
DATAFILE Vxx Nx Page 1

Long Live the HP-16C !

Valentín Albillo (PPC #4747, HPCC #1075)

The HP-16C is a member of the infamous Voyager series released in July, 1982
(together with the HP-15C), thus the HP-16C’s 23rd anniversary has just passed by,
and it seems fitting to have a fond remembrance of this superb model, which HP, in
their infinite wisdom, discontinued almost 17 years ago.

Dubbed “Computer Scientist” by HP (as opposed to “TI Programmer”, the
machine it was released to compete with), it offered tremendous capabilities for its
time (and even today!) to anyone interested in the kind of logical/mathematical
operations related to computer and microprocessor design and implementation. It
works with four number bases (binary, octal, decimal and hexadecimal) in a variety
of signed and unsigned modes, with user-selectable word sizes ranging from 1 to
64 bits, and boasting a full array of logical operators and all kinds of manipulations
at the bit level, including all boolean operators, shifting and rotating, masking,
setting/clearing/testing individual bits, the works !

Add to that extremely long battery life (many years!), full programmability similar
to that of the HP-11C/15C (not the much simpler, less capable programming model
of the HP-10C/12C) with insertion/deletion of program lines, subroutines, labels,
loop control instructions, logical tests, flags, indirect addressing, and flexible
memory partitionable between programs and data (up to a maximum of 203 steps
of program memory), which would be retained after turning off the machine, and
you’d certainly have an impressively capable machine, but that’s not all !

As if to unabashedly crush any and all competition, this programmer’s delight also
features variable register size, allowing you to optimize memory usage by carefully
selecting whatever register size is adequate for your application. Thus, for instance,
specifying a register size of 4 bits would get you as many as 406 storage registers,
(32 of them directly addressable) ! It also includes floating-point arithmetic with
reciprocals and square root, exponential notation, and of course, classical 4-level
RPN+LASTX, full stack manipulation commands, and to top it all, even “double”
functions to compute exact products and divisions of double word size.

After this impressive but succint enumeration of its capabilities, it’s no wonder that
using and programming the HP-16C is extremely enjoyable and productive, and
that’s why most people who have one will pay high prices to try and get a second
(or third!) backup unit, just in case, or to avoid having to carry their beloved
machine to and fro, from home to work and back, everyday.

Now, let’s show what the HP-16C can do, with this simple but revealing example.

Page 2 DATAFILE Vxx Nx

A sample program: Towers of Hanoi

This is a small HP-16C program that I wrote specifically for this article, to show
off its programming capabilities and versatility. Typical sample programs for the
HP-16C (HP’s or otherwise) always focus on simulating microprocessor
instructions or converting floating point numbers from one machine format to
another, so I thought it would be refreshing to include a program in quite another
league (a puzzle no less) while still making use of the unique HP-16C instruction
set and capabilities.

So here you are, a program to solve good old “Towers of Hanoi” puzzle. There’s
some legend or tale about tibetan monks having to move diamond rings from one
spindle to another as fast and accurately as possible, with the world ending when
they succeeded and such, but briefly the puzzle consists of an arbitrary number of
discs (64 rings in the aforementioned legend), all of different sizes and placed
ordered by size on a spindle, with the smallest disc on top, which all must be
moved to a third spindle (using a second spindle as auxiliary) in a minimum
number of moves, with the proviso that you must move one disc at a time, which
must always be the top disc at some spindle, and you can’t ever place a larger disc
over a smaller one.

Thus, for example, in the figure above, the three spindles are labeled 1,2,3 and the
five discs originally at spindle 1 must be moved to spindle 3 using 2 as auxiliary.
The figure shows three moves being performed in order, (a),(b),(c), where (a)
moves the smallest disc from 1 to 2, (b) moves the second smallest disc now on top
from 1 to 3, then (c) moves the smallest disc back again on top of it, but this time
both are in spindle 3 and spindle 2 is once again empty. The process ends, and the
puzzle is solved, when all discs are in their initial order, but placed in spindle 3.

This particular puzzle has always been a favourite among programming textbooks,
as it can be solved extremely easily using recursion and so serves a useful purpose
to demonstrate what recursion is about, and how for the right problem it usually is
the easiest and sometimes even the most efficient way.

DATAFILE Vxx Nx Page 3

For our present puzzle, using recursion would certainly be easiest, as this 2-line
program I wrote for the HP-71B using recursion to solve the N-disc puzzle
convincingly shows:
1 DESTROY N @ @ STD @ INPUT "N=";N @ CALL M(1,3,2,N) @ DISP "OK"
2 SUB M(A,C,B,N) @ IF N THEN CALL M(A,B,C,N-1) @
 DISP "FROM";A;"TO";C @ CALL M(B,C,A,N-1)

Here’s a sample run:
 >RUN
 N=3
 FROM 1 TO 3
 FROM 1 TO 2

 FROM 3 TO 2
 FROM 1 TO 3
 FROM 2 TO 1
 FROM 2 TO 3

 FROM 1 TO 3
 OK

But the HP-16C, advanced as it is, doesn’t have recursion available as part of its
programming paradigm. What to do ? Well, for this particular puzzle there are
very efficient, non-recursive methods to solve it, but for the didactic purposes of
this article we’ll do otherwise, namely mimic recursion on the HP-16C. How does
one mimic recursion ? With arrays, that’s how. This 7-liner would be the HP-71B
version if recursion had to be mimicked:
1 ! *** TOWERS OF HANOI: NON-RECURSIVE VERSION - V. ALBILLO, 2005 ***
2 DESTROY ALL @ STD @ INPUT "N=";N @ INTEGER Z(100) @ A=1 @ B=3 @ C=5
3 IF N=1 THEN DISP "FROM";A;"TO";B @ ON Z(C-1) GOTO 1,2,3,4,5,6
4 Z(C)=A @ Z(C+1)=B @ Z(C+2)=5 @ B=6-A-B @ N=N-1 @ C=C+3 @ GOTO 3
5 A=Z(C-3) @B=Z(C-2) @DISP "FROM";A;"TO";B@ Z(C-1)=6 @A=6-A-B @ GOTO 3
6 C=C-3 @ N=N+1 @ IF C#5 THEN ON Z(C-1) GOTO 1,2,3,4,5,6
7 DISP "OK" @ END

(Incidentally, this program can’t be renumbered, as it uses the ON...GOTO
instruction as a poorman’s “computed GOTO”, which HP-71B’s BASIC doesn’t
allow, so should you happen to renumber it, it wouldn’t work !)

As stated, an array is used to hold the intermediate values and proper return
addresses for each level of recursion. The size of this array, ultimately limited by
available memory, will determine how deep the mimicked recursion can go and so
the maximum number of discs for the puzzle. Our HP-16C program will be an
optimized version of the non-recursive algorithm above, where the array is
mimicked in its turn by using indirect addressing over a range of registers reserved
for it. And this is where one of the most valuable HP-16C characteristics comes
into play: variable word size !

In the program above, 3 array elements are used for each level of recursion, which
would translate to 3 registers per level in the HP-16C, unless packing more than
one element per register, which would make for a more complicated program. But
using variable word size we can specify the smallest word size that still serves our
purposes, and the HP-16C will make available as many registers of precisely that
word size as memory allows. Here, specifying a word size of 8 provides us with up
to 111 registers, allowing us to mimic recursion to much deeper levels than would
be possible with the 56-bit registers available in most other classic HP calculators.

Page 4 DATAFILE Vxx Nx

Program listing

01 43,22, A g LBL A 31 1 1 61 42 A f SL
02 8 8 32 30 - 62 45 1 RCL 1
03 42 44 f WSIZE 33 44 3 STO 3 63 42 40 f OR
04 24 DEC 34 22 3 GTO 3 64 44 31 STO(i)
05 42 3 f UNSGN 35 43,22, 0 g LBL 0 65 6 6
06 1 1 36 21 9 GSB 9 66 45 0 RCL 0
07 44 0 STO 0 37 33 Rv 67 30 -
08 30 - 38 44 0 STO 0 68 45 1 RCL 1
09 44 2 STO 2 39 43 34 g PSE 69 30 -
10 44 3 STO 3 40 33 Rv 70 43 21 g RTN
11 3 3 41 44 1 STO 1 71 43,22, 7 g LBL 7
12 44 1 STO 1 42 31 R/S 72 45 2 RCL 2
13 43,22, 3 g LBL 3 43 4 4 73 45 3 RCL 3
14 45 3 RCL 3 44 21 8 GSB 8 74 30 -
15 43 48 X#0? 45 44 0 STO 0 75 4 4
16 22 4 GTO 4 46 22 3 GTO 3 76 40 +
17 45 0 RCL 0 47 43,22, 1 g LBL 1 77 44 32 STO I
18 43 34 g PSE 48 45 3 RCL 3 78 43 21 g RTN
19 45 1 RCL 1 49 1 1 79 43,22, 9 g LBL 9
20 31 R/S 50 40 + 80 21 7 GSB 7
21 43,22, 1 g LBL 1 51 44 3 STO 3 81 43 23 g DSZ
22 21 9 GSB 9 52 45 2 RCL 2 82 45 31 RCL(i)
23 44 32 STO I 53 43 0 X#Y? 83 21 2 GSB 2
24 22 32 GTO I 54 22 1 GTO 1 84 43,22, 2 g LBL 2
25 43,22, 4 g LBL 4 55 42 10 f XOR 85 36 ENTER
26 21 7 GSB 7 56 43 21 g X<>(i) 86 36 ENTER
27 0 0 57 43,22, 8 g LBL 8 87 4 4
28 21 8 GSB 8 58 45 0 RCL 0 88 42 9 f RMD
29 44 1 STO 1 59 42 40 f OR 89 34 X<>Y
30 45 3 RCL 3 60 42 A f SL 90 42 B f SR
 91 42 B f SR
Notes

• After entering the program, pressing f MEM should display: P-0 r-014

• Rv at steps 37 and 40 above are Roll down stack instructions.

• The following HP-16C-specific instructions are made good use of:
WSIZE, DEC, UNSGN, XOR, OR, SL, SR

most specially WSIZE, which allows us to have up to 111 registers at our
disposal for the purpose of mimicking recursion to very deep levels.

• There’s no need for a RTN instruction at step 92, as the end of program memory
acts as an automatic RTN by default.

• This program could be significantly shorter if storage/recall arithmetic were
available in the 16C which, alas, they aren’t because of the 256-keycode limit.

DATAFILE Vxx Nx Page 5

Usage instructions

After keying in the program, let’s try a sample run solving the 3-disc puzzle. Press:
 DEC {sets decimal mode }
 3 GSB A -> (1 d) -> 3 d {move top disc from 1 to 3}
 R/S -> (1 d) -> 2 d {move top disc from 1 to 2}
 R/S -> (3 d) -> 2 d {move top disc from 3 to 2}
 R/S -> (1 d) -> 3 d {move top disc from 1 to 3}
 R/S -> (2 d) -> 1 d {move top disc from 2 to 1}
 R/S -> (2 d) -> 3 d {move top disc from 2 to 3}
 R/S -> (1 d) -> 3 d {move top disc from 1 to 3}
 R/S -> 0 d {puzzle solved}

As you may see, solving the 3-disc puzzle required 7 moves. In general, solving
the N-disc puzzle will require 2N-1 moves, which obviously grows exponentially
with N. For N=64, as in the old legend, we would need

264 – 1 = 18,446,744,073,709,551,615 moves

I’m afraid that even for the HP-16C, the batteries wouldn’t last that long.

Final remarks

In the HP-16C you can actually appreciate the enormous amounts of talent and
dedication invested in bringing it to life, every functionality carefully crafted and
optimized, every feature synergically integrating with the rest. That kind of utmost
quality is what I think the HP-16C represents best, no wonder it’s still so intensely
sought for. I own one, and frankly, wouldn’t mind getting yet another. Just in case.

