
Long Live the Advantage ROM !

Valentín Albillo (Ex-PPC #4747, HPCC #1075)

No small part in the success of the HP-41C family, the possibility of increasing the
features in the basic machine by means of plug-in ROM modules was in fact an
essential key point in the overall product philosophy. You’d begin with a fairly
complete intruction set, and could then expand it as needed with extra functionality
which would be instantly available by simply plugging the module in. This would also
deter obsolescence, allowing the addition of features available in newer models.

By 1985, the 41C family was firmly stablished as the most successful and arguably
most useful of all HP calculator-type products. But the Voyager series, while not as
powerful, did include state-of-the-art functionality dispersed in specialized models,
such as the all-powerful scientific HP-15C, with its fast matrix capabilities, automated
Solve and Integrate algorithms, and complex number handling; the computer science
HP-16C, with its amazing abilities to work with numbers in various bases and word
sizes, and the business belle, the HP-12C, with its powerful financial functions.

The 41C had none of this built-in, and though most of those advanced functionalities
could be programmed in user code (and for the most part they were), they lacked the
convenience and speed of their Voyager m-code counterparts. Once data were input,
any HP-15C user could easily solve a 7x7 system of linear equations in 20 seconds
flat, using 13-digit internal precision, and taking up a single step of program memory
and no additional resources such as auxiliary registers, etc. In contrast, even the most
efficient 41C user code programs were slow in comparison, less accurate, needed
auxiliary registers which had to be allocated for them, and typically took hundreds of
steps of program memory. Thus the 41C owner, while feeling rightfully proud, would
nevertheless look with envious eyes to the Voyager models, and it wasn’t infrequent
that 41C owners would also buy one of them, as a convenient backup and complement.

It seems that this state of affairs made its way up to HP, and a very special ROM was
developed to cater for most of the missing functionality and fight obsolescence, the
Advantage ROM. It was the first HP-produced 12K ROM, all previous ones being
4K/8K. Bank-switching made it possible, transparently to the user, which would get a
tremendous amount of advanced functionality all in a single ROM, taking up only a
single port. This included outstanding matrix-handling capabilities, Solve and
Integrate, operations with complex numbers and vectors, coordinate transformations,
number conversions to various bases and boolean logic operations, as well as curve
fitting, basic Time Value of Money functionality, and even numerical solving of first

and second-degree differential equations. Further, many of those advanced features
were written in 41C machine language, and so ran at the fastest possible speed while
taking the least user resources, thus maximizing its usefulness both from the keyboard
and in user programs. To top it all, HP made it easy for all 41C users to get an
Advantage ROM, by giving away one for free with every 41C sold as part of a sales
promotion. 41C users needed never look at Voyager users with envious eyes again.

As this is not a full review, but a commemorative article, I’ll focus on a single but
important design issue: compatibility. It’s interesting to note that though HP gave 41C
users many of the Voyager series capabilities, they didn’t aim for exact
compatibility, so that existing programs or techniques could be ported. Let’s consider
the case of matrix functionality: HP could have commissioned Firmware Specialists
to adapt HP-15C matrix operations to the 41C, as they did for the root-finding and
numerical-integration routines. That would have ensured maximum portability but they
opted instead for W&W Software Products’ CCD ROM existing matrix routines,
thus completely losing all direct compatibility. This bold decision was probably based
on costs: the CCD ROM matrix routines were already implemented for the 41C
architecture, and it was just a matter of pulling them out straight from the CCD ROM
and placing them as a 4K block in the new Advantage ROM, so HP had to pay just for
the rights to use them, not for adapting or rewriting HP-15C routines to the 41C.

Anyway, despite the loss of compatibility, the decision was sound: the matrix routines
included in the Advantage ROM are way more powerful and comprehensive than the
ones in the HP-15C. Whereas the 15C includes some 30 different matrix operations,
the Advantage ROM boast more than twice as many, including two full-featured matrix
editors for real and complex-valued matrices, as well as a fully user-friendly program
for the most usual operations. Furthermore, the support for complex-valued matrices
is much more extensive than the extremely primitive ‘transformation’ functions
available on the 15C. The fact that the Advantage ROM allows the user to dimension
matrices either in Extended Memory, where they consume no numbered user
registers, or else allocated over a user-defined range of numbered user registers,
makes it extremely easy to integrate matrix handling with other user programs, unlike
the 15C’s paradigm, where matrices reside in a separate pool of memory, and so their
elements cannot be accessed as normal, numbered registers.

Additionally, the Advantage ROM matrix function set includes lots of functionality
unavailable to 15C users, such as the capability to return maximum and minimum
elements in a matrix, both value and position (useful for sorting), matrix arithmetic
between corresponding elements extending to multiplication and division, returning
sums for all columns, rows, or the whole matrix, the possibility of copying all or part
of a source matrix to a target matrix, exchanging rows or columns within a matrix,
traversing a matrix forward and backwards by rows or columns while autoincrementing
or decrementing the indexes, and many other assorted utility functions. All of this

essentially means that power user will have to rewrite most HP-15C programs in
terms of the matrix functions available in the Advantage ROM, but will find a larger
function set at hand for the task and can even make big improvements on the fly easily.

Nevertheless, as it’s to be expected, the HP-15C matrix instruction set, however
modest in comparison to the Advantage’s, does include some nice touches which the
later doesn’t, such as the computation of the Residual (MATRIX 6, useful to refine
iterative processes), which the 15C does in a single instruction, at full speed and with
13-digit precision. This can’t be done using Advantage ROM’s functions because
intermediate results are rounded to 10 digits. In the 15C you also have the possibility
of computing the result of multiplying the transpose of a matrix by another one in a
single operation (MATRIX 5), and there’s the concept of matrix descriptors, which
can be stored in the stack or registers, to be used in logical tests, or even for indirect
manipulation of matrices. Also, the clever implementation of “user” STO instructions
makes it possible to store a value in a matrix element, automatically increment the
indexes to point to the next one, and test for loop termination, all with a single
instruction. The Advantage ROM equivalents do not act as test operators but simply
affect flags 9 and 10, and it’s up to the user to make the test and branch accordingly.

To better illustrate some of the matrix capabilities of the Advantage ROM, as well as
to show some of the compatibility issues just mentioned, here`s a program I wrote
specifically for the purpose.

The program

FP (short for Fit Polynomial) is a small, user-friendly, fully-prompting 62-line
program (124 bytes) that I wrote to specifically demonstrate the excellent matrix
capabilities of the Advantage ROM, and further, to compare them to the ones available
in the HP-15C. FP can find the coefficients of a polynomial of degree N which exactly
fits a given set of N+1 arbitrary data points (not necessarily equally spaced), where N
is limited only by available memory.

Note: The equivalent program for the HP-15C can be found elsewhere in this issue, though for
completeness’ sake, I’m including here a brief description of some mathematical details.

Among the many functions we could fit to data, polynomials are by far the easiest to
evaluate and manipulate numerically or symbolically, so our problem is:

Given a set of n+1 data points (x1, y1), …, (xn+1, yn+1), find an Nth-degree polynomial

y = P(x) = a1 + a2 x + a3 x2 + a4x3 + ... + an+1 xn

which includes the (n+1) data points (x1, y1), (x2, y2), ..., (xn+1, yn+1). The coefficients
(a1, ..., an+1) can be determined solving a system of (n+1) equations:

[1 x1 x12 . x1n][a1] = [y1]
[1 x2 x22 . x2

n][a2] = [y2]
[.][.] = [.]
[1 xn+1 xn+1

2 . xn+1
n][an+1] = [yn+1]

FP requires either an HP-41CX with the Advantage ROM plugged in, or else an HP-
41C/CV with the Advantage ROM and the X-Functions ROM. As the Advantage ROM
can directly operate with matrices residing in EM, no adressable registers in main
RAM are used at all, which means this program can run even at SIZE 000 !

Program listing

01 LBL "FP" to use, simply XEQ "FP"
02 "N=?" prompts for the degree N of the polynomial
03 PROMPT .. and waits for the user to enter N
04 1 add 1 to get the number of data points
05 + .. N+1
06 1.001 the required multiplier
07 * forms the matrix dimensions [N+1].00[N+1]
08 "MX" specifies matrix MX to be created in X-MEM
09 MATDIM creates and dimensions matrix MX in X-MEM
10 0 specifies first row, first column and ..
11 MSIJ .. resets the row/column indexes
12 LBL 00 loop to ask for data & compute MX elements
13 MRIJ recalls the current value of the indexes
14 "X" forms the prompt to ask the user to enter xi
15 AIP .. appends the index to the prompt
16 "|-=?" .. appends “=?” to the prompt
17 PROMPT prompts to enter xi and resume execution
18 ENTER fills the stack with the value of xi ..
19 ENTER .. in order to compute all powers of xi ..
20 ENTER .. from 1 to xiN, and store them in MX
21 1 initializes the value of xi

0 [i.e.: 1]
22 MSR+ stores it in MX and updates the indexes
23 LBL 01 loop to compute the powers of xi
24 * computes xi

j
25 MSR+ stores it in MX and updates the indexes

26 FC?09 are we done with this row ?
27 GTO 01 not yet, go back for the next xi power
28 FC? 10 row done. Are we done with all rows ?
29 GTO 00 not yet, go back to ask for the next xi
30 CLA all rows done, MX complete. Make it current
31 DIM? get its dimensions: [N+1].00[N+1]
32 INT get N+1 (avoid using a register)
33 "MY" specify vector MY to be created in X-MEM
34 MATDIM creates and dimensions vector MY in X-MEM
35 LBL B ask for yi data and store them in MY
36 0 specifies 1st element of the vector and ...
37 MSIJ .. resets the index to the 1st element
38 LBL 02 loop for next data and store them in MY
39 MRIJ recalls the current value of the index
40 "Y" forms the prompt to ask for yi
41 AIP .. appends the index to the prompt
42 "|-=?" .. appends “=?” to the prompt
43 PROMPT prompts the user to enter yi
44 MSR+ stores it in MY and updates the index
45 FC? 10 are we done with all elements ?
46 GTO 02 not yet, go back to ask for the next yi
47 "MX,MY" all yi stored. Specify MX,MY for the system
48 MSYS solves the system for the coefficients
49 LBL C retrieve and display each coeff.
50 0 specifies 1st element of the coeffs. vector
51 MSIJ resets the index to the 1st coefficient
52 LBL 03 loop to retrieve the next coefficient
53 MRIJ recalls the current value of the index
54 "A" forms the prompt to display each coeff.
55 AIP .. appends the index to the prompt
56 "|-=" .. appends “=” to the prompt
57 MRR+ retrieves the value of the current coeff.
58 ARCL X .. appends the value to the prompt
59 PROMPT shows the value to the user
60 FC? 10 are we done outputting all the coeffs. ?
61 GTO 03 not yet, go back for the next coefficient
62 END all done. End of execution.

Notes
• As the Advantage ROM can work with matrices directly in EM, FP doesn't use any

main RAM registers and so it will run even at SIZE 000. This has the added

advantage (pun intended) of avoiding any register conflicts with other programs.

• FP creates two matrices in X-MEM, namely MX and MY, which aren't destroyed
upon termination. Retaining MX allows the user to compute the coefficients of
another polynomial using the same x data but different y data. In that case, the x
data need not be entered again, only the new y data must be entered. Further, as the
MX matrix is left in LU-decomposed form after the first fit, the second fit will
proceed much faster. Retaining MY allows the user to employ the polynomial for
interpolating purposes, root finding, numeric integration or differentiation, etc.

• Lines 2-11 prompt the user for the degree of the polynomial, then allocate the
system matrix in Extended Memory (MATDIM) and reset the indexes (MSIJ).

• Lines 12-22 set up a loop which will fill up the rows of MX. Notice the use of the
miscellaneous function AIP to build the prompt, and MSR+ to store the value and
automatically advance the indexes to point to the next element.

• Lines 23-27 form a tight loop which computes each power of xi and uses MSR+ to
store it and advance the indexes. Flag 9 logs if we’re done with the column in which
case we would proceed to the next row. If so, Flag 10 is then checked to see if
we’re done with all the rows. In the HP-15C, an “user” STO can do the whole job
of storing elements, updating indexes, and checking for termination.

• Once the system matrix has been populated, lines 30-45 do likewise dimension,
and populate the MY matrix, prompting the user for the required yi values. Then,
once all the data have been input and both matrices are allocated and populated,
lines 46-47 solve the system for the coefficients of the polynomial (by using
MSYS. The HP-15C version used the ‘overloaded’ division key [÷] instead).

• Finally, lines 48-59 stablish a loop which labels and outputs all the coefficients.

Usage instructions

1. After keying in the program, you can execute it by pressing:

 XEQ “FP” à N=?

2. Enter the degree of the polynomial you want to fit:

 N, R/S à X1=?

3. You must enter all the x values first, then the y values:

 x1 , R/S à X2=?
 x2 , R/S à X3=?

 ...
 xn+1 , R/S à Y1=?

4. Now the program is prompting you to enter the y values

 y1, R/S à Y2=?
 y2, R/S à Y3=?
 ...
 yn+1, R/S à A1=(a1), R/S à A2=(a2), ... , R/S à A(n+1)=(an+1)

5. If you want to display all the coefficients again, set User mode and press:

 C à A1=(a1), R/S à A2=(a2), ... , R/S à A(n+1)=(an+1)

6. If you want to compute the coefficients for another set of data with the same xi

values but different yi values, you don’t need to reenter the x values. Press:

 B à Y1=?

and go to (4) above to enter the new yi values. You'll notice that it takes much
less time to compute the coefficients now, as the matrix is already in LU-
decomposed form, and thus can be used as is, saving a lot of processing time.

Example

Rumour has it that the seemingly trigonometric function y = cos(5 arccos x) is
actually a 5th-degree polynomial in disguise. Attempt to retrieve its true form.

If it is indeed a 5th-degree polynomial, we can retrieve its true form by fitting a 5th-
degree polynomial to a set of 6 arbitrary data points (x,y). Any set with different x
values (-1.0 <= x <= +1.0) will do, but for simplicity’s sake we’ll use x=0, 0.2, 0.4,
0.6, 0.8, and 1. Proceed like this:

- set Radians mode, 4 decimals: XEQ “RAD”, FIX 4
- start the program: XEQ “FP” à N=?
- specify degree 5: 5 R/S à X1=?
- enter 1st x value: 0 R/S à X2=?
- enter 2nd x value: 0.2 R/S à X3=?
- enter 3rd x value: 0.4 R/S à X4=?
- enter 4th x value: 0.6 R/S à X5=?
- enter 5th x value: 0.8 R/S à X6=?

- enter 6th x value: 1 R/S à Y1=?
- enter 1st y value: 0, COS-1, 5, *, COS, R/S à Y2=?
- enter 2nd y value: 0.2, COS-1, 5, *, COS, R/S à Y3=?
- enter 3rd y value: 0.4, COS-1, 5, *, COS, R/S à Y4=?
- enter 4th y value: 0.6, COS-1, 5, *, COS, R/S à Y5=?
- enter 5th y value: 0.8, COS-1, 5, *, COS, R/S à Y6=?
- enter 6th y value: 1, COS-1, 5, *, COS, R/S à A1=-1.0250E-9

R/S à A2=5.0000
R/S à A3=7.0867E-8
R/S à A4=-20.0000
R/S à A5=2.6188E-7
R/S à A6=16.0000

So, disregarding the very small coefficients due to rounding errors, the undisguised
polynomial is:

P(x) = cos(5 arccos x) = 5 x – 20 x3 + 16 x5

If you’ve got an HP-41CX, you might want to execute now EMDIR, to see that the
matrices used are still available so that you can redisplay the coefficients, solve for a
new set of y values, or use the polynomial for interpolation, etc.

XEQ “EMDIR” à MX @036 [the system matrix is 6x6 = 36 elements]
 à MY @006 [the y/coeff. matrix is 6x1 = 6 elementss]
 à 554.0000 [this value varies with your configuration]

Final remarks

I hope this article has given you some insight on the amazingly powerful functionality
of the Advantage ROM and the ways in which it can extend the capabilities of the 41C.
It’s a real pity that it was introduced a little late in the product life of the 41C, one can
just wonder its impact should it have been introduced shortly after the 41C was
released. For one thing, the PPC ROM itself would have been drastically different, as
much of its code is devoted to perform as efficiently as possible many tasks that the
Advantage ROM deals with much better. Its effect on engineers and other
professionals, as well as students, would have been tremendous. Come to think of it, in
a way it was: a whole series of technical books (Grapevine’s “Using your Advantage
ROM” series), were successfully launched, including titles such as “Statics for
Students", “Electrical Circuits for Students", and “Computer Science", among others.

My final advice: if you’ve got an HP-41, any model, you absolutely MUST have an
Advantage ROM. You’ll never, ever, look at 15C/42S users with “envious eyes” (or to
any other model for that matter). It’ll increase your 41 programming pleasure tenfold.

Note: For an HP-15C implementation, see my article “HP-15C Nth-degree Polynomial Fitting”
elsewhere in this issue, featuring 3 additional examples you can try out with this program as well !

