
Long live the HP-11C !

Valentin Albillo (Ex-PPC member #4747)

It's been 20 years since I was presented with my HP-11C, and it seems as if no time
has passed by at all. Well, at least not for my trusty 11C, which still is as mint as ever,
despite being frequently used and abused. As for myself, I can't say the same, those 20
years have exacted their toll on my ever youthful self indeed, but then I'm not one of
its slim kind.

Now, I've always thought that the 11C, like all machines in the legendary Voyager
series, were well ahead of their time, almost timeless. There's nothing right now which
compares. Talk about their ultra-elegant style, those slim bodies which can fit
comfortably in most every pocket. Talk about their ruggedness, they felt as solid as a
brick. Talk about the keyboard, with those real, positively-clicking keys, with molded,
unerasable helvetica lettering on them. Talk about their nearly unbelievably low power
consumption, which made batteries last for years and years and years, a real "Duracell
bunny" of sorts. And of course, talk about their functionality. The best Voyager models
have an incredible amount of computing power in those small bodies, which has taken
a lot of years to surpass, and never again in such marvelous hardware.

To illustrate this, and to commemorate the 11C as it deserves, here is a couple of
programs I wrote 20 years ago, which suitably show its capabilities to the max. The
first one, Exhibit A, is a short program which performs an unusual mathematical task,
and you'll find it included right here, in this article. The other one, Exhibit B, allows
your 11C to play a challenging, non-trivial board game against you, and furthermore, it
can play on boards of *any* size NxN ! But you'll have to wait till the next issue to test
your brains against it, and you won't find it easy to beat at all, I promise ...

Exhibit A: Summation of infinite, alternating series

Given an arbitrary, user-defined infinite series whose terms are alternately positive
and negative, this program will compute accurately its infinite sum very quickly, even
if the series convergence is dismayingly slow. More so, it will even succeed for
divergent series !

For example, consider the infinite series S = 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...
 = Ln(2) = 0.693147181+

Trying to compute its infinite sum using a loop to add a suitable number of terms
would require *incredible* amounts of time, even on the fastest computer !. For

instance, you would need to add more than 2000 terms just to get a mere 3 correct
decimals, and many millions of terms to achieve 7 or more digits correct. The
rounding errors after adding so many terms would also badly affect the maximum
accuracy obtainable.

In contrast, this program allows your HP-11C to compute that sum or any other you
care to specify accurate to 9 or 10 digits, in one minute or less. See examples:

Program listing:

001 LBL A 026 / 051 STO I 076 ISG
002 CF 0 027 FRAC 052 STO .2 077 FIX 4
003 STO .1 028 X#0 053 LBL 0 078 RCL .1
004 X<>Y 029 SF 0 054 RCL(i) 079 RCL I
005 STO .0 030 CLX 055 ISG 080 X<=Y
006 1 031 STO I 056 FIX 4 081 GTO 4
007 STO 8 032 LBL 2 057 STO-(i) 082 RCL 9
008 0 033 RCL 8 058 RCL .1 083 RTN
009 STO 9 034 GSB B 059 RCL I 084 LBL B
010 STO I 035 STO(i) 060 X#Y
011 LBL 1 036 ISG 061 GTO 0 84 steps
012 GSB B 037 FIX 4 062 RCL .2
013 RCL 8 038 1 063 STO I Labels:
014 STO-8 039 STO+8 064 X=0 A,B,0,1,2,4,6
015 STO-8 040 RCL .1 065 GTO 4
016 * 041 RCL I 066 1 Registers:
017 STO+9 042 X<=Y 067 GTO 6
018 ISG 043 GTO 2 068 LBL 4 0 thru .2, I
019 FIX 4 044 2 069 RCL(i)
020 RCL .0 045 F? 0 070 RCL 8 Flags:
021 RCL I 046 CHS 071 /
022 X<=Y 047 STO 8 072 STO+9 0
023 GTO 1 048 ABS 073 2
024 STO 8 049 LBL 6 074 CHS Ang.Mode: Any
025 2 050 - 075 STO*8

Usage instructions:

1) Define the i-th term of the series under label B: press

 GTO B, switch to PRGM mode, key in the keystroke sequence that computes
the i -th term as a function of i, and end it with RTN. Then switch back to RUN mode.

 For definition purposes, the index "i" is on the X register when B is called. The
index “i” assumes the values 0,1,2,3,…, so the very first term of your series is the one
corresponding to i=0. You can use available registers .3 (watch out, it's .3, not 3)
onwards in your definition. Also, do not define a sign for your i-th term, it's
automatically assumed that its sign alternates between positive and negative.

2) Enter into the stack the number of terms to sum initially (PSum) and the number of
differences to compute (NDif), and, in USR mode, press A (or out of USR mode,
press GSB A or shift-A):

 PSum, ENTER, NDif, A (or GSB A if not in USR mode)

The program runs and after a short while, it will stop with the computed infinite sum of
the series on the display.

3) To try another values of PSum or NDif go to step (2) above. To sum a different
series, go to step (1) above [don't forget to delete the previous definition of the i-th
term from program memory, except LBL B itself, before keying in the new one]

Notes:

- Using values of PSum = 7 and NDif = 7 is recommended for good accuracy/speed.
You may want to try other combinations, but these are good default values.

- PSum must be an integer >= 0. It may be larger than 7, say 10 or more, if desired

- NDif must be an integer between 1 and 7, both included. It can't be > 7 nor < 1

Now some examples, we'll assume USR mode is active , and FIX 9:

Example 1:

Find the sum of S = 1 -1/2 + 1/3 - 1/4 + 1/5 - ...

- we define the i-th term = 1/(1+i):

 GTO B, P/R, 1, +, 1/x, RTN, P/R

- we'll use PSum = 10, NDif = 7 for maximum accuracy:

 10, ENTER, 7, A

- after just one minute, we get the sum = 0.693147182 in the display. The
theoretically correct value is Ln(2) = 0.693147181, so we've got 9 decimals accuracy.

Example 2:

Find the sum of S = 1/0.23 - 1/0.24 + 1/0.25 - 1/0.26 + ...

- we define the i-th term = 1/(0.23+0.01*i) : [previous example definition assumed
deleted from program memory]. For extra speed, let's use previously stored constants
in R.3 and R.4 (notice they are R.3 and R.4, not R3 and R4):

 GTO B, P/R, RCL .3, *, RCL .4, +, 1/x, RTN, P/R

- store the constants: 0.01, STO .3, 0.23, STO .4

- let's use PSum = 6, NDif = 6:

 6, ENTER, A

- after only 50 seconds, we get the sum = 2.221127525 in the display. The
theoretically correct value is 100*INTEGRAL(0,1,x^22/(1+x).dx) = 2.221127525, so
we've got maximum possible accuracy, 10 exact digits.

Example 3:

Find the "sum" (!) of the *divergent* series S = 1 -2 +3 -4 +5 -6 + ...

- we define the i-th term = 1+i [previous example definition assumed deleted from
program memory]:

 GTO B, P/R, 1, +, RTN, P/R

- we'll use PSum = 0, NDif =1:

 0, ENTER, 1, A

- after less than 10 seconds, your 11C achieves the impossible, and sums a divergent
series ! Actually, we get the "sum" = 0.250000000 in the display. Of course, this
series is divergent so it has no sum in the normal sense. What the program computes

in this case is called the "Eulerian Sum" of the function. Why 0.25 ? Consider this
Taylor Series Expansion:

 1/(1+x)^2 = 1 -2x + 3x^2 -4x^3 +5x^4 - ...

which is only valid for ABS(X)<1. However, if we make x =1 in both sides of the
above identity, we get:

 1/(1+1)^2 = 1/4 = 0.25 = 1 -2 +3 -4 +5 -6 + ... bizarre, isn't it ?

That's all. You may want to try the program in some very slow converging examples of
your own, for instance, try 1-1/4+1/9-1/16+1/25- ..., and compare with the exact
value. Or if you're feeling adventurous, try 1-1/2+1/3-1/5+1/7-1/11+1/13- ..., where
the denominators are the i-th prime, you just need to insert an i-th prime function
under LBL B !

As a final, sad remark, it's a real pity that we won't ever be able to see such wonderful
machines being marketed again, except for the most successful Voyager calculator
ever, the HP-12C. Then again, our existing Voyagers are sure to serve us for long
decades to come. Long live the 11C !

