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Long Live The HP-34C ! 
 

Valentín Albillo (HPCC #1075) 
 

Back then in  1979 Fernando del Rey and I were already seasoned HP calc users, 
what with me owning two excellent HP machines (an HP-25 first, shortly followed 
by an extremely-hard-to-get HP-67!) while Fernando bypassed the HP-25 and 
went straight for the HP-67 after his HP-55’s “baptism” to RPN and the HP ways 
(awesome machine, that HP-55; a real pity its programmability is second only to 
the HP-10C’s). Then, almost unexpectedly (but not quite) we were blessed with 
HP releasing our Dream Machine, with capitals and all, the HP-41C, which kept 
us with our little hands fully full for very many years to come. 

But 1979 also saw another wonderful new machine, part of a brand new series. 
Lost amid the HP-41C brightness it could have easily passed by, largely unnoticed, 
but it had so incredible a features/price ratio that, far from it, it was hugely noticed, 
to become a large sales success among students and other wannabe HP lovers who 
could hardly afford the cost of owning an HP-41C however much they might want 
it. A bare-bones HP-41C was already far too expensive, at least in our Spanish 
homeland (twice as pricey as in the US), and you could do very little with it unless 
you also got an equally expensive card reader and at least one memory module or 
two. Otherwise you’d find yourself with an awesome instruction set and  features 
but too little RAM to even barely scratch its potential, similarly to what later 
happened to the HP-28C. Unlike that crippled machine, the HP-41C could be 
expanded enormously, but at a hefty price. Too hefty. Enter the HP-34C. 

A landmark model 
At first glance, the HP-34C could look disappointing. No LCD display but the old 
fashioned, battery-hog red LED variety. No alphanumerics. No mass storage. No 
expandability. It had an interesting, novel design, but in the hand it felt rather 
flimsy, like you could crush it by merely closing your fist, unlike the rock-solid 
previous models. But, for the first time, it was a relatively cheap model to the point 
of being affordable by students and other low-income people which couldn’t 
justify shelling the cash for an HP-41C, say. For the first time you could own a 
real, genuine RPN HP programmable calculator without filing for bankruptcy.  

And what a calculator it was ! Despite its looks, you could fathom that it was 
something by the mere fact that, like the HP-67, it had three prefix keys, f, g, and 
h !. Why so many ? Well, the answer was to be found in the huge 293-page 
Owner’s Handbook and Programming Guide, a wonderful 4-colour affair in the 
style of the celebrated HP-67 manual. A cursory reading would inform you that the 
little, “fragile” HP calculator right in front of you could do all the following, and 
more: 
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• Automatic memory allocation, from 70 steps of program memory and 21 
data  registers to 210 steps and one register, so that you could optimize for 
data or program memory usage as needed. 

• Full programmability, including 6 levels of subroutine nesting, full indirect 
addressing of data registers, program locations, and modes, plus labels, 
insertion and deletion of program steps, flags, conditionals, ISG/DSE loop 
constructions, etc. 

• Ground-breaking new computational functionalities, such as numeric 
SOLVE and INTEGRATE, plus Gamma function, linear regression, and the 
usual set of trigonometric, logarithmic, and exponential functions, squares, 
square root, reciprocals, and powers, plus basic statistics and accumulations. 

• Convenience additional functionality, such as mantissa, indirect exchange of 
registers with the display contents, exchange of the display contents with the 
indirect register, plus basic conversions such as polar/rectangular, 
degrees/radians, and decimal hours/degrees to hours/degrees-min-sec, not to 
forget the invaluable number-alteration functions like INT, FRAC, and ABS. 

 

To people used to the HP-25 or even the HP-67 such as myself, this much power 
was uncanny, indeed. Most of us felt that it was indeed a pity that the HP-41C, 
despite being vastly superior in most aspects, still sorely lacked the awesome 
SOLVE and INTEGRATE functionality, something that wouldn’t be truly alleviated 
till the release of the Advantage ROM, still in the distant future. That being so, it 
became common to own both calculators, the HP-41C for sheer power and élan, 
the HP-34C as a relatively inexpensive, useful model having highly valuable extra 
functionality not available in its costlier sibling.  

Though numerical root finding and integration were the most noticeable extras, the 
HP-34C did include a number of important additional functions that the HP-41C 
didn’t, such as x! (Factorials and Gamma function, while HP-41C’s FACT would 
only work with positive  integer arguments being just a Factorial implementation), 
and linear regression as well, including the correlation coefficient and estimates. It 
also featured mantissa viewing, plus an unexpected novelty, a user-inititated self-
test that would check that the internal ROM and RAM were in peak shape 
whenever the user executed the special key sequence STO ENTER. As for 
synthetics, even the modest HP-34C did have its share of techniques for synthetic 
exploration of its innards: by interrupting the STO ENTER self-test midway it was 
possible to leave the program pointer where it usually wouldn’t go, then a little 
ingenuity would allow its mischievous user to discover all sorts of interesting facts. 

That said, no matter how powerful the instruction set there were limitations to 
endure, but the excellent programmability meant that many of them you could 
‘program away’, so to say. INTEGRATE, for instance, could call SOLVE, and vice 
versa, which would allow you to compute the integral of an implicit function or 
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solve an integral equation, terrific stuff indeed. But recursivity wasn’t allowed so 
SOLVE couldn’t call SOLVE (thus precluding  easy solving of a system of 2 
possibly non-linear equations in 2 unknowns), and INTEGRATE couldn’t call 
INTEGRATE, thus precluding the numerical computation of double or multi-
dimensional integrals. But the very availability of INTEGRATE, plus the excellent 
programmability means that we can overcome this limitation with extreme ease, as 
the following short sample program fully demonstrates. 

Sample program: Two-dimensional Integration 

Program listing 

01 25.13.11   LBL A   24        2    2      47 23.71. 2   STO/2 
02    23. 3   STO 3   25 23.71. 0   STO/0   48    24. 2   RCL 2 
03    15.22    Rv     26       71    /      49 23.51. 8   STO+8 
04    23. 4   STO 4   27    23. 1   STO 1   50    15.23   DSE 
05    15.22    Rv     28    13. 0   GSB 0   51    22. 2   GTO 2 
06       21   X<>Y    29       51    +      52    24. 8   RCL 8 
07    23. 6   STO 6   30    13. 1   GSB 1   53    25.12   RTN 
08       41    -      31    23. 2   STO 2   54 25.13. 0   LBL 0 
09 24.14.23   RCL I   32    24. 1   RCL 1   55    24. 0   RCL 0 
10       71    /      33    13. 0   GSB 0   56       73    . 
11    23. 7   STO 7   34       41    -      57        6    6 
12    24. 8   RCL 8   35    13. 1   GSB 1   58    14. 3   SQRT 
13 23.41. 8   STO-8   36 23.51. 2   STO+2   59       61    x 
14 25.13. 2   LBL 2   37        5    5      60    25.12   RTN  
15    24. 6   RCL 6   38 23.61. 2   STOx2   61 25.13. 1   LBL 1 
16    24. 6   RCL 6   39    24. 1   RCL 1   62    23. 5   STO 5 
17    24. 7   RCL 7   40    13. 1   GSB 1   63    24. 4   RCL 4 
18 23.51. 6   STO+6   41        8    8      64    24. 3   RCL 3 
19       51    +      42       61    x      65 14.72.12   INTG B 
20    23. 0   STO 0   43 23.51. 2   STO+2   66    25.12   RTN 
21       21   X<>Y    44    24. 0   RCL 0   67 25.13.12   LBL B 
22 23.41. 0   STO-0   45 23.61. 2   STOx2   
23       51    +      46        9    9   

Notes 
• All in all, 66 program steps + f(x,y) definition (LBL B, ..., RTN) 
• No flags used, labels A-B, 0-2, registers 0-8, I 
• Also runs as is in an HP-15C, except 50 DSE must be 50 DSE I 

Program description 
 
HP-34C’s powerful built-in INTEGRATE function allows the user to numerically 
compute integrals of the generic form:              

                ⌠ b 
            I =    f(x).dx 
                ⌡a 
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Alas, unlike the HP-71B, INTEGRATE can’t be used recursively, i.e.: you can’t 
use it to compute the definite integral of a function which itself is expressed as 
another integral. So, you can’t include INTEGRATE as a program step within a 
subroutine which is to be called by INTEGRATE, either from a program or right 
from the keyboard.  

This restriction is mainly due to the fact that INTEGRATE requires a lot of 
registers to do its work, and calling it recursively would mean having to use one 
extra bank of  registers for each level of recursion implemented. There simply 
aren’t that many registers available so recursivity is out of the question, which is a 
pity because a number of important technical applications do require computing 
definite 2-dimensional integrals routinely, of the generic form: 
 

                ⌠ xM ⌠ yN 
            I =         f(x,y) .dy.dx 
                ⌡x0  ⌡y0 

However, the HP-34C’s full programmability comes to the rescue allowing us to 
easily implement this simple program (just 66 steps) which does use the built-in 
microcode INTEGRATE function together with a 5th-order Gaussian method to 
compute 2-dimensional integrals accurately and relatively fast. The present 
program I wrote uses INTEGRATE to compute the inner integral, namely: 
 
                   ⌠ yN 
            y(x) =     f(x,y) .dy 
                   ⌡y0 

while the outer integral is computed using the following 3-point, 5th order Gaussian 
method for numerical quadrature, as follows: let’s have the definite integral: 
                ⌠ b  
            I =     y(x) .dx 
                ⌡a 

First of all, we transform the arbitrary integration interval [a,b] into the fixed 
interval [-1,1] by using a suitable change of variables, namely: 

x = (b + a)/2 + t * (b - a)/2 ,  so we have  dx = (b - a)/2 * dt 

Now, the resulting integral is computed like this (where k=0.61/2): 
 
     ⌠ 1 
        h(t) .dt = (8*h(0) + 5*(h(k) + h(-k)))/9 
     ⌡-1 
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which is a 3-point Gaussian method, thus requiring just 3 evaluations of the 
function and returning exact results if h(t) is a polynomial of degree 5 or less. In 
my opinion, this is by far the best existing method available for classical HP 
calculators, which were extremely RAM-challenged and somewhat slow, as it 
requires jut 3 evaluations per subinterval to achieve 5th-order accuracy and further, 
its coefficients are extremely simple numerics (5, 8, 9) or expressions (square root 
of 0.6), so they’ll take a minimum number of program steps to store or compute 
them and thus no data registers are wasted for this purpose. 

This compares favourably with higher-order Gaussian methods, which require 
more function evaluations (thus more time) and their coefficients are not so easy to 
describe, normally requiring two full registers to store their precomputed values for 
each point used (one for the x ordinate, the other for the weight). It also wins hands 
down against such simpler methods as Simpson’s rule, which also requires 3 
evaluations and has simple coefficients but provides only 3rd-order accuracy versus 
5th-order for our present method, which is thus far more accurate. 

Of course, using just one subinterval might result insufficiently accurate, so the 
program allows the user to specify the number of subintervals for the computation, 
and will apply the Gaussian method to each subinterval in turn, returning the grand 
total as the computed value of the integral. This way, the user can freely 
compromise between calculation time and accuracy.  

A good strategy would be to start out with a modest number of subintervals, say 2, 
then keep on doubling the number of subintervals until the results coincide to the 
desired number of places. This is essentially what the built-in INTEGRATE 
function does, and for the purposes of this simple demo program we’ll let the user 
decide whether to use this doubling strategy or chose a suitable number of 
subintervals right from the start (say 10), based on past experiences with similar 
functions and integration intervals, and accept the result as suitably accurate. If 
you’re sophisticated enough, using some convergence acceleration technique is a 
definite possibility, such as extrapolation to the limit every couple iterations or so. 

Also, do not forget to take into account that the inner integral is computed using 
the built-in INTEGRATE function, so the display mode will control overall 
accuracy and has to be set properly, as described in the HP-34C Owner’s 
Handbook and Programming Guide. As a general rule, selecting SCI 4 is 
generally adequate to get 4-digit accuracy in the inner integral for modest 
integration intervals and, with a suitable choice for the number of subintervals, 4-
digit overall accuracy for the outer integral as well. Going from 1 subinterval to 2 
will usually double the running time, and going from SCI 4 to SCI 6 will take 2 
to 3 times as long. These aren’t hard rules, you’ll need to experiment a little. 
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Usage instructions 
 

Once you’ve keyed the program in, you must do the following: 

 

1. Define the function to be integrated, f(x,y). To that effect: 

• switch to RUN mode, if not already in it. 

• press GTO B 

• switch to PRGM mode 

• enter the necessary steps to compute the value of f(x,y), where you 
must assume that at the beginning the value of X is in R5 and the 
value of Y is in the display (X-register). End your sequence with a 
RTN instruction. 

• switch to RUN mode 

 

2. Specify the number of subintervals to use, M: 

• M,  STO I 
 

3. Enter the limits of integration and compute the double integral: 

• x0, ENTER, xM, y0, ENTER, yN,  A  ?  Integral’s value 
 

4. For another computation using the same f(x,y) go to step 2 above. 
 

5. For a different f(x,y) go to step 1 above, but don’t forget to previously erase 
all program steps defining the former f(x,y) (except the LBL B, of course) 
before entering the new one. 

 

Note: 

The accuracy obtained depends on two factors, mainly: the chosen display setting 
FIX N or SCI N, and the number M of subintervals to use. In order to avoid 
excessive computing times, it is highly recommended to select FIX 4 or SCI 4 
at most, and M=2 or M=4. This will get you 4 correct digits in reasonable times for 
most well-behaved f(x,y). If you aren’t getting 4 correct digits or more, start by 
increasing the number of subintervals M to M=8, say, and only increase the display 
setting to FIX 6 or SCI 6, say, as a last resort. See the examples to get a feeling 
of the obtainable accuracy for a number of cases and settings. 
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Examples 
1. Compute the following integral: 

                ⌠ 1 ⌠ 2 
            I =       (x2 + y2) .dy.dx 
                ⌡0  ⌡1 
 

• First of all, let’s define f(x,y). In RUN mode: 

GTO B, switch to PRGM, X2, RCL 5, X2, +, RTN 

• As f(x,y) is a 2nd-degree polynomial in X,Y, our inner result will be 
exact using just 1 subinterval and a modest display setting, say FIX 4: 

 1, STO I, FIX 4 

• Now we enter the limits and compute the integral: 

0, ENTER, 1, ENTER, 1, ENTER, 2, A  ?  2.6667 

• Changing to FIX 7, the result is, after some 2 min.: 

FIX 7  ?    2.6666666 

 which is correct to all digits shown, as the exact result is I = 8/3 

 

2. Compute the following integral: 

                ⌠ 4 ⌠ 2 
            I =       1/(x + y)2 .dy.dx 
                ⌡3  ⌡1 
 

• After erasing the previous f(x,y), if any, we’ll enter the definition for 
this new f(x,y) by following the same procedure. The definition is:  

 RCL 5,  +,  x2,  1/x,  RTN 

• Our new f(x,y) is not a polynomial in X,Y, so we can’t expect an exact 
result, but let’s use the same settings anyway: 

 1, STO I, FIX 4 

• As before, we now enter the limits and compute the integral: 

3, ENTER, 4, ENTER, 1, ENTER, 2, A  ?  0.0408 

• Changing to FIX 6, the result is: 

FIX 6  ?    0.040821 

 where the exact result is I = Ln(25/24) = 0.040822 
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3. Compute the following integral : 

     ⌠ 1.6 ⌠ 6.1 
   I=     (e-x*x +x3-y3*x2+7)*tan-1(x-2)*sin(y+3).dy.dx 
     ⌡-2.3 ⌡3.9 
 

• First erase the previous f(x,y), if any,  then enter the definition for this 
new f(x,y), as before:  

  STO 9, 3, yX,  RCL 5, - RCL 5, x2,  *, LASTX, CHS, eX, X<>Y,  

  -, 7, +, RCL 5, 2, -, TAN-1, *, RCL 9, 3, +, SIN, *, RTN 

• This is a pretty complicated f(x,y) and both intervals of integration are 
somewhat large, so let’s try 2 subintervals and SCI 4: 

 2, STO I, SCI 4, RAD 

• Let’s enter the limits and compute the integral: 

-2.3, ENTER, 1.6, ENTER, 3.9, ENTER, 6.1, A  ?  1.3213E3 

• changing to FIX 2, the result is: 

FIX 2  ?   1321.27, where the exact result is I = 1321.275779 

Despite each evaluation of f(x,y) taking 6 seconds, which increases 
the computation time, and both inner and outer intervals of integration 
being quite wide, which affects the accuracy, we’ve nevertheless got 6 
correct digits in reasonable time (some 17 min.). You might want to 
try your modern HP models and see how they compare ! 

4. Computing the following improper integral: 

                ⌠ Inf ⌠ Inf 
            I =          e-x²-y² .dy.dx 
                ⌡0    ⌡0 
 

• As always, do erase the previous f(x,y), if any,  then enter the 
definition for this new f(x,y), which is   

x2,  RCL 5,  x2,  +,  CHS,  eX,  RTN 

• This improper double integral does appear in Probability. As the limits 
are both Infinity (actually, 4 will have to do) we’ll use 3 subintervals: 

 3, STO I, FIX 4 

• Now, as we can’t enter infinite limits, we’ll stick to 4 for both upper 
limits, as the resulting functional value (e-32), is suitably small: 

0, ENTER, 4, ENTER, 0, ENTER, 4,  A  ?  0.7853 

where the exact result is I = Pi/4  =0.7854 
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Final remarks  
The HP-34C was indeed a landmark machine. On the one side, despite being an 
HP calculator (i.e., a luxury item) it was meant to be really affordable, even if build 
quality suffered a little in the end, most specially fragile battery contacts and not 
feeling nearly as rock-solid as earlier models did. On the other hand, it was a very 
powerful, revolutionary programmable with a comprehensive function set, full 
programmability, automatically partitionable continuous memory, and those 
wonderful, state-of-the-art numeric SOLVE and INTEGRATE capabilities right at 
your fingertips, a true world-first, adequately served by a superb manual. It all 
utterly more than made for the slight quality problems, which never were that bad 
to begin with. People would get to know it better and loved it, in spades. 

Certainly we did, which is why my friend Fernando del Rey and I set up to the HP-
commissioned task of writing a full HP Solutions Book for it, namely “HP-34C 
Advanced Math”, featuring 20+ excellent programs, a labour of love, which made 
the most of showing off the powerful HP-34C-specific capabilities. It was 
primarily intended to help boost HP-34C sales among students. Not that it made 
any difference, actually: the HP-34C sold like mad !  Long Live the HP-34C ! 

 

 
 

 


