&#'##(-"*-.&&#'##(-"*-.&#'##(--"*-.&&#'##(-"*-.
.0.%&*)'*0*,.0.%&*)'*0*,.0.%&*)*0*,.0.%&*)'*0*,.0.%&*)*0**,.0.%&*)'*0*,.0.%&
, /,-$++'/"&, /,-$++'/"&, /,-$++/"&, /,-$++'/"&, /,-$++//"&, /,-$++'/"&, /,-
)) #*"/),$,')) #*"/),$,')) #*"/),$,') #*"/),$,')) ##*"/),$,') #*"/),$,')) ##
+*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$
&)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!
$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0
#+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!

which you can try and see in full 3D with the usual techniques, either from the
printed page or, probably better, from the Emu71 output in your monitor.

DATAFILE Vxx Nx Page 9

2. Now do the proper thing with this multi-level image:

We’ll write and enter another subprogram, RECT3D,
to generate the proper Z-map for this 3D image
where again the darkest area is the base plane
(height=0), and the lighter rectangles are at
increasing heights above it. The subprogram which
will fill Z$ with properly placed “0”s, “1”s, “2”s,
and “3”s is as follows:

430 SUB RECT3D(Z$(),R,C) @ FOR I=1 TO R @ Z$(I)=RPT$("0",C) @ NEXT I
440 FOR I= 5 TO 15 @ Z$(I)[23,62]=RPT$("1",40) @ NEXT I
450 FOR I=10 TO 23 @ Z$(I)[33,52]=RPT$("2",20) @ NEXT I
460 FOR I= 8 TO 26 @ Z$(I)[17,36]=RPT$("3",20) @ NEXT I
470 FOR I=16 TO 20 @ Z$(I)[38,47]=RPT$("0",10) @ NEXT I
480 FOR I=13 TO 15 @ Z$(I)[38,47]=RPT$("1",10) @ NEXT I

Let’s run it:
>RUN
 SUB=RECT3D [ENTER]

/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.
$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"
%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-
,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.')//')0&*,$.'
)*&).(-,*!0)*&).(-,*!0)*&).(-,*!)*&).(-,*!0)*&).(-,*!)*&).(-,*!0)*&)).
&&(,.-")&+"&&(,.-")&+"*&&(,.-")&"*&&(,.-")&+"*&&(,.-")&"*&&(,.-")&+"*&&((,
$)"/-&"*+"-.$)"/-&"*+"-.$)"/-&"*+".$)"/-&"*+"-.$)"/-&"*+".$)"/-&"*+"-.$)"//-
&."(+%$*%(%%&."(+%$*%(%%&."(*%(%%&."(+%$*%(%%&."."(*%(%%&."(+%$*%(%%&."."((*
($,*%$" ('%'($,*%$" ('%'($,* ('%'($,*%$" ('%'($,$,* ('%'($,*%$" ('%'($,$,**
($.0%,(..#(-($.0%,(..#(-($.0..#(-($.0%,(..#(-($..0..#(-($.0%,(...#(-($..0...
+$&& #$"!*0"+$&& #$"!*0"+$&&"!*0"+$&& #$"!*0"+$&&&"!*0"+$&& #$"!!*0"+$&&&""!
+,$))(")!"'(+,$))(")!"'(+,$))!"'(+,$))(")!"'(+,$$))!"'(+,$))(")!!"'(+,$$)))!
.!!''+(#"+0!.!!''+(#"+0!.!!'#"+0!.!!''+(#"+0!.!!!!'#"+0!.!!'+(#""+0!.!!!!''#
+!!(-'"$#,"*+!!(-'"$#,"*+!!($#,"*+!!(-'"$#,"*+!!!!($#,"*+!!-'"$##,"*+!!!!(($
)'+*(!0)%*)/)'+*(!0)%*)/)'+*)%*)/)'+*(!0)%*)/)'+++*)%*)/)'+(!0)%%*)/)'+++**)
+,('.*" /.!-+,('.*" /.!-+,(' /.!-+,('.*" /.!-+,((,(' /.!-+,.*" / /.!-+,((,('
-/%!,&*(,*-%-/%!,&*(,*-%-/%!(,*-%-/%!,&*(,*-%-/%%/%!(,*-%-/,&*(,(,*-%-/%%/%!
,$*+!%!'"'"*,$*+!%!'"'"*,$*+'"'"*,$*+!%!'"'"*,$**$*+'"'"*,$!%!'"'"'"*,$**$*+
0-/.* +-')"&0-/.* +-')"&0-/.-')"&0-/.* +-')"&0-//-/.-')"&0-* +-'-')"&0-//-/.
,0+/$,(0"!$,0+/$,(0"!$,0+/(0"!$,0+/$,(0"!$,0++0+/(0"!$,0$,(0(0"!$,0++0+/
.$&'0-$($)*/.$&'0-$($)*/.$&'($)*/.$&'0-$($)*/.$&&'($)*/.$&'0-$($($)*/.$&&'($
'#"#,('*"'+.'#"#,('*"'+.'#"#*"'+.'#"#,('*"'+.'#""#*"'+.'#"#,('*"*"'+.'#""#*"
"",&.,+&# ,+"",&.,+&# ,+"",&&# ,+"",&.,+&# ,+"",,&&# ,+"",&.,+&#&# ,+"",,&&#
-'#*-//*%,-$-'#*-//*%,-$-'#**%,-$-'#*-//*%,-$-'#-'#**%,-$-'#*-//*%,-$-'#-'#*
-"*-.&&#'##(-"*-.&&#'##(-"*-#'##(-"*-.&&#'##(-"*-"*-#'##(-"*-.&&#'##(-"*-"*-
.0.%&*)'*0*,.0.%&*)'*0*,.0.%'*0*,.0.%&*)'*0*,.0..0.%'*0*,.0.%&*)'*0*,.0..0.%
, /,-$++'/"&, /,-$++'/"&, /,-$++'/"&, /,-$++'/"&, /,-$++'/"&, /,-$++'/"&, /,
)) #*"/),$,')) #*"/),$,')) #*"/),$,')) #*"/),$,')) #*"/),$,')) #*"/),$,')) #
+*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$
&)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!
$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0
#+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!

Amazing, isn’t it ? Note the height-2, holed rectangle, which allows you to see
both the height-1 rectangle immediately below it and the height-0 base plane far
below. If desired, you can display the generated Z-map by executing this sentence
from the command line: FOR I=1 TO R @ Z$(I) @ NEXT I

Page 10 DATAFILE Vxx Nx

3. Finally, let’s make a pretty 3D logo of HP, like this:

This time the shapes are too complicated to try and
write a subprogram which attempts to create them
geometrically. Instead, we’ll resort to a more RAM-
consuming approach, which nevertheless makes the
Z-map that much easier to create and is completely
general in nature, valid for any image whatsoever:
we’ll simply use a DATA grid, like this:

90 SUB HP(Z$(),R,C) @ RESTORE @ FOR I=1 TO R @ READ Z$(I) @ NEXT I
100 DATA 00
110 DATA 00
120 DATA 00
130 DATA 000000000000110000
140 DATA 000000000000110000
150 DATA 000000000000110000
160 DATA 00
170 DATA 00
180 DATA 0000000000000000111111000000111111000000222222222222222200000000
190 DATA 0000000000000000111111000000111111000000222222222222222220000000
200 DATA 0000000000000000111111000000111111000000222222222222222222000000
210 DATA 0000000000000000111111000000111111000000222222000000222222000000
220 DATA 0000000000000000111111000000111111000000222222000000222222000000
230 DATA 0000000000000000111111100001111111000000222222000000222222000000
240 DATA 0000000000000000111111111111111111000000222222222222222222000000
250 DATA 0000000000000000111111111111111111000000222222222222222220000000
260 DATA 0000000000000000111111111111111111000000222222222222222200000000
270 DATA 0000000000000000111111100001111111000000222222000000000000000000
280 DATA 0000000000000000111111000000111111000000222222000000000000000000
290 DATA 0000000000000000111111000000111111000000222222000000000000000000
300 DATA 0000000000000000111111000000111111000000222222000000000000000000
310 DATA 0000000000000000111111000000111111000000222222000000000000000000
320 DATA 0000000000000000111111000000111111000000222222000000000000000000
330 DATA 00
340 DATA 00
350 DATA 000000000000220000
360 DATA 000000000000220000
370 DATA 000000000000220000
380 DATA 00
390 DATA 00
400 DATA 00
410 DATA 00

As you can see, any Z-map can be defined this way, with utmost ease and requiring
very little time to generate, as it simply reads and assigns each string element, i.e.:
64 locations at a time. The drawback is of course the time required to enter the
DATA statements into program memory, plus the extra 2 Kb of RAM they’ll take, in
addition to the 2 Kb which the Z$ string array itself requires. On the other hand, by
using this simpleminded approach you’ll save the non-negligible time and effort
required to write a complicated subprogram to fill up the Z-map which, as you can
see in the previous examples (CIRCLE and RECT3D), might be significant.

Let’s run it !:

DATAFILE Vxx Nx Page 11

>RUN
 SUB=HP [ENTER]

/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.!'&* ".+/#-.
$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"(!#0/()$$&%"
%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-,+ ""&)0%#!-
,$.')//')0&*,$.')//')0&*$.')//')0&*,$.')//')0&*$.')//')0&*,$.')//')0&*$..')/
)*&).(-,*!0)*&).(-,*!0 *&).(-,*!0)*&).(-,*!0 *&).(-,*!0)*&).(-,*!0 *&&).(
&&(,.-")&+"&&(,.-")&+"&&(,.-")&+"*&&(,.-")&+"&&(,.-")&+"*&&(,.-")&+"&&&(,.
$)"/-&"*+"-.$)"/-&"*+"-.$)"/-&"*+"-.$)"/-&"*+"-.$)"/-&"*+"-.$)"/-&"*+"-.$)"/
&."(+%$*%(%%&."(+%$*%(%%&."(+%$*%(%%&."(+%$*%(%%&."(+%$*%(%%&."(+%$*%(%%&."(
($,*%$" ('%'($,*%$" ('%'($,*$" ('%%'($,*$" ('%%'($,* ('%%'($,*$" ('%'%%'($,*
($.0%,(..#(-($.0%,(..#(-($.0,(..#((-($.0,(..#((-($.0..#((-($.0,(..#((((-($.0
+$&& #$"!*0"+$&& #$"!*0"+$&&#$"!*00"+$&&#$"!*00"+$&&"!*00"+$&&#$"!*00"0"+$&&
+,$))(")!"'(+,$))(")!"'(+,$)(")!"''(+,$)(")!"''(+,$))!"''('(+,$))!"''('(+,$)
.!!''+(#"+0!.!!''+(#"+0!.!!'+(#"+00!.!!'+(#"+00!.!!'#"+00!0!.!!'#"+00!0!.!!'
+!!(-'"$#,"*+!!(-'"$#,"*+!!('"$#,"**+!!-'"$#,""*+!!($#,"****+!!-$#,""*"*+!!(
)'+*(!0)%*)/)'+*(!0)%*)/)'+*!0)%*)/)'+*(!0)%*))/)'+*)%*)/)'+*(!0)%*))/)/)'+*
+,('.*" /.!-+,('.*" /.!-+,('*" /.!-+,('.*" /.!!-+,(' /.!-+,('.*" /.!!!!-+,('
-/%!,&*(,*-%-/%!,&*(,*-%-/%!&*(,*-%-/%!,&*(,*--%-/%!(,*-%-/%!,&*(,*-*--%-/%!
,$*+!%!'"'"*,$*+!%!'"'"*,$*+%!'"'"**,$*!%!'"'""*,$*+'"'"****,$*!%!'"'""*,$*+
0-/.* +-')"&0-/.* +-')"&0-/. +-')""&0-/. +-')""&0-/.-')""&"&0-/. +-')""&0-/.
,0+/$,(0"!$,0+/$,(0"!$,0+/ ,(0"!!$,0+/ ,(0"!!$,0+/(0"!!$!$,0+/ ,(0"!!$,0+/
.$&'0-$($)*/.$&'0-$($)*/.$&'-$($)**/.$&'-$($)**/.$&'($)**/*/.$&'-$($)**/.$&'
'#"#,('*"'+.'#"#,('*"'+.'#"#('*"'++.'#"#('*"'++.'#"#*"'++.+.'#"#('*"'++.'#"#
"",&.,+&# ,+"",&.,+&# ,+"",&,+&# ,,+"",&,+&# ,,+"",&&# ,,+,+"",&,+&# ,,+"",&
-'#*-//*%,-$-'#*-//*%,-$-'#*-//*%,-$-'#*-//*%,-$-'#*-//*%,-$-'#*-//*%,-$-'#*
-"*-.&&#'##(-"*-.&&#'##(-"*-.&&#'##(-"*-.&&#'##(-"*-.&&#'##(-"*-.&&#'##(-"*-
.0.%&*)'*0*,.0.%&*)'*0*,.%&*)'*0*,.0.%&*)'*0*,.%&*)'*0*,.0.%&*)'*0*,.%&*&*)'
, /,-$++'/"&, /,-$++'/"&/,-$++'/"&, /,-$++'/"&/,-$++'/"&, /,-$++'/"&/,-$-$++
)) #*"/),$,')) #*"/),$,' #*"/),$,')) #*"/),$,' #*"/),$,')) #*"/),$,' #*"*"/)
+*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$%).-)''++*-$
&)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!+%&'$$!% &)!
$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0&+*/,'-"$+,0
#+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!%((*, %##+-!

Nice, right ?

Seeing stereograms
People who’ve never seen an stereogram before, either random-text- or random-
dot-based, usually find it difficult to even believe that there’s something to be seen
amidst that ungainly-looking bunch of characters/dots, let alone a nice full 3D
rendering of some well-defined shapes or objects. But once they succeed in
mastering the technique, they’ll be able to enjoy the awesome feeling of looking at
a mere 2-dimensional, plane surface full of weird characters and seeing it gain real,
authentic tridimensional depth where none should physically be possible, and
where perfect geometrical shapes float by at various depths.

If you find it difficult to see stereograms in general, you’d do well to “google” for
the required procedures, there are many excellent tutorials for free on the web, as
well as many excellent books on the subject.

If you do manage to visualize the above examples in glorious 3D but you don’t see
the expected shapes, your eyes are at the wrong distance from the printout or else
the printout is too large or too small. Correct and you’ll eventually succeed.

Page 12 DATAFILE Vxx Nx

Final remarks
The HP-71B was and still is indeed a superb computing device, truly without equal
(nonpareil, as they say ...). In its physical form, you’ve got a most solid, elegant,
well-engineered gem which oozes quality and reliability, all in a rather small,
convenient package which you can take with you without much trouble and
negligible weight. The keyboard’s a real pleasure to use, and the “continuous
memory” feature coupled with the fact that you can have really large amounts of
available RAM, plus the convenient file system, means that you’ll be able to have
all your programs and data ready to use without ever needing a mass storage
device while doing field work in surveying, say, or geophysical engineering.

In its emulated form (Emu71, for instance) you get as much emulated RAM/ROM
as you care for, a large 80-column x 40 (say) rows emulated display, and incredible
speed acceleration (350x or more) in a typical 2.4 Ghz PC. This means it’s got
speed enough to do very cumbersome calculations in a flash which, coupled with
its powerful and easy-to-use BASIC, the advanced complex-number handling,
matrix commands, and the SOLVE/INTEGRATE capabilities available in the
emulated Math ROM, it all amounts to real computational power even nowadays,
despite your having the usual suite of productivity software at hand. I can, for
instance solve a complex-domain contour integration problem in the emulated HP-
71B in a fraction of the time it would take to even think how to enter the problem
in Excel, say. It’s interactivity, sheer power, and above all, ease of use, means that
it’s become the essential tool for most of my number crunching needs, simple or
advanced, for fun or for blood. So I can confidently say ... Long Live the HP-71B!

