
DATAFILE Vxx Nx Page 1 

Long Live the HP-25 ! 
 

Valentín Albillo (HPCC #1075) 
 

The HP-25 was my very first HP calculator.  Back then in 1975 I was about to 
enter University and getting a powerful calculator to help me through was at the 
top of my To-Do list. I already had a simple (if quite expensive) four-function 
Sears calculator with one memory register and no square root, but after a colleague 
of mine showed me his recently acquired HP-21 and introduced me to that most 
misterious yet unbelievably powerful RPN way, I found myself utterly hooked to 
the point were I couldn’t contemplate getting or using an ordinary algebraic 
calculator anymore. It had to be an RPN one, nothing less would do for me. 

Yet the problem was, even the HP-21 was very expensive, much less than the HP-
65, say, but still much more than any normal algebraic model. As a ‘poor’ student, 
I could hardly afford such an expense but never mind, I got the money after a 
whole year of savings and deprivation. With the money in hand I was ready to go 
and order my very own HP-21 when something happened. A new HP model, the 
HP-25, had just been released ! It was visually quite similar to the HP-21 in size 
and shape, but it seemed to be much more powerful, with many additional 
functions, eight (!) storage registers and, lo and behold, programmable (!!). 

Now, this was a mixed blessing to me. On the one hand, this new machine was way 
beyond my wildest dreams in power and functionality. I was pretty satisfied with 
what the HP-21 had to offer, so obviously it goes without saying that the HP-25 far 
exceeded any wish list I could have. It was the machine I wanted, and I was sure it 
would serve me exceedingly well in my incoming universitary endeavours and way 
beyond that, even for my personal, mathematical hobbies. On the other hand, it 
was significantly more expensive than the HP-21, so the money I had painfully 
managed to save for its acquisition was plainly insufficient. What to do ? 

Well, I simply couldn’t resist. After tremendous struggles and efforts, I did manage 
to get the additional money and ordered my HP-25 at once. After a week or so (an 
specialized order, very few people could afford or were interested in one in my 
neighbourhood) I finally got it in my hands, and was instantly marveled at the 
feeling of incredible quality it oozed. Here it was, a small yet very solid device, 
with a wonderful red-LED display, extremely pleasant keyboard with two (!!) shift 
keys, golden and blue, a nice carrying case, and two awesome books to accompany 
it, the exceedingly interesting and well-written Owner’s Handbook (full of 
wonderful photographs which depicted the small HP-25 in a variety of scientific 
and engineering environments, dwarfed by the huge measuring or computing 
devices nearby), and the unbelievable Applications Manual, which provided tons 
of useful programs with full explanations, relevant equations, and joyful examples. 



Page 2 DATAFILE Vxx Nx 

I then spent the next few weeks dedicating nearly 100% of my free time to absorb 
all the information and try out every single program and example, being constantly 
astonished by its capabilities, which were much greater than I expected. I knew 
that it was ‘programmable’, but I wasn’t sure at all what that exactly meant, this is, 
what it could do. I thought that it would simply remember keystrokes and would be 
able to compute a complicated expression repeatedly at the touch of a key, but that 
would be all. I hadn’t expected logical tests, branching, single-step capability, etc., 
so I was amazed no end when I first saw that Newton’s method for solving f(x)=0  
was featured as one of the application programs in the book.  

That this small calculator would be capable of storing the equation definition, then 
unattendedly compute both its value for some argument and its derivative as well, 
then perform the necessary test to decide whether convergence was achieved and if 
so stop and display the root, or else update the approximation and loop back for yet 
another iteration, all by itself, I could hardly believe. Now, in 2006, this may sound 
trivial but back then in 1975 it was nothing sort of miraculous, you’d need a room-
sized computer or an incredibly expensive, large programmable desktop calculator 
to even attempt it. Yet this thing was reliably and quietly solving non-linear 
equations while sitting in the palm of my hand. A miracle.  

Up to then, I had written ‘programs’ for my four-function calculator, this is, 
sequences of keystrokes that, when repeated mechanically, without thinking much 
if at all, would produce the answer to some complicated calculation. I had such 
‘programs’ for computing square roots, trigonometric and exponential functions, 
and even solve some simple equations, such as cubics and certain quintics. But of 
course they were absolutely manual and tedious procedures As soon as I learned to 
program my HP-25, these procedures were the first thing of my own I tried on it, 
and to my utter delight, they worked flawlessly!  

I then took it to my University, where as it happened we students had access to a 
computer, suitably advanced for its time yet extremely primitive by today 
standards. It was a 3-terminal device, where each terminal had a teletype-style 
console with a keyboard and a line printer (but no display or video screen), with 
just 1.3 Kb of RAM for each terminal and a rudimentary version of BASIC , with 
just one statement per line, dreadful 6-digit accuracy, no string manipulation, non-
optional LET statement, rudimentary and unreliable matrix operations, and paper 
punch I/O.   

The first day I got there, I promptly showed my brand-new,  just gathered-from-
the-shop HP-25 to my teacher before even unwrapping its manuals, and asked him 
what it could do. “Everything this computer does” he said. Indeed. Most of the 
programming exercises I was asked to do in the computer I could do, and much 
more conveniently, in my HP-25C. I was extremely proud with my acquisition and 
had thus become an RPN and HP calc lover overnight. 

Later, I created much more complicated programs specifically to help me at exams, 
such as computing elliptic functions. Indeed, the teachers would let me use it at 
exams with the one condition that I wrote the programs myself, which I did, and 



DATAFILE Vxx Nx Page 3 

they were amazed with the results. While everyone was wasting time looking for 
some elliptic function in cumbersome tables, my HP-25 would simply compute it, 
to 8-10 digit accuracy, in mere seconds. No searching, no interpolations, no 
inaccurate results. My exams were not only correct, but much more accurate than 
anyone else’s. I was often out of the examination hall more than half an hour 
before the allotted time elapsed. I still remember one of the problems: given an arc 
of a 3-D helix between two points, to find the coordinates of the points which 
trisected its arc length. This required computing some elliptic functions and their 
inverses, and the HP-25 did the drudgery for me with unbelievable precision. 

What then had the HP-25 which was so revolutionary for its time ? A lot. Namely: 

• 10-digit accuracy in the range from 1E-100 to 1E+100, where most 
calculators just had 8 digits, from 1E-8 to 1E+8. 

• 8 storage registers, with full storage arithmetic, where most calculators just 
had one memory register, with M+ and M- 

• A vast range of math functions, including reciprocal, square root, all 
trigonometric and their inverses in radians, gradians and degrees, 
exponentials, logarithms, exponentiation, rectangular to polar conversions 
and vice versa, etc., where most calculators just had the usual arithmetic 
functions plus square root, and the few that had some transcendental 
functions usually implemented them with dreadful accuracy. 

• Full RPN, with 4 stack registers plus LASTX, where most other calculators 
of the time were algebraic, with no parentheses or just one or two levels of 
pending operations and inconsistent hierarchy of operations. 

• Small size, bright display, solid, reliable, extremely good keyboard and 
rechargeable batteries, where most other calculators felt feeble and had 
horrible, unreliable keyboards and displays. 

• Exceedingly good, enjoyable, comprehensive documentation, with an 
Owner’s Handbook which was a work of art and an Applications Manual 
way beyond belief, when most calculators would have an small pamphlet 
full of trivial examples or a back label with common operations, if at all.  

• Programmability. 49 fully-merged (up to 3 keystrokes) steps, logical tests, 
branching and looping, single-step execution, simple program entering and 
edition. No non-HP calculators at the time could compare, only the HP-65 
could (at 5-6 times the price and without fully merged program steps at that) 

• And of course, classic HP outmost quality and service. 

You really need to have lived those times to fully understand what the HP-25 
meant to many of us, fledgling engineers. Now, let’s show what the HP-251 can do. 

                                                 
1 No HP-25 ? No problem. You can either use the nice HP-25 Java applet at the Museum of HP 
or else google for and download the free Nonpareil emulator which includes the HP-25 as well. 



Page 4 DATAFILE Vxx Nx 

Sample programs: Solving Differential Equations 
 
Numerically solving equations such as f(x)=0 is one thing. But solving 1st-order 
differential equations y’=f(x,y) is quite another. Back then in 1975 you really 
weren’t expected to be capable to do either, much less automatically. As the 
Applications Manual convincingly showed, the HP-25 could do the former, which 
required the numerical computation of the derivative of f(x). This needed just two 
evaluations of f(x), which was somewhat tricky as, unfortunately, the HP-25 
capabilities did not include subroutine calling, GSB (Go-Sub), as the HP-65 did. 
Yet the Applications Manual demonstrated a neat trick you could use to distinguish 
whether you were evaluating f(x) or f(x+inc), which essentially amounted to using 
a simulated flag, as flags, though also available in the HP-65, were not part of the 
HP-25 programming paradigm either.  
 
Now, to  numerically solve a 1st-order differential equation y’=f(x,y), there are a 
number of algorithms we can use. The Applications Maual included one, namely a 
modified version of Euler’s method. This is as simple as it gets, but it is a low-
accuracy method, which requires a very small step size to achieve passable results 
and that implies long execution times and rounding error accumulation. 
 
A much better, widely used method, is Runge-Kutta’s 4th-order algorithm (the 
error is proportional to h5, which is very small for small h). It goes like this: given 
y’=f(x,y) and the initial condition y(x0)=y0, we must find y(x0+h) for some suitable 
step h. Using Runge-Kutta’s 4th-order method, we must compute: 
 
 k1 = h * f(x0, y0) 
 k2 = h * f(x0 + h/2, y0 + k1/2) 
 k3 = h * f(x0 + h/2, y0 + k2/2) 
 k4 = h * f(x0 + h, y0 + k3) 
 
and then we finally have: 
 
 y1 = y(x1) = y(x0 + h) = y0 + (k1 + 2 * k2 + 2 * k3 + k4)/6 
 
and iterating this we can compute y(x) for any value of x. But the problems are: 

• Can we fit all of this in the 49 steps of program memory provided by the 
HP-25, including both the program itself plus sufficient space to define  
some reasonable, non-trivial f(x,y) ? 

• Computing the k-values requires four calls to the f(x,y) definition. How can 
we make these four calls and return to the proper sequence in the algorithm 
having no subroutine capabilities and no flags ? A simulated flag will allow 
your program to easily return to two different places, but four ? 

 



DATAFILE Vxx Nx Page 5 

Despite the apparently insurmountable difficulties, most specially the 49-step limit, 
I was so dissatisfied with Euler’s method’s abysmal performance that I tried very 
hard to implement Runge-Kutta’s 4th order method. But after several unsuccessful 
attempts and under the pressure of incoming exams, I finally gave up for the 
moment and, not wishing to go back to Euler’s 1st-order method, I decided that if 
4th-order wasn’t within reach, perhaps 3rd-order would, so I worked the theory out 
and came up with this 3rd-order Runge-Kutta method instead: 
 
 k1 = h * f(x0, y0) 
 k2 = h * f(x0 + 2/3 * h, y0 +2/3 *  k1) 
 k3 = h * f(x0 + 2/3 * h, y0 +2/3 *  k2) 
 
 y1 = y(x1) = y(x0 + h) = y0 + (2 * k1 + 3 * k2 + 3 * k3)/8 
 
which requires just three evaluations of f(x,y) instead of four, so it seemed more 
amenable to fit within the strict limitations, as well as faster if slightly less accurate 
(error proportional to h4 instead of h5). Taking advantage of the repetitive patterns I 
eventually came up with this HP-25 program: 
 
01  CLX   11   ...   21  X<0     31   +   41  RCL 5 
02  STO 3   12   ...   22  GTO 38  32  RCL 0   42  STO+3   
03  RCL 2   13   ...   23  Rdown   33  RCL 4   43    8     
04  RCL 1   14   ...   24  STO 5   34    *     44  STO/3   
05  f(x,y)  15   ...   25  STO+3   35  RCL 1   45  RCL 0   
06   ...    16   ...   26  STO+3   36    +     46  STO+1   
07  GTO 18  17   ...   27  RCL 4   37  GTO 05  47  RCL 3   
08   ...    18  RCL 0   28  STO-7   38  STO/ 7  48  STO+2 
09   ...    19   *     29    *     39   /      49  RCL 2   
10   ...    20  RCL 7   30  RCL 2    40  STO-3   
 
which does the job and still lets you with 13 free steps to define your f(x,y); it 
computes the next datapoint and stops with yn in the display (and in R2, while xn is 
stored in R1). To use it, you must: 

• previously store a couple of constants, namely 2/3 in R4 and 1 in R7. This is 
done only once no matter how many f(x,y) you may define and solve. 

• switch to PRGM mode and define your f(x,y) from step 05 up to and 
including step 17, assuming x is in X and y is in Y. If f(x,y) doesn’t use all 
available steps, you must include a GTO 18 at its end. 

• switch back to RUN mode and store initial values: h in R0, x0 in R1, y0 in 
R2, then f PRGM and R/S  

you’ll get y1 = y(x1) = y(x0 +h). Press R/S again to get y2, y3, and so on. You can 
also change the step value h at any moment by storing its new value in R0, which 
may be useful to improve accuracy near singularities or extrema. 



Page 6 DATAFILE Vxx Nx 

Let’s see an example: Given y’ = x3y3 –xy, with y(0)=1/Sqrt(2), find y(1). 

We do the following, using  h = 0.1 as our initial step size:  

- define f(x,y):  
   GTO 04, PRGM mode, *, X2, LASTX, *, LASTX, -, GTO 18, RUN mode 

- store once-only constants: 
   2 , ENTER,  3,   /,  STO 4,  1, STO 7 

- store initial values and step size: 

         0 (x0), STO 1, 2, SQRT, 1/X (y0), STO 2, 0.1 (h), STO 0, FIX 5 

- run it: f PRGM, R/S; by repeatedly pressing R/S you’ll eventually get: 

X 0.1 .02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Y .70359 .69324 .67663 .65462 .62819 .59832 .56592 .53175 .49642 .46037 

which are indeed correct to 5 decimal places.  

You are hereby encouraged to single-step through the program to see how neatly it 
does manage to call f(x,y) three times with different arguments, yet it always 
returns to the proper sequence  by a most clever use of the constants at R4 and R7.  

Upon seeing and analyzing this program, my friend Fernando del Rey (former PPC 
member #4995 and nowadays a proud HPCC member as well) was, in his own 
words, “enthralled and amazed” at how cunningly it managed to get the job done, 
and felt inspired enough that he decided to try his hand at the elusive 4th-order 
method, using similar tricks as the ones he had seen in my 3rd-order attempt. 

To our utter astonishment and delight, he succeeded as well, and produced the 
following marvel, that I still consider the very best program for the HP-25 I’ve 
ever seen, and one of the most clever pieces of code for any machine, period: 

 
01  RCL 2   11   ...   21  GTO 26  31   *      41  STO/ 7 
02  RCL 1   12   ...   22   +      32  RCL 2   42  RCL 3 
03  f(x,y)  13  RCL 0  23  1/X     33   +   43  STO-3   
04   ...    14   *     24  STO 4   34  RCL 4   44   6   
05  GTO 13  15  STO+3  25  GTO 31  35  STO-7   45   / 
06   ...    16  RCL 7  26   -      36  RCL 0   46  STO+2 
07   ...    17  X<0    27  CHS     37   *      47  RCL 0   
08   ...    18  GTO 41 28  STO 4   38  RCL 1   48  STO+1 
09   ...    19   1     29  X<>Y    39   +      49  RCL 2   
10   ...    20  X#Y     30  STO+3   40  GTO 03  
 
It works very much like mine, except it leaves 10 program steps free to define 
f(x,y) (which must end with a GTO 13 if it doesn’t use all of them), and the initial, 
once-only stored constants are 0 in R3 and 1 in R7. The usage instructions are the 
same, except you must begin your f(x,y) definition at step 03.  



DATAFILE Vxx Nx Page 7 

Let’s see it in action: Given y’ = (x2 + tan2y)/(1 + tan2y) with y(0)=0, find y(1). 

We do the following, using a 0.2 step size, for faster results:  

- define f(x,y):  
GTO 02, PRGM, X2, X<>Y, TAN, X2, +, 1, LASTX, +, /, NOP, RUN mode 

- store constants: 
0,  STO 3,  1, STO 7 

- store initial values and step size, and set RAD mode: 

       0 (x0), STO 1, 0 (y0), STO 2, 0.2 (h), STO 0, RAD, FIX 6 

- run it: f PRGM, R/S; by repeatedly pressing R/S you’ll eventually get: 

 X   0.2   0.4   0.6   0.8   1 

 Y   0.002667   0.021357   0.072323   0.172355   0.336878 

which are correct to 6 digits within a few ulps, despite using a larger h=0.2 

Final remarks 

I think the above examples truly demonstrate just how wonderful and capable the 
HP-25 was at its time, and the sheer enjoyment of owning it and making the most 
out of it. It made me an HP fan for life and did wonders to my then incipient 
programming abilities, thus probably changing my future life for the best.  

 


