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Mean Matrices 
Valentín Albillo (#1075, PPC #4747) 

We’re so used to our beloved HP calculator’s high-precision, high-quality math 
algorithms that we tend to take for granted that each and every result we get is 
computed accurately to 10 or 12 digits, give or take a few counts in the last places, 
specially if we’re not making a chain calculation but just a single operation. At 
most, we’re aware that near the range of legal values for that operation we might 
perhaps be too close to some singularity or peculiarity of the given function, but 
these are well documented, easily recognizable pathological cases  that we both 
expect and know how to live with, or even avoid them altogether. Let’s say for 
instance trying to use TAN for arguments very close to Pi/2. 

Unfortunately, there are times when we neither expect nor are able to predict that 
some given data will completely baffle internal algorithms, resulting in grossly 
inaccurate results, which we, trusting them, are unable to recognize as such. This 
isn’t due to any kind of bugs or lack of sophistication in the internals but is a 
consequence of the very nature of the problematic arguments themselves. 

The problem 

The problem can most easily be exposed for the case of some very common matrix 
operations, such as inverse, determinant and linear system solving, when applied to 
so called ill-conditioned matrices. A very well-known family of NxN very ill-
conditioned, symmetric matrices are the Hilbert matrices. This is their 4x4 
instance: 
  1    1/2 1/3 1/4 

H4 = 1/2 1/3 1/4  1/5 
1/3 1/4  1/5 1/6 
1/4  1/5 1/6 1/7 

Hilbert matrices are a favourite for the purpose of testing or comparing matrix 
algorithms, even among different calculator models, because of their strong ill-
conditioning. However, I’ve always advocated that, in fact: 

• They’re highly misleading when used to assess some algorithm’s accuracy, 
because you're *not* computing the determinant of said Hilbert matrix to begin 
with, but that of an approximation to said matrix, because terms such as 1/3 and 
1/7 can’t ever be represented exactly and so are internally stored with different 
accuracies (i.e.: different values) in different calculators. As the initial matrix 
being used is *not* the same, and as precisely the Hilbert matrices are 
extremely ill-conditioned, meaning that the smallest change in the input brings 
out a large change in the output, it's fairly obvious that the results can't be 
meaningfully compared.  

• There’s also the fact that Hilbert matrices, specially the large ones, are pretty 
unbalanced, with some elements being too large when compared with others. 
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For instance, in the small 4x4 instance above, there’s almost one denary order 
of magnitude  between 1 and 1/7 (and almost three binary orders of magnitude). 
This alone does make for non-significant error accumulation. We could try to 
get rid of the non-exact values by multiplying all elements by some large value 
in order to make sure they are integer to begin with, but this would result in 
very large entries and would do nothing for the balance, you’d still have large 
values mixed with much smaller ones. 

• Hilbert matrices are symmetrical, which means you can't use them to check the 
different results you obtain from your algorithms when working with the matrix 
and its transpose (usually very different). It also means some algorithms could 
hypothetically make use of their symmetry to apply special-purpose routines 
which can mislead you as they won't work for general, non-symmetric matrices.  

• There are ad-hoc algorithms that can compute the exact or approximate value 
of the determinant of any Hilbert matrix with great accuracy, without resorting 
to general matrix algorithms. You can never tell if published results have been 
obtained with such an algorithm, and it would be convenient if no such 
shortcuts were available. For instance, this small HP-71B program will compute 
the determinant of assorted Hilbert matrices extremely quickly and accurately: 

    ! ** Determinants for Hilbert matrices from order 7 to 10 
    FOR N=7 TO 10 @ P=1 @ FOR I=1 TO N-1 @ P=P*FACT(I) @ NEXT I @ Q=1 
    FOR I=N TO 2*N-1 @ Q=Q*FACT(I) @ NEXT I @ DISP N;P^3/Q @ NEXT N 
 
   >RUN 
      7  4.83580262391 E-25 
    8  2.73705011379 E-33 
    9  9.72023431183 E-43 

10  2.16417922642 E-53 
 

However, the original idea of using some suitably large, difficult (read "ill-
conditioned") matrix is inherently a good accuracy test, as it requires many 
arithmetic operations, most of them carried near the limits of internal accuracy, 
where errors are usually largely amplified by the combined effects of the finite 
accuracy of the initial values' internal representations and the choice of basic 
arithmetic algorithms.  
 
What to do, then ? The best of both worlds, namely:  

• Let's try and use a suitably not-too-large, difficult matrix ...  

• ... but let this initial matrix be balanced and exactly representable, so that the 
very same matrix is actually processed for all models and algorithms, and so 
that the results are indeed comparable and really shed some valid light on 
the respective accuracies.  

 
To that effect, I propose the following 7x7 matrices ("Albillo Matrices”) that I've 
carefully crafted for this purpose, here’s the #1 instance: 



DATAFILE Vxx Nx Page 3 

 
   58  71  67  36  35  19  60 
     50  71  71  56  45  20  52 

  64  40  84  50  51  43  69 
AM #1 =  31  28  41  54  31  18  33 

     45  23  46  38  50  43  50 
     41  10  28  17  33  41  46 
     66  72  71  38  40  27  69 

 
which is a  random 7x7 matrix, so that even the HP-15C can find its determinant, 
(8x8 would be too large), with quite small, 2-digit elements, yet suitably difficult 
indeed. As I see it, they have a number of important advantages when compared 
with Hilbert matrices:  

• They have small, integer elements which can be represented exactly in any 
calculator/computer architecture, thus guaranteeing that you start with the 
same, original matrix.  

• All elements are 2-digit, which makes for a better test as the initial condition 
does not imply arithmetic between disparage values right from the start.  

• They are random matrices, with no symmetry whatsoever. You can test them 
in their original form versus their transposes, and no special purpose 
algorithm applies to them.  

• There are no special theoretical algorithms to deal with them. You need 
some pretty accurate algorithms and the best architecture possible if you 
want your results to be any useable at all.  

• And last but not least, they are incredibly ill-conditioned, even more so than 
Hilbert matrices of comparable dimensions. If needed, matrices such as 
AM#1 can be crafted for any specific dimensions, with an exponentially 
increasing intractability. A 10x10 instance will  probably result in utterly 
worthless results when processed with most any calculator model.  

 
We may now try it with several machines 1, let’s say computing its determinant. 
The correct value is exactly 1. We can also try to compute its inverse, and the 
inverse’s determinant (also 1). Computing the product of the matrix and its 
computed inverse should result in an identity matrix, and come to it, we can also 
try to solve a system of linear equations for good. 

                                                 
1 A word of caution for the HP-48G and HP-49: when flag -54 is clear, then an extra check is 
performed before the determinant is calculated: to see whether all matrix elements are integer, 
for then, the result must be integer, too, and it is changed to the nearest integer! With AM#1, 
flag -54 clear, the result is exactly 1. With flag -54 set, it is .999945522778, delivering 4 correct 
digits. So, set that flag -54 on your 48's and 49's for meaningful comparisons (Werner dixit). 
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The Results 
These are the results you get when processing AM #1 with an HP-71B + Math 
ROM and an HP-15C. As you will see, despite the "easy" look of the matrix (a 
small 7x7 matrix, with small 2-digit positive integer elements), even 15 digits of 
internal accuracy won't get us more than two correct digits in our results.  
Less internal digits, say HP-15C’s 13, won't give us even one correct digit in some 
computations. Worse, if the results are to be used as some intermediate step in a 
chain calculation, we'll end up having no correct digits at all pretty soon. Should  
you happen to inadvertently stumble upon such an "innocent-looking” matrix as 
this one, blindly trusting your results can mean catastrophic failure: 
Now for the commented results for AM #1:  

• Exact Results:  

Determinant = 1  
Inverse =  
 
  96360245   320206  -537449   2323650 -11354863  30196318 -96509411 
      4480       15      -25       108      -528      1404     -4487 
    -39436     -131      220      -951      4647    -12358     39497 
    273240      908    -1524      6589    -32198     85625   -273663 
  -1846174    -6135    10297    -44519    217549   -578534   1849032 
  13150347    43699   -73346    317110  -1549606   4120912 -13170704 
 -96360787  -320208   537452  -2323663  11354927 -30196488  96509954 
 
Determinant of Inverse            = 1 
Product of Matrix * Inverse     = 7x7 Identity Matrix  
Row Norm of Product          = 1 
Column Norm of Product         = 1 
Frobenius Norm of Product      =  2.64575131106+ 
 

• Computed Results for HP-71B - Method 1:  

Determinant (with DET) = 0.97095056196  (error = 2.91%) 
Inverse (with MAT INV) = (shown truncated to integer values) 
 
  99243204  329786 -553528   2393170 -11694584  31099748 -99396833 
      4614      15     -25       111      -543      1446     -4621 
    -40615    -134     226      -979      4786    -12727     40678 
    281414     935   -1569      6786    -33161     88186   -281850 
  -1901408   -6318   10605    -45850    224057   -595842   1904352 
  13543786   45006  -75540    326597  -1595967   4244203 -13564752 
 -99243762 -329788  553531  -2393183  11694650 -31099923  99397392 
 
Determinant of Inverse (with DET)  =  1.05907852363 (err = 5.91%) 
Product of Matrix * Inverse (with MAT *)  =  (not shown) 
Row Norm of Product (with RNORM)  =  1.0852916       (err = 8.53%) 
Column Norm of Product (with CNORM)  =  1.04948        (err = 4.95%) 
Frobenius Norm of Product (with FNORM)  =  2.65606227412 (err = 0.39%) 
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• Comment:  

This is a vey difficult matrix, and though the HP-71B carries 15 digits 
internally a significant loss in accuracy is to be expected. So we get a 2.91% 
error when calculating the determinant, which is good to only two digits, and 
an inverse which is good to only a digit and a half, at best. The error in the 
computed determinant of the inverse rises to 5.91%, though the product of 
both is actually surprisingly close to the identity matrix, despite the 
notorious inaccuracy of the inverse. Even so, the norms of the product are in 
error by 8.53%, 4.95% and 0.39%. 

• Computed Results for HP-71B - Method 2:  

Inverse (with MAT SYS) = (shown truncated to integer values) 
 
   96273474   319931 -536969  2321578 -11344786   30170494  -96423005 
       4475       14     -24      107      -527       1402      -4482 
     -39400     -130     219     -950      4642     -12347      39461 
     272993      907   -1522     6583    -32169      85551    -273417 
   -1844511    -6129   10287   -44479    217355    -578039    1847376 
   13138505    43661  -73280   316827  -1548230    4117387  -13158912 
  -96274016  -319933  536972 -2321591  11344850  -30170664   96423547 
 
Determinant of Inverse (with DET)  = 1.01830872148 (err = 1.83%) 
Product of Matrix * Inverse (with MAT *)= (not shown) 
Row Norm of Product (with RNORM)  =  1.0044644        (err = 0.45%) 
Column Norm of Product (with CNORM)  =  1.00896            (err = 0.90%) 
Frobenius Norm of Product (with FNORM)  =  2.64599734715 (err = 0.009%) 
 

• Comment:  

Though the 1st method makes use of the obvious MAT INV matrix statement 
to compute the inverse, this is not the only way to do it nor the best, and the 
Owner's Handbook itself instructs us to use MAT SYS instead for extended 
accuracy and speed (though at the cost of extra memory being required). 
Doing so pays handsomely, as the inverse matrix comes out much more 
accurate, and its determinant is in error by a mere 1.83%, more than 3 times 
more accurate than using MAT INV (5.91%). The product also resembles the 
identity matrix much more closely, and its norms show a very marked 
improvement when compared to those of the 1st method. This is obviously 
the way to go in all cases, if RAM allows.  

• Computed Results for HP-15C:  

Determinant (with MATRIX 9)   = 1.080204421  (err = 8.02%) 
Inverse (with 1/X)    = (not shown) 
Determinant of Inverse (with MATRIX 9)  = 0.6635047876 (err = 33.64%) 

• Comment:  

Despite the extremely difficult original matrix and the HP-15C internal 
algorithms being limited to 13 digits, the determinant is still within 8% error, 
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i.e.: nearly two correct digits. However, the inverse matrix isn't that good 
and its determinant is already at 34% error, which means not even one 
decimal digit is correct. Due to memory limitations it isn't possible to 
compute the product of the original matrix and its inverse nor the 
corresponding norms.  

What can be done ? 
Though using DET to compute AM #1‘s determinant does result in quite poor 
results (due to their extreme ill-conditioning and inherent loss of precision caused 
by the many division operations the internal triangularization algorithm entails), 
this doesn't mean we can't obtain exact results in an HP- 71B, say. 
In fact, we just need another approach that doesn't involve divisions at any step, 
and one such approach is to use the determinant expansion by minors technique. 
This algorithm is of considerable theoretical interest, and can be recursively used 
to compute any determinant using just multiplications and additions, never a 
division in sight. However, it is highly inefficient for matrices above, say,  4x4. But 
for the sake of demonstrating how you can in theory compute those difficult 
determinants exactly, it will do.  
Thanks to the powerful HP-71B's BASIC dialect, a simple version of the 
expansion by minors can be coded as a recursive subprogram in just 4 lines:  
 
  SUB XDET(A(,),D) @ DIM N,E,I,J,K @ N=UBND(A,1) 
  IF N=2 THEN D=A(1,1)*A(2,2)-A(1,2)*A(2,1) @ END ELSE DIM B(N-1,N-1) @ D=0 
  FOR K=1 TO N @ FOR I=2 TO N @ C=1 @ FOR J=1 TO N @ IF J#K THEN  
     B(I-1,C)=A(I,J) @ C=C+1 
  NEXT J @ NEXT I @ CALL XDET(B,E) @ D=D-(-1)^K*A(1,K)*E @ NEXT K 
 
You must previously dimension the matrix (with OPTION BASE 1) and a real 
variable to return the value of the determinant, then populate the matrix and call 
the subprogram, like this example using AM #1. From the keyboard do:  
 
   >OPTION BASE 1 @ DIM A(7,7) @ MAT INPUT A  [ENTER] 
 
   A(1,1)? 58,71,67,36,35,19,60,50,71,71,56,45,20, 
           52,64,40,84,50,51,43,69 [ENTER] 
   A(4,1)? 31,28,41,54,31,18,33,45,23,46,38,50,43, 
           50,41,10,28,17,33,41,46 [ENTER] 
   A(7,1)? 66,72,71,38,40,27,69    [ENTER] 
 
   >DET(A)  [ENTER] 
 
    .97095056196  (inexact result with DET) 
 
   >CALL XDET(A,D) @ DISP D  [ENTER] 
 
   1 (exact result with XDET) 
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Keep in mind that this version of XDET is just a proof-of-concept implementation, 
to show that it can be done, and as such has no error handling (the matrix must be 
at least 2x2, for instance), and is extremely inefficient as it has to recursively call 
itself (N-1)!/2 times to compute an NxN determinant.  
This means that for AM#1 it calls itself (7-1)!/2 = 360 times, and it will take some 
2 min. in Emu71 running on a 2.4 Ghz PC, and one hour or two on a real HP-71B. 
It also uses up large amounts of RAM to cater for the recursion. 
However, it can be easily optimized in a number of ways. For instance, a 
preliminary search to locate rows/columns containing 0's, then expanding by 
minors along these rows/columns would mean avoiding a whole sub-branch of 
recursion for each 0 located. If no 0's are present, they can often be created by 
suitably adding and subtracting rows, just remember to avoid inexact divisions. 
Also, when N is 2, XDET refrains from recursing again to compute the required 
1x1 determinants, but computes the 2x2 determinant instead directly (halving the 
number of recursive calls needed). This could be done for N=3 instead, which 
would result in much greater time savings. 

Can it get any worse ? 

Unfortunately, yes. A lot. As an example, we’ll deal now with a much deadlier 
instance of my own, hand-crafted Albillo Matrices, this time it’s AM#7, which is: 
    13  72  57  94  90  92  35 

40  93  90  99   1  95  66 
    48  91  71  48  93  32  67 
  AM #7 =   7  93  29   2  24  24   7 
    41  84  44  40  82  27  49 
     3  72   6  33  97  34   4 
    43  82  66  43  83  29  61 

Though similar to other matrices in the suite, such as AM#1, this one is so 
extremely ill-conditioned that a Mathematica  session is included to vividly 
demonstrate just how bad results can turn out to be. 

For starters, let’s compute its determinant using our trusty HP-71B (+Math ROM): 
   >DET(A)  

   0.0699243217409 

As the exact determinant is 1, you can see that our computed value is purely 
garbage. Computing the inverse, either with MAT INV or MAT SYS, gives a result 
which has no resemblance whatsoever to the true inverse.  

The determinant of this ‘inverse’ gives either +35.4852567156 (using MAT INV) or  
-11214.4851552  (using  MAT SYS), both hopelessly far from the actual value, 1. 

For the final coup-de-grace, let’s try to solve the following AM#7-based system of 
linear equations: 
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   13 x1 + 72 x2 + 57 x3 + 94 x4 + 90 x5 + 92 x6 + 35 x7 =  453 
 40 x1 + 93 x2 + 90 x3 + 99 x4 +    x5 + 95 x6 + 66 x7 =  484 
 48 x1 + 91 x2 + 71 x3 + 48 x4 + 93 x5 + 32 x6 + 67 x7 =  450 
  7 x1 + 93 x2 + 29 x3 +  2 x4 + 24 x5 + 24 x6 +  7 x7 =  186 
 41 x1 + 84 x2 + 44 x3 + 40 x4 + 82 x5 + 27 x6 + 49 x7 =  367 
  3 x1 + 72 x2 +  6 x3 + 33 x4 + 97 x5 + 34 x6 +  4 x7 =  249 
 43 x1 + 82 x2 + 66 x3 + 43 x4 + 83 x5 + 29 x6 + 61 x7 =  407 

which has the obvious, unique solution: 
x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1 

Let’s do it. Assuming AM#7 has already been input as a 7x7 matrix called A: 
  >DIM X(7), Y(7)  [ENTER] 

  >MAT INPUT Y     [ENTER] 

  Y(1)?  453,484,450,186,367,249,407 [ENTER] 

  >MAT X=SYS(A,Y) @ MAT DISP X       [ENTER] 

    53.464450699, 0.993385920659,  47.7783081926,  48.0455697467 

    1.03246161789, -46.0448461769,  -97.428699025 

which is an unmitigated disaster with no resemblance to the actual solution. Let’s 
see what happens if the independent terms are altered by as little as 0.001: 
  >MAT INPUT Y  [ENTER] 

  Y(1)? 453.001,484.001,450.001,186.001,367.001, 

        249.001,407.001  [ENTER] 

  >MAT X=SYS(A,Y) @ MAT DISP X  [ENTER] 

   -40954525.8642, 5164.04830127, -36515838.8502, -36724467.1754 

   -25339.0194654, 36723904.3462,  76834900.5317 

which not only has no resemblance to the actual solution but also to the previous 
one as well. Let’s now alter the independent terms by as little as 0.00001: 
  >MAT INPUT Y  [ENTER] 

  Y(1)?  453.00001,484.00001,450.00001,186.00001, 

         367.00001,249.00001,407.00001 [ENTER] 

  >MAT X=SYS(A,Y) @ MAT DISP X  [ENTER] 

    -409175.657315, 52.5840127453, -364828.737586, -366913.14308 

    -252.172121748,  366909.499872, 767658.442598 

 

which, again, resemble no actual or former solutions at all. This is exactly what ill-
conditioned means: the slightest change in the coefficients means a drastic, 
disproportionate change in the solutions. If the coefficients are obtained by some 
real-life, experimental process, the computed solution will be meaningless.  
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Righting the wrongs 

Just for comparison purposes, perhaps with other models implementing extended 
precision, a Mathematica session follows, which calculates all results using exact 
arithmetic and algorithms. First, we’ll input AM#7: 

   am7 = {{13,72,57,94,90,92,35}, {40,93,90,99, 1,95,66},  
          {48,91,71,48,93,32,67}, { 7,93,29, 2,24,24, 7}, 
          {41,84,44,40,82,27,49}, { 3,72, 6,33,97,34, 4}, 
          {43,82,66,43,83,29,61}} 

Let’s display AM#7 in matrix form: 

   am7//MatrixForm 
       13   72   57   94   90   92   35  
       40   93   90   99    1   95   66 
       48   91   71   48   93   32   67 
        7   93   29    2   24   24    7 
       41   84   44   40   82   27   49 
        3   72    6   33   97   34    4 
       43   82   66   43   83   29   61 

Let’s compute its determinant and exact inverse matrix: 

   Det[am7] 

 1 

   Inverse[am7]//MatrixForm 
     71082  -507460  -2128901626  -36543896  265158513   3554051   2129774383 

        -9       64       268386       4607     -33428      -448      -268496 

     63378  -452461  -1898169428  -32583237  236420404   3168860   1898947595 

     63740  -455046  -1909014363  -32769397  237771160   3186965   1909796976 

        44     -314     -1317227     -22611     164063      2199      1317767 

    -63739   455039   1908985002   32768893 -237767503  -3186916  -1909767603 

   -133357   952047   3994038146   68560103 -497464609  -6667765  -3995675528 

Now for the inverse’s determinant: 

   Det[Inverse[am7]] 

 1 

Let’s solve the original system of equations: 
   ind1 = {453, 484, 450, 186, 367, 249, 407} 

   LinearSolve[am7, ind1] 

   {1, 1, 1, 1, 1, 1, 1} 

And now, the first altered system, first in exact, rational form: 
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   eps = 1/1000 

   ind1 = {453 + eps, 484 + eps, 450 + eps, 186 + eps,  

           367 + eps, 249 + eps, 407 + eps} 

   LinearSolve[am7,ind1] 
 232606047    7081   207396111  41716207  144921    208575827     436389963 

{---------, -(----), ---------, --------, ------, -(---------), -(---------)} 

   1000       250      1000       200      1000       1000          1000 

Then resolving the fractions to approximate values: 

   N[LinearSolve[am7,ind1],15] 

   {232606.047, -28.324, 207396.111, 208581.035, 144.921,  

   -208575.827, -436389.963} 

Finally, the second altered system: 

   eps = 1/100000 

   ind1 = {453 + eps, 484 + eps, 450 + eps, 186 + eps,  

           367 + eps, 249 + eps, 407 + eps} 

   LinearSolve[am7,ind1] 
 232705047  17669  207495111  41736007  243921    208476827     436290963 

{---------, -----, ---------, --------, ------, -(---------), -(---------)} 

  100000    25000   100000     20000    100000     100000        100000 

   N[LinearSolve[am7,ind1],15] 

   {2327.05047, 0.70676, 2074.95111, 2086.80035, 2.43921,  

   -2084.76827, -4362.90963} 
As you can see, even exact computing and exact algorithms will prove useless in 
the presence of serious ill-conditioning: the very slightest differences in some 
experimentally obtained values will result in completely different answers, as 
demonstrated by the solutions above for eps=1/1000 and 1/100000. 

Homework 

You might want to try some fresh examples yourself with your favourite machine 
or software. If so, you might want to try these AM instances (DET=1 in all cases). 

AM #2 : 
   86  69  53  33  18  10  87  
      70  65  63  55  20  25  73  
      44  53  63  67  45  44  49  
      32  27  50  84  36  12  33 
      28  41  39  64  51  45  33 
      11  20  13  17  19  33  15  
      88  73  55  35  21  18  90   
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AM #3 
60  53  61  65  50  37  64 
49  78  67  67  24  10  50 
31  52  59  60  32  19  33   

      18  51  50  82  35  27  21 
      10  18  30  36  38  12  11 
        6  18  14  33  13  33  10    
      61  57  63  72  51  45  66   

AM #7b : 
   13  72  57  94  92  90  35 
   40  93  90  99  95   1  66 
   48  91  71  48  32  93  67 
      7  93  29   2  24  24   7 
    41  84  44  40  27  82  49 
      3  72   6  33  34  97   4 

43  82  66  43  29  83  61 
 

This last one vividly shows that, when dealing with ill-conditioned matrices, even 
merely reordering the rows and columns can have a great impact on accuracy. For 
example, this reordering makes the HP-71B’s DET command return the value:  

-0.0611338355796 

whereas the original ordering gave  0.0699243217409  instead, a 12% difference. 

 

Conclusion & recommendations  
I hope this article has enlightened you to the dangers of blindly relying on our 
beloved machines’ internal algorithms come what may, by conclusively showing 
unexpected examples where they fail miserably.  

You should always test your results, usually by repeating the computation using a 
different accuracy and/or algorithm, to detect any suspicious sensitivities. For the 
case of the matrix operations discussed in this article, a good telltale of latent ill-
conditioning is the fact that their determinants are far too small for their 
dimensions and element-size, which places them on the verge of near-singularity. 

For instance, the 7x7 Hilbert matrix’ determinant is 4.83580262391E-25, while 
the determinant of my AM#1, #2, #3, and #7 matrices is exactly 1. This doesn’t 
seem that small until you consider that for a random 7x7 matrix with 2-digit 
integer elements the average determinant is about 2,000,000,000,000 !  This means 
their rows/columns are very close to being linearly dependent, and thus the 
matrices are very close to being singular. Solving such a system of equations 
means finding the intersection of nearly parallel hyperplanes, so the point of 
intersection will vary wildly with the precision and algorithm used. 


