
DATAFILE Vxx Nx Page 1

Mean Matrices
Valentín Albillo (#1075, PPC #4747)

We’re so used to our beloved HP calculator’s high-precision, high-quality math
algorithms that we tend to take for granted that each and every result we get is
computed accurately to 10 or 12 digits, give or take a few counts in the last places,
specially if we’re not making a chain calculation but just a single operation. At
most, we’re aware that near the range of legal values for that operation we might
perhaps be too close to some singularity or peculiarity of the given function, but
these are well documented, easily recognizable pathological cases that we both
expect and know how to live with, or even avoid them altogether. Let’s say for
instance trying to use TAN for arguments very close to Pi/2.

Unfortunately, there are times when we neither expect nor are able to predict that
some given data will completely baffle internal algorithms, resulting in grossly
inaccurate results, which we, trusting them, are unable to recognize as such. This
isn’t due to any kind of bugs or lack of sophistication in the internals but is a
consequence of the very nature of the problematic arguments themselves.

The problem

The problem can most easily be exposed for the case of some very common matrix
operations, such as inverse, determinant and linear system solving, when applied to
so called ill-conditioned matrices. A very well-known family of NxN very ill-
conditioned, symmetric matrices are the Hilbert matrices. This is their 4x4
instance:
 1 1/2 1/3 1/4

H4 = 1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

Hilbert matrices are a favourite for the purpose of testing or comparing matrix
algorithms, even among different calculator models, because of their strong ill-
conditioning. However, I’ve always advocated that, in fact:

• They’re highly misleading when used to assess some algorithm’s accuracy,
because you're *not* computing the determinant of said Hilbert matrix to begin
with, but that of an approximation to said matrix, because terms such as 1/3 and
1/7 can’t ever be represented exactly and so are internally stored with different
accuracies (i.e.: different values) in different calculators. As the initial matrix
being used is *not* the same, and as precisely the Hilbert matrices are
extremely ill-conditioned, meaning that the smallest change in the input brings
out a large change in the output, it's fairly obvious that the results can't be
meaningfully compared.

• There’s also the fact that Hilbert matrices, specially the large ones, are pretty
unbalanced, with some elements being too large when compared with others.

Page 2 DATAFILE Vxx Nx

For instance, in the small 4x4 instance above, there’s almost one denary order
of magnitude between 1 and 1/7 (and almost three binary orders of magnitude).
This alone does make for non-significant error accumulation. We could try to
get rid of the non-exact values by multiplying all elements by some large value
in order to make sure they are integer to begin with, but this would result in
very large entries and would do nothing for the balance, you’d still have large
values mixed with much smaller ones.

• Hilbert matrices are symmetrical, which means you can't use them to check the
different results you obtain from your algorithms when working with the matrix
and its transpose (usually very different). It also means some algorithms could
hypothetically make use of their symmetry to apply special-purpose routines
which can mislead you as they won't work for general, non-symmetric matrices.

• There are ad-hoc algorithms that can compute the exact or approximate value
of the determinant of any Hilbert matrix with great accuracy, without resorting
to general matrix algorithms. You can never tell if published results have been
obtained with such an algorithm, and it would be convenient if no such
shortcuts were available. For instance, this small HP-71B program will compute
the determinant of assorted Hilbert matrices extremely quickly and accurately:

 ! ** Determinants for Hilbert matrices from order 7 to 10
 FOR N=7 TO 10 @ P=1 @ FOR I=1 TO N-1 @ P=P*FACT(I) @ NEXT I @ Q=1
 FOR I=N TO 2*N-1 @ Q=Q*FACT(I) @ NEXT I @ DISP N;P^3/Q @ NEXT N

 >RUN
 7 4.83580262391 E-25
 8 2.73705011379 E-33
 9 9.72023431183 E-43

10 2.16417922642 E-53

However, the original idea of using some suitably large, difficult (read "ill-
conditioned") matrix is inherently a good accuracy test, as it requires many
arithmetic operations, most of them carried near the limits of internal accuracy,
where errors are usually largely amplified by the combined effects of the finite
accuracy of the initial values' internal representations and the choice of basic
arithmetic algorithms.

What to do, then ? The best of both worlds, namely:

• Let's try and use a suitably not-too-large, difficult matrix ...

• ... but let this initial matrix be balanced and exactly representable, so that the
very same matrix is actually processed for all models and algorithms, and so
that the results are indeed comparable and really shed some valid light on
the respective accuracies.

To that effect, I propose the following 7x7 matrices ("Albillo Matrices”) that I've
carefully crafted for this purpose, here’s the #1 instance:

DATAFILE Vxx Nx Page 3

 58 71 67 36 35 19 60
 50 71 71 56 45 20 52

 64 40 84 50 51 43 69
AM #1 = 31 28 41 54 31 18 33

 45 23 46 38 50 43 50
 41 10 28 17 33 41 46
 66 72 71 38 40 27 69

which is a random 7x7 matrix, so that even the HP-15C can find its determinant,
(8x8 would be too large), with quite small, 2-digit elements, yet suitably difficult
indeed. As I see it, they have a number of important advantages when compared
with Hilbert matrices:

• They have small, integer elements which can be represented exactly in any
calculator/computer architecture, thus guaranteeing that you start with the
same, original matrix.

• All elements are 2-digit, which makes for a better test as the initial condition
does not imply arithmetic between disparage values right from the start.

• They are random matrices, with no symmetry whatsoever. You can test them
in their original form versus their transposes, and no special purpose
algorithm applies to them.

• There are no special theoretical algorithms to deal with them. You need
some pretty accurate algorithms and the best architecture possible if you
want your results to be any useable at all.

• And last but not least, they are incredibly ill-conditioned, even more so than
Hilbert matrices of comparable dimensions. If needed, matrices such as
AM#1 can be crafted for any specific dimensions, with an exponentially
increasing intractability. A 10x10 instance will probably result in utterly
worthless results when processed with most any calculator model.

We may now try it with several machines 1, let’s say computing its determinant.
The correct value is exactly 1. We can also try to compute its inverse, and the
inverse’s determinant (also 1). Computing the product of the matrix and its
computed inverse should result in an identity matrix, and come to it, we can also
try to solve a system of linear equations for good.

1 A word of caution for the HP-48G and HP-49: when flag -54 is clear, then an extra check is
performed before the determinant is calculated: to see whether all matrix elements are integer,
for then, the result must be integer, too, and it is changed to the nearest integer! With AM#1,
flag -54 clear, the result is exactly 1. With flag -54 set, it is .999945522778, delivering 4 correct
digits. So, set that flag -54 on your 48's and 49's for meaningful comparisons (Werner dixit).

Page 4 DATAFILE Vxx Nx

The Results
These are the results you get when processing AM #1 with an HP-71B + Math
ROM and an HP-15C. As you will see, despite the "easy" look of the matrix (a
small 7x7 matrix, with small 2-digit positive integer elements), even 15 digits of
internal accuracy won't get us more than two correct digits in our results.
Less internal digits, say HP-15C’s 13, won't give us even one correct digit in some
computations. Worse, if the results are to be used as some intermediate step in a
chain calculation, we'll end up having no correct digits at all pretty soon. Should
you happen to inadvertently stumble upon such an "innocent-looking” matrix as
this one, blindly trusting your results can mean catastrophic failure:
Now for the commented results for AM #1:

• Exact Results:

Determinant = 1
Inverse =

 96360245 320206 -537449 2323650 -11354863 30196318 -96509411
 4480 15 -25 108 -528 1404 -4487
 -39436 -131 220 -951 4647 -12358 39497
 273240 908 -1524 6589 -32198 85625 -273663
 -1846174 -6135 10297 -44519 217549 -578534 1849032
 13150347 43699 -73346 317110 -1549606 4120912 -13170704
 -96360787 -320208 537452 -2323663 11354927 -30196488 96509954

Determinant of Inverse = 1
Product of Matrix * Inverse = 7x7 Identity Matrix
Row Norm of Product = 1
Column Norm of Product = 1
Frobenius Norm of Product = 2.64575131106+

• Computed Results for HP-71B - Method 1:

Determinant (with DET) = 0.97095056196 (error = 2.91%)
Inverse (with MAT INV) = (shown truncated to integer values)

 99243204 329786 -553528 2393170 -11694584 31099748 -99396833
 4614 15 -25 111 -543 1446 -4621
 -40615 -134 226 -979 4786 -12727 40678
 281414 935 -1569 6786 -33161 88186 -281850
 -1901408 -6318 10605 -45850 224057 -595842 1904352
 13543786 45006 -75540 326597 -1595967 4244203 -13564752
 -99243762 -329788 553531 -2393183 11694650 -31099923 99397392

Determinant of Inverse (with DET) = 1.05907852363 (err = 5.91%)
Product of Matrix * Inverse (with MAT *) = (not shown)
Row Norm of Product (with RNORM) = 1.0852916 (err = 8.53%)
Column Norm of Product (with CNORM) = 1.04948 (err = 4.95%)
Frobenius Norm of Product (with FNORM) = 2.65606227412 (err = 0.39%)

DATAFILE Vxx Nx Page 5

• Comment:

This is a vey difficult matrix, and though the HP-71B carries 15 digits
internally a significant loss in accuracy is to be expected. So we get a 2.91%
error when calculating the determinant, which is good to only two digits, and
an inverse which is good to only a digit and a half, at best. The error in the
computed determinant of the inverse rises to 5.91%, though the product of
both is actually surprisingly close to the identity matrix, despite the
notorious inaccuracy of the inverse. Even so, the norms of the product are in
error by 8.53%, 4.95% and 0.39%.

• Computed Results for HP-71B - Method 2:

Inverse (with MAT SYS) = (shown truncated to integer values)

 96273474 319931 -536969 2321578 -11344786 30170494 -96423005
 4475 14 -24 107 -527 1402 -4482
 -39400 -130 219 -950 4642 -12347 39461
 272993 907 -1522 6583 -32169 85551 -273417
 -1844511 -6129 10287 -44479 217355 -578039 1847376
 13138505 43661 -73280 316827 -1548230 4117387 -13158912
 -96274016 -319933 536972 -2321591 11344850 -30170664 96423547

Determinant of Inverse (with DET) = 1.01830872148 (err = 1.83%)
Product of Matrix * Inverse (with MAT *)= (not shown)
Row Norm of Product (with RNORM) = 1.0044644 (err = 0.45%)
Column Norm of Product (with CNORM) = 1.00896 (err = 0.90%)
Frobenius Norm of Product (with FNORM) = 2.64599734715 (err = 0.009%)

• Comment:

Though the 1st method makes use of the obvious MAT INV matrix statement
to compute the inverse, this is not the only way to do it nor the best, and the
Owner's Handbook itself instructs us to use MAT SYS instead for extended
accuracy and speed (though at the cost of extra memory being required).
Doing so pays handsomely, as the inverse matrix comes out much more
accurate, and its determinant is in error by a mere 1.83%, more than 3 times
more accurate than using MAT INV (5.91%). The product also resembles the
identity matrix much more closely, and its norms show a very marked
improvement when compared to those of the 1st method. This is obviously
the way to go in all cases, if RAM allows.

• Computed Results for HP-15C:

Determinant (with MATRIX 9) = 1.080204421 (err = 8.02%)
Inverse (with 1/X) = (not shown)
Determinant of Inverse (with MATRIX 9) = 0.6635047876 (err = 33.64%)

• Comment:

Despite the extremely difficult original matrix and the HP-15C internal
algorithms being limited to 13 digits, the determinant is still within 8% error,

Page 6 DATAFILE Vxx Nx

i.e.: nearly two correct digits. However, the inverse matrix isn't that good
and its determinant is already at 34% error, which means not even one
decimal digit is correct. Due to memory limitations it isn't possible to
compute the product of the original matrix and its inverse nor the
corresponding norms.

What can be done ?
Though using DET to compute AM #1‘s determinant does result in quite poor
results (due to their extreme ill-conditioning and inherent loss of precision caused
by the many division operations the internal triangularization algorithm entails),
this doesn't mean we can't obtain exact results in an HP- 71B, say.
In fact, we just need another approach that doesn't involve divisions at any step,
and one such approach is to use the determinant expansion by minors technique.
This algorithm is of considerable theoretical interest, and can be recursively used
to compute any determinant using just multiplications and additions, never a
division in sight. However, it is highly inefficient for matrices above, say, 4x4. But
for the sake of demonstrating how you can in theory compute those difficult
determinants exactly, it will do.
Thanks to the powerful HP-71B's BASIC dialect, a simple version of the
expansion by minors can be coded as a recursive subprogram in just 4 lines:

 SUB XDET(A(,),D) @ DIM N,E,I,J,K @ N=UBND(A,1)
 IF N=2 THEN D=A(1,1)*A(2,2)-A(1,2)*A(2,1) @ END ELSE DIM B(N-1,N-1) @ D=0
 FOR K=1 TO N @ FOR I=2 TO N @ C=1 @ FOR J=1 TO N @ IF J#K THEN
 B(I-1,C)=A(I,J) @ C=C+1
 NEXT J @ NEXT I @ CALL XDET(B,E) @ D=D-(-1)^K*A(1,K)*E @ NEXT K

You must previously dimension the matrix (with OPTION BASE 1) and a real
variable to return the value of the determinant, then populate the matrix and call
the subprogram, like this example using AM #1. From the keyboard do:

 >OPTION BASE 1 @ DIM A(7,7) @ MAT INPUT A [ENTER]

 A(1,1)? 58,71,67,36,35,19,60,50,71,71,56,45,20,
 52,64,40,84,50,51,43,69 [ENTER]
 A(4,1)? 31,28,41,54,31,18,33,45,23,46,38,50,43,
 50,41,10,28,17,33,41,46 [ENTER]
 A(7,1)? 66,72,71,38,40,27,69 [ENTER]

 >DET(A) [ENTER]

 .97095056196 (inexact result with DET)

 >CALL XDET(A,D) @ DISP D [ENTER]

 1 (exact result with XDET)

DATAFILE Vxx Nx Page 7

Keep in mind that this version of XDET is just a proof-of-concept implementation,
to show that it can be done, and as such has no error handling (the matrix must be
at least 2x2, for instance), and is extremely inefficient as it has to recursively call
itself (N-1)!/2 times to compute an NxN determinant.
This means that for AM#1 it calls itself (7-1)!/2 = 360 times, and it will take some
2 min. in Emu71 running on a 2.4 Ghz PC, and one hour or two on a real HP-71B.
It also uses up large amounts of RAM to cater for the recursion.
However, it can be easily optimized in a number of ways. For instance, a
preliminary search to locate rows/columns containing 0's, then expanding by
minors along these rows/columns would mean avoiding a whole sub-branch of
recursion for each 0 located. If no 0's are present, they can often be created by
suitably adding and subtracting rows, just remember to avoid inexact divisions.
Also, when N is 2, XDET refrains from recursing again to compute the required
1x1 determinants, but computes the 2x2 determinant instead directly (halving the
number of recursive calls needed). This could be done for N=3 instead, which
would result in much greater time savings.

Can it get any worse ?

Unfortunately, yes. A lot. As an example, we’ll deal now with a much deadlier
instance of my own, hand-crafted Albillo Matrices, this time it’s AM#7, which is:
 13 72 57 94 90 92 35

40 93 90 99 1 95 66
 48 91 71 48 93 32 67
 AM #7 = 7 93 29 2 24 24 7
 41 84 44 40 82 27 49
 3 72 6 33 97 34 4
 43 82 66 43 83 29 61

Though similar to other matrices in the suite, such as AM#1, this one is so
extremely ill-conditioned that a Mathematica session is included to vividly
demonstrate just how bad results can turn out to be.

For starters, let’s compute its determinant using our trusty HP-71B (+Math ROM):
 >DET(A)

 0.0699243217409

As the exact determinant is 1, you can see that our computed value is purely
garbage. Computing the inverse, either with MAT INV or MAT SYS, gives a result
which has no resemblance whatsoever to the true inverse.

The determinant of this ‘inverse’ gives either +35.4852567156 (using MAT INV) or
-11214.4851552 (using MAT SYS), both hopelessly far from the actual value, 1.

For the final coup-de-grace, let’s try to solve the following AM#7-based system of
linear equations:

Page 8 DATAFILE Vxx Nx

 13 x1 + 72 x2 + 57 x3 + 94 x4 + 90 x5 + 92 x6 + 35 x7 = 453
 40 x1 + 93 x2 + 90 x3 + 99 x4 + x5 + 95 x6 + 66 x7 = 484
 48 x1 + 91 x2 + 71 x3 + 48 x4 + 93 x5 + 32 x6 + 67 x7 = 450
 7 x1 + 93 x2 + 29 x3 + 2 x4 + 24 x5 + 24 x6 + 7 x7 = 186
 41 x1 + 84 x2 + 44 x3 + 40 x4 + 82 x5 + 27 x6 + 49 x7 = 367
 3 x1 + 72 x2 + 6 x3 + 33 x4 + 97 x5 + 34 x6 + 4 x7 = 249
 43 x1 + 82 x2 + 66 x3 + 43 x4 + 83 x5 + 29 x6 + 61 x7 = 407

which has the obvious, unique solution:
x1 = x2 = x3 = x4 = x5 = x6 = x7 = 1

Let’s do it. Assuming AM#7 has already been input as a 7x7 matrix called A:
 >DIM X(7), Y(7) [ENTER]

 >MAT INPUT Y [ENTER]

 Y(1)? 453,484,450,186,367,249,407 [ENTER]

 >MAT X=SYS(A,Y) @ MAT DISP X [ENTER]

 53.464450699, 0.993385920659, 47.7783081926, 48.0455697467

 1.03246161789, -46.0448461769, -97.428699025

which is an unmitigated disaster with no resemblance to the actual solution. Let’s
see what happens if the independent terms are altered by as little as 0.001:
 >MAT INPUT Y [ENTER]

 Y(1)? 453.001,484.001,450.001,186.001,367.001,

 249.001,407.001 [ENTER]

 >MAT X=SYS(A,Y) @ MAT DISP X [ENTER]

 -40954525.8642, 5164.04830127, -36515838.8502, -36724467.1754

 -25339.0194654, 36723904.3462, 76834900.5317

which not only has no resemblance to the actual solution but also to the previous
one as well. Let’s now alter the independent terms by as little as 0.00001:
 >MAT INPUT Y [ENTER]

 Y(1)? 453.00001,484.00001,450.00001,186.00001,

 367.00001,249.00001,407.00001 [ENTER]

 >MAT X=SYS(A,Y) @ MAT DISP X [ENTER]

 -409175.657315, 52.5840127453, -364828.737586, -366913.14308

 -252.172121748, 366909.499872, 767658.442598

which, again, resemble no actual or former solutions at all. This is exactly what ill-
conditioned means: the slightest change in the coefficients means a drastic,
disproportionate change in the solutions. If the coefficients are obtained by some
real-life, experimental process, the computed solution will be meaningless.

DATAFILE Vxx Nx Page 9

Righting the wrongs

Just for comparison purposes, perhaps with other models implementing extended
precision, a Mathematica session follows, which calculates all results using exact
arithmetic and algorithms. First, we’ll input AM#7:

 am7 = {{13,72,57,94,90,92,35}, {40,93,90,99, 1,95,66},
 {48,91,71,48,93,32,67}, { 7,93,29, 2,24,24, 7},
 {41,84,44,40,82,27,49}, { 3,72, 6,33,97,34, 4},
 {43,82,66,43,83,29,61}}

Let’s display AM#7 in matrix form:

 am7//MatrixForm
 13 72 57 94 90 92 35
 40 93 90 99 1 95 66
 48 91 71 48 93 32 67
 7 93 29 2 24 24 7
 41 84 44 40 82 27 49
 3 72 6 33 97 34 4
 43 82 66 43 83 29 61

Let’s compute its determinant and exact inverse matrix:

 Det[am7]

 1

 Inverse[am7]//MatrixForm
 71082 -507460 -2128901626 -36543896 265158513 3554051 2129774383

 -9 64 268386 4607 -33428 -448 -268496

 63378 -452461 -1898169428 -32583237 236420404 3168860 1898947595

 63740 -455046 -1909014363 -32769397 237771160 3186965 1909796976

 44 -314 -1317227 -22611 164063 2199 1317767

 -63739 455039 1908985002 32768893 -237767503 -3186916 -1909767603

 -133357 952047 3994038146 68560103 -497464609 -6667765 -3995675528

Now for the inverse’s determinant:

 Det[Inverse[am7]]

 1

Let’s solve the original system of equations:
 ind1 = {453, 484, 450, 186, 367, 249, 407}

 LinearSolve[am7, ind1]

 {1, 1, 1, 1, 1, 1, 1}

And now, the first altered system, first in exact, rational form:

Page 10 DATAFILE Vxx Nx

 eps = 1/1000

 ind1 = {453 + eps, 484 + eps, 450 + eps, 186 + eps,

 367 + eps, 249 + eps, 407 + eps}

 LinearSolve[am7,ind1]
 232606047 7081 207396111 41716207 144921 208575827 436389963

{---------, -(----), ---------, --------, ------, -(---------), -(---------)}

 1000 250 1000 200 1000 1000 1000

Then resolving the fractions to approximate values:

 N[LinearSolve[am7,ind1],15]

 {232606.047, -28.324, 207396.111, 208581.035, 144.921,

 -208575.827, -436389.963}

Finally, the second altered system:

 eps = 1/100000

 ind1 = {453 + eps, 484 + eps, 450 + eps, 186 + eps,

 367 + eps, 249 + eps, 407 + eps}

 LinearSolve[am7,ind1]
 232705047 17669 207495111 41736007 243921 208476827 436290963

{---------, -----, ---------, --------, ------, -(---------), -(---------)}

 100000 25000 100000 20000 100000 100000 100000

 N[LinearSolve[am7,ind1],15]

 {2327.05047, 0.70676, 2074.95111, 2086.80035, 2.43921,

 -2084.76827, -4362.90963}
As you can see, even exact computing and exact algorithms will prove useless in
the presence of serious ill-conditioning: the very slightest differences in some
experimentally obtained values will result in completely different answers, as
demonstrated by the solutions above for eps=1/1000 and 1/100000.

Homework

You might want to try some fresh examples yourself with your favourite machine
or software. If so, you might want to try these AM instances (DET=1 in all cases).

AM #2 :
 86 69 53 33 18 10 87
 70 65 63 55 20 25 73
 44 53 63 67 45 44 49
 32 27 50 84 36 12 33
 28 41 39 64 51 45 33
 11 20 13 17 19 33 15
 88 73 55 35 21 18 90

DATAFILE Vxx Nx Page 11

AM #3
60 53 61 65 50 37 64
49 78 67 67 24 10 50
31 52 59 60 32 19 33

 18 51 50 82 35 27 21
 10 18 30 36 38 12 11
 6 18 14 33 13 33 10
 61 57 63 72 51 45 66

AM #7b :
 13 72 57 94 92 90 35
 40 93 90 99 95 1 66
 48 91 71 48 32 93 67
 7 93 29 2 24 24 7
 41 84 44 40 27 82 49
 3 72 6 33 34 97 4

43 82 66 43 29 83 61

This last one vividly shows that, when dealing with ill-conditioned matrices, even
merely reordering the rows and columns can have a great impact on accuracy. For
example, this reordering makes the HP-71B’s DET command return the value:

-0.0611338355796

whereas the original ordering gave 0.0699243217409 instead, a 12% difference.

Conclusion & recommendations
I hope this article has enlightened you to the dangers of blindly relying on our
beloved machines’ internal algorithms come what may, by conclusively showing
unexpected examples where they fail miserably.

You should always test your results, usually by repeating the computation using a
different accuracy and/or algorithm, to detect any suspicious sensitivities. For the
case of the matrix operations discussed in this article, a good telltale of latent ill-
conditioning is the fact that their determinants are far too small for their
dimensions and element-size, which places them on the verge of near-singularity.

For instance, the 7x7 Hilbert matrix’ determinant is 4.83580262391E-25, while
the determinant of my AM#1, #2, #3, and #7 matrices is exactly 1. This doesn’t
seem that small until you consider that for a random 7x7 matrix with 2-digit
integer elements the average determinant is about 2,000,000,000,000 ! This means
their rows/columns are very close to being linearly dependent, and thus the
matrices are very close to being singular. Solving such a system of equations
means finding the intersection of nearly parallel hyperplanes, so the point of
intersection will vary wildly with the precision and algorithm used.

