
DATAFILE Vxx Nx Page 1

Know Thy Foe: A New Contender

Valentín Albillo (HPCC #1075)

Prelude
25+ years ago, the 80’s just beginning, I already was a seasoned HP fan and user,
with extensive experience with the HP-25, the HP-67 and the brand-new, awesome
HP-41C, synthetics and all. Yet I was always longing for more power and better
functionality. The TI machines absolutely never caught my fancy, they were
obviously sorely lacking in built quality, and their programming paradigm was
dreadful and awkward to say the least. RPN in contrast was a clear sky and
refreshing breeze when compared to the horrors of blind-programming TI’s AOS.

Back then a friend of mine, who had just recently bought an HP-85 computer, also
owned an HP-41C. But after he became used to the HP-85 and its BASIC
language, he began to find the HP-41C unfriendly: a high-level language such as
BASIC had little in common with the “machine language” style of HP-41C
programming. He longed for a handheld using a programming language more akin
to that of his HP-85. The solution: he sold the HP-41C and bought instead the just
introduced BASIC-programmable SHARP PC-1211 Pocket Computer. That way
he needed not change his programming style when switching from his computer to
his calculator and vice versa thanks to their high degree of compatibility for most
casual, simple programming tasks. Lots of publicly available programs written in
some BASIC dialect would usually convert easily as well, and he could much
more easily switch from one BASIC dialect to another than to RPN. By getting rid
of the HP-41C and getting instead the PC-1211, he fulfilled his desire to have a
similar programming environment both in the office and in the field.

Page 2 DATAFILE Vxx Nx

Enter The Foe
To my utter delight, he lent me his PC-1211 for a week, and I came to like the
machine a lot, eventually buying one myself. It was also available in the US
rebranded as the TRS-80 Pocket Computer, which was the exact same machine
except for the TRS label. Later on, when other TRS models were introduced, it
was retrospectively known as “Model 1” or PC-1, to distinguish it from them.

The SHARP PC-1211 is a very slim, compact handheld, very pretty looking,
certainly much prettier than the HP-41C which looked clumsy and ‘ancient’ in
comparison. It has an all-metallic body (unlike the HP-41C’s plastic body), and a
24-character dot-matrix yellow LCD display (unlike the 12-character, segmented
grey LCD of the HP-41C), which results in double the info displayed at once and
much better looking alphanumeric characters than the ones the 41C could display
using just 14 rectilinear segments. See for yourselves:

The PC-1211 was also quite inexpensive, as well. The price, including both the
handheld proper as well as the cassette interface was less than half that of a bare-
bones HP-41C. Adding the much needed card reader to the HP-41C would mean
duplicating your investment and still have bare-bones memory, namely 445 bytes
maximum for programs and data, which were insufficient to the point that most
moderately complex programs for the HP-67 would not fit and/or run. On the other
hand, the SHARP PC-1211 handheld featured 1,920 bytes for programs/data right
out from the box, more or less equivalent to an HP-41C plus 3 RAM modules (the
maximum you could fit at the time if also using the card reader), which gave ample
room to develop complex programs.

The PC-1211 has ‘continuous memory’, like the HP-41C, so that programs, data,
key assignments, and operating modes are all preserved when the machine is
turned off, and it uses standard silver oxide button batteries that last very long,
many months of heavy use, a definite advantage when compared to the difficult-to-

DATAFILE Vxx Nx Page 3

find N-size batteries the HP-41C needs, which would last only so many hours,
much less if also using the card reader, even if sparingly. That gave the PC-1211
utmost portability, without ever having to worry about a dead machine in the
middle of some critical assignment.

As for the keyboard, though not nearly as good as HP keyboards of the time (none
were), it was pretty adequate as well, with the keys providing some tactile
feedback and never failing to register. It was also pretty durable, mines still
working perfectly after 25+ years.

Heresy !
Used in manual calculations, the PC-1211 is a delight. I never liked TI’s AOS,
because you got lost using brackets and functions, but this was mainly due to the
fact that you couldn’t see the computations in the display, just the results. Once a
sequence of operations was entered you had no access at all to the operands and
operators, you simply pressed the [=] key and got a result, no way to know if it
was correct or not, except by repeating the calculation and seeing whether the new
result agreed with the former. Which is more, even if you were sure the result was
wrong, there was no way to know where the mistake had taken place nor any way
to correct it and try again without reentering it all from scratch.

That being so, it’s easy to see why everyone knowledgeable with both systems
would prefer RPN hands down: no messy operation, you have complete access to
intermediate results, less keystrokes are needed, and parentheses definitely aren’t.
There’s also consistency, which AOS actually lacked as some operations weren’t
entered as per true algebraic logic but in postfix notation, such as computing the
sine of 45: you’d enter 45, then press SIN. But even back then in the early 80’s I
was fully aware that RPN wasn’t without blame either. First, the 4-level stack is
insufficient to casually attack most complex problems left-to-right so you need to
stop and think about the proper order of operation in order to successfully compute
the expression without ever overflowing the stack with intermediate results, and

Page 4 DATAFILE Vxx Nx

that would usually entail some necessary reordering prior to pressing any keys.
Which is more, you would do this preliminary work, not the machine. Of course,
with a little practice this is no great difficulty and becomes second-nature, but the
fact remains that I felt at the time that the ideal calculator should not mandatorily
require any such effort on the user, and with a 4-level stack, thinking ahead was
required no doubt. There was also the fact that, like it or not, most computations
are written down in paper in standard algebraic form, and to compute them using
RPN requires, again, some translation work on the user’s part.

But lo and behold, here we had a small, slim programmable handheld that would
accept BASIC expressions from the command line to manually perform
computations, and of course BASIC uses full algebraic hierarchy to do the work,
so that you can enter expressions as written in true algebraic form, where true
means that if you want to compute Sin(45) you enter SIN 45, not 45 SIN. This
way, SHARP consigned to oblivion most drawbacks of AOS-like systems: now
you wouldn’t get lost while entering data and operators because you’re seeing
everything in the display as you’re entering them, and nothing is evaluated till you
press ENTER; you’ve also got 24 display positions for your expression and if
longer, the display will automatically scroll as needed. The command line could be
up to 80 bytes long, which translated to more than 80 characters as all operations
were efficiently tokenized so that SIN is 3 characters but only 1 byte in the
command line and counts as a single display position against the 80 available.

You could always use the cursors (which repeat if held pressed) to edit the
expression, either while entering it or even after having computed it, as you could
recall the entire expression just computed to the display, for revision or editing.
Compare that to the HP-41C, where you just had LASTX to recover the last
number in X, but none other operands or operators. Upon evaluation, all errors
would be reported as an error code and you could recall the whole expression back
to the display, with the cursor blinking at the exact point where an error was first
detected. That way, you could most easily correct any mistake, being able to delete,
insert, or replace any characters in any part of the expression, pressing ENTER to
re-evaluate it when finished with the corrections. Nothing like this in the HP-41C.

Besides, this capability of recalling whole already computed expressions to the
display was immensely useful to perform repeated computations with different
data and play what-if scenarios without ever requiring programming. Also, you
could compute several expressions at the same time by simply separating them
with commas, and for further convenience, the result of a computed expression can
be used in another by simply typing the new expression immediately; say, to
compute 5 plus 6, see the result, and then add 7 to it, you would simply press: 5+6
ENTER (see 11) +7 ENTER (see 18). As an example, suppose you want to
manually compute the roots of some quadratic equations. You would type in:

A=1, B=5, C=-6, (-B+v(BB-4AC))/2A

DATAFILE Vxx Nx Page 5

then press ENTER to evaluate it to 10-digit accuracy (12-digit internally). Though
it’s a pretty simple expression, you can see that you’re in fact doing three variable
assignments plus computing the actual value for the root using those variables.
You can also notice that implied multiplication is allowed (where BB means B*B,
4AC means 4*A*C, and 2A means 2*A), saving lots of keystrokes and time, and
further notice that the algebraic hierarchy is advanced enough that implied
multiplication is performed before anything else, so that 2*A is computed before
attempting division by it !.
This example is also perfect to demonstrate the powerful editing facilities. After
the root is computed and displayed, we can compute the other root by simply
recalling the expression back to the display, placing the cursor over the +, press –
over it, then ENTER. The edited expression is evaluated and the second root
appears. Which is more, to solve other different equation, recall the expression
back again, then edit the values assigned to A, B, and/or C, then ENTER. You’ll
agree it’s clearly astounding what can be done with the SHARP PC-1211 under
pure manual calculations, without programming at all. This can’t be done with an
HP-41C unless programmed.

Hierarchy rights
Another strong point of the SHARP is its full algebraic hierarchy. Not only does it
feature true algebraic notation (e.g.: SIN 45) and implied multiplication (e.g.:
BB-4AC), but it also does allow intermixing logical computations (e.g.:
5*(A=0)+EXP(J)*(F$=G$)-7*(B>=C+1)) and it has an internal 8-level
stack for intermediate results and a 15-level stack for functions and operators, so
that in practice nearly all expressions can be entered left-to-right, as written. The
well-known Mach number example, which HP usually gave as an example of the
power of RPN, can be entered left-to-right with plenty of internal levels to spare,
while in the HP-41C and other 4-level RPN models you must decide in advance
where to begin lest you’d find yourself losing an intermediate result from the top
of the stack. The ability to enter expressions left-to-right not only saves effort on
the part of the user, but it saves time as well, as none is wasted considering what
the correct evaluation order should be to avoid losing data.
This is not the only time-saving feature. Another obvious way to save time and
effort is reducing the number of keystrokes needed to enter expressions to a
minimum. In this regard, RPN was always considered to lead the pack, usually
needing less keystrokes than any AOS version. But the SHARP PC-1211
algebraic logic gives it a run for its money, with such niceties as implied
multiplication (which saves one [*] keystroke per factor: 5*A*B*C*D can be
evaluated in just 6 keystrokes, 5ABCD plus ENTER), parentheses not being needed
for function arguments (so COS(-2*X*Y) can be entered as COS -2XY), and
closing final parentheses being unnecessary (so that 3*(A+2*(B+6*(C+7))))
can be evaluated as 3*(A+2*(B+6*(C+7 ENTER and all pending parentheses
will be automatically closed). These clever measures result in less keystrokes, thus
faster manual computations and program bytes saved as well.

Page 6 DATAFILE Vxx Nx

Data & indirection
Like the HP-41C, the SHARP PC-1211 also features dynamically allocated RAM,
which is automatically partitioned between programs and data. A maximum of 204
registers (called ‘variables’) can be allocated (versus 63 for the bare-bones HP-
41C and 191 for an HP-41C with 3 RAM modules plugged-in), 26 of which are
permanently allocated to variables A-Z (numeric) or A$-Z$ (string), the rest being
accessible as array elements (say A(138) or A$(26+10*I)). When storing
strings, each variable or array element can store up to 7 characters (versus 6
characters per register for the HP-41C). The equivalent of STO is a simple
assignment such as A=SIN 30, the equivalent of RCL is just using the variable’s
name, so that you’d press A [ENTER] to display the contents of variable A.
Indirection is achieved by array indexing, so that you’d use A(N) to access the N-
th element of array A. Of course you can use more complex expressions such as
A(10*I+J)-A(I-J), which would require a bit of storage arithmetic and two
registers in the HP-41C (or else doing the arithmetic on the stack, then using RCL
IND X a couple of times). Also, you’re not limited to a single level of indirection,
so you can use expressions like A(A(A(X))) which in the HP-41C would be
equivalent to RCL IND IND IND X, say, if it were at all possible.

Key assignments
An extremely useful feature of the HP-41C is the capability of assigning
frequently used functions and programs to keys in USER mode, thus avoiding the
need to continually having to spell out function names. The PC-1211 allows you to
assign functions and programs to keys, but the mechanism is quite different. First
of all, assigning functions to keys does not consume program or data memory, but
rather a separate 48-byte area is used instead, which is enough for a theoretical
maximum of 24 key assignments. Secondly and most important, unlike the HP-
41C which is limited to 1- or 2-byte assignments, in the PC-1211 you can use a
variable number of bytes for a single assignment, from a minimum of 2 up to a
maximum of 47. This allows you to use assignments as typing aids, and for
instance you can have the sequence v(XX+YY)assigned to the (shift)A key. Then,
just pressing (shift)A would enter that sequence in the display, ready for evaluation
at the press of ENTER, or forming part of a complex program line. This is very
convenient and useful in practice and saves a lot of typing. A final feature is that
the very same key can be assigned simultaneously to an expression or typing aid
and a program. Programs are “assigned” as follows: the program line

10 “Z” REM *** POLYNOMIAL SOLVER ***

both gives a title to the program and specifies that pressing (shift)Z will
automatically start execution at that line. You can have multiple entry points
assigned this way, so you can start execution of different programs or different
sections within a single program at the touch of the appropriate shifted key. This
provides the equivalent of assigning global labels to keys in the HP-41C.

DATAFILE Vxx Nx Page 7

Programming the beast
While the HP-41C does use a fairly low-level ‘keystroke programming’ RPN
style, the SHARP PC-1211 was the very first small handheld in the world to
include a high-level programming language, namely a fairly decent version of
BASIC. Due to its pocket size and prize (thus ROM and RAM limitations) its
BASIC is somewhat limited in some aspects, and it isn’t particularly fast, but all in
all it’s a decent implementation, with many interesting extensions, 12-digit internal
computations, and a healthy number of mathematical functions and features.
The first thing a fledgling programmer would notice is that programming in
BASIC is quite comfortable. The HP-41C’s RPN style of programming means
that the programmer must take care of all details. For instance, if a loop is to be
programmed, you must take care to construct the control register (bbbbb.eeeii),
include a branching point (LBL 01), decide whether it is to be incrementing
(ISG) or decrementing (DSE), include the test condition (X=Y?) and finally a
branching instruction (GTO 01). The resulting code isn’t particularly readable or
elegant. On the other hand, you can simply set up a FOR...NEXT construct in the
PC-1211, which will automatically take care of all the details without explicitly
requiring most of the elements mentioned. Which is more, FOR...NEXT loops
can be nested, of course. The simple construct, which fits in a single line:
5 FOR I=1 TO 9:FOR J=1 TO 7:A(I)=3*I+J:NEXT J:NEXT I

is trivial to design and code without thinking at all, while the HP-41C’s equivalent
construct would be a many-line affair, with two labels, two GTO’s, two
comparisons, plus instructions to set up both incrementing indexes. Inputting data
to a running program is also particularly powerful. A line such as:

10 INPUT “ENTER WIDTH”,W,”ENTER LENGTH”,A(30)

would alphanumerically prompt for the value of Width, which the user can then
enter as a single number or any arbitrary expression which will be evaluated on
the fly, then entered into variable W; you’ll be prompted for Length, and your
input will be evaluated and entered into the 30th element of array A. Again, not
only is this much simpler and cleaner than the equivalent HP-41C sequence, but
actually you’re not guaranteed that you can perform an arbitrary computation in
the HP-41C as your input, because perhaps the stack can’t be disrupted at that
particular point, as it frequently is the case. This also applies to stopping the
program at an arbitrary point to do some manual computation, then resume. That
you can’t do in the HP-41C because you’ll disturb the stack thus probably
forfeiting any further resumption of the program. No such problem on the SHARP
PC-1211, where you can stop a running program at any point, perform any manual
calculation, then confidently resume program execution. You can inspect the
values of variables and alter them if desired before continuing.
Program lines (which on the HP-41C can hold a single instruction or a number)
can be up to 80 bytes in length, multiple statements being separated using “:”.
Statements can be entered with arbitrary spacing, upon pressing ENTER they will

Page 8 DATAFILE Vxx Nx

be tokenized to save space and time (so that SIN is 3 characters when typed in but
just 1 byte in program memory) and automatically spaced properly so that, for
instance, should you type 10IN P UTV, it will appear as 10:INPUT V as
soon as you press ENTER. Nothing like this in the HP-41C, of course.

Program editing & debugging
Programs can be listed and viewed line by line, scrolling the line if too long to fit
the 24-character display. Lines can be inserted in any order whatsoever with
arbitrary numbers (they’ll be put in their proper order automatically), can be
deleted by simply entering their number and pressing ENTER, and can be edited by
inserting, deleting, or replacing characters using the cursor and edition keys. As
you can edit the line number itself, it’s very easy to quickly enter a number of very
similar lines by merely duplicating them and then editing the duplicates.
Also, apart from speeding up program entry by using typing-aid assignments as
discussed above, most keywords do have an abbreviated form (similar to the HP-
75C) so that, for instance, you don’t need to type INPUT in full but merely I and a
dot. As soon as the statement is entered or executed, it will be completed to
INPUT. Likewise you have G. for GOTO, N. for NEXT., etc. This is quite
intuitive, very easily mastered, and makes program entry much quicker. It would
be great if such a mechanism existed in the HP-41C, so that you could enter
PROMPT by simply pressing XEQ ALPHA PR. , say, with the dot both converting
PR. to PROMPT and taking us out of ALPHA mode. When you combine this
mechanism with implied multiplication, automatic closing of final parentheses,
automatic closing of final quotation mark (for strings), and multi-statement lines,
it’s clear how all these features work sinergically to help save lots of keystrokes
and work, thus speeding program entry and manual computations greatly. It’s
ergonomic design at its best.
As for debugging, programs can be single-stepped. If an error occurs during
execution, an error code is displayed and upon pressing the cursor key, the program
line where the error was encountered will be displayed, with a blinking cursor over
the precise offending statement, so that you can correct it at once.

Conditionals and branching
The GOTO/GOSUB branching instructions have been extended to allow computed
destinations, which provides for indirect branching and then some:

GOTO 10 , GOSUB 20*SIN(A+B)*EXP X, GOTO “DOIT”, GOSUB R$

This is a very powerful extension, absent from both the HP-85 and even the HP-
71B (you had the much simpler ON..GOTO/GOSUB statements instead), which is
similar but more powerful than GTO IND X in the HP-41C, say, where the X
register contains the computed destination, either a numeric or an alpha label.
Conditional are also another strong point when compared to the HP-41C meager
equivalents. In the HP-41C you can do very simple tests such as X<Y? or X=0?,
or test a flag, then if the test is met you have a single program step to decide what

DATAFILE Vxx Nx Page 9

to do, usually branching to some label or subroutine. On the other hand, the PC-
1211 includes full conditional capabilities, like this test demonstrates:

IF A+C<=SIN(XY)/A(3+J) BEEP 1:PRINT “OK”:N=N+1:GOTO 80

which would require a lot of code to mimic in the HP-41C. The PC-1211 allows
FOR..NEXT loops after the IF true clause (not possible in the HP-85 or HP-71B)
or even another nested IF (again, not possible in those machines).
Tests requiring some intrincate combination of the standard boolean operators
AND/OR/NOT/XOR/EXOR are easily accomplished in SHARP’s BASIC dialect.
For instance, suppose you want your program to branch to line 100 if A equals B
or if, simultaneously, C is greater than D and H equals B+D. The line:

IF (A=B)+((C>D)*(H=B+D)) GOTO 100

accomplishes this effortlessly. Again, this would be much more cumbersome in the
HP-41C, and would require some extra labels and branching.

Input/Output
You can save and load programs and data to cheap, standard audio cassette tapes,
both manually and under program control, no need for a very expensive card
reader and low-capacity magnetic cards. A single inexpensive C-60 audio tape will
store dozens of programs. Additionally, programs and data can be merged with the
current contents in RAM, which means you can run very large programs, each
segment automatically loading and merging the next, unattended. As for printing,
you can print items to the display or the impact printer, with provision for
formatted output (similar to IMAGE in the HP-75C or HP-71B), like this:

PRINT USING “#.##”;C+SIN(D);”,ID=”;A$(I);USING “#.#^”;J

Documenting it all
The PC-1211 comes with 3 manuals: the Owner’s Handbook and the Beginner’s
Guide to BASIC are well written, discuss all aspects of the machine’s operation
and capabilities in a tutorial style, and feature many good examples, including
useful exercises and their solutions. You can certainly start from scratch and
painlessly become a proficient user and programmer, much like the traditional
quality classic manuals from HP did, the outstanding HP-41C ones among them.
But the PC-1211’s Standard applications manual beats the ridiculously tiny and
trivial HP-41C‘s equivalent hands down. It is a 300+ pages book containing over
130 programs, all of them fully documented including algorithms and a wealth of
examples. Unlike the ones featured in the HP-41C’s Standard applications book,
these are non-trivial programs in all kinds of disciplines such as engineering, math,
statistics, finances, even games. You’ll find here Linear Systems Solving (up to
11x11), Matrix Inversion, Root Solving, Structures, Distributions, Regressions,
TVM, Mortgages, etc. Not only will they prove invaluable to learn advanced
programming techniques, but they’re useful by themselves right out of the book.
This manual is a real model for other manufacturers to follow, HP included.

Page 10 DATAFILE Vxx Nx

Hand to hand: a casual duel
Let’s now have a look at how both machines deal with a couple of rather simple
programming tasks. This will provide a good taste of their respective programming
paradigms and architectures.

Task 1: To find 3-digit integers equal to the sum of the cubes of their digits

The PC-1211 program is an absolutely straightforward, 2-line affair:
 10 N=100: FOR A=1 TO 9: FOR B=0 TO 9: FOR C=0 TO 9:
 IF AAA+BBB+CCC=N THEN PRINT N
 20 N=N+1: NEXT C: NEXT B: NEXT A

which is 63 bytes long. The equivalent HP-41C program would be:

 01 *LBL "NNN" 14 INT 27 RCL 00
 02 100 15 3 28 X=Y?
 03 STO 00 16 Y^X 29 STOP
 04 1.009 17 RCL 02 30 1
 05 STO 01 18 INT 31 ST+ 00
 06 *LBL 01 19 3 32 ISG 03
 07 .009 20 Y^X 33 GTO 03
 08 STO 02 21 RCL 03 34 ISG 02
 09 *LBL 02 22 INT 35 GTO 02
 10 .009 23 3 36 ISG 01
 11 STO 03 24 Y^X 37 GTO 01
 12 *LBL 03 25 + 38 CLX
 13 RCL 01 26 + 39 END

which is obviously larger, more complex, much less intuitive, and takes longer to
concoct. The same commentary applies to the second task, below.

Task 2: To compute Sin(x) using its Taylor series expansion

The PC-1211 implementation is this simple 3-liner:
 1 “=” AREAD X: Y=X, K=-XX, T=X, N=3, L=E-90
 2 T=KT/(NN-N), Y=Y+T, N=N+2: IF ABS TL GOTO 2
 3 PRINT Y

which is 71 bytes long. The equivalent HP-41C program is:

 01 *LBL "SX" 12 *LBL 01 23 ST+ 01
 02 STO 00 13 RCL 02 24 RCL 05
 03 STO 01 14 ST* 03 25 RCL 03
 04 STO 03 15 RCL 04 26 *
 05 X^2 16 X^2 27 ABS
 06 CHS 17 RCL 04 28 X#0?
 07 STO 02 18 - 29 GTO 01
 08 3 19 ST/ 03 30 RCL 01
 09 STO 04 20 2 31 END
 10 1E-90 21 ST+ 04
 11 STO 05 22 RCL 03

DATAFILE Vxx Nx Page 11

Sample programs:
These are a few, very short PC-1211 programs solving simple, well-known
problems, for you to see how easily many apparently complex tasks are
accomplished in this handheld. A sobering effect would be for you to try and
implement them in the HP-41C, first without the benefit of previously studying the
PC-1211 solutions, then just trying to mimic them as closely as possible, and see
what you come up with in terms of ease of programming and resulting complexity.

Towers of Hanoi
 1 REM *TOWERS OF HANOI*
 2 INPUT "N=";D: A=1,B=3,C=5
 3 IF D=1 GOSUB 8: GOTO A(C-1)
 4 A(C)=A, A(C+1)=B, A(C+2)=5, B=6-A-B, D=D-1, C=C+3: GOTO 3
 5 A=A(C-3), B=A(C-2): GOSUB 8: A(C-1)=6, A=6-A-B: GOTO 3
 6 C=C-3, D=D+1: IF C<>5 GOTO A(C-1)
 7 BEEP 2: PRINT "DONE": END
 8 BEEP 1: PRINT USING "##";"FROM";A;" TO";B: RETURN

Hyperbolic functions
 1 “A” AREAD X: Y=(EXP X-EXP –X)/2: PRINT Y
 2 “S” AREAD X: Y=(EXP X+EXP –X)/2: PRINT Y
 3 “D” AREAD X: Y=1-2/(EXP 2X+1): PRINT Y
 4 “Z” AREAD X: Y=LN(X+v(XX+1: PRINT Y
 5 “X” AREAD X: Y=LN(X+v(XX-1: PRINT Y
 6 “C” AREAD X: Y=LN((1+X)/(1-X))/2: PRINT Y

Compute and display up to 575 decimal digits of e = 2.71828...

 1 CLEAR: INPUT “B=”;A: G=5E6, A(7+A)=G, B=2G, F=A
 2 FOR D=3 TO 999: C=A(7+F): IF C=0 LET F=F+1, C=A(7+F)
 : IF F=2A GOTO 6
 3 FOR E=7+F TO 6+2A: A(E)=INT(C/D,C=A(E+1)+B*(C-DA(E): NEXT E
 4 FOR E=6+A TO 7+F-A STEP –1: A(E)=A(E)+A(E+A)
 : IF A(E)>=B LET A(E)=A(E)-B, A(E-1)=A(E-1)+1
 5 NEXT E: NEXT D
 6 USING “##.#######”: BEEP 2: G=G+2B: FOR E=7 TO 6+A
 : PRINT A(E)/B : NEXT E

Solve N-Queen puzzle in a general NxN chessboard

 1 A(Y)=A(Y)+1: IF A(Y)>X LET Y=Y-1: GOTO 1
 2 GOTO 5
 3 “=” INPUT “N=”;X: Y=1
 4 A(Y)=1
 5 IF Y=1 GOTO 8
 6 FOR Z=1 TO Y-1: IF (A(Z)=A(Y))+(Y-Z=ABS(A(Z)-A(Y) LET Z=Y
 : NEXT Z: GOTO 1
 7 NEXT Z
 8 Y=Y+1: IF Y<=X GOTO 4
 9 USING: BEEP 1: FOR W=1 TO X: PRINT “QUEEN AT “;W;A(W)
 : NEXT W: Y=Y-2: GOTO 1

Page 12 DATAFILE Vxx Nx

What a feeling: Now and Then
When all’s said and done, the HP-41C upgraded with memory modules first, then
with plenty other ROM plug-ins and HP-IL peripherals which were later released,
certainly was more powerful and capable than the PC-1211, as well as much more
expensive. Classic RPN language, simple as it is, is more flexible and economic
than BASIC, if more cryptic and difficult to write, debug and maintain programs
using it. SHARP’s BASIC is much easier to program in than RPN, and allows for
extremely quick casual program development, the resulting programs being
compact, readily understood and modifiable, even months after you wrote them.
You don’t have to maintain a picture of the stack’s contents in your head, nor a
map of what’s in every numbered register, so it’s ideal to concoct quick two-liners
without ever using or needing paper and pencil. It is also fully interruptible to
perform other computations, then resume program execution, undisturbed.

But at the time, with the HP-41C just introduced, no such HP-IL peripherals or
ROMs were available, and by the time they were, SHARP had also released new,
vastly improved siblings, which were even more difficult to beat. Thus, for its
time, the PC-1211 was a truly worthwhile contender, a top-of-the-line calculator-
cum-handheld computer unsurpassed by any other model, except arguably the HP-
41C. It did admit peripherals such as an impact printer and standard audio tapes for
program/data storage, and boasted awesome build and design quality, all at a price
less than half that of the HP-41C alone. Awesome !

Also, you must remember that though these features and programming capabilities
in a small handheld aren’t surprising to us now in 2006, we’re talking about circa
1980 here. The most advanced handheld you could have at the time was the
powerful HP-41C, then the SHARP PC-1211 entered the picture. I doubt it made a
dent in most highly-committed HP fans’ awareness, focused as they were in their
RPN-only world and with their hands all too busy with synthetics, then HP-IL,
then even M-code. But for the rest of the world, the PC-1211 made a profound
impact, and ultimately resulted in a decade-long domination of the BASIC Pocket
Computer scene, with dozens of advanced models, always improving their already
very high quality and capabilities. The HP-75C and the HP-71B were the only HP
entries in that range, and they barely registered when compared to the SHARPs
out there. The SHARPs sold by the millions in Japan and Europe (most specially
Germany and France), and dozens of User Clubs and even publications were
created around them. After so many years, and despite the fact that the format has
been rendered obsolete by ever small laptops and PDAs, they still work as fine as
always, remain in top physical shape, and can still be appreciated and put to full
use by their proud and loving owners, myself included.
Perhaps you’d consider having a look at them, too, as a welcome complement to
your HP collection and to expand your views to other horizons. If quality is what
attracted you to HP in the first place, then classic SHARP BASIC handhelds
deliver, in spades !.

