
Chess Tests: Notes on Problem Solving
Timings and discussion on "Solved"

(c) Valentin Albillo, 2020

Last update: 01/10/97

Notes on time measurements:

For mate problems, you should note the time when your program actually STOPS and GIVES the mate, NOT when it merely sees the
mate.

For non-mating problems, you should note the time when your program's evaluation for the move is quite similar to the value given
here, NOT simply when it sees the move but assigns it a significantly distinct value.

Notes on when a test position is to be considered SOLVED:

My test suite is still growing, and I carefully select each position so that they demonstrate something about the programs solving or trying
to solve them. They are mostly very difficult, and most of them cannot be easily solved within 3 minutes, which is what I would consider as
a reasonable time for actual game-playing.

But notice that in some of my tests (i.e. Test 81) all of the programs tested find the correct move, however I do NOT consider any of them to
have solved the problem, because their evaluation of the position shows that they don't see the draw, and do not even know how to
maintain the draw afterwards.

In my opinion, a meaningful test should include not only time and solution, but also the minimum value the evaluation should have to
consider that the program has really found the solution.

For instance, say test XX should be solved within 10 minutes, it should find Nb3, and it should have Eval >= +5.00 points because that
move wins the queen. If the program does find Nb3 within 10 min., but evaluates the move as +0.32, then the program has not seen that the
queen is won, and certainly has NOT solved the problem.

Perhaps if let alone for another 20 minutes it would then evaluate it as +5.12 in which case it would have solved it, but not with Eval =
+0.32.

Same goes, as another example, for certain drawn positions (see Test 81), where white can draw enclosing the enemy king in a fortress. The
promoted queen cannot mate the white king alone, and so the position is drawn.

If the program evaluates this as Eval =-9.00 because of the queen, the program is not seeing the draw and is not understanding the
position at all, so much in fact that many times it will ruin the position even after making the correct first move. Thus, it cannot be
considered to have solved the problem, either.

Conclusions:

Taking all of this into account, I hereby advocate that test suites should include for each and every test position, not just the desirable
move or moves, the moves to avoid, and some time limit, but also the minimum value the desirable move must have to consider the program
has really seen the consequences of the move, and is not chosing the right move for the wrong reasons.

Failure to take this into account could result in some or all of these sad scenarios:

Program XX passes certain test with better timings than program YY. However, that obscures the essential fact that the slower
evaluations of YY were much more accurate than the quick results of XX.

Program XX finds the correct move for a certain test. However, letting the program play that position, it quickly degrades it and
eventually loses any advantage, because the real features of the position which justified that move were never understood nor its
consequences foreseen.

(c) Valentin Albillo, 2020


